
Graph theory package for giac/Xcas
Reference manual

Luka Marohni¢

August 2021

Table of contents

Introduction . 11

1 Constructing graphs . 13

1.1 General graphs . 13
1.1.1 Undirected graphs . 13
1.1.2 Directed graphs . 15
1.1.3 Examples . 15

Creating vertices . 15
Creating edges and arcs . 16
Creating paths and trails . 16
Specifying adjacency or weight matrix . 17
Creating special graphs . 18

1.2 Cycle and path graphs . 18
1.2.1 Cycle graphs . 18
1.2.2 Path graphs . 19
1.2.3 Trails of edges . 19

1.3 Complete graphs . 20
1.3.1 Complete (multipartite) graphs . 20
1.3.2 Complete trees . 21

1.4 Sequence graphs . 21
1.4.1 Creating graphs from degree sequences . 21
1.4.2 Validating graphic sequences . 22

1.5 Intersection graphs . 22
1.5.1 Interval graphs . 22
1.5.2 Kneser graphs . 23
1.5.3 Johnson graphs . 23

1.6 Special graphs . 24
1.6.1 Hypercube graphs . 24
1.6.2 Star graphs . 25
1.6.3 Wheel graphs . 25
1.6.4 Web graphs . 26
1.6.5 Prism graphs . 26
1.6.6 Antiprism graphs . 26
1.6.7 Grid graphs . 27
1.6.8 Sierpi«ski graphs . 28
1.6.9 Generalized Petersen graphs . 28
1.6.10 Snark graphs . 29
1.6.11 Paley graphs . 30
1.6.12 Haar graphs . 31
1.6.13 LCF graphs . 32

1.7 Isomorphic copies of graphs . 33
1.7.1 Creating isomorphic copies from permutations . 33
1.7.2 Permuting vertices . 34
1.7.3 Relabeling vertices . 35

1.8 Subgraphs . 35
1.8.1 Extracting subgraphs . 35
1.8.2 Induced subgraphs . 36

5

1.8.3 Underlying graphs . 36
1.8.4 Fundamental cycles . 36
1.8.5 Finding cycles in digraphs . 39

1.9 Operations on graphs . 39
1.9.1 Graph complement . 39
1.9.2 Graph switching . 40
1.9.3 Transposing graphs . 41
1.9.4 Union of graphs . 41
1.9.5 Disjoint union of graphs . 42
1.9.6 Joining two graphs . 42
1.9.7 Power graphs . 43
1.9.8 Graph products . 44
1.9.9 Transitive closure graph . 45
1.9.10 Line graph . 46
1.9.11 Plane dual graph . 46
1.9.12 Truncating planar graphs . 48

1.10 Random graphs . 49
1.10.1 Random general graphs . 49
1.10.2 Random bipartite graphs . 53
1.10.3 Random trees . 53
1.10.4 Random planar graphs . 55
1.10.5 Random graphs from a given degree sequence . 57
1.10.6 Random regular graphs . 58
1.10.7 Random tournaments . 58
1.10.8 Random network graphs . 59
1.10.9 Randomizing edge weights . 60

2 Modifying graphs . 61

2.1 Promoting to directed and weighted graphs . 61
2.1.1 Converting edges to arcs . 61
2.1.2 Assigning weight matrix to unweighted graphs . 61

2.2 Modifying vertices of a graph . 62
2.2.1 Adding and removing vertices . 62
2.2.2 Contracting subgraphs . 63

2.3 Modifying edges of a graph . 64
2.3.1 Adding and removing edges . 64
2.3.2 Accessing and modifying edge weights . 65
2.3.3 Contracting edges . 65
2.3.4 Subdividing edges . 66

2.4 Using attributes . 67
2.4.1 Graph attributes . 67
2.4.2 Vertex attributes . 68
2.4.3 Edge attributes . 69

3 Import and export . 71

3.1 Importing graphs . 71
3.1.1 Loading graphs from DOT and LST files . 71
3.1.2 The DOT file format specification . 72
3.1.3 The lst file format specification . 73

3.2 Exporting graphs . 74

4 Graph properties . 77

4.1 Basic properties . 77
4.1.1 Determining the type of a graph . 77
4.1.2 Listing vertices and edges . 77

6 Table of contents

4.1.3 Equality of graphs . 78
4.1.4 Vertex degrees . 79
4.1.5 Regular graphs . 80
4.1.6 Strongly regular graphs . 81
4.1.7 Vertex adjacency . 82
4.1.8 Tournament graphs . 83
4.1.9 Bipartite graphs . 84
4.1.10 Edge incidence . 85

4.2 Algebraic properties . 85
4.2.1 Adjacency matrix . 85
4.2.2 Laplacian matrix . 86
4.2.3 Incidence matrix . 88
4.2.4 Weight matrix . 89
4.2.5 Characteristic polynomial . 89
4.2.6 Graph spectrum . 90
4.2.7 Seidel spectrum . 90
4.2.8 Integer graphs . 91

4.3 Graph isomorphism . 91
4.3.1 Isomorphic graphs . 91
4.3.2 Canonical labeling . 94
4.3.3 Graph automorphisms . 94
4.3.4 Test for isomorphism against subgraphs . 95
4.3.5 Recognizing special graphs . 97

4.4 Graph polynomials . 98
4.4.1 Tutte polynomial . 98
4.4.2 Chromatic polynomial . 100
4.4.3 Flow polynomial . 100
4.4.4 Reliability polynomial . 101

4.5 Connectivity . 103
4.5.1 Connected, biconnected and triconnected graphs . 103
4.5.2 Connected and biconnected components . 104
4.5.3 Vertex connectivity . 105
4.5.4 Graph rank . 105
4.5.5 Articulation points . 106
4.5.6 Strongly connected components . 106
4.5.7 Edge connectivity . 107
4.5.8 Edge cuts . 108
4.5.9 Two-edge-connected graphs . 108

4.6 Trees . 109
4.6.1 Tree graphs . 109
4.6.2 Forest graphs . 110
4.6.3 Height of a tree . 110
4.6.4 Prüfer sequences . 111
4.6.5 Lowest common ancestor of a pair of nodes . 112
4.6.6 Arborescence graphs . 113

4.7 Networks . 113
4.7.1 Network graphs . 113
4.7.2 Maximum flow . 114
4.7.3 Minimum cut . 115

4.8 Distance in graphs . 116
4.8.1 Vertex distance . 116
4.8.2 All-pairs vertex distance . 117
4.8.3 Diameter . 118
4.8.4 Girth . 119

4.9 Acyclic graphs . 120
4.9.1 Acyclic graphs . 120

Table of contents 7

4.9.2 Topological sorting . 120
4.9.3 st ordering . 120
4.9.4 Graph condensation . 122

4.10 Matching in graphs . 123
4.10.1 Maximum matching . 123
4.10.2 Maximum matching in bipartite graphs . 124

4.11 Vertex covers . 125
4.11.1 Finding a vertex cover of the specified size . 125
4.11.2 Minimum vertex cover . 126

4.12 Cliques and independent sets . 127
4.12.1 Clique graphs . 127
4.12.2 Finding maximal cliques . 128
4.12.3 Maximum clique . 129
4.12.4 Maximum independent set . 130
4.12.5 Greedy clique finding . 131
4.12.6 Minimum clique cover . 132
4.12.7 Clique cover number . 132
4.12.8 Split graphs . 133
4.12.9 Simplicial vertices . 133

4.13 Network analysis . 134
4.13.1 Counting triangles . 134
4.13.2 Clustering coefficient . 135
4.13.3 Network transitivity . 137
4.13.4 Centrality measures . 138

4.14 Graph coloring . 140
4.14.1 Greedy vertex coloring . 140
4.14.2 Minimal vertex coloring . 141
4.14.3 Chromatic number . 142
4.14.4 Mycielski graphs . 142
4.14.5 k-coloring . 143
4.14.6 Minimal edge coloring . 144

5 Traversing graphs . 145

5.1 Walks and tours . 145
5.1.1 Eulerian graphs . 145
5.1.2 Hamiltonian graphs . 146

5.2 Optimal routing . 148
5.2.1 Shortest unweighted paths . 148
5.2.2 Cheapest weighted paths . 148
5.2.3 k-shortest paths . 150
5.2.4 Traveling salesman problem . 150

5.3 Spanning trees . 154
5.3.1 Construction of spanning trees . 154
5.3.2 Minimal spanning tree . 155
5.3.3 Counting the spanning trees and forests in a graph . 155
5.3.4 Vertex reachability . 156

6 Visualizing graphs . 157

6.1 Drawing graphs . 157
6.1.1 Overview . 157
6.1.2 Spring method . 157
6.1.3 Drawing trees . 160
6.1.4 Drawing planar graphs . 160
6.1.5 Circular graph drawings . 162
6.1.6 Drawing disconnected graphs . 163
6.1.7 Setting layout position, size, and title . 163

8 Table of contents

6.2 Vertex positions . 164
6.2.1 Setting vertex positions . 164
6.2.2 Generating vertex positions . 165
6.2.3 Custom layout example: spectral graph drawing . 166

6.3 Highlighting parts of graphs . 168
6.3.1 Highlighting vertices . 168
6.3.2 Highlighting edges and trails . 169
6.3.3 Highlighting subgraphs . 170

Bibliography . 171

Command Index . 175

Table of contents 9

Introduction

This document1 contains an overview of graph theory commands built in giac computation kernel
and supported within the Xcas GUI. For each command, the calling syntax is presented along
with a detailed description of its functionality, followed by examples.

Angular brackets �〈� and �〉� in the calling syntax indicate that the enclosed portion may be
omitted. The vertical bar �|� stands for or . Data types are enclosed by �<� and �>�, such as <real>
or <string>.

Although the development focus was on simplicity, the implemented algorithms are reasonably
fast. Some difficult tasks, such as traveling salesman problem, optimal graph colorings, minimum
vertex covers, and graph isomorphism, rely on optional third party libraries, precisely the GNU
Linear Programming Kit (GLPK) and nauty.

1. This manual was written in GNU TEXMACS, a scientific document editing platform. All examples were entered
as interactive giac sessions.

11

https://www.gnu.org/software/glpk/
http://pallini.di.uniroma1.it/
http://www.texmacs.org/tmweb/home/welcome.en.html
http://www.texmacs.org/tmweb/home/welcome.en.html
http://www.texmacs.org/tmweb/home/welcome.en.html

Chapter 1

Constructing graphs

1.1 General graphs

The commands graph and digraph are used for constructing general graphs.

1.1.1 Undirected graphs

graph(n|V,〈opts〉)
graph(V,E,〈opts〉)
graph(E,〈opts〉)
graph(V,T,〈opts〉)
graph(T,〈opts〉)
graph(V,T1,T2,T3,..,Tk,〈opts〉)
graph(T1,T2,T3,..,Tk,〈opts〉)
graph(A,〈opts〉)
graph(V,E,A,〈opts〉)
graph(V,P,〈opts〉)
graph(str)

Undirected graphs are created by using the command graph. It takes from one to three manda-
tory arguments and returns an undirected graph G(V ;E). Throughout this manual, an edge e2E
with endpoints u; v 2 V is denoted by e= uv or e= fu; vg. The order of the endpoints does not
matter if G is undirected; hence uv= vu.

The following arguments may be passed to the graph command.

� a number n or a list of vertices V (vertex may be any expression, preferably an atomic
object such as integer, symbol, or string); it must be the first argument if used

� a set of edges E (each edge is represented by the list of its endpoints), a permutation, a
trail of edges or a sequence of trails; it can be either the first or the second argument if used

The following optional arguments may be appended as opts.

� directed=true|false � sets the graph to be (un)directed

� weighted=true|false � sets the graph to be (un)weighted

� color=<int>|<list> � sets the color(s) of the vertices. If a single nonnegative integer
is given, then it is used as the color for all vertices; if a list of integers is given, then its
elements are assigned to vertex colors in the order as returned by vertices

13

http://www.encyclopediaofmath.org/index.php?title=Graph

� coordinates=<list> � sets 2D or 3D coordinates of the vertices

Special graphs supported in giac are listed in the table below.

special graph giac name
Balaban 10-cage balaban10

Balaban 11-cage balaban11

Barnette-Bosák-Lederberg graph barnette-bosak-lederberg

Bidiakis cube bidiakis

Biggs-Smith graph biggs-smith

2nd Blanu²a snark blanusa

Brinkmann graph brinkmann

Brouwer-Haemers graph brouwer-haemers

Bull graph bull

Butterfly graph butterfly

Clebsch graph clebsch

Chvátal graph chvatal

Coxeter graph coxeter

Desargues graph desargues

Diamond graph diamond

Dodecahedral graph dodecahedron

Double star snark double-star

Doyle graph doyle

Dürer graph duerer

Dyck graph dyck

Errera graph errera

F26A graph f26a

Folkman graph folkman

Foster graph foster

Franklin graph franklin

Frucht graph frucht

Gewirtz graph gewirtz

Goldner-Harary graph goldner-harary

Golomb graph golomb

Gosset graph gosset

Gray graph gray

Grinberg graph grinberg

Grötzsch graph groetzsch

Harborth graph harborth

Harries graph harries

Harries�Wong graph harries-wong

Heawood graph heawood

Herschel graph herschel

Higman-Sims graph higman-sims

Hoffman graph hoffman

Hoffman-Singleton graph hoffman-singleton

Icosahedral graph icosahedron

Kittell graph kittell

14 Constructing graphs

https://en.wikipedia.org/wiki/Balaban_10-cage
https://en.wikipedia.org/wiki/Balaban_10-cage
https://en.wikipedia.org/wiki/Balaban_10-cage
https://en.wikipedia.org/wiki/Balaban_10-cage
https://en.wikipedia.org/wiki/Balaban_10-cage
https://en.wikipedia.org/wiki/Balaban_10-cage
https://en.wikipedia.org/wiki/Balaban_11-cage
https://en.wikipedia.org/wiki/Balaban_11-cage
https://en.wikipedia.org/wiki/Balaban_11-cage
https://en.wikipedia.org/wiki/Balaban_11-cage
https://en.wikipedia.org/wiki/Balaban_11-cage
https://en.wikipedia.org/wiki/Balaban_11-cage
https://en.wikipedia.org/wiki/Barnette%E2%80%93Bos%C3%A1k%E2%80%93Lederberg_graph
https://en.wikipedia.org/wiki/Barnette%E2%80%93Bos%C3%A1k%E2%80%93Lederberg_graph
https://en.wikipedia.org/wiki/Barnette%E2%80%93Bos%C3%A1k%E2%80%93Lederberg_graph
https://en.wikipedia.org/wiki/Barnette%E2%80%93Bos%C3%A1k%E2%80%93Lederberg_graph
https://en.wikipedia.org/wiki/Barnette%E2%80%93Bos%C3%A1k%E2%80%93Lederberg_graph
https://en.wikipedia.org/wiki/Barnette%E2%80%93Bos%C3%A1k%E2%80%93Lederberg_graph
https://en.wikipedia.org/wiki/Barnette%E2%80%93Bos%C3%A1k%E2%80%93Lederberg_graph
https://en.wikipedia.org/wiki/Barnette%E2%80%93Bos%C3%A1k%E2%80%93Lederberg_graph
https://en.wikipedia.org/wiki/Bidiakis_cube
https://en.wikipedia.org/wiki/Bidiakis_cube
https://en.wikipedia.org/wiki/Bidiakis_cube
https://en.wikipedia.org/wiki/Bidiakis_cube
https://en.wikipedia.org/wiki/Biggs%E2%80%93Smith_graph
https://en.wikipedia.org/wiki/Biggs%E2%80%93Smith_graph
https://en.wikipedia.org/wiki/Biggs%E2%80%93Smith_graph
https://en.wikipedia.org/wiki/Biggs%E2%80%93Smith_graph
https://en.wikipedia.org/wiki/Biggs%E2%80%93Smith_graph
https://en.wikipedia.org/wiki/Biggs%E2%80%93Smith_graph
https://en.wikipedia.org/wiki/Blanu%C5%A1a_snarks
https://en.wikipedia.org/wiki/Blanu%C5%A1a_snarks
https://en.wikipedia.org/wiki/Blanu%C5%A1a_snarks
https://en.wikipedia.org/wiki/Blanu%C5%A1a_snarks
https://en.wikipedia.org/wiki/Brinkmann_graph
https://en.wikipedia.org/wiki/Brinkmann_graph
https://en.wikipedia.org/wiki/Brinkmann_graph
https://en.wikipedia.org/wiki/Brinkmann_graph
https://en.wikipedia.org/wiki/Brouwer%E2%80%93Haemers_graph
https://en.wikipedia.org/wiki/Brouwer%E2%80%93Haemers_graph
https://en.wikipedia.org/wiki/Brouwer%E2%80%93Haemers_graph
https://en.wikipedia.org/wiki/Brouwer%E2%80%93Haemers_graph
https://en.wikipedia.org/wiki/Brouwer%E2%80%93Haemers_graph
https://en.wikipedia.org/wiki/Brouwer%E2%80%93Haemers_graph
https://en.wikipedia.org/wiki/Bull_graph
https://en.wikipedia.org/wiki/Bull_graph
https://en.wikipedia.org/wiki/Bull_graph
https://en.wikipedia.org/wiki/Bull_graph
https://en.wikipedia.org/wiki/Butterfly_graph
https://en.wikipedia.org/wiki/Butterfly_graph
https://en.wikipedia.org/wiki/Butterfly_graph
https://en.wikipedia.org/wiki/Butterfly_graph
https://en.wikipedia.org/wiki/Clebsch_graph
https://en.wikipedia.org/wiki/Clebsch_graph
https://en.wikipedia.org/wiki/Clebsch_graph
https://en.wikipedia.org/wiki/Clebsch_graph
https://en.wikipedia.org/wiki/Chv%C3%A1tal_graph
https://en.wikipedia.org/wiki/Chv%C3%A1tal_graph
https://en.wikipedia.org/wiki/Chv%C3%A1tal_graph
https://en.wikipedia.org/wiki/Chv%C3%A1tal_graph
https://en.wikipedia.org/wiki/Coxeter_graph
https://en.wikipedia.org/wiki/Coxeter_graph
https://en.wikipedia.org/wiki/Coxeter_graph
https://en.wikipedia.org/wiki/Coxeter_graph
https://en.wikipedia.org/wiki/Desargues_graph
https://en.wikipedia.org/wiki/Desargues_graph
https://en.wikipedia.org/wiki/Desargues_graph
https://en.wikipedia.org/wiki/Desargues_graph
https://en.wikipedia.org/wiki/Diamond_graph
https://en.wikipedia.org/wiki/Diamond_graph
https://en.wikipedia.org/wiki/Diamond_graph
https://en.wikipedia.org/wiki/Diamond_graph
https://en.wikipedia.org/wiki/Regular_dodecahedron#Dodecahedral_graph
https://en.wikipedia.org/wiki/Regular_dodecahedron#Dodecahedral_graph
https://en.wikipedia.org/wiki/Regular_dodecahedron#Dodecahedral_graph
https://en.wikipedia.org/wiki/Regular_dodecahedron#Dodecahedral_graph
https://en.wikipedia.org/wiki/Double-star_snark
https://en.wikipedia.org/wiki/Double-star_snark
https://en.wikipedia.org/wiki/Double-star_snark
https://en.wikipedia.org/wiki/Double-star_snark
https://en.wikipedia.org/wiki/Double-star_snark
https://en.wikipedia.org/wiki/Holt_graph
https://en.wikipedia.org/wiki/Holt_graph
https://en.wikipedia.org/wiki/Holt_graph
https://en.wikipedia.org/wiki/Holt_graph
https://en.wikipedia.org/wiki/D%C3%BCrer_graph
https://en.wikipedia.org/wiki/D%C3%BCrer_graph
https://en.wikipedia.org/wiki/D%C3%BCrer_graph
https://en.wikipedia.org/wiki/D%C3%BCrer_graph
https://en.wikipedia.org/wiki/Dyck_graph
https://en.wikipedia.org/wiki/Dyck_graph
https://en.wikipedia.org/wiki/Dyck_graph
https://en.wikipedia.org/wiki/Dyck_graph
https://en.wikipedia.org/wiki/Errera_graph
https://en.wikipedia.org/wiki/Errera_graph
https://en.wikipedia.org/wiki/Errera_graph
https://en.wikipedia.org/wiki/Errera_graph
https://en.wikipedia.org/wiki/F26A_graph
https://en.wikipedia.org/wiki/F26A_graph
https://en.wikipedia.org/wiki/F26A_graph
https://en.wikipedia.org/wiki/F26A_graph
https://en.wikipedia.org/wiki/F26A_graph
https://en.wikipedia.org/wiki/F26A_graph
https://en.wikipedia.org/wiki/Folkman_graph
https://en.wikipedia.org/wiki/Folkman_graph
https://en.wikipedia.org/wiki/Folkman_graph
https://en.wikipedia.org/wiki/Folkman_graph
https://en.wikipedia.org/wiki/Foster_graph
https://en.wikipedia.org/wiki/Foster_graph
https://en.wikipedia.org/wiki/Foster_graph
https://en.wikipedia.org/wiki/Foster_graph
https://en.wikipedia.org/wiki/Franklin_graph
https://en.wikipedia.org/wiki/Franklin_graph
https://en.wikipedia.org/wiki/Franklin_graph
https://en.wikipedia.org/wiki/Franklin_graph
https://en.wikipedia.org/wiki/Frucht_graph
https://en.wikipedia.org/wiki/Frucht_graph
https://en.wikipedia.org/wiki/Frucht_graph
https://en.wikipedia.org/wiki/Frucht_graph
https://en.wikipedia.org/wiki/Gewirtz_graph
https://en.wikipedia.org/wiki/Gewirtz_graph
https://en.wikipedia.org/wiki/Gewirtz_graph
https://en.wikipedia.org/wiki/Gewirtz_graph
https://en.wikipedia.org/wiki/Goldner%E2%80%93Harary_graph
https://en.wikipedia.org/wiki/Goldner%E2%80%93Harary_graph
https://en.wikipedia.org/wiki/Goldner%E2%80%93Harary_graph
https://en.wikipedia.org/wiki/Goldner%E2%80%93Harary_graph
https://en.wikipedia.org/wiki/Goldner%E2%80%93Harary_graph
https://en.wikipedia.org/wiki/Goldner%E2%80%93Harary_graph
https://en.wikipedia.org/wiki/Golomb_graph
https://en.wikipedia.org/wiki/Golomb_graph
https://en.wikipedia.org/wiki/Golomb_graph
https://en.wikipedia.org/wiki/Golomb_graph
https://en.wikipedia.org/wiki/Gosset_graph
https://en.wikipedia.org/wiki/Gosset_graph
https://en.wikipedia.org/wiki/Gosset_graph
https://en.wikipedia.org/wiki/Gosset_graph
https://en.wikipedia.org/wiki/Gray_graph
https://en.wikipedia.org/wiki/Gray_graph
https://en.wikipedia.org/wiki/Gray_graph
https://en.wikipedia.org/wiki/Gray_graph
https://en.wikipedia.org/wiki/Grinberg%27s_theorem
https://en.wikipedia.org/wiki/Grinberg%27s_theorem
https://en.wikipedia.org/wiki/Grinberg%27s_theorem
https://en.wikipedia.org/wiki/Grinberg%27s_theorem
https://en.wikipedia.org/wiki/Gr%C3%B6tzsch_graph
https://en.wikipedia.org/wiki/Gr%C3%B6tzsch_graph
https://en.wikipedia.org/wiki/Gr%C3%B6tzsch_graph
https://en.wikipedia.org/wiki/Gr%C3%B6tzsch_graph
https://en.wikipedia.org/wiki/Matchstick_graph#Regular_matchstick_graphs
https://en.wikipedia.org/wiki/Matchstick_graph#Regular_matchstick_graphs
https://en.wikipedia.org/wiki/Matchstick_graph#Regular_matchstick_graphs
https://en.wikipedia.org/wiki/Matchstick_graph#Regular_matchstick_graphs
https://en.wikipedia.org/wiki/Harries_graph
https://en.wikipedia.org/wiki/Harries_graph
https://en.wikipedia.org/wiki/Harries_graph
https://en.wikipedia.org/wiki/Harries_graph
https://en.wikipedia.org/wiki/Harries%E2%80%93Wong_graph
https://en.wikipedia.org/wiki/Harries%E2%80%93Wong_graph
https://en.wikipedia.org/wiki/Harries%E2%80%93Wong_graph
https://en.wikipedia.org/wiki/Harries%E2%80%93Wong_graph
https://en.wikipedia.org/wiki/Harries%E2%80%93Wong_graph
https://en.wikipedia.org/wiki/Harries%E2%80%93Wong_graph
https://en.wikipedia.org/wiki/Heawood_graph
https://en.wikipedia.org/wiki/Heawood_graph
https://en.wikipedia.org/wiki/Heawood_graph
https://en.wikipedia.org/wiki/Heawood_graph
https://en.wikipedia.org/wiki/Herschel_graph
https://en.wikipedia.org/wiki/Herschel_graph
https://en.wikipedia.org/wiki/Herschel_graph
https://en.wikipedia.org/wiki/Herschel_graph
https://en.wikipedia.org/wiki/Higman%E2%80%93Sims_graph
https://en.wikipedia.org/wiki/Higman%E2%80%93Sims_graph
https://en.wikipedia.org/wiki/Higman%E2%80%93Sims_graph
https://en.wikipedia.org/wiki/Higman%E2%80%93Sims_graph
https://en.wikipedia.org/wiki/Higman%E2%80%93Sims_graph
https://en.wikipedia.org/wiki/Higman%E2%80%93Sims_graph
https://en.wikipedia.org/wiki/Hoffman_graph
https://en.wikipedia.org/wiki/Hoffman_graph
https://en.wikipedia.org/wiki/Hoffman_graph
https://en.wikipedia.org/wiki/Hoffman_graph
https://en.wikipedia.org/wiki/Hoffman%E2%80%93Singleton_graph
https://en.wikipedia.org/wiki/Hoffman%E2%80%93Singleton_graph
https://en.wikipedia.org/wiki/Hoffman%E2%80%93Singleton_graph
https://en.wikipedia.org/wiki/Hoffman%E2%80%93Singleton_graph
https://en.wikipedia.org/wiki/Hoffman%E2%80%93Singleton_graph
https://en.wikipedia.org/wiki/Hoffman%E2%80%93Singleton_graph
https://en.wikipedia.org/wiki/Regular_icosahedron#Icosahedral_graph
https://en.wikipedia.org/wiki/Regular_icosahedron#Icosahedral_graph
https://en.wikipedia.org/wiki/Regular_icosahedron#Icosahedral_graph
https://en.wikipedia.org/wiki/Regular_icosahedron#Icosahedral_graph
https://en.wikipedia.org/wiki/Kittell_graph
https://en.wikipedia.org/wiki/Kittell_graph
https://en.wikipedia.org/wiki/Kittell_graph
https://en.wikipedia.org/wiki/Kittell_graph

