13.5.5 Padé expansion
The pade command finds a rational
expression which agrees with a function up to a given order.
-
pade takes 4 arguments
-
expr, an expression.
- x, the variable name.
- n, an integer or R, a polynomial.
- p, an integer.
- pade(expr,x,n,p) or
pade(expr,x,P,p)
returns a rational function P/Q such that
degree(P)<p and P/Q≡ expr(mod xn+1 )
(meaning that P/Q and f have the same
Taylor expansion at 0 up to order n) or
P/Q≡ expr· f(mod R ), respecively.
Examples
or:
|
| −3 x2−24 x−60 |
|
x3−9 x2+36 x−60 |
|
| | | | | | | | | | |
|
To verify:
taylor((3*x^2+24*x+60)/(-x^3+9*x^2-36*x+60)) |
|
1+x+ | | + | | + | | + | | +x6 order_size | ⎛
⎝ | x | ⎞
⎠ |
| | | | | | | | | | |
|
which is the 5th-order series expansion of exp(x) at x=0.
pade((x^15+x+1)/(x^12+1),x,12,3) |
or:
pade((x^15+x+1)/(x^12+1),x,x^13,3) |
pade((x^15+x+1)/(x^12+1),x,14,4) |
or:
pade((x^15+x+1)/(x^12+1),x,x^15,4) |
|
| 2 x3+1 |
|
x11−x10+x9−x8+x7−x6+x5−x4+x3+x2−x+1 |
|
| | | | | | | | | | |
|
To verify:
|
1+x−x12−x13+2 x15+x16 order_size | ⎛
⎝ | x | ⎞
⎠ |
| | | | | | | | | | |
|
Then:
series((x^15+x+1)/(x^12+1),x=0,15) |
|
1+x−x12−x13+x15+x16 order_size | ⎛
⎝ | x | ⎞
⎠ |
| | | | | | | | | | |
|
These two expressions have the same 14th-order series expansion at x=0.