11.4.5 Chebyshev polynomial of the second kind
The Chebyshev polynomial of second kind U(n,x) is defined by:
U(n,x)= | sin((n+1) arccosx) |
|
sin(arccosx) |
|
or equivalently:
sin((n+1)x)=U(n,cosx)sinx.
|
These satisfy the recurrence relation:
| U(0,x) | =1 | | | | | | | | | |
U(1,x) | =2x | | | | | | | | | |
U(n,x) | =2xU(n−1,x)−U(n−2,x)
| | | | | | | | | |
|
The polynomials U(n,x) are orthogonal for the scalar product
The tchebyshev2
command finds the Chebyshev polynomials of
the first kind.
-
tchebyshev2 takes one mandatory argument and one
optional argument:
-
n, an integer.
- Optionally x, a variable name (by default x).
- tchebyshev2(n ⟨,x⟩) returns
the Chebyshev polynomial of second kind of degree n.
Examples
Indeed, sin(4 x)=sin(x) (8 cos(x)3−4 cos(x))=sin(x) U(3,cos(x)).