Previous Up Next

11.4.5  Chebyshev polynomial of the second kind

The Chebyshev polynomial of second kind U(n,x) is defined by:

  U(n,x)=
sin((n+1) arccosx)
sin(arccosx)

or equivalently:

  sin((n+1)x)=U(n,cosx)sinx.

These satisfy the recurrence relation:

     
  U(0,x)=1          
U(1,x)=2x          
U(n,x)=2xU(n−1,x)−U(n−2,x)          

The polynomials U(n,x) are orthogonal for the scalar product

  ⟨ f,g⟩=
1


−1
f(x)g(x)
1−x2
 dx.

The tchebyshev2 command finds the Chebyshev polynomials of the first kind.

Examples

tchebyshev2(3)
     
x3−4 x           
tchebyshev2(3,y)
     
y3−4y           

Indeed, sin(4 x)=sin(x) (8 cos(x)3−4 cos(x))=sin(xU(3,cos(x)).


Previous Up Next