Krackhardt kite graph krackhardt

Levi graph (Tutte 8-cage) levi

Ljubljana graph ljubljana

Markström graph markstroem

McGee graph mcgee

Meredith graph meredith

Meringer graph meringer

Moser spindle moser

Möbius�Kantor graph moebius-kantor

Nauru graph nauru

Octahedral graph octahedron

Pappus graph pappus

Petersen graph petersen

Perkel graph perkel

Poussin graph poussin

Robertson graph robertson

Robertson-Wegner graph robertson-wegner

Shrikhande graph shrikhande

Schläfli graph schlaefli

Sousselier graph sousselier

Sylvester graph sylvester

Szerekes snark szerekes

Tetrahedral graph tehtrahedron

Tietze graph tietze

Truncated icosahedral graph soccerball

Tutte graph tutte

Tutte 12-cage tutte12

Wagner graph wagner

Walther graph walther

Watkins snark watkins

Wells graph wells

Wiener-Araya graph wiener-araya

Wong graph wong

1.1.2 Directed graphs

The digraph command is used for creating directed graphs, although the same is possible by using
the graph command with the option directed=true. The calling syntax for digraph is the same
as for graph with the above option appended to the sequence of arguments. However, creating
special graphs is not supported by digraph since these are all undirected.

Edges in directed graphs are called arcs. Note that in a directed graph uv and vu are treated
as distinct arcs, also denoted as (u; v) and (v; u).

1.1.3 Examples

Creating vertices An empty graph (without edges) can be created simply by entering the
number of vertices or the list of vertex labels.

1.1 General graphs 15

https://en.wikipedia.org/wiki/Krackhardt_kite_graph
https://en.wikipedia.org/wiki/Krackhardt_kite_graph
https://en.wikipedia.org/wiki/Krackhardt_kite_graph
https://en.wikipedia.org/wiki/Krackhardt_kite_graph
https://en.wikipedia.org/wiki/Krackhardt_kite_graph
https://en.wikipedia.org/wiki/Levi_graph
https://en.wikipedia.org/wiki/Levi_graph
https://en.wikipedia.org/wiki/Levi_graph
https://en.wikipedia.org/wiki/Levi_graph
https://en.wikipedia.org/wiki/Ljubljana_graph
https://en.wikipedia.org/wiki/Ljubljana_graph
https://en.wikipedia.org/wiki/Ljubljana_graph
https://en.wikipedia.org/wiki/Ljubljana_graph
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Gy%C3%A1rf%C3%A1s_conjecture
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Gy%C3%A1rf%C3%A1s_conjecture
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Gy%C3%A1rf%C3%A1s_conjecture
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Gy%C3%A1rf%C3%A1s_conjecture
https://en.wikipedia.org/wiki/McGee_graph
https://en.wikipedia.org/wiki/McGee_graph
https://en.wikipedia.org/wiki/McGee_graph
https://en.wikipedia.org/wiki/McGee_graph
https://en.wikipedia.org/wiki/Meredith_graph
https://en.wikipedia.org/wiki/Meredith_graph
https://en.wikipedia.org/wiki/Meredith_graph
https://en.wikipedia.org/wiki/Meredith_graph
https://en.wikipedia.org/wiki/Meringer_graph
https://en.wikipedia.org/wiki/Meringer_graph
https://en.wikipedia.org/wiki/Meringer_graph
https://en.wikipedia.org/wiki/Meringer_graph
https://en.wikipedia.org/wiki/Moser_spindle
https://en.wikipedia.org/wiki/Moser_spindle
https://en.wikipedia.org/wiki/Moser_spindle
https://en.wikipedia.org/wiki/Moser_spindle
https://en.wikipedia.org/wiki/M%C3%B6bius%E2%80%93Kantor_graph
https://en.wikipedia.org/wiki/M%C3%B6bius%E2%80%93Kantor_graph
https://en.wikipedia.org/wiki/M%C3%B6bius%E2%80%93Kantor_graph
https://en.wikipedia.org/wiki/M%C3%B6bius%E2%80%93Kantor_graph
https://en.wikipedia.org/wiki/M%C3%B6bius%E2%80%93Kantor_graph
https://en.wikipedia.org/wiki/M%C3%B6bius%E2%80%93Kantor_graph
https://en.wikipedia.org/wiki/Nauru_graph
https://en.wikipedia.org/wiki/Nauru_graph
https://en.wikipedia.org/wiki/Nauru_graph
https://en.wikipedia.org/wiki/Nauru_graph
https://en.wikipedia.org/wiki/Platonic_graph
https://en.wikipedia.org/wiki/Platonic_graph
https://en.wikipedia.org/wiki/Platonic_graph
https://en.wikipedia.org/wiki/Platonic_graph
https://en.wikipedia.org/wiki/Pappus_graph
https://en.wikipedia.org/wiki/Pappus_graph
https://en.wikipedia.org/wiki/Pappus_graph
https://en.wikipedia.org/wiki/Pappus_graph
https://en.wikipedia.org/wiki/Petersen_graph
https://en.wikipedia.org/wiki/Petersen_graph
https://en.wikipedia.org/wiki/Petersen_graph
https://en.wikipedia.org/wiki/Petersen_graph
https://en.wikipedia.org/wiki/Perkel_graph
https://en.wikipedia.org/wiki/Perkel_graph
https://en.wikipedia.org/wiki/Perkel_graph
https://en.wikipedia.org/wiki/Perkel_graph
https://en.wikipedia.org/wiki/Poussin_graph
https://en.wikipedia.org/wiki/Poussin_graph
https://en.wikipedia.org/wiki/Poussin_graph
https://en.wikipedia.org/wiki/Poussin_graph
https://en.wikipedia.org/wiki/Robertson_graph
https://en.wikipedia.org/wiki/Robertson_graph
https://en.wikipedia.org/wiki/Robertson_graph
https://en.wikipedia.org/wiki/Robertson_graph
https://en.wikipedia.org/wiki/Robertson%E2%80%93Wegner_graph
https://en.wikipedia.org/wiki/Robertson%E2%80%93Wegner_graph
https://en.wikipedia.org/wiki/Robertson%E2%80%93Wegner_graph
https://en.wikipedia.org/wiki/Robertson%E2%80%93Wegner_graph
https://en.wikipedia.org/wiki/Robertson%E2%80%93Wegner_graph
https://en.wikipedia.org/wiki/Robertson%E2%80%93Wegner_graph
https://en.wikipedia.org/wiki/Shrikhande_graph
https://en.wikipedia.org/wiki/Shrikhande_graph
https://en.wikipedia.org/wiki/Shrikhande_graph
https://en.wikipedia.org/wiki/Shrikhande_graph
https://en.wikipedia.org/wiki/Schl%C3%A4fli_graph
https://en.wikipedia.org/wiki/Schl%C3%A4fli_graph
https://en.wikipedia.org/wiki/Schl%C3%A4fli_graph
https://en.wikipedia.org/wiki/Schl%C3%A4fli_graph
https://en.wikipedia.org/wiki/Sousselier_graph
https://en.wikipedia.org/wiki/Sousselier_graph
https://en.wikipedia.org/wiki/Sousselier_graph
https://en.wikipedia.org/wiki/Sousselier_graph
https://en.wikipedia.org/wiki/Sylvester_graph
https://en.wikipedia.org/wiki/Sylvester_graph
https://en.wikipedia.org/wiki/Sylvester_graph
https://en.wikipedia.org/wiki/Sylvester_graph
https://en.wikipedia.org/wiki/Szekeres_snark
https://en.wikipedia.org/wiki/Szekeres_snark
https://en.wikipedia.org/wiki/Szekeres_snark
https://en.wikipedia.org/wiki/Szekeres_snark
https://en.wikipedia.org/wiki/Tetrahedron#Tetrahedral_graph
https://en.wikipedia.org/wiki/Tetrahedron#Tetrahedral_graph
https://en.wikipedia.org/wiki/Tetrahedron#Tetrahedral_graph
https://en.wikipedia.org/wiki/Tetrahedron#Tetrahedral_graph
https://en.wikipedia.org/wiki/Tietze_graph
https://en.wikipedia.org/wiki/Tietze_graph
https://en.wikipedia.org/wiki/Tietze_graph
https://en.wikipedia.org/wiki/Tietze_graph
https://en.wikipedia.org/wiki/Truncated_icosahedron#Truncated_icosahedral_graph
https://en.wikipedia.org/wiki/Truncated_icosahedron#Truncated_icosahedral_graph
https://en.wikipedia.org/wiki/Truncated_icosahedron#Truncated_icosahedral_graph
https://en.wikipedia.org/wiki/Truncated_icosahedron#Truncated_icosahedral_graph
https://en.wikipedia.org/wiki/Truncated_icosahedron#Truncated_icosahedral_graph
https://en.wikipedia.org/wiki/Tutte_graph
https://en.wikipedia.org/wiki/Tutte_graph
https://en.wikipedia.org/wiki/Tutte_graph
https://en.wikipedia.org/wiki/Tutte_graph
https://en.wikipedia.org/wiki/Tutte_12-cage
https://en.wikipedia.org/wiki/Tutte_12-cage
https://en.wikipedia.org/wiki/Tutte_12-cage
https://en.wikipedia.org/wiki/Tutte_12-cage
https://en.wikipedia.org/wiki/Tutte_12-cage
https://en.wikipedia.org/wiki/Tutte_12-cage
https://en.wikipedia.org/wiki/Wagner_graph
https://en.wikipedia.org/wiki/Wagner_graph
https://en.wikipedia.org/wiki/Wagner_graph
https://en.wikipedia.org/wiki/Wagner_graph
https://mathworld.wolfram.com/WaltherGraph.html
https://mathworld.wolfram.com/WaltherGraph.html
https://mathworld.wolfram.com/WaltherGraph.html
https://mathworld.wolfram.com/WaltherGraph.html
https://en.wikipedia.org/wiki/Watkins_snark
https://en.wikipedia.org/wiki/Watkins_snark
https://en.wikipedia.org/wiki/Watkins_snark
https://en.wikipedia.org/wiki/Watkins_snark
https://en.wikipedia.org/wiki/Wells_graph
https://en.wikipedia.org/wiki/Wells_graph
https://en.wikipedia.org/wiki/Wells_graph
https://en.wikipedia.org/wiki/Wells_graph
https://en.wikipedia.org/wiki/Wiener%E2%80%93Araya_graph
https://en.wikipedia.org/wiki/Wiener%E2%80%93Araya_graph
https://en.wikipedia.org/wiki/Wiener%E2%80%93Araya_graph
https://en.wikipedia.org/wiki/Wiener%E2%80%93Araya_graph
https://en.wikipedia.org/wiki/Wiener%E2%80%93Araya_graph
https://en.wikipedia.org/wiki/Wiener%E2%80%93Araya_graph
https://en.wikipedia.org/wiki/Wong_graph
https://en.wikipedia.org/wiki/Wong_graph
https://en.wikipedia.org/wiki/Wong_graph
https://en.wikipedia.org/wiki/Wong_graph
http://www.encyclopediaofmath.org/index.php?title=Graph,_oriented
http://www.encyclopediaofmath.org/index.php?title=Graph,_oriented
http://www.encyclopediaofmath.org/index.php?title=Graph,_oriented
http://www.encyclopediaofmath.org/index.php?title=Graph,_oriented

> graph(5)

an undirected unweighted graph with 5 vertices and 0 edges

> graph([a,b,c])

an undirected unweighted graph with 3 vertices and 0 edges

Graph constructors often have to generate vertex labels. In such cases, ordinal integers are
used, which are 0-based in e.g. xcas mode and 1-based in e.g. maple mode. Note that the examples
appearing throughout this manual are entered by using the default, xcas mode.

Creating edges and arcs Edges/arcs must be specified as a set which is thus distinguished from
a (adjacency or weight) matrix. If a set of edges/arcs is entered as the single argument, then the
required vertices are created automatically, in the order of appearance.

> graph(%{[a,b],[b,c],[a,c]%})

an undirected unweighted graph with 3 vertices and 3 edges

Edge weights may also be specified.

> graph(%{[[a,b],2],[[b,c],2.3],[[c,a],3/2]%})

an undirected weighted graph with 3 vertices and 3 edges

If the graph contains isolated vertices (not connected to any other vertex) or a particular order
of vertices is desired, the list of vertices has to be specified as the first argument.

> graph([d,b,c,a],%{[a,b],[b,c],[a,c]%})

an undirected unweighted graph with 4 vertices and 3 edges

Creating paths and trails A directed graph can also be created from a list of n vertices and
a permutation of order n. The resulting graph consists of a single directed cycle with the vertices
ordered according to the permutation.

> G:=graph([a,b,c,d],[1,2,3,0])

a directed unweighted graph with 4 vertices and 4 arcs

> draw_graph(G)

a

b

c

d

Alternatively, one may specify edges as a trail.

> digraph([a,b,c,d],trail(b,c,d,a))

a directed unweighted graph with 4 vertices and 3 arcs

16 Constructing graphs

Undirected graphs can be created from a sequence of trails. Note that vertices in a trail may
be repeated, but edges cannot.

> G:=graph([a,b,c,d],trail(b,c,d,a,c))

an undirected unweighted graph with 4 vertices and 4 edges

> edges(G)

[[a; c]; [a; d]; [b; c]; [c; d]]

It is possible to specify several trails in a sequence, which is useful when designing more complex
graphs.

> G:=graph(trail(1,2,3,4,2),trail(3,5,6,7,5,4))

an undirected unweighted graph with 7 vertices and 9 edges

> draw_graph(G)

1

2

3

45

6

7

Specifying adjacency or weight matrix A graph can be created from a single square matrix
A=[aij]n of order n. If aij2f0;1g and aii=0 for all i; j6n, then A is interpreted as the adjacency
matrix of the desired graph. Otherwise, if aij2/ f0;1g for some i and j, then A is interpreted as the
weight matrix of the resulting graph. In each case, exactly n vertices will be created and i-th and
j-th vertex will be connected if and only if aij=/ 0. If A is symmetric, then the resulting graph is
undirected, otherwise it is directed.

> G:=graph([[0,1,1,0],[1,0,0,1],[1,0,0,0],[0,1,0,0]])

an undirected unweighted graph with 4 vertices and 3 edges

> edges(G)

[[0; 1]; [0; 2]; [1; 3]]

> G:=graph([[0,1.0,2.3,0],[4,0,0,3.1],[0,0,0,0],[0,0,0,0]])

a directed weighted graph with 4 vertices and 4 arcs

> edges(G,weights)

[[[0; 1]; 1.0]; [[0; 2]; 2.3]; [[1; 0]; 4]; [[1; 3]; 3.1]]

A list of vertex labels can be specified alongside a matrix.

> graph([a,b,c,d],[[0,1,1,0],[1,0,0,1],[1,0,0,0],[0,1,0,0]])

1.1 General graphs 17

an undirected unweighted graph with 4 vertices and 3 edges

A weighted graph can be created by specifying a list of n vertices and a set of edges, followed
by a square matrix A of order n. Then for every edge from i-th to j-th vertex, the element aij of
A is assigned as its weight. The remaining elements of A are ignored.

> G:=digraph([a,b,c],%{[a,b],[b,c],[a,c]%},[[0,1,2],[3,0,4],[5,6,0]])

a directed weighted graph with 3 vertices and 3 arcs

> edges(G,weights)

[[[a; b]; 1]; [[a; c]; 2]; [[b; c]; 4]]

Creating special graphs If the graph command is supplied with a name of a special graph, it
constructs and returns the latter.

> P:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

Some special graphs are constructed together with the corresponding layouts. These are dis-
played when the graphs are drawn using the default settings.

> draw_graph(P)

0

1

23

4

5

6

78

9

1.2 Cycle and path graphs

1.2.1 Cycle graphs

cycle_graph(n|V)

The command cycle_graph is used for constructing cycle graphs [34, p. 4]. It takes a positive
integer n or a list of distinct vertices V as its only argument and returns the graph consisting of
a single cycle CjV j on the specified vertices in the given order. If n is specified, then Cn is returned.

> G:=cycle_graph(["a","b","c","d","e"])

an undirected unweighted graph with 5 vertices and 5 edges

18 Constructing graphs

https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Cycle_graph

> draw_graph(G)

a

b

cd

e

1.2.2 Path graphs

path_graph(n|V)

The command path_graph is used for constructing path graphs [34, pp. 4]. It takes a positive
integer n or a list of distinct vertices V as its only argument and returns a graph consisting of a
single path on the specified vertices in the given order. If n is specified, then a path graph on n
vertices is returned.

Note that a path, by definition, is a walk with no repeated vertices. Walks with no repeated
edges but possibly repeated vertices are called trails (see the command trail).

> P:=path_graph(5)

an undirected unweighted graph with 5 vertices and 4 edges

> draw_graph(P,circle)

0

1

23

4

1.2.3 Trails of edges

trail(v1,v2,..,vn)
trail2edges(T)

If the dummy command trail is called with a sequence of vertices v1; v2; :::; vn as arguments,
it returns the symbolic expression representing the trail which visits the specified vertices in the
given order. The resulting symbolic object is recognizable by some commands, for example graph
and digraph.

