Previous Up Next

13.4.3  Solving linear homogeneous second-order ODE with rational coefficients

The kovacicsols command finds Louivillian solutions of ordinary linear homogeneous second-order differential equations of the form

a y′′+b y′+c y=0,     (1)

where a, b and c are rational functions of the independent variable. kovacicsols uses Kovacic’s algorithm.

Examples

Find the general solution to y′′=(1/x−3/16 x2y.

kovacicsols(y''=y*(1/x-3/16x^2))
     


x
1
4
 
 e
x
 
,x
1
4
 
 e
−2 
x
 


          

Therefore, the general solution is y=C1 x1/4 e2 √x+C2 x1/4 e−2 √x.

Solve x′(t)+3 (t2t+1)/16 (t−1)2 t2 x(t)=0.

kovacicsols(x''+3*(t^2-t+1)/(16*(t-1)^2*t^2)*x,t,x)
     







t 
t−1


t2t
+2 t−1



1
4


 
,

t 
t−1


t2t
−2 t+1



1
4


 





          

so the general solution is, for C1,C2∈ℝ,

  
    x(t)=C1 
t (t−1) (1−2 t−2 
t2t
)
+
    C2 
t (t−1) (1−2 t+2 
t2t
)
.

Find a particular solution to y′′=4 x6−8 x5+12 x4+4 x3+7 x2−20 x+4/4 x4 y.

r:=(4x^6-8x^5+12x^4+4x^3+7x^2-20x+4)/(4x^4); kovacicsols(y''=r*y)
     






−1+x2
e
1
2
 
x3−2 x2−2
x
 
x 
x





          

Hence y=(x2−1) x−3/2 ex3−2 x2−2/2 x is a solution to the given equation.

Solve y′′+y′=6 y/x2.

kovacicsols(y''+y'=6y/x^2)
     




12+6 x+x2
ex
x2



          

Solve the Titchmarsh equation y′′+(19−x2y=0.

kovacicsols(y''+(19-x^2)*y=0,x,y)
     






945
16
 x
315
2
 x3+
189
2
 x5−18 x7+x9


e
x2
2
 



          

This is only a single, particular solution.

Find the general solution of Halm’s equation (1+x2)2 y′′(x)+3 y(x)=0.

sol:=kovacicsols((1+x^2)^2*y''+3y=0,x,y)
     





−1+x2
x2+1





          

The other basic solution is obtained by using (2).

y1:=sol[0]; y2:=normal(y1*int(y1^-2,x))
     
−1+x2
x2+1
,−
x 
x2+1
x2+1
          

Therefore, y=C1 x2−1/√x2+1+C2 x/√x2+1, where C1,C2∈ℝ.

Find the general solution of the non-homogeneous equation y′′−27 y/36 (x−1)2=x+4. First you need to find the general solution to the corresponding homogeneous equation yh′′−27 yh/36 (x−1)2=0.

sols:=kovacicsols(y''-y*27/(36*(x-1)^2),x,y)
     





−2 x+x2
x−1





          

Call this solution y1 and find the other basic independent solution by using (2).

y1:=sols[0]:; y2:=y1*int(1/y1^2,x)
     
x−1
x−2
          

So the general solution of the homogeneous equation is

  yh=C1 y1+C2 y2=
C1 (x2−2 x)+C2
x−1
,   C1,C2∈ℝ.

A particular solution yp of the non-homogeneous equation can be obtained by variation of parameters:

  yp=−y1 
y2 f(x)
W
 dx+y2 
y1 f(x)
W
 dx,

where f(x)=x+4 and W is the Wronskian of y1 and y2, i.e.

  W=y1 y2′−y2 y1′≠ 0.
W:=y1*y2'-y2*y1':; f:=x+4:; yp:=normal(-y1*int(y2*f/W,x)+y2*int(y1*f/W,x))
     
x3+72 x2−156 x+80
21
          

Hence yp=1/21 (4 x3+72 x2−156 x+80). Now y=yp+yh. You can checking that it is indeed the general solution of the given equation.

purge(C1,C2):; ysol:=yp+C1*y1+C2*y2:; normal(diff(ysol,x,2)-27/(36*(x-1)^2)*ysol)==f
     
true           

Solve the equation y′′=(3/16 x (x−1)−2/9 (x−1)2−3/16 x2)y from the original Kovacic’s paper.

r:=-3/(16x^2)-2/(9*(x-1)^2)+3/(16x*(x-1)):; kovacicsols(y''=r*y)
     
−ω_4 x4 
x−1
4
+
ω_3 x3 
x−1
3 
x−3
3
ω_2 x2 
x−1
2 
48 x2−41 x+9
24
         
 
+
ω_ x 
x−1

320 x3−409 x2+180 x−27
432
         
 
+
−2048 x4+3484 x3−2313 x2+702 x−81
20736
         

The solution is y=exp(∫ω0), where ω0 is a zero of the above expression, thus being a root of a fourth-order polynomial in ω. In similar cases you can try the Ferrari method to obtain ω0.

Solve the equation 48 t (t+1) (5 t−4) y′′+8 (25 t+16) (t−2) y′−(5 t+68) y=0.

kovacicsols([48t*(t+1)*(5t-4),8*(25t+16)*(t-2),-(5t+68)],t)
     
 
1
20736
ω_4 
135 t4−616 t3−144 t2+3072 t−4096
1
54
 ω_3 t 
t+1

23 t2−92 t+128
         
 
1
24
 ω_2 t2 
t+1

15 t3−80 t2+80 t+256
+
2
3
 ω_ t3 
t−4

t+1
2 
t+8
t4 
t+1
2 
t+4

t+4
         

Previous Up Next