Previous Up Next

7.3.12  Complementary error function

The complementary error function is defined by

  erfc(x)=
2
π
+∞


x
et2dt=1−erf(x).

Hence erfc(0)=1, since

  
+∞


0
et2dt=
π
2
.

The erfc command computes the complementary error function.

Examples

erfc(1)
     
1−erf
1
          
1-erfc(1/(sqrt(2)))*0.5
     
0.841344746069           
Remark.

The relation between erfc and normal_cdf (see Section 20.4.7) is:

  normal_cdf(x) =1−
1
2
erfc




x
2





.

Previous Up Next