Note that a trail, by definition, is a walk with no repeated edges. Hence some vertices in the
sequence v1; v2; :::; vk may be repeated, but the sets fvi; vi+1g in undirected graphs resp. the pairs
(vi; vi+1) in digraphs must be mutually distinct for i= 1; 2; :::; n¡ 1, since they represent edges
resp. arcs.

Any trail T is easily converted to the corresponding list of edges by calling the trail2edges
command, which takes the trail as its only argument.

1.2 Cycle and path graphs 19

https://en.wikipedia.org/wiki/Path_graph
https://en.wikipedia.org/wiki/Path_graph
https://en.wikipedia.org/wiki/Path_(graph_theory)#Definitions

> T:=trail(1,2,3,4,2):; graph(T)

�Done�; an undirected unweighted graph with 4 vertices and 4 edges

> trail2edges(T)

[[1; 2]; [2; 3]; [3; 4]; [4; 2]]

1.3 Complete graphs

1.3.1 Complete (multipartite) graphs
complete_graph(n|V)
complete_graph(n1,n2,..,nk)

The command complete_graph is used for constructing complete (multipartite) graphs. It can
be called with a single argument, a positive integer n or a list of distinct vertices V , in which case
it returns the complete graph KjV j [34, pp. 2] on the specified vertices. If integer n is specified,
then Kn is returned.

If complete_graph is given a sequence of positive integers n1; n2; :::; nk as its argument, it
returns a complete multipartite graph Kn1n2���nk with partitions of size n1; n2; :::; nk.

> K4:=complete_graph(4)

an undirected unweighted graph with 4 vertices and 6 edges

> draw_graph(K4)

0 1

23

> K3:=complete_graph([a,b,c])

an undirected unweighted graph with 3 vertices and 3 edges

> edges(K3)

[[a; b]; [a; c]; [b; c]]

> K33:=complete_graph(3,3)

an undirected unweighted graph with 6 vertices and 9 edges

> draw_graph(K33)

0 1 2

3 4 5

20 Constructing graphs

https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Multipartite_graph

1.3.2 Complete trees
complete_binary_tree(n)
complete_kary_tree(k,n)

The commands complete_binary_tree and complete_kary_tree are used for construction of
complete binary trees and complete k-ary trees, respectively.

complete_binary_tree takes a positive integer n as its only argument and returns a complete
binary tree with depth n on 2n+1¡ 1 vertices. The lowest-indexed vertex is the root of the tree.

complete_kary_tree takes positive integers k and n as its arguments and returns the complete

k-ary tree on kn+1¡ 1
k¡ 1 vertices with depth n. The vertex with smallest number is the root of the

tree. The command complete_kary_tree(2,n) is equivalent to complete_binary_tree(n).

> T1:=complete_binary_tree(2)

an undirected unweighted graph with 7 vertices and 6 edges

> draw_graph(T1)

0

1 2

3 4 5 6

> T2:=complete_kary_tree(3,2)

an undirected unweighted graph with 13 vertices and 12 edges

> draw_graph(T2)

0

1 2 3

4 5 6 7 8 9 10 11 12

1.4 Sequence graphs

1.4.1 Creating graphs from degree sequences
sequence_graph(L)

The command sequence_graph is used for constructing graphs from degree sequences. It
takes a list L of positive integers as its only argument and, if L represents a graphic sequence, the
corresponding undirected graph G with jLj vertices is returned. If the argument is not a graphic
sequence, then an error is returned.

Sequence graphs are constructed in O(jLj2 log jLj) time by applying the algorithm of Havel
and Hakimi [38].

> G:=sequence_graph([3,2,4,2,3,4,5,7])

an undirected unweighted graph with 8 vertices and 15 edges

> draw_graph(G,circle)

1.4 Sequence graphs 21

https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/K-ary_tree
https://en.wikipedia.org/wiki/K-ary_tree
https://en.wikipedia.org/wiki/K-ary_tree
https://en.wikipedia.org/wiki/K-ary_tree
https://en.wikipedia.org/wiki/Degree_(graph_theory)#Degree_sequence
https://en.wikipedia.org/wiki/Degree_(graph_theory)#Degree_sequence

0 1

2

3

45

6

7

> degree_sequence(G)

[3; 2; 4; 2; 3; 4; 5; 7]

1.4.2 Validating graphic sequences
is_graphic_sequence(L)

The command is_graphic_sequence is used for determining whether a list of integers repre-
sents the degree sequence of some graph. It takes a list L of positive integers as its only argument
and returns true if there exists a graph G(V ; E) with degree sequence fdeg v: v 2V g equal to L
and false otherwise. The algorithm, which has the complexity O(jLj2), is based on the theorem
of Erd®s and Gallai.

> is_graphic_sequence([3,2,4,2,3,4,5,7])

true

1.5 Intersection graphs

1.5.1 Interval graphs
interval_graph(L)

The command interval_graph is used for construction of interval graphs. It takes a sequence
or list L of real-line intervals as its argument and returns an undirected unweighted graph with
these intervals as vertices (the string representations of the intervals are used as labels), each two
of them being connected with an edge if and only if the corresponding intervals intersect.

> G:=interval_graph(0..8,1..pi,exp(1)..20,7..18,11..14,17..24,23..25)

an undirected unweighted graph with 7 vertices and 10 edges

> draw_graph(G)

0..8

exp(1)..20

7..18 11..14

17..24
23..25

22 Constructing graphs

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Gallai_theorem
https://en.wikipedia.org/wiki/Interval_graph
https://en.wikipedia.org/wiki/Interval_graph

1.5.2 Kneser graphs

kneser_graph(n,k)
odd_graph(d)

Commands kneser_graph and odd_graph are used for generating Kneser graphs and odd graphs,
respectively.

kneser_graph takes two positive integers 26 n6 20 and k < n as its arguments and returns
the Kneser graph K(n; k) with

�
n
k

�
k-subsets of the set f1; 2; :::; ng as vertices. Two vertices are

connected if and only if their associated subsets are disjoint. Each vertex is labeled by the list of
elements in the corresponding subset.

odd_graph takes an integer 26 d6 10 and returns d-th odd graph Od=K(2 d¡ 1; d¡ 1).
Kneser graphs quickly get exceedingly large, hence n is restricted as above.

> K:=kneser_graph(5,2)

an undirected unweighted graph with 10 vertices and 15 edges

> draw_graph(K,spring)

[1,2]

[1,3]

[2,3][1,4]
[2,4]

[3,4]

[1,5]

[2,5]

[3,5]

[4,5]

> G:=kneser_graph(12,5)

an undirected unweighted graph with 792 vertices and 8316 edges

> odd_graph(8)

an undirected unweighted graph with 6435 vertices and 25740 edges

1.204 sec

1.5.3 Johnson graphs

johnson_graph(n,k)

The command johnson_graph is used for generating Johnson graphs. It takes two positive
integers 26n6 20 and k <n as its arguments and returns the Johnson graph J(n; k) with

�
n
k

�
k-

subsets of a set of n elements as vertices. Two vertices are connected if and only if their associated
subsets have exactly k¡ 1 elements in common.

Johnson graphs quickly get exceedingly large, hence n is restricted as above.

> J52:=johnson_graph(5,2)

an undirected unweighted graph with 10 vertices and 30 edges

> draw_graph(J52)

1.5 Intersection graphs 23

https://en.wikipedia.org/wiki/Kneser_graph
https://en.wikipedia.org/wiki/Kneser_graph
https://en.wikipedia.org/wiki/Odd_graph
https://en.wikipedia.org/wiki/Odd_graph
https://en.wikipedia.org/wiki/Odd_graph
https://en.wikipedia.org/wiki/Odd_graph
https://en.wikipedia.org/wiki/Johnson_graph
https://en.wikipedia.org/wiki/Johnson_graph
https://en.wikipedia.org/wiki/Johnson_graph
https://en.wikipedia.org/wiki/Johnson_graph

0 1

2

3

4

56

7

8

9

> chromatic_number(J52)

5

J(n; 2) is isomorphic to the Kneser graph K(n; 2).

> is_isomorphic(J52,graph_complement(kneser_graph(5,2)))

true

J(n; k) is isomorphic to J(n; n¡ k).

> is_isomorphic(J52,johnson_graph(5,3))

true

The clique number of J(n;k) is equal to 1¡ �max

�min
, where �min and �max are its least and greatest

eigenvalue. The list of eigenvalues can be obtained by the command graph_spectrum.

> sp:=graph_spectrum(J52) 0@ ¡2 5
1 4
6 1

1A
> ev:=tran(sp)[0]

[¡2; 1; 6]

> clique_number(J52) == 1-max(ev)/min(ev)

true

1.6 Special graphs

1.6.1 Hypercube graphs
hypercube_graph(n)

The command hypercube_graph is used for constructing hypercube graphs. It takes a positive
integer n as its only argument and returns the hypercube graph of dimension n on 2n vertices.
The vertex labels are strings of binary digits of length n. Two vertices are joined by an edge if and
only if their labels differ in exactly one character.

> H:=hypercube_graph(3)

an undirected unweighted graph with 8 vertices and 12 edges

24 Constructing graphs

https://en.wikipedia.org/wiki/Hypercube_graph
https://en.wikipedia.org/wiki/Hypercube_graph

> draw_graph(H,planar)

000

001
010

011

100

101 110

111

1.6.2 Star graphs
star_graph(n)

The command star_graph is used for constructing star graphs. It takes a positive integer n as
its only argument and returns the star graph with n+1 vertices, which is equal to the complete
bipartite graph complete_graph(1,n) i.e. a n-ary tree with one level.

> G:=star_graph(5)

an undirected unweighted graph with 6 vertices and 5 edges

> draw_graph(G)

0

1

2

34

5

1.6.3 Wheel graphs
wheel_graph(n)

The command wheel_graph is used for constructing wheel graphs. It takes a positive integer
n as its only argument and returns the wheel graph with n+1 vertices.

> G:=wheel_graph(5)

an undirected unweighted graph with 6 vertices and 10 edges

> draw_graph(G)

1

2

34

5

0

1.6 Special graphs 25

https://en.wikipedia.org/wiki/Star_(graph_theory)
https://en.wikipedia.org/wiki/Star_(graph_theory)
https://en.wikipedia.org/wiki/Wheel_graph
https://en.wikipedia.org/wiki/Wheel_graph

1.6.4 Web graphs
web_graph(a,b)

The command web_graph is used for constructing web graphs. It takes two positive integers a
and b as its arguments and returns the Cartesian product of cycle_graph(a) and path_graph(b).

> G:=web_graph(7,3)

an undirected unweighted graph with 21 vertices and 35 edges

> draw_graph(G,labels=false)

1.6.5 Prism graphs
prism_graph(n)

The command prism_graph is used for constructing prism graphs. It takes a positive integer n
as its only argument and returns the prism graph with parameter n, namely petersen_graph(n,1).

> G:=prism_graph(5)

an undirected unweighted graph with 10 vertices and 15 edges

> draw_graph(G)

0

1

23

4

5

6

7
8

9

1.6.6 Antiprism graphs
antiprism_graph(n)

The command antiprism_graph is used for constructing antiprism graphs. It takes a positive
integer n as its only argument and returns the antiprism graph with parameter n, which is con-
structed from two concentric cycles of n vertices by joining each vertex of the inner to two adjacent
nodes of the outer cycle.

> G:=antiprism_graph(7)

an undirected unweighted graph with 14 vertices and 28 edges

> draw_graph(G)

26 Constructing graphs

https://en.wikipedia.org/wiki/Prism_graph
https://en.wikipedia.org/wiki/Prism_graph
https://en.wikipedia.org/wiki/Antiprism_graph
https://en.wikipedia.org/wiki/Antiprism_graph

0

1

2

3

45

6

7

8

910

11

12

13

1.6.7 Grid graphs
grid_graph(m,n,〈triangle〉)
torus_grid_graph(m,n)

The command grid_graph resp. torus_grid_graph is used for constructing rectangular/tri-
angular resp. torus grid graphs.

grid_graph takes two positive integers m and n as its arguments and returns the m by n grid
onmn vertices, namely the Cartesian product of path_graph(m) and path_graph(n). If the option
triangle is passed as the third argument, then the returned graph is a triangular grid on mn
vertices defined as the underlying graph of the strong product of two directed path graphs with
m and n vertices, respectively [2, Definition 2, p. 189]. Strong product is defined as the union of
Cartesian and tensor products.

torus_grid_graph takes two positive integersm and n as its arguments and returns them by n
torus grid onmn vertices, namely the Cartesian product of cycle_graph(m) and cycle_graph(n).

> G:=grid_graph(15,20)

an undirected unweighted graph with 300 vertices and 565 edges

> draw_graph(G,spring)

A triangular grid is created by passing the option triangle.

> G:=grid_graph(10,15,triangle)

an undirected unweighted graph with 150 vertices and 401 edges

> draw_graph(G,spring)

The following example demonstrates creating a torus grid graph with eight triangular levels.

1.6 Special graphs 27

https://en.wikipedia.org/wiki/Lattice_graph
https://en.wikipedia.org/wiki/Lattice_graph
https://en.wikipedia.org/wiki/Lattice_graph
https://en.wikipedia.org/wiki/Lattice_graph
https://en.wikipedia.org/wiki/Strong_product_of_graphs
https://en.wikipedia.org/wiki/Strong_product_of_graphs

> G:=torus_grid_graph(8,3)

an undirected unweighted graph with 24 vertices and 48 edges

> draw_graph(G,spring,labels=false)

1.6.8 Sierpi«ski graphs
sierpinski_graph(n,k,〈triangle〉)

The command sierpinski_graph is used for constructing Sierpi«ski-type graphs Sk
n and

STk
n [42]. It takes two positive integers n and k as its arguments and optionally the option

triangle as the third argument. It returns the Sierpi«ski (triangle) graph with parameters n and k.
The Sierpi«ski triangle graph STk

n is obtained by contracting all non-clique edges in Sk
n. To

detect such edges the command find_cliques is used, which can be time consuming for n> 6.

> S:=sierpinski_graph(3,3)

an undirected unweighted graph with 27 vertices and 39 edges

> ST:=sierpinski_graph(3,3,triangle)

an undirected unweighted graph with 15 vertices and 27 edges

> draw_graph(S,spring,labels=false,[0,0],size=[0,1],title="S");
draw_graph(ST,spring,labels=false,[1.5,0],size=[0,1],title="ST");

S ST

1.6.9 Generalized Petersen graphs
petersen_graph(n,〈k〉)

The command petersen_graph is used for constructing generalized Petersen graphs. It takes
two positive integers n and k as its arguments. The second argument may be omitted, in which
case k= 2 is assumed. The return value is the graph P (n; k), which is a connected cubic graph
consisting of�in Schläfli notation�an inner star polygon fn;kg and an outer regular polygon fng
such that the n pairs of corresponding vertices in inner and outer polygons are connected with
edges. For k=1 the prism graph of order n is obtained.

The famous Petersen graph is equal to the generalized Petersen graph P (5; 2). It can also be
constructed by calling graph("petersen").

28 Constructing graphs

https://en.wikipedia.org/wiki/Generalized_Petersen_graph
https://en.wikipedia.org/wiki/Generalized_Petersen_graph
https://en.wikipedia.org/wiki/Generalized_Petersen_graph

To obtain the dodecahedral graph P (10; 2), input:

> G:=petersen_graph(10)

an undirected unweighted graph with 20 vertices and 30 edges

> is_isomorphic(G,graph("dodecahedron"))

true

To obtain Möbius�Kantor graph P (8; 3), input:

> G:=petersen_graph(8,3)

an undirected unweighted graph with 16 vertices and 24 edges

> draw_graph(G,labels=false)

Note that Desargues, Dürer and Nauru graphs are isomorphic to the generalized Petersen
graphs P (10; 3), P (6; 2) and P (12; 5), respectively.

1.6.10 Snark graphs
flower_snark(n)
goldberg_snark(n)

Commands flower_snark and goldberg_snark are used for generating flower snarks and
Goldberg snarks [32]. Both commands take an odd integer n > 3 as their only argument and
return the flower snark Jn resp. the Goldberg snark on 8n vertices.

> J3:=flower_snark(3)

an undirected unweighted graph with 12 vertices and 18 edges

> J5:=flower_snark(5)

an undirected unweighted graph with 20 vertices and 30 edges

> J7:=flower_snark(7)

an undirected unweighted graph with 28 vertices and 42 edges

> draw_graph(J3,[0,0],size=[1,0],title="J3",labels=false);
draw_graph(J5,[1.3,0],size=[1,0],title="J5",labels=false);
draw_graph(J7,[2.6,0],size=[1,0],title="J7",labels=false)

J3 J5 J7

1.6 Special graphs 29

https://en.wikipedia.org/wiki/Flower_snark
https://en.wikipedia.org/wiki/Flower_snark
https://en.wikipedia.org/wiki/Flower_snark
https://en.wikipedia.org/wiki/Flower_snark

The first flower snark J3 (which, strictly speaking, is not a snark because its girth is smaller
than 5) is isomorphic to Tietze graph.

> is_isomorphic(J3,graph("tietze"))

true

> G:=goldberg_snark(5)

an undirected unweighted graph with 40 vertices and 60 edges

> draw_graph(G,spring,labels=false)

> chromatic_index(G) == 4

true

3.18 sec

> girth(G)

5

1.6.11 Paley graphs
paley_graph(p,〈k〉)

The command paley_graph is used for generating Paley graphs. It takes a prime number p>3
as its mandatory argument and optionally a positive integer k which defaults to 1. It returns the
Paley (di)graph P on pk vertices which is constructed as follows.

� If k=1 and p�1 (mod4), then P is an undirected graph with vertices 0;1; :::; p¡1 in which
the edge fi; jg, where i < j, is present in P if j ¡ i is a quadratic residue in Zp.

� If k > 1 and q= pk� 1 (mod 4), then P is an undirected graph with vertices 0; 1; :::; q ¡ 1
in which the edge fi; jg, where i < j, is present in P if y¡ x is a square in the finite field
GF(q), where x is the i-th element and y is the j-th element in GF(q). If g is a generator of
the corresponding multiplicative group, then the elements of GF(q) are 0;1; g; g2; :::; gp

k¡2.

� If k > 1 and q = pk� 3 (mod 4), then P is a directed graph with vertices 0; 1; :::; q ¡ 1 in
which the arc (i; j) is present in P if y¡x is a square in the finite field GF(q), where x is
the i-th element and y is the j-th element in GF(q). If g is a generator of the corresponding
multiplicative group, then the elements of GF(q) are 0; 1; g; g2; :::; gp

k¡2.

> P1:=paley_graph(5)

an undirected unweighted graph with 5 vertices and 5 edges

> draw_graph(P1)

30 Constructing graphs

https://en.wikipedia.org/wiki/Paley_graph
https://en.wikipedia.org/wiki/Paley_graph
https://en.wikipedia.org/wiki/Paley_graph
https://en.wikipedia.org/wiki/Paley_graph

0

1

23

4

> P2:=paley_graph(3,2)

an undirected unweighted graph with 9 vertices and 18 edges

> draw_graph(P2,spring)

0

1

2

3

4

5

67

8

Paley graphs are self-complementary.

> is_isomorphic(P2,graph_complement(P2))

true

> P3:=paley_graph(3,3)

a directed unweighted graph with 27 vertices and 351 arcs

Paley (di)graphs are strongly regular.

> is_strongly_regular(P3)

true

Every Paley digraph is a tournament.

> is_tournament(P3)

true

1.6.12 Haar graphs
haar_graph(n)

The command haar_graph is used for generating Haar graphs [43]. It takes a positive integer n
as its only argument and returns the Haar graph with index n, which is a regular bipartite graph on
2k vertices v0; v1; :::; v2k¡1, where k=1+ blog2nc, with independent sets U =fvi : i=0;1; :::; k¡1g
and V =fvj : j=k; k+1; :::;2k¡1g. Two vertices vi2U and vj2V are connected if the m-th digit
in the binary expansion of n is nonzero, where m= irem (j ¡ i; k).

> H1:=haar_graph(7)

an undirected unweighted graph with 6 vertices and 9 edges

1.6 Special graphs 31

> draw_graph(H1)

0 1 2

3 4 5

> H2:=haar_graph(69)

an undirected unweighted graph with 14 vertices and 21 edges

> is_isomorphic(H2,graph("heawood"))

true

> H3:=haar_graph(32786)

an undirected unweighted graph with 32 vertices and 48 edges

> is_isomorphic(H3,petersen_graph(16,7))

true

1.6.13 LCF graphs
lcf_graph(L,〈n〉)

The command lcf_graph is used for constructing cubic Hamiltonian graphs from LCF nota-
tion. It takes one or two arguments, a list L of nonzero integers, called jumps, and optionally a
positive integer n, called the exponent , which defaults to 1. The command returns the graph on
n jLj vertices obtained by iterating the sequence of jumps n times.

The following command creates the Frucht graph.

> F:=lcf_graph([-5,-2,-4,2,5,-2,2,5,-2,-5,4,2])

an undirected unweighted graph with 12 vertices and 18 edges

> draw_graph(F,planar)

0

1

2

3

4

56

7

8

9

10

11

Constructing the truncated octahedral graph from its LCF notation:

> G:=lcf_graph([3,-7,7,-3],6)

an undirected unweighted graph with 24 vertices and 36 edges

32 Constructing graphs

https://en.wikipedia.org/wiki/LCF_notation
https://en.wikipedia.org/wiki/LCF_notation
https://en.wikipedia.org/wiki/LCF_notation
https://en.wikipedia.org/wiki/LCF_notation
https://en.wikipedia.org/wiki/Frucht_graph
https://en.wikipedia.org/wiki/Frucht_graph

> draw_graph(G,planar,labels=false)

> is_isomorphic(G,truncate_graph(graph("octahedron")))

true

1.7 Isomorphic copies of graphs

1.7.1 Creating isomorphic copies from permutations
isomorphic_copy(G,〈sigma〉)

The command isomorphic_copy is used for creating isomorphic copies of a graph without
changing the order of its vertices. It takes one or two arguments, a graph G(V ;E) and optionally
a permutation � of order jV j. It returns a new graph where the adjacency lists are reordered
according to � or a random permutation if the second argument is omitted. The vertex labels, as
well as the order of vertices, are the same as in G. This command, however, discards all vertex
and edge attributes present in G.

