   ### 5.28.13  Chinese remainders : chinrem

chinrem takes two lists as argument, each list being made of 2 polynomials (either expressions or as a list of coefficients in decreasing order). If the polynomials are expressions, an optional third argument may be provided to specify the main variable, by default x is used. chinrem([A,R],[B,Q]) returns the list of two polynomials P and S such that :

 S=R Q,     P=A (mod R ),    P=B (mod Q )

If R and Q are coprime, a solution P always exists and all the solutions are congruent modulo S=R*Q. For example, assume we want to solve :

 P(x)= x mod (x2+1) P(x)= x−1 mod (x2−1)

Input :

chinrem([[1,0],[1,0,1]],[[1,-1],[1,0,-1]])

Output :

[[1/-2,1,1/-2],[1,0,0,0,-1]]

or :

chinrem([x,x`^`2+1],[x-1,x`^`2-1])

Output :

[1/-2*x`^`2+x+1/-2,x`^`4-1]

hence P(x)=−x2−2.x+1/2 (mod x4−1)
Another example, input :

chinrem([[1,2],[1,0,1]],[[1,1],[1,1,1]])

Output :

[[-1,-1,0,1],[1,1,2,1,1]]

or :

chinrem([y+2,y`^`2+1],[y+1,y`^`2+y+1],y)

Output :

[-y`^`3-y`^`2+1,y`^`4+y`^`3+2*y`^`2+y+1]   