Previous Up Next

6.2.2  Solving a recurrence relation or a system

The seqsolve command finds the terms of a recurrence relation.

For example, if a recurrence relation is defined by un+1= f(un,n) with u0=a, the arguments to seqsolve will be f(x,n), [x,n] and a. If the recurrence relation is defined by un+2=g(un,un+1,n) with u0=a and u1=b, the arguments to seqsolve will be g(x,y,n), [x,y,n] and [a,b].

The recurrence relation must have a homogeneous linear part, the nonhomogeneous part must be a linear combination of a polynomials in n times geometric terms in n.

The rsolve command is an alternate way to find the values of a recurrence relation. Note that rsolve is more flexible than seqsolve since:

For example, if a recurrence relation is defined by un+1=f(un,n) with u0=a, the arguments to rsolve will be u(n+1)=f(u(n),n), u(n) and u(0)=a.

The recurrence relation must either be a homogeneous linear part with a nonhomogeneous part being a linear combination of polynomials in n times geometric terms in n (such as un+1=2 un+n 3n), or a linear fractional transformation (such as un+1= (un−1)/(un−2)).

Examples

Find un, given that un+1=2un+n and u0=3.

seqsolve(2x+n,[x,n],3)
     
n−1+4· 2n           

Find un, given that un+1=2un+n 3n and u0=3.

seqsolve(2x+n*3^n,[x,n],3)
     

n−3
· 3n+6· 2n
          

Find un, given that un+1=un+un−1, u0=0 and u1=1.

seqsolve(x+y,[x,y,n],[0,1])
     



5
+1
2



n



 
−4 


5
+1
2



n



 
 
5
−5 


5
+1
2



n



 
+5 


5
+1
2



n



 
+4 


5
+1
2



n



 
 
5
−5 


5
+1
2



n



 
20
          

Find un and vn, given that un+1=un+2vn, vn+1= un+n+1 with u0=1, v0=1.

seqsolve([x+2*y,n+1+x],[x,y,n],[0,1])
     



−2 n
−1
n+4· 2n−3
2
,

−1
n+2· 2n−1
2



          

Find un, given that un+1=2un+n and u0=3.

rsolve(u(n+1)=2*u(n)+n,u(n),u(0)=3)
     

n+4· 2n−1
          

Find un, given that un+1=2un+n and u12=1.

rsolve(u(n+1)=2*u(n)+n,u(n),u(1)^2=1)
     



n+
3
2
· 2n−1,−n+
1
2
· 2n−1


          

Note that there are two formulas, since the starting formula u12=1 gives two possible starting values: u1=1 and u1=2.

Find un, given that un+1=2un+n 3n and u0=3.

rsolve(u(n+1)=2*u(n)+n*3^n,u(n),u(0)=3)
     

n· 3n+6· 2n−3· 3n
          

Find un, given that un+1=(un−1)/(un −2) and u0= 4.

rsolve(u(n+1)=(u(n)-1)/(u(n)-2),u(n),u(0)=4)
     











20 
5
+60




5
−3
2



n



 
+60 
5
−140
40 


5
−3
2



n



 
+20 
5
−60









          

Find un given that un+1=un+un−1 with u0=0, u1=1.

rsolve(u(n+1)=u(n)+u(n-1),u(n),u(0)=0,u(1)=1)
     






5
5
 


5
+1
2



n



 
+
1
5
 
5
 


5
+1
2



n



 






          

Find un and vn, given that un+1=un+vn, vn+1= unvn with u0=0 and v0=1.

rsolve([u(n+1)=u(n)+v(n),v(n+1)=u(n)-v(n)],[u(n),v(n)],[u(0)=1, v(0)=1])
     





1
2
 

2
+1



2


n+1−1


 
+
1
2
 

2
+1

· 2
n+1−1
2
 
1
2
 

2


n+1−1


 
+
1
2
· 2
n+1−1
2
 





          

Previous Up Next