> G:=path_graph([1,2,3,4,5])

an undirected unweighted graph with 5 vertices and 4 edges

> vertices(G), neighbors(G)

[1; 2; 3; 4; 5]; [[2]; [1; 3]; [2; 4]; [3; 5]; [4]]

> H:=isomorphic_copy(G)

an undirected unweighted graph with 5 vertices and 4 edges

> vertices(H), neighbors(H)

[1; 2; 3; 4; 5]; [[2; 3]; [1; 5]; [1; 4]; [3]; [2]]

> H:=isomorphic_copy(G,[2,4,0,1,3])

an undirected unweighted graph with 5 vertices and 4 edges

> vertices(H), neighbors(H)

[1; 2; 3; 4; 5]; [[4; 5]; [5]; [4]; [1; 3]; [1; 2]]

> P:=prism_graph(3)

1.7 Isomorphic copies of graphs 33

an undirected unweighted graph with 6 vertices and 9 edges

> draw_graph(P)

0

12

3

45

> H:=isomorphic_copy(P,[3,0,1,5,4,2])

an undirected unweighted graph with 6 vertices and 9 edges

> draw_graph(H,spring)

0

12

3

4

5

1.7.2 Permuting vertices

permute_vertices(G,L)
permute_vertices(G,〈shuffle|randperm〉)

The command permute_vertices is used for creating isomorphic copies of graphs by changing
the order of vertices. It takes one or two arguments, a graph G(V ; E) and optionally a list L of
length jV j containing all vertices from V , and returns a copy of G with vertices rearranged in order
they appear in L. If L is not given or if shuffle or randperm are passed as the second argument,
then the vertices are shuffled randomly. All vertex and edge attributes are preserved in the copy,
including any vertex position information. Hence the resulting graph will look the same as G when
drawn.

> G:=path_graph([1,2,3,4,5])

an undirected unweighted graph with 5 vertices and 4 edges

> vertices(G), neighbors(G)

[1; 2; 3; 4; 5]; [[2]; [1; 3]; [2; 4]; [3; 5]; [4]]

> H:=permute_vertices(G,[3,5,1,2,4])

an undirected unweighted graph with 5 vertices and 4 edges

> vertices(H), neighbors(H)

34 Constructing graphs

[3; 5; 1; 2; 4]; [[2; 4]; [4]; [2]; [1; 3]; [3; 5]]

1.7.3 Relabeling vertices
relabel_vertices(G,L)

The command relabel_vertices is used for setting new labels to vertices of a graph without
changing their order. It takes two arguments, a graph G(V ; E) and a list L of vertex labels of
length jV j. It returns a copy of G with L as the list of vertex labels.

> G:=path_graph([1,2,3,4])

an undirected unweighted graph with 4 vertices and 3 edges

> edges(G)

[[1; 2]; [2; 3]; [3; 4]]

> H:=relabel_vertices(G,[a,b,c,d])

an undirected unweighted graph with 4 vertices and 3 edges

> edges(H)

[[a; b]; [b; c]; [c; d]]

1.8 Subgraphs

1.8.1 Extracting subgraphs
subgraph(G,L)

The command subgraph is used for extracting subgraphs from graphs. It takes two arguments,
a graph G(V ;E) and a list of edges L. It returns the subgraph G0(V 0; L) of G, where V 0�V is a
subset of vertices of G incident to at least one edge from L.

> K5:=complete_graph(5)

an undirected unweighted graph with 5 vertices and 10 edges

> S:=subgraph(K5,[[1,2],[2,3],[3,4],[4,1]])

an undirected unweighted graph with 4 vertices and 4 edges

> draw_graph(highlight_subgraph(K5,S))

0

1

23

4

1.8 Subgraphs 35

1.8.2 Induced subgraphs
induced_subgraph(G,L)

The command induced_subgraph is used for extracting induced subgraphs from graphs. It
takes two arguments, a graph G(V ;E) and a list of vertices L. It returns the subgraph G0(L;E 0)
of G, where E 0�E contains all edges which have both endpoints in L [34, p. 3].

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> S:=induced_subgraph(G,[5,6,7,8,9])

an undirected unweighted graph with 5 vertices and 5 edges

> draw_graph(highlight_subgraph(G,S))

0

1

23

4

5

6

78

9

1.8.3 Underlying graphs
underlying_graph(G)

For every graph G(V ; E) there is an undirected and unweighted graph U(V ; E 0), called the
underlying graph of G, where E 0 is obtained from E by dropping edge directions. To construct
U , use the command underlying_graph. It takes a graphG(V ;E) as its only argument and returns
an undirected unweighted copy of G in which all vertex and edge attributes, together with edge
directions, are discarded.

> G:=digraph(%{[[1,2],6],[[2,3],4],[[3,1],5],[[3,2],7]%})

a directed weighted graph with 3 vertices and 4 arcs

> U:=underlying_graph(G)

an undirected unweighted graph with 3 vertices and 3 edges

> edges(U)

[[1; 2]; [1; 3]; [2; 3]]

1.8.4 Fundamental cycles
fundamental_cycle(G)
cycle_basis(G)

The command fundamental_cycle is used for extracting cycles from unicyclic graphs (also
called 1-trees). To find a fundamental cycle basis of an undirected graph, use the command
cycle_basis.

36 Constructing graphs

https://en.wikipedia.org/wiki/Induced_subgraph
https://en.wikipedia.org/wiki/Pseudoforest#Definitions_and_structure
https://en.wikipedia.org/wiki/Pseudoforest#Definitions_and_structure
https://en.wikipedia.org/wiki/Cycle_basis#Fundamental_cycles
https://en.wikipedia.org/wiki/Cycle_basis#Fundamental_cycles
https://en.wikipedia.org/wiki/Cycle_basis#Fundamental_cycles

fundamental_cycle takes one argument, an undirected connected graph G(V ; E) containing
exactly one cycle (i.e. a unicyclic graph), and returns that cycle as a graph. If G is not unicyclic,
then an error is returned.

cycle_basis takes an undirected graph G(V ;E) as its only argument and returns a basis B of
the cycle space of G as a list of fundamental cycles in G, with each cycle represented as a list of
vertices. Furthermore, jB j= jE j¡ jV j+�(G), where �(G) is the number of connected components
of G. Every cycle C in G such that C 2/ B can be obtained from cycles in B using only symmetric
differences.

The strategy is to construct a spanning tree T of G using depth-first search and look for edges
in E which do not belong to the tree. For each non-tree edge e there is a unique fundamental cycle
Ce consisting of e together with the path in T connecting the endpoints of e. The vertices of Ce
are easily obtained from the search data. The complexity of this algorithm is O(jV j+ jE j).

> G:=graph(trail(1,2,3,4,5,2,6))

an undirected unweighted graph with 6 vertices and 6 edges

> C:=fundamental_cycle(G)

an undirected unweighted graph with 4 vertices and 4 edges

> edges(C)

[[4; 5]; [2; 5]; [3; 4]; [2; 3]]

Given a tree graph G and adding an edge from the complement Gc to G one obtains a 1-tree
graph.

> G:=random_tree(25)

an undirected unweighted graph with 25 vertices and 24 edges

> ed:=choice(edges(graph_complement(G)))

[3; 8]

> G:=add_edge(G,ed)

an undirected unweighted graph with 25 vertices and 25 edges

> C:=fundamental_cycle(G)

an undirected unweighted graph with 5 vertices and 5 edges

> edges(C)

[[5; 7]; [0; 5]; [7; 8]; [3; 8]; [0; 3]]

> draw_graph(highlight_subgraph(G,C),spring)

0

1

2

3

4

5

6

7

8

9

10 11
12

13

14

15
16

17
18

19

20

21

22

23 24

In the next example, a cycle basis of octahedral graph is computed.

> G:=graph("octahedron")

1.8 Subgraphs 37

https://en.wikipedia.org/wiki/Symmetric_difference
https://en.wikipedia.org/wiki/Symmetric_difference

an undirected unweighted graph with 6 vertices and 12 edges

> draw_graph(G)

1 3

6

5

4 2

> cycle_basis(G)

[[6; 3; 1]; [5; 4; 6; 3; 1]; [4; 6; 3; 1]; [5; 4; 6; 3]; [2; 5; 4; 6; 3]; [2; 5; 4; 6]; [2; 5; 4]]

Given a tree graph T , one can create a graph with cycle basis cardinality equal to k by simply
adding k randomly selected edges from the complement T c to T .

> tree1:=random_tree(15)

an undirected unweighted graph with 15 vertices and 14 edges

> G1:=add_edge(tree1,rand(3,edges(graph_complement(tree1))))

an undirected unweighted graph with 15 vertices and 17 edges

> tree2:=random_tree(12)

an undirected unweighted graph with 12 vertices and 11 edges

> G2:=add_edge(tree2,rand(2,edges(graph_complement(tree2))))

an undirected unweighted graph with 12 vertices and 13 edges

> G:=disjoint_union(G1,G2)

an undirected unweighted graph with 27 vertices and 30 edges

> draw_graph(G,spring,labels=false)

> nops(cycle_basis(G))

5

> number_of_edges(G)-number_of_vertices(G)+nops(connected_components(G))

38 Constructing graphs

5

1.8.5 Finding cycles in digraphs
find_cycles(G)
find_cycles(G,length=k)
find_cycles(G,length=l..u)

The command find_cycles is used for finding cycles (elementary circuits) in directed graphs.
It takes a digraph G(V ;E) as its first argument. If it is the only input given, find_cycles returns
the list of all cycles in G where each cycle is output as a list of its vertices. If an optional second
argument length=k resp. length=l..u is given, where k, l and u are positive integers, only cycles
of length k resp. of length between l and u (inclusive) are returned.

The strategy is to useTarjan's algorithm for enumerating elementary circuits in a digraph [72].
The algorithm runs in O(jV j jE j (C+1)) time, where C is the number of cycles in G.

> purge(A,B,C,D,E,F,G,H):;

> DG:=digraph(%{[A,B],[A,H],[B,G],[C,B],[D,F],[E,C],[E,F],[F,A],[F,E],[G,D],[G,
F],[H,C],[H,E]%})

a directed unweighted graph with 8 vertices and 13 arcs

> draw_graph(DG,spring)

A

B

H

G C

D
F

E

> find_cycles(DG)

[[A;H;E; F]; [A;H;E;C;B;G; F]; [A;H;E;C;B;G;D; F]; [A;H;C;B;G; F]; [A;H;C;B;G;

D; F]; [A;B;G; F]; [A;B;G;D; F]; [B;G;F ;E;C]; [B;G;D; F ;E;C]; [F ;E]]

> find_cycles(DG,length=4)

[[A;H;E; F]; [A;B;G; F]]

> find_cycles(DG,length=6..7)

[[A;H;E;C;B;G; F]; [A;H;C;B;G; F]; [A;H;C;B;G;D; F]; [B;G;D; F ;E;C]]

1.9 Operations on graphs

1.9.1 Graph complement
graph_complement(G)

The command graph_complement is used for constructing complement graphs. It takes a graph
G(V ;E) as its only argument and returns the complement graph Gc(V ;Ec) of G, where Ec is the
largest set containing only edges/arcs not present in G.

1.9 Operations on graphs 39

https://en.wikipedia.org/wiki/Complement_graph
https://en.wikipedia.org/wiki/Complement_graph

> G:=graph_complement(cycle_graph(5))

an undirected unweighted graph with 5 vertices and 5 edges

> draw_graph(G)

0

1

23

4

1.9.2 Graph switching

seidel_switch(G,L)

The command seidel_switch is used for Seidel switching in graphs. It takes two arguments,
an undirected and unweighted graph G(V ; E) and a list of vertices L� V . The result is a copy
of G in which, for each vertex v 2L, its neighbors become its non-neighbors and vice versa. The
edges whose endpoints are both in the set, or both not in the set, are not changed.

> S:=seidel_switch(cycle_graph(5),[1,2])

an undirected unweighted graph with 5 vertices and 7 edges

> draw_graph(S)

0

1

23

4

> purge(A,B,C,D,E,F,X,Y):;

> G:=graph([A,B,C,D,E,F,X,Y],%{[A,B],[B,C],[B,X],[B,Y],[C,D],[C,Y],[D,X],[E,Y],
[F,Y],[X,Y]%})

an undirected unweighted graph with 8 vertices and 10 edges

> G:=highlight_edges(G,[[X,B],[X,D],[Y,B],[Y,C],[Y,E],[Y,F],[X,Y]],[green$6,
red]):;

> H:=seidel_switch(G,[X,Y])

an undirected unweighted graph with 8 vertices and 10 edges

> H:=highlight_edges(H,[[X,A],[X,C],[X,E],[X,F],[Y,A],[Y,D],[X,Y]],[magenta$6,
red]):;

40 Constructing graphs

https://en.wikipedia.org/wiki/Two-graph#Switching_and_graphs
https://en.wikipedia.org/wiki/Two-graph#Switching_and_graphs
https://en.wikipedia.org/wiki/Two-graph#Switching_and_graphs
https://en.wikipedia.org/wiki/Two-graph#Switching_and_graphs
https://en.wikipedia.org/wiki/Two-graph#Switching_and_graphs

> draw_graph(G,circle=[Y,F,A,B,C,D,E],[0,0],size=[1,0]);
draw_graph(H,circle=[Y,F,A,B,C,D,E],[1.5,0],size=[1,0]);

A

BC

D

E F

X

Y

A

BC

D

E F

X

Y

1.9.3 Transposing graphs
reverse_graph(G)

The command reverse_graph is used for reversing arc directions in digraphs. It takes a graph
G(V ;E) as its only argument and returns the reverse graph GT(V ;E 0) of G where E 0= fvu :uv2
Eg, i.e. returns the copy of G with the directions of all edges reversed.

Note that reverse_graph is defined for both directed and undirected graphs, but gives mean-
ingful results only for directed graphs.

GT is also called the transpose graph of G because adjacency matrices of G and GT are
transposes of each other (hence the notation).

> G:=digraph(6, %{[1,2],[2,3],[2,4],[4,5]%})

a directed unweighted graph with 6 vertices and 4 arcs

> GT:=reverse_graph(G)

a directed unweighted graph with 6 vertices and 4 arcs

> edges(GT)

[[2; 1]; [3; 2]; [4; 2]; [5; 4]]

1.9.4 Union of graphs
graph_union(G1,G2,..,Gn)

The command graph_union is used for constructing unions of graphs. It takes a sequence
of graphs Gk(Vk; Ek) for k = 1; 2; :::; n as its argument and returns the graph G(V ; E) where
V =V1[V2[��� [Vn and E =E1[E2[��� [En.

> G1:=graph([1,2,3],%{[1,2],[2,3]%})

an undirected unweighted graph with 3 vertices and 2 edges

> G2:=graph([1,2,3],%{[3,1],[2,3]%})

an undirected unweighted graph with 3 vertices and 2 edges

> G:=graph_union(G1,G2)

an undirected unweighted graph with 3 vertices and 3 edges

> edges(G)

1.9 Operations on graphs 41

[[1; 2]; [1; 3]; [2; 3]]

1.9.5 Disjoint union of graphs
disjoint_union(G1,G2,..,Gn)

The command disjoint_union is used for constructing a disjoint union of graphs. It takes a
sequence of graphs Gk(Vk;Ek) for k=1;2; :::;n as its only argument and returns the graph obtained
by labeling all vertices with strings k:v where v 2Vk and all edges with strings k:e where e2Ek
and calling graph_union subsequently. As all vertices and edges are labeled differently, it follows
jV j=

P
k=1
n jVkj and jE j=

P
k=1
n jEkj.

> G:=disjoint_union(cycle_graph([1,2,3]),path_graph([1,2,3]))

an undirected unweighted graph with 6 vertices and 5 edges

> draw_graph(G)

1:1

1:21:3

2:1

2:2

2:3

1.9.6 Joining two graphs
graph_join(G,H)

The command graph_join is used for joining two graphs together. It takes two graphs G and
H as its arguments and returns the graph G+H which is obtained by connecting all the vertices
of G to all vertices of H. The vertex labels in the resulting graph are strings of the form 1:u and
2:v where u is a vertex in G and v is a vertex in H.

> G:=path_graph(2)

an undirected unweighted graph with 2 vertices and 1 edge

> H:=graph(3)

an undirected unweighted graph with 3 vertices and 0 edges

> GH:=graph_join(G,H)

an undirected unweighted graph with 5 vertices and 7 edges

> draw_graph(GH,spring)

1:01:1

2:02:1

2:2

42 Constructing graphs

https://en.wikipedia.org/wiki/Disjoint_union_of_graphs
https://en.wikipedia.org/wiki/Disjoint_union_of_graphs

1.9.7 Power graphs

graph_power(G,k)

The command graph_power is used for computing powers of graphs. It takes two arguments,
a graph G(V ;E) and a positive integer k. It returns the k-th power Gk of G with vertices V such
that v;w2V are connected with an edge if and only if there exists a path of length at most k in G.

The graph Gk is constructed from its adjacency matrix Ak which is obtained by adding powers
of the adjacency matrix A of G:

Ak=
X
i=1

k

Ak:

The above sum is obtained by assigning Ak A and repeating the instruction Ak (Ak+ I)A for
k¡ 1 times, so exactly k matrix multiplications are required.

> G:=graph(trail(1,2,3,4,5))

an undirected unweighted graph with 5 vertices and 4 edges

> draw_graph(G,circle)

1

2

34

5

> P2:=graph_power(G,2)

an undirected unweighted graph with 5 vertices and 7 edges

> draw_graph(P2,circle)

1

2

34

5

> P3:=graph_power(G,3)

an undirected unweighted graph with 5 vertices and 9 edges

> draw_graph(P3,circle)

1

2

34

5

1.9 Operations on graphs 43

https://en.wikipedia.org/wiki/Graph_power
https://en.wikipedia.org/wiki/Graph_power
https://en.wikipedia.org/wiki/Graph_power

1.9.8 Graph products

cartesian_product(G1,G2,..,Gn)
tensor_product(G1,G2,..,Gn)

There are two distinct operations for computing a product of two graphs: the Cartesian product
and the tensor product. These operations are available in giac as the commands cartesian_pro-
duct and tensor_product, respectively.

cartesian_product takes a sequence of graphs Gk(Vk; Ek) for k= 1; 2; :::; n as its argument
and returns the Cartesian product G1�G2�����Gn of the input graphs. The Cartesian product
G(V ;E)=G1�G2 is the graph with list of vertices V =V1�V2, labeled with strings v1:v2 where
v12 V1 and v22V2, such that (u1:v1,u2:v2)2E if and only if u1 is adjacent to u2 and v1= v2 or
u1=u2 and v1 is adjacent to v2.

tensor_product takes a sequence of graphs Gk(Vk; Ek) for k=1; 2; :::; n as its argument and
returns the tensor product G1 �G2 � ��� � Gn of the input graphs. The tensor product G(V ;
E)=G1�G2 is the graph with list of vertices V =V1�V2, labeled with strings v1:v2 where v12V1
and v22V2, such that (u1:v1,u2:v2)2E if and only if u1 is adjacent to u2 and v1 is adjacent to v2.

> G1:=graph(trail(1,2,3,4,1,5))

an undirected unweighted graph with 5 vertices and 5 edges

> G2:=star_graph(3)

an undirected unweighted graph with 4 vertices and 3 edges

> draw_graph(G1,circle,[0,0],size=[0,1],title="G1");
draw_graph(G2,[1.5,0],size=[0,1],title="G2")

G1

1

2

34

5

G2

0

1

23

> G:=cartesian_product(G1,G2)

an undirected unweighted graph with 20 vertices and 35 edges

> draw_graph(G,spring)

1:0

1:1

1:2

1:3

2:0

2:1

2:2

2:3

3:0

3:1

3:2

3:3

4:0

4:1

4:2

4:3

5:0

5:1

5:2

5:3

> T:=tensor_product(G1,G2)

an undirected unweighted graph with 20 vertices and 30 edges

44 Constructing graphs

https://en.wikipedia.org/wiki/Cartesian_product_of_graphs
https://en.wikipedia.org/wiki/Cartesian_product_of_graphs
https://en.wikipedia.org/wiki/Tensor_product_of_graphs
https://en.wikipedia.org/wiki/Tensor_product_of_graphs

> draw_graph(T,spring)

1:0

1:1

1:2

1:3

2:0

2:1

2:2

2:3

3:0

3:1

3:2

3:3

4:0

4:1

4:2

4:3

5:0

5:1

5:2

5:3

1.9.9 Transitive closure graph

transitive_closure(G,〈weighted〉)

The command transitive_closure is used for constructing transitive closure graphs. It takes
one or two arguments, a graph G(V ; E) and optionally the argument weighted. The command
returns the transitive closure T (V ; E 0) of the input graph G by connecting u2V to v 2V in T if
and only if there is a path from u to v in G. If G is directed, then T is also directed. If weighted
is specified, then T is weighted such that the weight of edge v w 2E 0 is equal to the length (or
cost, if G is weighted) of the shortest path from v to w in G.

The lengths/weights of the shortest paths are obtained by the command allpairs_distance if
G is weighted resp. the command vertex_distance if G is unweighted. Therefore T is constructed
in at most O(jV j3) time if weighted is specified and in O(jV j jE j) time otherwise.

