Previous Up Next

11.4.1  Legendre polynomials

The Legendre polynomial L(n,x) of degree n is a polynomial solution of the differential equation

  (x2−1) y′′−2 x y′−n(n+1) y=0.

The Legendre polynomials satisfy the recurrence relation:

     
  L(0,x)=1         
L(1,x)=x         
L(n,x)
=
2n−1
n
x L(n−1,x)−
n−1
n
L(n−2,x)
         

These polynomials are orthogonal for the scalar product:

  ⟨ f,g⟩=
1


−1
f(x)g(xdx.

The legendre command finds the Legendre polynomials.

Examples

legendre(4)
     
35
8
 x4
15
4
 x2+
3
8
          
legendre(4,y)
     
35
8
 y4
15
4
 y2+
3
8
          

Previous Up Next