Previous Up Next

2.50.2  Laplacian : laplacian

laplacian takes two arguments : an expression F of n real variables and a vector of these variable names.
laplacian returns the laplacian de F, that is the sum of all second partial derivatives, for example in dimension n=3:

2(F)=
2 F
∂ x2
+
2 F
∂ y2
+
2 F
∂ z2
 

Example
Find the laplacien of F(x,y,z)=2x2yxz3.
Input :

laplacian(2*x^2*y-x*z^3,[x,y,z])

Output :

4*y+-6*x*z

Previous Up Next