> G:=digraph([1,2,3,4,5,6],%{[1,2],[2,3],[2,4],[4,5],[3,5]%})

a directed unweighted graph with 6 vertices and 5 arcs

> draw_graph(G)

1

2

3 4

5
6

> T:=transitive_closure(G,weighted)

a directed weighted graph with 6 vertices and 9 arcs

> draw_graph(T)

1

22

3

1

1

2

1

1

1

2

34

5

6

1.9 Operations on graphs 45

https://en.wikipedia.org/wiki/Transitive_closure#In_graph_theory
https://en.wikipedia.org/wiki/Transitive_closure#In_graph_theory
https://en.wikipedia.org/wiki/Transitive_closure#In_graph_theory

1.9.10 Line graph

line_graph(G)

The command line_graph is used for constructing line graphs [34, p. 10]. It takes a graph
G(V ; E) as its only argument and returns the corresponding line graph L(G) with jE j distinct
vertices, one vertex for each edge in E. If G is undirected, then two vertices v1 and v2 in L(G) are
adjacent if and only if the corresponding edges e1; e22E have a common endpoint. If G is directed,
then v1 and v2 are adjacent if and only if the corresponding arcs e1 and e2 form a directed path
(e1; e2), i.e. if the head of e1 coincides with the tail of e2.

The vertices in L(G) are labeled with strings in form v-w, where e= vw 2E.

> K4:=complete_graph([1,2,3,4])

an undirected unweighted graph with 4 vertices and 6 edges

> L:=line_graph(K4)

an undirected unweighted graph with 6 vertices and 12 edges

> draw_graph(L,spring)

1−2

1−3

1−4

2−3

2−4

3−4

1.9.11 Plane dual graph

plane_dual(G)
plane_dual(F)
is_planar(G,〈F〉)

The command plane_dual is used for constructing the dual graph of an undirected biconnected
planar graph. To determine whether a graph is planar [34, p. 12] use the command is_planar.

plane_dual takes a biconnected1.1 planar graph G(V ; E) or the list F of faces of a planar
embedding of G as its only argument and returns the graph H with faces of G as its vertices. Two
vertices in H are adjacent if and only if the corresponding faces share an edge in G. The algorithm
runs in O(jV j2) time.

is_planar takes one or two arguments, the input graph G and optionally an unassigned iden-
tifier F. It returns true if G is planar. Otherwise, it returns false. If the second argument is
provided and G is planar and biconnected, then the list of faces of G is assigned to F. Each face is
represented as a list of its vertices. The strategy is to use the algorithm of Demoucron et al. [33,
p. 88], which runs in O(jV j2) time.

> H:=hypercube_graph(3)

an undirected unweighted graph with 8 vertices and 12 edges

> draw_graph(H,spring)

1.1. The concept of dual graph is normally defined for multigraphs. Every planar multigraph has the corre-
sponding dual multigraph; moreover, the dual of the latter is equal to the former. Since giac generally does not
support multigraphs, a more specialized definition suitable for simple graphs is used; hence the requirement that
the input graph is biconnected.

46 Constructing graphs

https://en.wikipedia.org/wiki/Line_graph
https://en.wikipedia.org/wiki/Line_graph
https://en.wikipedia.org/wiki/Dual_graph
https://en.wikipedia.org/wiki/Dual_graph
https://en.wikipedia.org/wiki/Planar_graph
https://en.wikipedia.org/wiki/Planar_graph

000

001

010

011

100

101

110

111

The cube has six faces, hence its plane dual graph D has six vertices. Also, every face obviously
shares an edge with exactly four other faces, so the degree of each vertex in D is equal to 4.

> D:=plane_dual(H)

an undirected unweighted graph with 6 vertices and 12 edges

> draw_graph(D,planar)

0 1

2

3

4

5

> is_planar(graph("petersen"))

false

> is_planar(graph("duerer"))

true

> draw_graph(graph("duerer"),planar,labels=false)

In the next example, a graph isomorphic to D is obtained by passing the list of faces of H to
plane_dual. The order of vertices is determined by the order of faces.

> purge(F):; is_planar(H,F); F

�Done�; true;

0BBBBBBBBBBBBBB@

�011� �001� �000� �010�
�000� �001� �101� �100�
�110� �010� �000� �100�
�011� �010� �110� �111�
�111� �110� �100� �101�
�101� �001� �011� �111�

1CCCCCCCCCCCCCCA

1.9 Operations on graphs 47

> is_isomorphic(plane_dual(F),D)

true

1.9.12 Truncating planar graphs

truncate_graph(G)

The command truncate_graph performs truncation of biconnected planar graphs. It takes
a biconnected planar graph G(V ; E) as its only argument and returns the graph obtained by
truncating the respective polyhedron, i.e. by �cutting off� its vertices. The resulting graph has 2jE j
vertices and 3 jE j edges. The procedure of truncating a graph by subdividing its edges is described
in [5].

The algorithm requires computing a planar embedding of G, which is done by applying Demou-
cron's algorithm. Hence its complexity is O(jV j2).

> G:=truncate_graph(graph("tetrahedron"))

an undirected unweighted graph with 12 vertices and 18 edges

> draw_graph(G,spring,labels=false)

Truncating the plane dual of G represents the leapfrog operation on G, which can be used
for constructing fullerene graphs [5]. By performing the leapfrog operation on a fullerene graph
one obtains a larger fullerene. For example, the dual of the Errera graph is a fullerene (see here);
hence by truncating Errera graph (i.e. the dual of its dual) one obtains a fullerene.

> G:=truncate_graph(graph("errera"))

an undirected unweighted graph with 90 vertices and 135 edges

> purge(F):; is_planar(G,F)

�Done�; true

Now F contains a list of faces of the graph G. Since G is a fullerene, every face is a 5- or 6-cycle.

> set[op(apply(length,F))]

f5; 6g

When drawing fullerenes, it is recommended to use the circular method which usually produces
best results. Any face of the planar embedding of a given fullerene be chosen as the outer face, as
in the example below.

> draw_graph(G,circle=rand(F))

48 Constructing graphs

https://en.wikipedia.org/wiki/Truncation_(geometry)
https://en.wikipedia.org/wiki/Fullerene#Other_buckyballs
https://en.wikipedia.org/wiki/Fullerene#Other_buckyballs
https://en.wikipedia.org/wiki/Errera_graph#Applications_in_chemistry

As an another example, the C180 fullerene is obtained by performing two leapfrog operations
on the dodecahedral graph [65].

> G:=truncate_graph(plane_dual(graph("dodecahedron")))

an undirected unweighted graph with 60 vertices and 90 edges

> C180:=truncate_graph(plane_dual(G))

an undirected unweighted graph with 180 vertices and 270 edges

In order to obtain a symmetric drawing of C180, a 5-edge face is used as the outer face.

> purge(F):; is_planar(C180,F):;
for f in F do if length(f)==5 then break; fi; od:;
draw_graph(C180,circle=f)

1.10 Random graphs

1.10.1 Random general graphs
random_graph(n|L,p|m)
random_digraph(n|L,p|m)
random_graph(n|L,[p0,p1,...])
random_graph(n|L,f)
random_graph(n|L,d,k)

The commands random_graph and random_digraph are used for generating general (di)graphs
at random according to various models, including the preferential attachment. Both commands
take two arguments: a positive integer n or a list of labels L of length n. The second argument is
a positive real number p< 1 or a positive integer m. The return value is a (di)graph on n vertices
(with elements of L as vertex labels) selected uniformly at random, i.e. a (di)graph in which each
edge/arc is present with probability p or which contains exactly m edges/arcs chosen uniformly at
random (Erd®s�Rényi model).

Erd®s�Rényi model is implemented according toBatagelj and Brandes [6, algorithms 1 and 2].
The corresponding algorithms run in linear time and are suitable for generating large graphs.

1.10 Random graphs 49

https://en.wikipedia.org/wiki/Preferential_attachment
https://en.wikipedia.org/wiki/Preferential_attachment
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model

random_graph can also generate graphs with respect to a given probability distribution of
vertex degrees if the second argument is a discrete probability density function given as a list of
probabilities or weights [p0; p1; :::; pn¡1] or as a weight function f :N[f0g! [0;+1i such that
f(i)= pi for i=0; 1; :::; n¡ 1. Trailing zeros in the list of weights, if present, may be omitted. The
numbers pi are automatically scaled by 1/

P
i=1
n¡1 pi to achieve the sum of 1 and a graph with that

precise distribution of vertex degrees is generated at random using the algorithm described in [58,
p. 2567] with some modifications. First, a degree sequence d is generated randomly by drawing
samples from the given distribution and repeating the process until a graphic sequence is obtained.
Then the algorithm for constructing a feasible solution from d [38] is applied. Finally, the edges
of that graph are randomized by choosing suitable pairs of non-incident edges and �rewiring� them
without changing the degree sequence. Two edges uv and wz can be rewired in at most two ways,
becoming either uz and wv or uw and vz (if these edges are not in the graph already). Letting m
denote the number of edges, at most

N =
l�

log2
m

m¡ 1

�¡1m
<m

such choices is made, assuring that the probability of rewiring each edge at least once is larger
than 1/2. The total complexity of this algorithm is O(n2 log n).

Additionally, to support generation of realistic networks, random_graph can be used with
integer parameters d > 0 and k> 0 as the second and the third argument, respectively, in which
case a preferential attachment rule is applied in the following way. For n> 2, the resulting graph
G(V ; E) initially contains two vertices v1; v2 and one edge v1v2. For each i= 3; :::; n, the vertex
vi is added to V along with edges vivj for min fi¡ 1; dg mutually different values of j, which are
chosen at random in the set f1; 2; :::; i¡ 1g with probability

pj=
deg vjP
r=1
i¡1 deg vr

:

Subsequently, additional at most k random edges connecting the neighbors of vi to each other are
added to E, allowing the user to control the clustering coefficient of G. This method is due to
Schank and Wagner [68, Algorithm 2, p. 271]. The time complexity of the implementation is
O(n2 d+nk).

> G:=random_graph(10,0.5)

an undirected unweighted graph with 10 vertices and 20 edges

> draw_graph(G,spring,labels=false)

> G:=random_graph(1000,0.05)

an undirected unweighted graph with 1000 vertices and 24845 edges

> is_connected(G)

true

> minimum_degree(G),maximum_degree(G)

28; 71

50 Constructing graphs

> G:=random_graph(15,20)

an undirected unweighted graph with 15 vertices and 20 edges

> draw_graph(G,spring)

0

1

2

3 4

5

6

7
8

9

10

11

12

13

14

> DG:=random_digraph(15,0.1)

a directed unweighted graph with 15 vertices and 23 arcs

> draw_graph(DG,labels=false,spring)

In the following example, a random graph is generated such that the degree of each vertex is
drawn from f0; 1; :::; 10g according to weights specified in the table below.

degree 0 1 2 3 4 5 6 7 8 9 10
weight 0 0 9 7 0 5 4 3 0 1 1

That is, the degrees are generated with probabilities 0;0; 310 ;
7

30 ;0;
1

6
;
2

15 ;
1

10 ;0;
1

30 ;
1

30 , respectively.

> G:=random_graph(10000,[0,0,9,7,0,5,4,3,0,1,1])

an undirected unweighted graph with 10000 vertices and 21469 edges

5.413 sec

> frequencies(degree_sequence(G))0BBBBBBBBBBBBBBBBBB@

2 0.3028
3 0.2287
5 0.1619
6 0.1324
7 0.1037
9 0.0327
10 0.0378

1CCCCCCCCCCCCCCCCCCA
In the example below, a random graph is generated such that the vertex degrees are distributed

according to the following weight function:

f(k)=

(
0; k=0;
k¡3/2 e¡k/3; k> 1:

1.10 Random graphs 51

> G:=random_graph(10000,k->when(k<1,0,k^-1.5*exp(-k/3)))

an undirected unweighted graph with 10000 vertices and 8013 edges

> length(connected_components(G))

2278

The command line below computes the average size of a connected component in G.

> round(mean(apply(length,connected_components(G))))

4

The next example demonstrates how to generate random graphs with adjustable clustering
coefficient.

> G1:=random_graph(10000,5,10)

an undirected unweighted graph with 10000 vertices and 105349 edges

> clustering_coefficient(G1)

0.468517214584

> G2:=random_graph(10000,5,20)

an undirected unweighted graph with 10000 vertices and 121729 edges

> clustering_coefficient(G2)

0.615949324773

> G3:=random_graph(10000,10,5)

an undirected unweighted graph with 10000 vertices and 143378 edges

> clustering_coefficient(G3)

0.114122321952

The distribution of vertex degrees in a graph generated with preferential attachment rule
roughly obeys the power law in its tail, as shown in the example below.

> G:=random_graph(300,5,2)

an undirected unweighted graph with 300 vertices and 1889 edges

> histogram(degree_sequence(G))

0 10 20 30 40 50 60

0

0.05

0.1

0.15

0.2

0.25

0.3

52 Constructing graphs

1.10.2 Random bipartite graphs

random_bipartite_graph(n,p|m)
random_bipartite_graph([a,b],p|m)

The command random_bipartite_graph is used for generating bipartite graphs at random.
It takes two arguments. The first argument is either a positive integer n or a list of two positive
integers a and b. The second argument is either a positive integerm or a positive real number p<1.
The command returns a random bipartite graph on n vertices (or with two partitions of sizes a
and b) in which each possible edge is present with probability p (orm edges are inserted at random).

> G:=random_bipartite_graph([3,4],0.5)

an undirected unweighted graph with 7 vertices and 10 edges

> draw_graph(G)

0 1 2

3 4 5 6

> G:=random_bipartite_graph(30,60)

an undirected unweighted graph with 30 vertices and 60 edges

1.10.3 Random trees

random_tree(n|V)
random_tree(n|V,d)
random_tree(n|V,root〈=v〉)

The command random_tree is used for generating tree graphs at random. It takes one or two
arguments: a positive integer n or a list V = fv1; v2; :::; vng and optionally an integer d> 2 or the
option root〈=v〉, where v 2V . It returns a random tree T (V ;E) on n vertices such that:

� if d is given as the second argument, then �(T)6 d, where �(T) is the maximum vertex
degree in T ,

Rooted unlabeled trees are generated uniformly at random using the RANRUT algorithm [59,
p. 274]. The root of a tree T generated this way, if not specified as v, is always the first vertex in
the list returned by vertices. The average time complexity of RANRUT is O(n logn) [4].

Unrooted unlabeled trees, also called free trees, are generated uniformly at random using
Wilf's algorithm1.2 [85], which is based on RANRUT.

Trees with bounded maximum degree are generated using a simple algorithm which starts with
an empty tree and adds edges at random one at a time. It is much faster than RANRUT but selects
trees in a non-uniform manner. To use the algorithm without the vertex degree limit, one can set
d=+1.

1.2. The original publication of Wilf's algorithm has a minor flaw in the procedure Free [85, p. 207]. In the
formula p=

�
1+ an/2

2

�
/an in step (T1) the denominator an stands for the number of all rooted unlabeled trees on n

vertices. However, one should divide by the number tn of all unrooted unlabeled trees instead, which can be obtained
from a1; a2; :::; an by applying the formula in [61, p. 589]. This implementation includes the correction.

1.10 Random graphs 53

The command line below creates a forest containing 10 randomly selected free trees on 10
vertices.

> G:=disjoint_union(apply(random_tree,[10$10]))

an undirected unweighted graph with 100 vertices and 90 edges

> draw_graph(G,tree,labels=false)

The following example demonstrates the uniformity of random generation of free trees. Letting
n=6, there are exactly 6 distinct free trees on 6 vertices, created by the next command line.

> trees:=[star_graph(5),path_graph(6),graph(trail(1,2,3,4),trail(5,4,6)),
graph(%{[1,2],[2,3],[2,4],[4,5],[4,6]%}),graph(trail(1,2,3,4),trail(3,5,6)),
graph(trail(1,2,3,4),trail(5,3,6))]:;

> draw_graph(disjoint_union(trees),spring,labels=false)

Now, generating a random free tree on 6 nodes always produces one of the above six graphs,
which is determined by using the command is_isomorphic. 1200 trees are generated in total and
the number of occurrences of trees[k] is stored in hits[k] for every k=1; 2; :::; 6 (note that in
xcas mode it is actually k=0; :::; 5).

> hits:=[0$6]:;

> for k from 1 to 1200 do
T:=random_tree(6);
for j from 0 to 5 do

if is_isomorphic(T,trees[j]) then hits[j]++; fi;
od;

od:;

> hits

[186; 208; 221; 186; 189; 210]

To demonstrate the ability of this algorithm to select rooted trees on n vertices with equal
probability, one can reproduce the example in [59, p. 281], in which n=5. First, all distinct rooted
trees on 5 vertices are created and stored in trees; there are exactly nine of them. Their root
vertices are highlighted to be distinguishable. Then, 4500 rooted trees on 5 vertices are generated
at random, highlighting the root vertex in each of them. As in the previous example, the variable
hits[k] records how many of them are isomorphic to trees[k].

54 Constructing graphs

> trees:=[
highlight_vertex(graph(trail(1,2,3,4,5)),1),
highlight_vertex(graph(trail(1,2,3,4,5)),2),
highlight_vertex(graph(trail(1,2,3,4,5)),3),
highlight_vertex(graph(trail(1,2,3),trail(4,3,5)),1),
highlight_vertex(graph(trail(1,2,3),trail(4,3,5)),2),
highlight_vertex(graph(trail(1,2,3),trail(4,3,5)),3),
highlight_vertex(graph(trail(1,2,3),trail(4,3,5)),4),
highlight_vertex(graph(trail(1,2,3),trail(4,2,5)),1),
highlight_vertex(graph(trail(1,2,3),trail(4,2,5)),2)
]:;

> draw_graph(disjoint_union(trees),labels=false)

> hits:=[0$9]:;

> for k from 1 to 4500 do
T:=random_tree(5,root);
HT:=highlight_vertex(T,vertices(T)[0]);
for j from 0 to 8 do

if is_isomorphic(HT,trees[j]) then hits[j]++; fi;
od;

od:;

> hits

[505; 561; 457; 496; 487; 517; 489; 500; 488]

In the following example, a random tree on 100 vertices with maximum degree at most 3 is
drawn.

> draw_graph(random_tree(100,3))

1.10.4 Random planar graphs
random_planar_graph(n|L,p,〈k〉)

The command random_planar_graph is used for generating random planar graphs. It takes
two or three arguments, a positive integer n or a list L of length n, a positive real number p< 1,
and optionally an integer k 2 f0; 1; 2; 3g (by default, k= 1). The command returns a random k-
connected planar graph on n vertices (using the elements of L as vertex labels).

The result is obtained by first generating a random maximal planar graph and then attempting
to remove each edge with probability p, maintaining the k-connectivity of the graph (if k=0, the
graph may be disconnected). The running time is O(nd1+k/2e).

1.10 Random graphs 55

Generating a biconnected planar graph:

> G:=random_planar_graph(20,0.8,2)

an undirected unweighted graph with 20 vertices and 27 edges

> draw_graph(G,planar,labels=false)

Generating a triconnected planar graph:

> G:=random_planar_graph(15,0.9,3)

an undirected unweighted graph with 15 vertices and 26 edges

> draw_graph(G,planar,labels=false)

Generating a disconnected planar graph with high probability:

> G:=random_planar_graph(30,0.9,0)

an undirected unweighted graph with 30 vertices and 24 edges

> is_forest(G)

true

> draw_graph(G,spring,labels=false)

56 Constructing graphs

By default, a connected planar graph is generated, like in the following example.

> G:=random_planar_graph(12,0.618)

an undirected unweighted graph with 12 vertices and 13 edges

> is_connected(G)

true

> draw_graph(G,planar)

0

1

2

3
4

5

6

7

8

9

1011

1.10.5 Random graphs from a given degree sequence

random_sequence_graph(L)

The command random_sequence_graph is used for generating random undirected graphs from
degree sequences. It takes a degree sequence L (a list of nonnegative integers) as its only argument
and returns an asymptotically uniform random graph with the degree sequence equal to L using
the algorithm developed by Bayati et al. [8].

The algorithm slows down quickly and uses O(jLj2) of auxiliary space, so it is best used for up
to several hundreds of vertices.

> s:=[1,3,3,2,1,2,2,2,3,3]

[1; 3; 3; 2; 1; 2; 2; 2; 3; 3]

> is_graphic_sequence(s)

true

> G:=random_sequence_graph(s)

an undirected unweighted graph with 10 vertices and 11 edges

> draw_graph(G,spring)

0

1

2

3

4

5

6

7
8

9

1.10 Random graphs 57

1.10.6 Random regular graphs

random_regular_graph(n|L,d,〈connected〉)

The command random_regular_graph is used for generating random regular graphs. It takes
two mandatory arguments, a positive integer n (or a list L of length n) and a nonnegative integer
d. Optionally, the argument connected may be appended, forcing the generated graph to be
connected. The command creates n vertices (using elements of L as vertex labels) and returns a
random d-regular (connected) graph on these vertices.

Note that a d-regular graph on n vertices exists if and only if n>d+1 and nd is even. If these
conditions are not met, random_regular_graph returns an error.

The strategy is to use the algorithm developed by Steger and Wormald [70, algorithm 2].
The runtime is negligible for n6 100. However, for n> 200 the algorithm is considerably slower.
Graphs are generated with approximately uniform probability, which means that for n!1 and
d not growing so quickly with n the probability distribution converges to uniformity.

> G:=random_regular_graph(12,3)

an undirected unweighted graph with 12 vertices and 18 edges

> draw_graph(G,spring)

0

1

2

3

4

5

6

7

8

9

10

11

1.10.7 Random tournaments

random_tournament(n|V)

The command random_tournament is used for generating random tournaments. It takes a
positive integer n or a list V of length n as its only argument and returns a random tournament
on n vertices. If V is provided, then its elements are used to label the vertices.

> G:=random_tournament([1,2,3,4])

a directed unweighted graph with 4 vertices and 6 arcs

> draw_graph(G)

1 2

34

58 Constructing graphs

1.10.8 Random network graphs
random_network(a,b,〈p〉,〈opts〉)

The command random_network is used for generating random networks. It takes two to four
arguments: a positive integer a, a positive integer b, an optional real number p such that 0<
p6 1 (by default p= 0.5) and optionally a sequence of options opts. The supported options are
acyclic〈=true|false〉 and weights=a..b.

