### 5.6.10 The integer Euclidean quotient : iquo intDiv

iquo (or intDiv) returns the integer quotient q of the
Euclidean division of two integers a and b given as arguments.
(a=b*q+r with 0≤ r< b).

For Gaussian integers, we choose q so that b*q is as near by a as
possible and it can be proved that r may be chosen so that
|r|^{2} ≤ |b|^{2}/2.

Input :

iquo(148,5)

Output :

29

iquo works with integers or with Gaussian integers.

Input :

iquo(factorial(148),factorial(145)+2 )

Output :

3176375

Input :

iquo(25+12*i,5+7*i)

Output :

3-2*i

Here a−b*q=−4+i and |−4+i|^{2}=17<|5+7*i|^{2}/2=74/2=37