The command returns a network graph with a2 b vertices which is composed as follows (the
method of generating the network skeleton is due to Goldfarb and Grigoriadis [35]).

Firstly, grid graphs F1; F2; :::; Fb (called frames), each of them with a� a vertices, are gen-
erated. If the option acyclic〈=true〉 is used (by default is acyclic=false), then an acyclic
orientation is computed for each frame using st-ordering (see Section 4.9.3) with two opposite
corners of the frame as source and sink, otherwise all vertices in the frame are connected to their
neighbors (forth and back). In addition, for each k <b the vertices of Fk are connected one to one
with the vertices of the next frame Fk+1 using a random permutation of those vertices. The first
vertex of the first frame is the source and the last vertex of the last frame is the sink of the network
(some arcs may have to be removed to achieve that). Finally, the removal of each arc is attempted
with probability 1¡ p (unless its removal disconnects the network), making each arc present with
probability p.

if the option weights=a..b is specified, arc weights in the network are randomized in the
interval [a; b]�R. If a; b are integers, the weights are also integers.

The command below creates a random network, consisting of 3 frames of size 2� 2, in which
each arc is present with the probability 0.8.

> N1:=random_network(2,3,0.8)

a directed unweighted graph with 12 vertices and 18 arcs

> draw_graph(N1,spring)

0
1

2

3

4

5

6

7

8

9 10

11

> is_network(N1)

[0]; [11]

In the next example, passing the option acyclic forces the output graph to be acyclic.

> N2:=random_network(3,2,0.62,acyclic)

a directed unweighted graph with 18 vertices and 18 arcs

> draw_graph(N2,spring)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1.10 Random graphs 59

> is_network(N2)

[0; 2; 3; 5; 6; 7; 9; 11]; [10; 17]

> is_acyclic(N2)

true

Arc weights can be randomized, as demonstrated in the following example.

> N3:=random_network(2,2,0.75,weights=1..9)

a directed weighted graph with 8 vertices and 15 arcs

> draw_graph(N3,spring)

5

7

2

8

6

2

3

8

2

67 2

1

2

9

0

1

2

3

4

56

7

1.10.9 Randomizing edge weights
assign_edge_weights(G,a..b)
assign_edge_weights(G,m,n)

The command assign_edge_weights is used for assigning weights to edges of graphs at random.
It takes two or three arguments: a graphG(V ;E) and an interval a .. b of real numbers or a sequence
of two positive integers m and n. The command operates such that for, each edge e2E, the weight
of e is chosen uniformly from the real interval [a; b) or from the set of integers lying between m and
n, including both m and n. After assigning weights to all edges, a modified copy of G is returned.

> G:=assign_edge_weights(grid_graph(4,3),1,99)

an undirected weighted graph with 12 vertices and 17 edges

> draw_graph(G,spring)

19

77

30

16

70

89

33

18
69

85

24

14

66

95

97

60

28

0:0

0:1

0:2

1:0

1:1

1:2

2:0

2:1

2:2

3:0

3:1

3:2

60 Constructing graphs

Chapter 2

Modifying graphs

2.1 Promoting to directed and weighted graphs

2.1.1 Converting edges to arcs
make_directed(G,〈W〉)

The command make_directed is used for promoting undirected graphs to directed ones. It
takes one or two arguments, an undirected graph G(V ;E) and optionally a numerical square matrix
W =[aij] of order jV j. Every edge vivj2E is replaced with the pair of arcs vivj and vjvi. If matrix
W is specified, its elements wij and wji are assigned as weights of these arcs, respectively. Thus a
directed (weighted) copy of G is constructed and subsequently returned.

> G:=make_directed(cycle_graph(4))

a directed unweighted graph with 4 vertices and 8 arcs

> WG:=make_directed(cycle_graph(4),[[0,0,0,1],[2,0,1,3],[0,1,0,4],[5,0,4,0]])

a directed weighted graph with 4 vertices and 8 arcs

> draw_graph(WG)

0

1

2

1

1

4

5
4

0

1

2

3

2.1.2 Assigning weight matrix to unweighted graphs
make_weighted(G,〈W〉)

The command make_weighted is used for promoting unweighted graphs to weighted ones. It
takes one or two arguments, an unweighted graphG(V ;E) and optionally a square matrixW =[wij]
of order jV j. If the matrix specification is omitted, a square matrix of ones is assumed. Then a
copy of G is returned in which each edge/arc vivj 2E gets the element wij in W assigned as its
weight. If G is undirected, then it is assumed that W is a symmetric matrix.

> G:=graph([1,2,3],%{[1,2],[2,3],[3,1]%})

an undirected unweighted graph with 3 vertices and 3 edges

> W:=[[0,2,3],[2,0,1],[3,1,0]]

61

0@ 0 2 3
2 0 1
3 1 0

1A
> H:=make_weighted(G,W)

an undirected weighted graph with 3 vertices and 3 edges

> draw_graph(H)

23

1

1

23

2.2 Modifying vertices of a graph

2.2.1 Adding and removing vertices

add_vertex(G,v|L)
delete_vertex(G,v|L)

The commands add_vertex and delete_vertex are used for adding new vertices to graphs
and for removing existing vertices from graphs, respectively.

add_vertex takes two arguments, a graph G(V ; E) and a single label v or a list of labels L,
and returns the graph G0 (V [fvg; E) or G00 (V [L;E) if a list L is given.

delete_vertex takes two arguments, a graph G(V ; E) and a single label v or a list of labels
L, and returns the graph

G0 (V n fvg; fe2E: e is not incident to vg)
or, if L is given,

G00 (V nL; fe2E: e is not incident to any v 2Lg):

If any of the specified vertices does not belong to G, an error is returned.

> K5:=complete_graph([1,2,3,4,5])

an undirected unweighted graph with 5 vertices and 10 edges

> add_vertex(K5,6)

an undirected unweighted graph with 6 vertices and 10 edges

> add_vertex(K5,[a,b,c])

an undirected unweighted graph with 8 vertices and 10 edges

Note that vertices already present in G will not be added. For example:

> add_vertex(K5,[4,5,6])

an undirected unweighted graph with 6 vertices and 10 edges

62 Modifying graphs

> delete_vertex(K5,2)

an undirected unweighted graph with 4 vertices and 6 edges

> delete_vertex(K5,[2,3])

an undirected unweighted graph with 3 vertices and 3 edges

2.2.2 Contracting subgraphs

contract_subgraph(G,S,〈lab〉)

The command contract_subgraph is used for contracting subgraphs into single vertices. It
takes two mandatory arguments, a graph G(V ; E) and a set (or list) S �V . It returns a copy of
G with all the vertices in S merged into a single vertex. The neighborhood of that vertex is the
union of the neighborhoods of all of merged vertices. The argument lab, or the list of labels of
merged vertices if lab is omitted, becomes the label of the new vertex.

Edge attributes and directions from G are kept in the resulting graph, as well as the attributes
for vertices in V nS.

> C6:=cycle_graph(6)

an undirected unweighted graph with 6 vertices and 6 edges

> H:=contract_subgraph(C6,[0,1,5],a)

an undirected unweighted graph with 4 vertices and 4 edges

> vertices(H)

[a; 2; 3; 4]

> edges(H)

[[2; a]; [4; a]; [2; 3]; [3; 4]]

> P:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> H:=contract_subgraph(P,[0,1,2,5,7,6])

an undirected unweighted graph with 5 vertices and 7 edges

> draw_graph(H)

[0,1,2,5,7,6]

3

4

89

2.2 Modifying vertices of a graph 63

2.3 Modifying edges of a graph

2.3.1 Adding and removing edges
add_edge(G,e|E|T)
add_arc(G,e|E|T)
delete_edge(G,e|E|T)
delete_arc(G,e|E|T)

The commands add_edge or add_arc and delete_edge or delete_arc are used for adding
new edges to graphs and for removing existing edges from graphs, respectively.

add_edge takes two arguments, an undirected graph G and an edge e or a list of edges E or a
trail of edges T (entered as a list of vertices), and returns the copy of G with the specified edges
inserted. Edge insertion implies that its endpoints will be created if they are not already present
in G. The command add_arc works similarly to add_edge but applies only to directed graphs.
Note that the order of endpoints in an arc is relevant. When adding edge to a weighted graph, its
weight should be specified alongside its endpoints, or it will be assumed that it equals to 1.

delete_edge and delete_arc both take two arguments, the input graph G and an edge e
or a list of edges E or a trail of edges T . It returns a copy of G in which the specified edges are
removed. Note that this operation does not change the set of vertices of G.

Examples.

> C4:=cycle_graph(4)

an undirected unweighted graph with 4 vertices and 4 edges

> add_edge(C4,[1,3])

an undirected unweighted graph with 4 vertices and 5 edges

> add_edge(C4,[1,3,5,7])

an undirected unweighted graph with 6 vertices and 7 edges

> add_arc(digraph(trail(a,b,c,d,a)),[[a,c],[b,d]])

a directed unweighted graph with 4 vertices and 6 arcs

> add_edge(graph(%{[[1,2],5],[[3,4],6]%}),[[2,3],7])

an undirected weighted graph with 4 vertices and 3 edges

> K33:=relabel_vertices(complete_graph(3,3),[A,B,C,D,E,F])

an undirected unweighted graph with 6 vertices and 9 edges

> has_edge(K33,[A,D])

true

> delete_edge(K33,[A,D])

an undirected unweighted graph with 6 vertices and 8 edges

Note that the original input graph is not changed.

> has_edge(K33,[B,D])

true

64 Modifying graphs

> delete_edge(K33,[[A,D],[B,D]])

an undirected unweighted graph with 6 vertices and 7 edges

> DG:=digraph(trail(1,2,3,4,5,2,4))

a directed unweighted graph with 5 vertices and 6 arcs

> delete_arc(DG,[[2,3],[4,5],[5,2]])

a directed unweighted graph with 5 vertices and 3 arcs

> delete_arc(DG,[3,4,5,2])

a directed unweighted graph with 5 vertices and 3 arcs

2.3.2 Accessing and modifying edge weights
set_edge_weight(G,e,〈w〉)

The commands get_edge_weight and set_edge_weight are used to access and modify the
weight of an edge in a weighted graph, respectively.

set_edge_weight takes three arguments: a weighted graph G(V ;E), edge e2E and the new
weight w, which may be any number. It returns a modified copy of G.

get_edge_weight takes two arguments, a weighted graph G(V ; E) and an edge or arc e2E.
It returns the weight of e.

Examples.

> G:=set_edge_weight(graph(%{[[1,2],4],[[2,3],5]%}),[1,2],6)

an undirected weighted graph with 3 vertices and 2 edges

> get_edge_weight(G,[1,2])

6

2.3.3 Contracting edges
contract_edge(G,e)

The command contract_edge is used for contracting edges in undirected graphs. It takes two
arguments, an undirected graph G(V ;E) and an edge e= vw2E, and merges v and w to a single
vertex, deleting the edge e. The resulting vertex inherits the label of v. A modified copy of G is
returned.

Examples.

> K5:=complete_graph(5)

an undirected unweighted graph with 5 vertices and 10 edges

> contract_edge(K5,[1,2])

an undirected unweighted graph with 4 vertices and 6 edges

To contract a matching fe1; e2; :::; ekg�E, one can use the foldl command. In the following
example, the complete graph K5 is obtained from Petersen graph by edge contraction.

> P:=graph("petersen")

2.3 Modifying edges of a graph 65

https://en.wikipedia.org/wiki/Edge_contraction
https://en.wikipedia.org/wiki/Edge_contraction

an undirected unweighted graph with 10 vertices and 15 edges

> G:=foldl(contract_edge,P,[0,5],[1,6],[2,7],[3,8],[4,9])

an undirected unweighted graph with 5 vertices and 10 edges

> draw_graph(G)

0

1

23

4

2.3.4 Subdividing edges
subdivide_edges(G,e|S,r)

The command subdivide_edges is used for graph subdivision. It takes two or three arguments:
a graph G(V ; E), a single edge/arc e2E or a list of edges/arcs S �E and optionally a positive
integer r (which defaults to 1). Each of the specified edges/arcs will be subdivided with exactly r
new vertices, labeled with the smallest available nonnegative integers. The resulting graph, which
is homeomorphic to G, is returned.

If the endpoints of the edge being subdivided have valid coordinates, the coordinates of the
inserted vertices will be computed accordingly.

Examples.

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> G:=subdivide_edges(G,[2,3])

an undirected unweighted graph with 11 vertices and 16 edges

> G:=subdivide_edges(G,[[1,2],[3,4]])

an undirected unweighted graph with 13 vertices and 18 edges

> G:=subdivide_edges(G,[0,1],2)

an undirected unweighted graph with 15 vertices and 20 edges

> draw_graph(G)

0

1

23

4

5

6

78

9

10

11
12

13

14

66 Modifying graphs

https://en.wikipedia.org/wiki/Homeomorphism_(graph_theory)#Subdivision_and_smoothing
https://en.wikipedia.org/wiki/Homeomorphism_(graph_theory)#Subdivision_and_smoothing

2.4 Using attributes

2.4.1 Graph attributes
set_graph_attribute(G,tag1=value1,tag2=value2,...)
set_graph_attribute(G,[tag1=value1,tag2=value2,...])
set_graph_attribute(G,[tag1,tag2,...],[value1,value2,...])
get_graph_attribute(G,tag1,tag2,...)
get_graph_attribute(G,[tag1,tag2,...])
list_graph_attributes(G)
discard_graph_attribute(G,tag1,tag2,...)
discard_graph_attribute(G,[tag1,tag2,...])

The graph structure maintains a set of attributes as tag-value pairs which can be accessed
and/or modified by using the commands set_graph_attribute, get_graph_attribute,
list_graph_attributes and discard_graph_attribute.

The command set_graph_attribute is used for modifying the existing graph attributes or
adding new ones. It takes two arguments, a graph G and a sequence or list of graph attributes in
form tag=value where tag is a string. Alternatively, attributes may be specified as a sequence of
two lists [tag1,tag2,...] and [value1,value2,...]. The command sets the specified values to
the indicated attribute slots, which are meant to represent some global properties of the graph G,
and returns a modified copy of G.

The graph attribute values can be fetched by using the command get_graph_attribute which
takes two arguments: a graph G and a sequence or list of tags. The corresponding values will be
returned in a sequence or list, respectively. If an attribute is not set, then undef is returned as its
value.

To list all graph attributes of G for which the values are set, use the command
list_graph_attributes which takes G as its only argument.

To discard a graph attribute, use the command discard_graph_attribute. It takes two argu-
ments: a graph G and a sequence or list of tags to be cleared, and returns a modified copy of G.

Two tags being used by the CAS commands are directed and weighted, so it is not advis-
able to overwrite their values using this command; use the make_directed, make_weighted and
underlying_graph commands instead. Another attribute used internally is name, which holds the
name of the respective graph (as a string).

Examples.

> G:=digraph(trail(1,2,3,1))

a directed unweighted graph with 3 vertices and 3 arcs

> G:=set_graph_attribute(G,"name"="C3","message"="this is some text")

C3: a directed unweighted graph with 3 vertices and 3 arcs

> get_graph_attribute(G,"message")

�this is some text�

> list_graph_attributes(G)

[�directed�=true; �weighted�=false; �name�=�C3�; �message�=�this is some text�]

> G:=discard_graph_attribute(G,"message")

C3: a directed unweighted graph with 3 vertices and 3 arcs

> list_graph_attributes(G)

2.4 Using attributes 67

[�directed�=true; �weighted�=false; �name�=�C3�]

2.4.2 Vertex attributes
set_vertex_attribute(G,v,tag1=value1,tag2=value2,...)
set_vertex_attribute(G,v,[tag1=value1,tag2=value2,...])
set_vertex_attribute(G,v,[tag1,tag2,...],[value1,value2,...])
get_vertex_attribute(G,v,tag1,tag2,...)
get_vertex_attribute(G,v,[tag1,tag2,...])
list_vertex_attributes(G,v)
discard_vertex_attribute(G,v,tag1,tag2,...)
discard_vertex_attribute(G,v,[tag1,tag2,...])

For every vertex of a graph, the list of attributes in form of tag-value pairs is maintained, which
can be accessed/modified by using the commands set_vertex_attribute, get_vertex_attribute,
list_vertex_attributes and discard_vertex_attribute.

The command set_vertex_attribute is used for modifying the existing vertex attributes or
adding new ones. It takes three arguments, a graph G(V ;E), a vertex v2V and a sequence or list
of attributes in form tag=value where tag is a string. Alternatively, attributes may be specified
as a sequence of two lists [tag1,tag2,...] and [value1,value2,...]. The command sets the
specified values to the indicated attributes of the vertex v and returns a modified copy of G.

The attribute values for v can be fetched by using the command get_vertex_attribute which
takes three arguments:G, v and a sequence or list of tags. The corresponding values will be returned
in a sequence or list, respectively. If an attribute is not set, then undef is returned as its value.

To list all attributes of v for which the values are set, use the command list_vertex_attrib-
utes which takes two arguments, G and v.

The command discard_vertex_attribute is used for discarding attribute(s) assigned to some
vertex v2V . It takes three arguments: G, v and a sequence or list of tags to be cleared, and returns
a modified copy of G.

The attributes label, color, shape, and pos are also used internally. These hold the vertex label,
color, shape, and coordinates in a drawing, respectively. If the color is not set for a vertex, the
latter is drawn in yellow. The shape attribute may have one of the following values: square, triangle,
diamond, star or plus. If the shape attribute is not set or has a different value, then the vertices are
drawn as circles.

> T:=complete_binary_tree(2)

an undirected unweighted graph with 7 vertices and 6 edges

> T:=set_vertex_attribute(T,1,"label"="root","color"=red)

an undirected unweighted graph with 7 vertices and 6 edges

> draw_graph(T,tree="root")

0

root

2

3 4

5 6

A vertex may also hold custom attributes.

> T:=set_vertex_attribute(T,"root","depth"=3,"shape"="square")

68 Modifying graphs

an undirected unweighted graph with 15 vertices and 14 edges

> list_vertex_attributes(T,"root")

[�label�=�root�; �color�=red; �shape�=�square�; �depth�=3]

> T:=discard_vertex_attribute(T,"root","color")

an undirected unweighted graph with 15 vertices and 14 edges

> list_vertex_attributes(T,"root")

[�label�=�root�; �shape�=�square�; �depth�=3]

2.4.3 Edge attributes
set_edge_attribute(G,e,tag1=value1,tag2=value2,...)
set_edge_attribute(G,e,[tag1=value1,tag2=value2,...])
set_edge_attribute(G,e,[tag1,tag2,...],[value1,value2,...])
get_edge_attribute(G,e,tag1,tag2,...)
get_edge_attribute(G,e,[tag1,tag2,...])
list_edge_attributes(G,e)
discard_edge_attribute(G,e,tag1,tag2,...)
discard_edge_attribute(G,e,[tag1,tag2,...])

For every edge of a graph, the list of attributes in form of key-value pairs is maintained, which can
be accessed and/or modified by using the commands set_edge_attribute, get_edge_attribute,
list_edge_attributes and discard_edge_attribute.

The command set_edge_attribute is used for modifying the existing edge attributes or adding
new ones. It takes three arguments, a graph G(V ; E), an edge/arc e 2 E and a sequence or
list of attributes in form tag=value where tag is a string. Alternatively, attributes may be spec-
ified as a sequence of two lists [tag1,tag2,...] and [value1,value2,...]. The command sets
the specified values to the indicated attributes of the edge/arc e and returns a modified copy of G.

The attribute values for e can be fetched by using the command get_edge_attribute which
takes three arguments:G, e and a sequence or list of tags. The corresponding values will be returned
in a sequence or list, respectively. If some attribute is not set, then undef is returned as its value.

To list all attributes of e for which the values are set, use the command list_edge_attributes
which takes two arguments, G and e.

To discard attribute(s) assigned to e call the command discard_edge_attribute, which takes
three arguments: G, e and a sequence or list of tags to be cleared, and returns a modified copy of G.

The attributes weight, color, style, width, pos, and temp are also used internally. They hold the
edge weight, color, line style, line width, the coordinates of the weight label anchor (and also the
coordinates of the arrow), and true if the edge is temporary, respectively. If the color attribute
is not set for an edge, the latter is drawn in blue, unless it is a temporary edge, in which case it
is drawn in light gray. The style attribute may have one of the following values: dashed, dotted or
bold. If the style attribute is not set or has a different value, then the solid line style is applied
when drawing the edge. The width attribute may hold either an integer between 1 and 8 or one of
the predefined widths: thin, normal, thick, thicker, and very thick.

> T:=cycle_graph(5)

an undirected unweighted graph with 5 vertices and 5 edges

> T:=set_edge_attribute(T,[1,2],"cost"=12.8,"message"="this is some text")

an undirected unweighted graph with 5 vertices and 5 edges

2.4 Using attributes 69

> list_edge_attributes(T,[1,2])

[�cost�=12.8; �message�=�this is some text�]

> T:=discard_edge_attribute(T,[1,2],"message")

an undirected unweighted graph with 5 vertices and 5 edges

> T:=set_edge_attribute(T,[1,2],"style"="dashed","color"=magenta,"width"=thick)

an undirected unweighted graph with 5 vertices and 5 edges

> list_edge_attributes(T,[1,2])

[�color�=magenta; �style�=�dashed�; �width�=thick; �cost�=12.8]

> T:=set_edge_attribute(T,[3,4],"temp"=true)

an undirected unweighted graph with 5 vertices and 5 edges

> draw_graph(T)

0

1

23

4

70 Modifying graphs

Chapter 3
Import and export

3.1 Importing graphs

3.1.1 Loading graphs from DOT and LST files
import_graph(filename,〈opts〉)

The command import_graph is used for importing a graph from text file in dot format. It
takes a string filename as its only argument and returns the graph constructed from instructions
written in the file filename, or an error. The passed string should contain the path to a file in
DOT or LST format. The format is recognized from the extension: the DOT format is associated
with extensions .dot and .gv, while the LST format is associated with .lst.

If a relative path to the file is specified, i.e. if it does not contain a leading forward slash in
Linux, the current working directory (which can be obtained by calling the pwd command) will be
used as the reference. The working directory can be changed by using the command cd.

In MS Windows, paths must be entered using either the forward slash (e.g. in C:/Users/You/
path/to/file.dot) or double backslash (e.g. in C:\\Users\\You\\path\\to\\file.dot) as the
directory separator.

When importing graphs in DOT format, the following optional arguments may be given in a
sequence opts.

� style=true|false� import or discard style-related attributes, including color, shape, style,
and position (by default, style=true).

� eval=labels|weights or eval=labels+weights � parse labels and/or weights of the ver-
tices and edges, entered as strings in the file, to the corresponding giac expressions. By
default, no parsing of edge weights and vertex labels is performed.

Optional arguments are ignored if the input file is in the LST format.
For example, assume that the following files exist in the directory path/to/dot/.

example.dot:

graph "ExampleGraph" {
a [label="Foo"];
b [shape=square,color=red];
a -- b [style=bold];
b -- c [color=green];
b -- d [style=dashed];

}

octahedron.lst:

1: 3 4 5 6
2: 3 4 5 6
3: 5 6
4: 5 6

Now we load these files using import_graph and draw the imported graphs.

> G:=import_graph("path/to/dot/example.dot")

71

https://en.wikipedia.org/wiki/DOT_(graph_description_language)

ExampleGraph: an undirected unweighted graph with 4 vertices and 3 edges

> draw_graph(G,tree="b")

ExampleGraph

Foo

b

c d

> G:=import_graph("path/to/dot/example.dot",style=false)

ExampleGraph: an undirected unweighted graph with 4 vertices and 3 edges

> draw_graph(G,tree="b")

ExampleGraph

Foo

b

c d

> H:=import_graph("path/to/dot/octahedron.lst")

an undirected unweighted graph with 6 vertices and 12 edges

> draw_graph(H,spring)

0

1

2
3

4

5

> is_isomorphic(H,graph("octahedron"))

true

3.1.2 The DOT file format specification
giac has a basic support for the DOT language. Each dot file must correspond to exactly one
graph and should consist of a single instance of the following environment:

strict? (graph | digraph) name? {
...

}

Keywords strict and name may be omitted, as indicated by the question marks. The former is
used for differentiating between simple graphs (strict) and multigraphs (non-strict). Since giac
supports only simple graphs, strict is redundant.

For specifying undirected graphs the keyword graph is used, while the digraph keyword is used
for undirected graphs.

72 Import and export

https://www.graphviz.org/doc/info/lang.html
https://www.graphviz.org/doc/info/lang.html

The graph/digraph environment contains a series of instructions describing how the graph
should be built. Each instruction must end with the semicolon (;) and has one of the forms given
in Table 3.1.

syntax creates
vertex_name [attributes]? isolated vertices
V1 <edgeop> V2 <edgeop> ::: <edgeop> Vk [attributes]? edges and trails
graph [attributes] graph attributes

Table 3.1. Syntax for creating vertices, edges, and graph attributes in the DOT language.

Here, attributes is a comma-separated list of tag-value pairs in form tag=value, and <edgeop>
equals to -- for undirected graphs and to -> for directed graphs. Each of V1, V2 etc. is either
a vertex name or a set of vertex names in the form {vertex_name1 vertex_name2 ...}. If a
set of vertices is specified, then each vertex in that set is connected to the neighbor operands.
A vertex will be created if it does not exist yet.

Lines beginning with # are ignored. C-like comments are supported as well.
Using DOT syntax it is easy to specify a graph using adjacency lists. For example, the following

is the contents of a file which defines the octahedral graph.

octahedron
graph "octahedron" {

1 -- {3 6 5 4};
2 -- {3 4 5 6};
3 -- {5 6};
4 -- {5 6};

}

Also see the example in Section 3.1.1.

3.1.3 The lst file format specification
The LST file format is a practical way to save an undirected graph as the sequence of adjacency
lists. Unlike the DOT format, it does not support attributes, including vertex labels and edge
weights. This format is supported by e.g. The House of Graphs.

Each line of a file in LST format has the following syntax:

v: a1 a2 a3 . . .

Here, v is a vertex index and ai are its neighbors' indices. Hence this line represents the adjacency
list of v (possibly empty, i.e. with no indices after the colon). It is enough to enter adjacencies
with respect to the upper triangle of the adjacency matrix, i.e. one can list only the neighbors with
indices aj>v on each line. Each vertex must be specified somewhere in the file, either as v or a.

Note that indices must be 1-based, while the labels in the imported graph are mode-aware (0-
based in xcas mode and 1-based in maple mode) but follow the order specified in the file. For an
example of lst file, see octahedron.lst in Section 3.1.1.

3.2 Exporting graphs

export_graph(G,filename,〈opts〉)

The command export_graph is used for saving graphs to disk in DOT/LST or LATEX format.
It takes two mandatory arguments, a graph G and a string filename, and writes G to the file
specified by filename. The argument filename should be a string containing a path to the desired
destination file (which is created if it does not exist). The remark on relative paths in Section 3.1.1
applies here as well.

3.2 Exporting graphs 73

https://hog.grinvin.org/Init.action
https://hog.grinvin.org/Init.action
https://hog.grinvin.org/Init.action
https://hog.grinvin.org/Init.action
https://hog.grinvin.org/Init.action
https://hog.grinvin.org/Init.action

If only two arguments are provided, the extension .dot/.gv or .lst must exist in filename.
In the former case the graph is output in DOT format, while in the latter case it is output in LST
format (it is thereby required that G is undirected, and all attributes will be stripped).

The optional argument opts is a sequence which can include the following arguments.

� style=true|false � if style is set to true (the default), then the style-related attributes
of G are exported to the file, including color, shape, style, and position; otherwise, these
attributes are discarded

� latex〈=<params>〉 � the drawing of G (obtained by calling the draw_graph command)
is saved to the LATEX file indicated by filename (the extension .tex may be omitted, in
which case it is appended automatically); optionally, one can specify a parameter or a list
of parameters params which will be passed to draw_graph

export_graph returns 1 on success and 0 on failure.

> G:=graph("diamond")

an undirected unweighted graph with 4 vertices and 5 edges

> G:=set_edge_attribute(G,[0,2],"style"=dashed):;

> G:=set_edge_attribute(G,[1,2],"style"=bold):;

> G:=set_vertex_attribute(G,1,"color"=red):;

> G:=assign_edge_weights(G,1..10)

an undirected weighted graph with 4 vertices and 5 edges

> draw_graph(G)

3.26

1.62

2.6

4.128.67

0

1

2

3

> export_graph(G,"path/to/diamond.dot")

1

The following is the contents of the exported file diamond.dot.

graph {
graph [directed=false,weighted=true];
0 [label=0,pos="1.4300725153,0.430159709003"];
0 -- 1 [weight=3.26368919434];
0 -- 2 [weight=1.6176089556,style=dashed];
0 -- 3 [weight=2.60382712772];
1 [label=1,color=red,pos="2.430159709,0.894229765084"];
1 -- { 0 };
1 -- 2 [weight=4.1175966193,style=bold];
2 [label=2,pos="1.43051338931,1.3605143449"];
2 -- { 0 1 };
2 -- 3 [weight=8.66874152562];
3 [label=3,pos="0.430159709003,0.894229765084"];
3 -- { 0 2 };

}

74 Import and export

The exported file can be imported back to giac with the import_graph command. By drawing the
imported graph, we see that all attributes are interpreted correctly, including the vertex positions
generated by the graph constructor.

> H:=import_graph("path/to/diamond.dot")

an undirected weighted graph with 4 vertices and 5 edges

> draw_graph(H)

3.26

1.62

2.6

4.128.67

0

1

2

3

If the style=false option is used with export_graph, all style-related attributes are discarded.

> export_graph(G,"path/to/diamond.dot",style=false)

1

Now the contents of diamond.dot are as follows.

graph {
graph [directed=false,weighted=true];
0 [label=0];
0 -- 1 [weight=3.26368919434];
0 -- 2 [weight=1.6176089556];
0 -- 3 [weight=2.60382712772];
1 [label=1];
1 -- { 0 };
1 -- 2 [weight=4.1175966193];
2 [label=2];
2 -- { 0 1 };
2 -- 3 [weight=8.66874152562];
3 [label=3];
3 -- { 0 2 };

}

One can use export_graph to obtain graph drawings using the Graphviz software. In this
example, we construct a network, export it to DOT file, and create a layout using dot.

> V:=[A,B,C,D,E,F,G,H,I,J,K,L,M]:;

> purge(op(V)):;

> net:=digraph(V,%{[A,B],[B,C],[B,D],[C,H],[D,E],[D,F],[D,G],[E,H],[F,H],[G,H],
[H,I],[H,J],[I,K],[J,L],[K,M],[L,M]%})

a directed unweighted graph with 13 vertices and 16 arcs

> net:=relabel_vertices(net,["Excavate","Lay foundation","Rough plumbing",
"Frame","Finish exterior","Install HVAC","Rough electric","Sheet rock",
"Install cabinets","Paint","Final plumbing","Final electric","Install
flooring"])

a directed unweighted graph with 13 vertices and 16 arcs

3.2 Exporting graphs 75

> export_graph(net,"path/to/net.dot")

1

Now we enter the following command line in the terminal:

dot -Tpdf net.dot -o net_layout.pdf

The result is saved to net_layout.pdf. The drawing is shown in Figure 3.1. By default, dot spreads
the graph vertically; if a horizontally oriented layout is desired, then one can set the graph attribute
rankdir to LR before calling export_graph.

In the following example, we create a LATEX drawing of the Sierpi«ski sieve graph ST35.

> G:=sierpinski_graph(5,3,triangle)

an undirected unweighted graph with 123 vertices and 243 edges

> export_graph(G,"st53.tex",latex=[spring,size=[1,0],labels=false])

1

E x c a v a t e

Lay foundat ion

Rough p lumbing F r a m e

S h e e t r o c k

Fin i sh ex te r io r Install HVAC Rough e lec t r ic

Ins ta l l cab ine t s Pa in t

F ina l p lumbing Final e lec t r ic

Instal l f looring

Fig. 3.1. A network graph drawn by Graphviz (dot).

76 Import and export

Chapter 4
Graph properties

4.1 Basic properties

4.1.1 Determining the type of a graph
is_directed(G)
is_weighted(G)

The commands is_directed and is_weighted are used for determining the type of a graph:
whether is it directed or not resp. weighted or not. Both commands take a graph G as their only
argument. is_directed resp. is_weighted returns true if G is directed resp. weighted, else it
returns false.

> G:=graph(trail(1,2,3,4,5,1,3))

an undirected unweighted graph with 5 vertices and 6 edges

> is_directed(G)

false

> is_directed(make_directed(G))

true

> is_weighted(G)

false

> is_weighted(make_weighted(G,randmatrix(5,5,99)))

true

4.1.2 Listing vertices and edges
vertices(G)
graph_vertices(G)
edges(G,〈weights〉)
number_of_vertices(G)
number_of_edges(G)

The command vertices or graph_vertices resp. edges is used for extracting the set of
vertices resp. the set of edges from a graph. To obtain the number of vertices resp. the number of
edges, use the number_of_vertices resp. the number_of_edges command.

vertices or graph_vertices takes a graph G(V ;E) as its only argument and returns the set
of vertices V in the same order in which they were created.

edges takes one or two arguments, a graph G(V ; E) and optionally the argument weights.
This command returns the set of edges E (in a non-meaningful order). If weights is specified, then
each edge is paired with the corresponding weight (in this case G must be a weighted graph).

number_of_vertices resp. number_of_edges takes the input graph G(V ;E) as its only argu-
ment and returns jV j resp. jE j.

77

> G:=hypercube_graph(3)

an undirected unweighted graph with 8 vertices and 12 edges

> vertices(G)

[�000�; �001�; �010�; �011�; �100�; �101�; �110�; �111�]

> number_of_vertices(G), number_of_edges(G)

8; 12

> H:=digraph([[0,2.32,0,0.25],[0,0,0,1.32],[0,0.50,0,0],[0.75,0,3.34,0]])

a directed weighted graph with 4 vertices and 6 arcs

> edges(H)

[[0; 1]; [0; 3]; [1; 3]; [2; 1]; [3; 0]; [3; 2]]

> edges(H,weights)

[[[0; 1]; 2.32]; [[0; 3]; 0.25]; [[1; 3]; 1.32]; [[2; 1]; 0.5]; [[3; 0]; 0.75]; [[3; 2]; 3.34]]

4.1.3 Equality of graphs
graph_equal(G1,G2)

Two graphs are considered equal if they are both (un)weighted and (un)directed and if the
commands vertices and edges give the same results for both graphs. To determine whether two
graphs are equal use the command graph_equal. It takes two arguments, graphs G1 and G2, and
returns true if G1 is equal to G2 with respect to the above definition. Otherwise, it returns false.

> G1:=graph([1,2,3],%{[1,2],[2,3]%})

an undirected unweighted graph with 3 vertices and 2 edges

> G2:=graph([1,3,2],%{[1,2],[2,3]%})

an undirected unweighted graph with 3 vertices and 2 edges

> graph_equal(G1,G2)

false

> G3:=graph(trail(1,2,3))

an undirected unweighted graph with 3 vertices and 2 edges

> graph_equal(G1,G3)

true

> G4:=digraph(trail(1,2,3))

a directed unweighted graph with 3 vertices and 2 arcs

> graph_equal(G1,G4)

false

78 Graph properties

4.1.4 Vertex degrees
vertex_degree(G,v)
vertex_in_degree(G,v)
vertex_out_degree(G,v)
degree_sequence(G)
minimum_degree(G)
maximum_degree(G)

The command vertex_degree is used for computing the degree of a vertex, i.e. counting the ver-
tices adjacent to it. The related specialized commands are vertex_out_degree, vertex_in_degree,
degree_sequence, minimum_degree and maximum_degree.

vertex_degree takes two arguments, a graph G(V ; E) and a vertex v 2 V . It returns the
number of edges in E which are incident to v.

When dealing with directed graphs, one can also use the specialized command
vertex_out_degree resp. vertex_in_degree which takes the same arguments as vertex_degree
but returns the number of arcs vw2E resp. the number of arcs wv 2E, where w2V .

To obtain the list of degrees of all vertices v 2 V , use the command degree_sequence which
returns the list of degrees of vertices from V in the same order as returned by the command
vertices. If G is a digraph, then the arc directions are ignored.

To compute the minimum vertex degree �(G) and the maximum vertex degree �(G) in an
undirected graph G, use the commands minimum_degree and maximum_degree, respectively.

> G:=graph(trail(1,2,3,4,1,5,6,7,1,8,9,4))

an undirected unweighted graph with 9 vertices and 11 edges

> draw_graph(G)

1

2

3

4 5

6

78

9

> vertex_degree(G,1)

5

> degree_sequence(G)

[5; 2; 2; 3; 2; 2; 2; 2; 2]

> T:=random_tournament([1,2,3,4,5])

a directed unweighted graph with 5 vertices and 10 arcs

> draw_graph(T)

1

2

34

5

4.1 Basic properties 79

> vertex_out_degree(T,1)

3

> vertex_in_degree(T,5)

2

The command line below shows that Petersen graph is cubic (3-regular).

> P:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> minimum_degree(P), maximum_degree(P)

3; 3

> is_regular(P,3)

true

4.1.5 Regular graphs
is_regular(G,〈d〉)

The command is_regular is used for determining whether a graph is regular. It takes one or
two arguments, a graph G(V ;E) and optionally a nonnegative integer or an unassigned identifier
d. If G is undirected, the return value is true if �G=�G, i.e. if the minimal vertex degree is equal
to the maximal vertex degree in G, otherwise false is returned. If G is a digraph, then it is also
required for each vertex v2V to have the same in- and out-degree. If the second argument is given,
then G is tested for d-regularity in case d is an integer. Otherwise, �G is assigned to d if the latter
is an unnasigned identifier and G is regular.

The complexity of the algorithm is O(jV j).

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> is_regular(G,d)

true

> d

3

> is_regular(G,2)

false

> is_regular(graph("groetzsch"))

false

> G:=digraph(%{[1,5],[1,6],[2,3],[2,4],[3,1],[3,4],[4,1],[4,5],[5,2],[5,6],[6,
2],[6,3]%})

a directed unweighted graph with 6 vertices and 12 arcs

> draw_graph(G,spring)

80 Graph properties

https://en.wikipedia.org/wiki/Regular_graph

1

5

62

3

4

> is_regular(G,4)

true

> H:=add_arc(delete_arc(G,[5,6]),[6,5])

a directed unweighted graph with 6 vertices and 12 arcs

> is_regular(H,4)

false

> is_regular(underlying_graph(H))

true

4.1.6 Strongly regular graphs
is_strongly_regular(G,〈srg〉)

The command is_strongly_regular is used for determining whether a graph is strongly
regular. It takes one or two arguments, a graph G(V ; E) and optionally an unassigned identifier
srg. It returns true if G is regular and there are integers � and � such that every two adjacent
vertices resp. non-adjacent vertices in V have exactly � resp. � common neighbors. Otherwise, it
returns false. If the second argument is given, then the list [k; �; �], where k is the degree of G,
is assigned to srg.

The complexity of the algorithm is O(k jV j2).

> G:=graph("clebsch")

an undirected unweighted graph with 16 vertices and 40 edges

> is_regular(G)

true

> is_strongly_regular(G)

true

> H:=graph("shrikhande")

an undirected unweighted graph with 16 vertices and 48 edges

> purge(s):; is_strongly_regular(H,s)

�Done�; true

> s

4.1 Basic properties 81

https://en.wikipedia.org/wiki/Strongly_regular_graph
https://en.wikipedia.org/wiki/Strongly_regular_graph

[6; 2; 2]

> is_strongly_regular(cycle_graph(5))

true

> is_strongly_regular(cycle_graph(6))

false

4.1.7 Vertex adjacency

has_edge(G,[u,v])
has_arc(G,[u,v])
neighbors(G,〈v〉)
departures(G,〈v〉)
arrivals(G,〈v〉)

The command has_edge is used for determining whether two vertices in an undirected graph
are adjacent. For digraphs, there is an analogous command has_arc.

The command neighbors is used for obtaining the list of vertices in a graph that are adjacent
to the particular vertex or the complete adjacency structure of the graph, in sparse form.

The command departures resp. arrivals is used for obtaining all neighbors of a vertex v in
a digraph which are the heads resp. the tails of the corresponding arcs.

has_edge takes two arguments, an undirected graph G(V ;E) and a list [u,v] where u; v2V .
The command returns true if uv2E. Otherwise, it returns false. The syntax for has_arc is the
same, except now G is required to be directed. Note, however, that the order of vertices u and v
matters in digraphs. The worst-case complexity of both algorithms is O(log jV j).

neighbors takes one or two arguments, a graph G(V ; E) and optionally a vertex v 2 V . It
returns the list of vertices adjacent to v, if given. Otherwise, it returns the list of lists of neighbors
for all vertices in V , in order of vertices(G). Note that edge directions are ignored in case G is
a digraph.

departures resp. arrivals takes one or two arguments, a digraph G(V ; E) and optionally a
vertex v 2V , and returns the list Lv containing all vertices w 2V for which vw2E resp. wv 2E.
If v is omitted, then the list of lists Lv for each v 2V is returned.

> G:=graph(trail(1,2,3,4,5,2))

an undirected unweighted graph with 5 vertices and 5 edges

> has_edge(G,[1,2])

true

> has_edge(G,[2,1])

true

> has_edge(G,[1,3])

false

> D:=digraph(trail(1,2,3,4,5,2,1))

a directed unweighted graph with 5 vertices and 6 arcs

> has_arc(D,[1,2])

true

82 Graph properties

> has_arc(D,[2,1])

true

> has_arc(D,%{1,2%})

true

> has_arc(D,[4,5])

true

> has_arc(D,[5,4])

false

> has_arc(D,%{4,5%})

false

> neighbors(G,3)

[2; 4]

> neighbors(G)

[[2]; [1; 3; 5]; [2; 4]; [3; 5]; [2; 4]]

> G:=digraph(trail(1,2,3,4,2,5,1,6,7,8,4))

a directed unweighted graph with 8 vertices and 10 arcs

> draw_graph(G,spring)

1

2

3

4

5

6

7

8

> departures(G,2); arrivals(G,2); departures(G,1); arrivals(G,1)

[3; 5]; [1; 4]; [2; 6]; [5]

4.1.8 Tournament graphs
is_tournament(G)

The command is_tournament is used for determining whether a graph is a tournament. It
takes a graph G(V ; E) as its only argument and returns true if G is directed and for each pair
of vertices u; v 2 V it is either uv 2E or vu 2E, i.e. there is exactly one arc between u and v.
Otherwise, it returns false.

> T1:=digraph(%{[1,2],[2,3],[3,1]%})

a directed unweighted graph with 3 vertices and 3 arcs

4.1 Basic properties 83

https://en.wikipedia.org/wiki/Tournament_(graph_theory)

> is_tournament(T1)

true

> T2:=digraph(%{[1,2],[2,3],[3,1],[1,3]%})

a directed unweighted graph with 3 vertices and 4 arcs

> is_tournament(T2)

false

4.1.9 Bipartite graphs
is_bipartite(G,〈P〉)

The command is_bipartite is used for determining if a graph is bipartite. It takes one or two
arguments, a graph G(V ;E) and optionally an unassigned identifier P. It returns true if there is
a partition of V into two sets S and T such that every edge from E connects a vertex in S to one
in T . Otherwise, it returns false. If the second argument is given and G is bipartite, the partition
of V is assigned to P as a list of two lists of vertices, the first one containing the vertices from S
and the second one containing vertices from T .

> K32:=complete_graph(3,2)

an undirected unweighted graph with 5 vertices and 6 edges

> is_bipartite(K32,bp)

true

> bp

[[0; 1; 2]; [3; 4]]

> draw_graph(K32,bipartite)

0 1 2

3 4

> adjacency_matrix(K32) 0BBBBBBBBBB@
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0

1CCCCCCCCCCA
> C5:=cycle_graph(5)

an undirected unweighted graph with 5 vertices and 5 edges

> is_bipartite(G)

false

84 Graph properties

https://en.wikipedia.org/wiki/Bipartite_graph

4.1.10 Edge incidence
indcident_edges(G,v|L)

The command incident_edges is used for obtaining edges incident to a given vertex in a graph.
It takes two arguments, a graph G(V ;E) and a vertex v2V or a list of vertices L�V , and returns
the list of edges e1; e2; :::; ek2E such that each of them has v as one of its endpoints.

Note that edge directions are ignored if G is a digraph. To obtain only outgoing resp. incoming
edges, use the command departures resp. arrivals.

> G:=cycle_graph([1,2,3,4,5])

an undirected unweighted graph with 5 vertices and 5 edges

> incident_edges(G,1)

[[1; 2]; [1; 5]]

> incident_edges(G,[2,4,5])

[[1; 2]; [1; 5]; [2; 3]; [3; 4]; [4; 5]]

> G:=random_tournament([1,2,3,4,5])

a directed unweighted graph with 5 vertices and 10 arcs

> incident_edges(G,2)

[[2; 1]; [2; 3]; [2; 4]; [2; 5]]

4.2 Algebraic properties

4.2.1 Adjacency matrix
adjacency_matrix(G)

The command adjacency_matrix is used for obtaining the adjacency matrix of a graph. It
takes a graph G(V ; E), where V = fv1; v2; :::; vng, as its only argument and returns the square
matrix A=[aij] of order n such that, for i; j=1; 2; :::; n,

aij=

(
1, if the set E contains edge/arc vi vj,
0; otherwise:

> G:=graph("octahedron")

an undirected unweighted graph with 6 vertices and 12 edges

> A:=adjacency_matrix(G) 0BBBBBBBBBBBBBB@

0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 0

1CCCCCCCCCCCCCCA

4.2 Algebraic properties 85

https://en.wikipedia.org/wiki/Adjacency_matrix
https://en.wikipedia.org/wiki/Adjacency_matrix

> transpose(A)==A

true

> D:=digraph(trail(1,2,3,4,5,2,6,7,3,8,1))

a directed unweighted graph with 8 vertices and 10 arcs

> draw_graph(D)

1

2

3

4

5 6

7 8

> A:=adjacency_matrix(D) 0BBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCA
> transpose(A)==A

false

4.2.2 Laplacian matrix
laplacian_matrix(G,〈normal〉)

The command laplacian_matrix is used for computing the Laplacian matrix of a graph. It
takes a graph G(V ; E), where V = fv1; v2; :::; vng, and returns the matrix L=D¡A, where A is
the (weighted) adjacency matrix of G and

D=

0BBBBBB@
deg(v1) 0 ��� 0

0 deg(v2) ��� 0
��� ��� ��� ���
0 0 ��� deg(vn)

1CCCCCCA:
The number deg(v) is computed by summing weights of all edges incident to v (in unweighted
graphs, all edge weights are assumed to be equal to 1). The option normal may be passed as the
second argument. In that case, the normalized Laplacian

Lsym := I ¡D¡1/2AD¡1/2

of G is returned.

> G:=path_graph(4)

an undirected unweighted graph with 4 vertices and 3 edges

86 Graph properties

https://en.wikipedia.org/wiki/Laplacian_matrix#Laplacian_matrix_for_simple_graphs
https://en.wikipedia.org/wiki/Laplacian_matrix#Laplacian_matrix_for_simple_graphs
https://en.wikipedia.org/wiki/Laplacian_matrix#Symmetric_normalized_Laplacian_2
https://en.wikipedia.org/wiki/Laplacian_matrix#Symmetric_normalized_Laplacian_2

> A:=adjacency_matrix(G) 0BBBBBB@
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

1CCCCCCA
> L:=laplacian_matrix(G) 0BBBBBB@

1 ¡1 0 0
¡1 2 ¡1 0
0 ¡1 2 ¡1
0 0 ¡1 1

1CCCCCCA
> diag(degree_sequence(G))-A==L

true

> laplacian_matrix(G,normal)0BBBBBBBBBBBBBBBBBB@

1 ¡ 1

2
p 0 0

¡ 1

2
p 1 ¡1

2
0

0 ¡1

2
1 ¡ 1

2
p

0 0 ¡ 1

2
p 1

1CCCCCCCCCCCCCCCCCCA
The smallest eigenvalue of the Laplacian matrix of an undirected graph is always zero. More-

over, its multiplicity is equal to the number of connected components in the corresponding graph
[34, p. 280].

> sort(eigenvals(L))

0;¡ 2
p

+2; 2; 2
p

+2

> H:=disjoint_union(complete_graph(4),cycle_graph(3),path_graph(2))

an undirected unweighted graph with 9 vertices and 10 edges

> draw_graph(H,labels=false)

> eigenvals(laplacian_matrix(H))

0; 0; 0; 4; 4; 4; 3; 3; 2

Therefore, the multiplicity of zero eigenvalue is equal to 3. Indeed, that is also the number of
connected components in H.

> nops(connected_components(H))

4.2 Algebraic properties 87

3

4.2.3 Incidence matrix
incidence_matrix(G)

The command incidence_matrix is used for obtaining the incidence matrix of a graph. It
takes a graph G(V ;E), where V = fv1; v2; :::; vng and E= fe1; e2; :::; emg, as its only argument and
returns the n�m matrix B= [bij] such that, for all i=1; 2; :::; n and j=1; 2; :::;m,

bij=

(
1; if the vertex vi is incident to the edge ej,
0; otherwise

if G is undirected resp.

bij=

8>><>>:
1; if the vertex vi is the head of the arc ej,
¡1; if the vertex vi is the tail of the arc ej,
0; otherwise

if G is directed.

> K4:=complete_graph([1,2,3,4])

an undirected unweighted graph with 4 vertices and 6 edges

> edges(K4)

[[1; 2]; [1; 3]; [1; 4]; [2; 3]; [2; 4]; [3; 4]]

> incidence_matrix(K4) 0BBBBBB@
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

1CCCCCCA
> DG:=digraph(trail(1,2,3,4,5,3),trail(1,5,2,4,1))

a directed unweighted graph with 5 vertices and 9 arcs

> draw_graph(DG)

1

2

34

5

> edges(DG)

[[1; 2]; [1; 5]; [2; 3]; [2; 4]; [3; 4]; [4; 1]; [4; 5]; [5; 2]; [5; 3]]

> incidence_matrix(DG)

88 Graph properties

https://en.wikipedia.org/wiki/Incidence_matrix
https://en.wikipedia.org/wiki/Incidence_matrix

0BBBBBBBBBB@
¡1 ¡1 0 0 0 1 0 0 0
1 0 ¡1 ¡1 0 0 0 1 0
0 0 1 0 ¡1 0 0 0 1
0 0 0 1 1 ¡1 ¡1 0 0
0 1 0 0 0 0 1 ¡1 ¡1

1CCCCCCCCCCA

4.2.4 Weight matrix

weight_matrix(G)

The command weight_matrix is used for obtaining the weight matrix of a weighted graph.
It takes a graph G(V ; E), where V = fv1; v2; :::; vng, as its only argument and returns the square
matrix M =[mij] of order n such that mij equals zero if vi and vj are not adjacent and the weight
of the edge vivj otherwise, for all i; j=1; 2; :::; n.

> G:=graph(%{[[1,2],1],[[2,3],2],[[4,5],3],[[5,2],4]%})

an undirected weighted graph with 5 vertices and 4 edges

> weight_matrix(G) 0BBBBBBBBBB@
0 1 0 0 0
1 0 2 0 4
0 2 0 0 0
0 0 0 0 3
0 4 0 3 0

1CCCCCCCCCCA

4.2.5 Characteristic polynomial

graph_charpoly(G,〈x〉)
charpoly(G,〈x〉)

The command graph_charpoly or charpoly is used for obtaining the characteristic polynomial
of an undirected graph. It takes one or two arguments, an undirected graph G(V ;E) and optionally
a value or symbol x. The command returns p(x), where p is the characteristic polynomial of the
adjacency matrix of G.

> G:=graph(%{[1,2],[2,3]%})

an undirected unweighted graph with 3 vertices and 2 edges

> charpoly(G,x)

x3¡ 2x

> charpoly(G,3)

21

> G:=graph("shrikhande")

an undirected unweighted graph with 16 vertices and 48 edges

> charpoly(G,x)

4.2 Algebraic properties 89

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)#Weighted_graph
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)#Weighted_graph
https://en.wikipedia.org/wiki/Characteristic_polynomial
https://en.wikipedia.org/wiki/Characteristic_polynomial

x16 ¡ 48 x14 ¡ 64 x13 + 768 x12 + 1536 x11 ¡ 5888 x10 ¡ 15360 x9 + 23040 x8 + 81920 x7 ¡
36864 x6¡ 245760x5¡ 32768 x4+ 393216 x3+ 196608x2¡ 262144x¡ 196608

4.2.6 Graph spectrum
graph_spectrum(G)

The command graph_spectrum is used for computing graph spectra. It takes a graph G as its
only argument and returns the list in which every element is an eigenvalue of the adjacency matrix
of G paired with its multiplicity.

> C5:=cycle_graph(5)

an undirected unweighted graph with 5 vertices and 5 edges

> gs:=graph_spectrum(C5) 0BBBBBB@
2 1
5

p
¡ 1
2

2
¡ 5
p
¡ 1

2
2

1CCCCCCA
> p:=charpoly(C5,x)

x5¡ 5 x3+5 x¡ 2

> expand(roots(p))==expand(gs)

true

The above result indicates that gs and roots(p) are equal.

4.2.7 Seidel spectrum
seidel_spectrum(G)

The command seidel_spectrum is used for computing Seidel spectra. It takes a graph G(V ;E)
as its only argument and returns the list in which every element is an eigenvalue of the Seidel
adjacency matrix S paired with its multiplicity. The matrix S, which can be interpreted as the
difference of the adjacency matrices of G and its complement Gc, is computed as J ¡I¡2A, where
J is all-one n�n matrix, I is the identity matrix of order n, A is the adjacency matrix of G, and
n= jV j.

> seidel_spectrum(graph("clebsch"))�
¡3 10
5 6

�
> seidel_spectrum(graph("levi")) 0BBBBBBBBBB@

¡5 9
¡1 10
3 9
5 1
23 1

1CCCCCCCCCCA

90 Graph properties

https://en.wikipedia.org/wiki/Adjacency_matrix#Spectrum
https://en.wikipedia.org/wiki/Adjacency_matrix#Spectrum
https://en.wikipedia.org/wiki/Seidel_adjacency_matrix
https://en.wikipedia.org/wiki/Seidel_adjacency_matrix
https://en.wikipedia.org/wiki/Seidel_adjacency_matrix
https://en.wikipedia.org/wiki/Seidel_adjacency_matrix
https://en.wikipedia.org/wiki/Seidel_adjacency_matrix

4.2.8 Integer graphs
is_integer_graph(G)

The command is_integer_graph is used for determining whether a graph is an integral graph.
It takes a graph G as its only argument and returns true if the spectrum of G consists only of
integers. Otherwise, it returns false.

> G:=graph("levi")

an undirected unweighted graph with 30 vertices and 45 edges

> is_integer_graph(G)

true

> factor(charpoly(G,x))

x10 (x¡ 3) (x¡ 2)9 (x+2)9 (x+3)

> graph_spectrum(G) 0BBBBBBBBBB@
¡3 1
¡2 9
0 10
2 9
3 1

1CCCCCCCCCCA

4.3 Graph isomorphism

4.3.1 Isomorphic graphs
is_isomorphic(G1,G2,〈m〉)

The command is_isomorphic is used for determining whether two graphs are isomorphic. It
takes two or three arguments: a graph G1(V1;E1), a graph G2(V2;E2) and optionally an unassigned
identifier m. The command returns true if G1 and G2 are isomorphic. Otherwise, it returns false.
If the third argument is given and G1 and G2 are isomorphic, then the list of pairwise matching
of vertices in G1 and G2, representing the isomorphism between the two graphs, is assigned to m.

Note that the algorithm takes vertex colors into account. Namely, only vertices sharing the
same color can be mapped to each other. Vertex colors can be set by calling the highlight_vertex
command.

This command, as well as the commands canonical_labeling and graph_automorphisms
described later in this section, is using the nauty library [55], which is one of the fastest implemen-
tations for graph isomorphism. If nauty is not available, then is_isomorphic uses Ullmann's
algorithm [80] as a fallback.

> is_isomorphic(graph("petersen"),kneser_graph(5,2))

true

In the following example, G1 and G3 are isomorphic while G1 and G2 are not isomorphic.

> G1:=graph(trail(1,2,3,4,5,6,1,3))

an undirected unweighted graph with 6 vertices and 7 edges

4.3 Graph isomorphism 91

https://en.wikipedia.org/wiki/Integral_graph
https://en.wikipedia.org/wiki/Integral_graph
https://en.wikipedia.org/wiki/Graph_isomorphism

> G2:=graph(trail(1,2,3,4,5,6,1,4))

an undirected unweighted graph with 6 vertices and 7 edges

> G3:=graph(trail(1,2,3,4,5,6,1,5))

an undirected unweighted graph with 6 vertices and 7 edges

> draw_graph(G1,circle,[0,0],size=[1,0],title="G1");
draw_graph(G2,circle,[1.3,0],size=[1,0],title="G2");
draw_graph(G3,circle,[2.6,0],size=[1,0],title="G3");

G1

1 2

3

45

6

G2

1 2

3

45

6

G3

1 2

3

45

6

> is_isomorphic(G1,G2)

false

> is_isomorphic(G1,G3)

true

> purge(mapping):; is_isomorphic(G1,G3,mapping):; mapping

�Done�; �Done�; [1= 5; 2=6; 3=1; 4=2; 5=3; 6=4]

> H1:=highlight_vertex(G1,5):; H3:=highlight_vertex(G3,5):;

�Done�; �Done�

> is_isomorphic(H1,H3)

false

> H1:=highlight_vertex(H1,1):; H3:=highlight_vertex(H3,3):;

�Done�; �Done�

> is_isomorphic(H1,H3)

true

In the following example, D1 and D3 are isomorphic while D1 and D2 are not isomorphic.

> D1:=digraph(trail(1,2,3,1,4,5))

a directed unweighted graph with 5 vertices and 5 arcs

> D2:=digraph(trail(1,2,3,4,5,3))

a directed unweighted graph with 5 vertices and 5 arcs

> D3:=digraph([1,2,3,4,5],trail(3,4,5,3,1,2))

92 Graph properties

a directed unweighted graph with 5 vertices and 5 arcs

> draw_graph(D1,circle,[0,0],size=[1,0],title="D1");
draw_graph(D2,circle,[1.3,0],size=[1,0],title="D2");
draw_graph(D3,circle,[2.6,0],size=[1,0],title="D3");

D1

1

2

34

5

D2

1

2

34

5

D3

1

2

34

5

> is_isomorphic(D1,D2)

false

> is_isomorphic(D1,D3)

true

Isomorphism testing with nauty is very fast and can be used for large graphs, as in the example
below.

> G:=random_graph(10000,0.01)

an undirected unweighted graph with 10000 vertices and 498793 edges

> H:=permute_vertices(G,shuffle)

an undirected unweighted graph with 10000 vertices and 498793 edges

> vertices(G)==vertices(H)

false

> is_isomorphic(G,H)

true

1.567 sec

To make the edge structures of G andH slightly different, a random edge fromH is �misplaced�.

> ed:=edges(H)[rand(number_of_edges(H))]

[4826; 5144]

> has_edge(H,[4826,5145])

false

> H:=add_edge(delete_edge(H,ed),[4826,5145])

an undirected unweighted graph with 10000 vertices and 498793 edges

> is_isomorphic(G,H)

false

1.678 sec

4.3 Graph isomorphism 93

4.3.2 Canonical labeling
canonical_labeling(G)

Graph isomorphism testing in nauty is based on computing the canonical labeling for the input
graphs. The canonical labeling of G is a particular ordering of the vertices of G. Rearranging
the vertices with respect to that ordering produces the canonical representation of G. Two
graphs are isomorphic if and only if their canonical representations share the same edge structure.

The command canonical_labeling is used for computing the canonical labeling as a per-
mutation. One can reorder the vertices by using this permutation with the permute_vertices
command.

canonical_labeling takes a graph G(V ;E) as its only argument and returns the permutation
representing the canonical labeling of G. Note that the colors of the vertices are taken into account.

In the next example it is demonstrated how to prove that G1 and G3 are isomorphic by
comparing their canonical representations C1 and C3 with the graph_equal command. Before
testing C1 and C3 for equality, their vertices have to be relabeled so that the command vertices
gives the same result for both graphs.

> L1:=canonical_labeling(G1)

[4; 3; 5; 1; 2; 0]

> L3:=canonical_labeling(G3)

[2; 1; 3; 5; 0; 4]

> C1:=relabel_vertices(isomorphic_copy(G1,L1),[1,2,3,4,5,6])

an undirected unweighted graph with 6 vertices and 7 edges

> C3:=relabel_vertices(isomorphic_copy(G3,L3),[1,2,3,4,5,6])

an undirected unweighted graph with 6 vertices and 7 edges

> graph_equal(C1,C3)

true

4.3.3 Graph automorphisms
graph_automorphisms(G)

The command graph_automorphisms is used for finding generators of the automorphism group
of a graph. It takes a graph G as its only argument and returns a list containing the generators of
Aut(G), the automorphism group of G (see [34, p. 4] and [10, p. 115]). Each generator is given as
a list of cycles, which can be turned to a permutation by calling the command cycles2permu.

Note that vertex colors are taken into account. Only vertices sharing the same color can be
mapped to each other. The color of a vertex can be set by calling the command highlight_vertex.

> g:=graph_automorphisms(graph("petersen"))

[[[3; 7]; [4; 5]; [8; 9]]; [[2; 6]; [3; 8]; [4; 5]; [7; 9]]; [[1; 4]; [2; 3]; [6; 9]; [7; 8]]; [[0; 1]; [2; 4]; [5; 6]; [7; 9]]]

> cycles2permu(g[2])

[0; 4; 3; 2; 1; 5; 9; 8; 7; 6]

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

94 Graph properties

https://en.wikipedia.org/wiki/Graph_automorphism

> G:=highlight_vertex(G,4)

an undirected unweighted graph with 10 vertices and 15 edges

> graph_automorphisms(G)

[[[2; 6]; [3; 9]; [7; 8]]; [[1; 5]; [2; 7]; [3; 9]; [6; 8]]; [[0; 3]; [1; 2]; [5; 8]; [6; 7]]]

In the above result, all permutations map the vertex 4 to itself, because it is the single green-
colored vertex in G (it cannot be mapped to any other vertex because colors do not match).

Frucht graph (see the page 32) is an example of a graph with automorphism group containing
only the identity, so the set of its generators is empty:

> graph_automorphisms(graph("frucht"))

[]

4.3.4 Test for isomorphism against subgraphs
is_subgraph_isomorphic(G1,G2,〈opts〉)

The command is_subgraph_isomorphic is used for checking whether a graph is isomorphic to
a subgraph of another graph. It takes two mandatory arguments, graphs G1(V1;E1) and G2(V2;E2),
which are either both undirected or both directed. Edge weights are ignored in both G1 and G2.
The command returns true if G1 is isomorphic to a subgraph S of G2, else it returns false. A
sequence of optional arguments may be passed as the third argument opts. The following options
are supported.

� induced_subgraph � S must be an induced subgraph of G2

The strategy is to use Ullmann's backtracking algorithm [80] with improvements by �ibej and
Miheli£ [17]. The implementation is space-efficient but may perform slower on regular graphs.

In the first example we show that the flower snark J5 contains a 5- and 6-cycle.

> J5:=flower_snark(5)

an undirected unweighted graph with 20 vertices and 30 edges

> is_subgraph_isomorphic(cycle_graph(5),J5)

true

> purge(S):; is_subgraph_isomorphic(cycle_graph(6),J5,S)

�Done�; true

> draw_graph(highlight_subgraph(J5,S),labels=false)

4.3 Graph isomorphism 95

In the example below we find 3-cycle in a directed graph.

> G:=digraph(trail(1,2,3,4,5,1,4,2,5))

a directed unweighted graph with 5 vertices and 8 arcs

> draw_graph(G)

1

2

34

5

> D:=digraph([1,2,3],trail(1,2,3,1))

a directed unweighted graph with 3 vertices and 3 arcs

> purge(S):; is_subgraph_isomorphic(D,G,S)

�Done�; true

> draw_graph(D,[0,0.2],size=[0,0.62],title="Graph D");
draw_graph(highlight_subgraph(G,S),[1,0],size=[0,1],title="Graphs G and S");

Graph D

1

23

Graphs G and S

1

2

34

5

In the following example, we verify that the Sylvester graph is a subgraph of the Hoffman-
Singleton graph.

> HS:=graph("hoffman-singleton")

an undirected unweighted graph with 50 vertices and 175 edges

> G:=graph("sylvester")

an undirected unweighted graph with 36 vertices and 90 edges

> is_subgraph_isomorphic(G,HS)

true

The source graph may also be sought only among induced subgraphs of the destination graph,
as in the example below.

> G:=digraph(trail(1,2,3,4,1,3))

96 Graph properties

a directed unweighted graph with 4 vertices and 5 arcs

> H:=digraph(trail(1,2,3,4,1))

a directed unweighted graph with 4 vertices and 4 arcs

> draw_graph(G,[0,0],size=[1,0],labels=false,title="Graph G");
draw_graph(H,[1.5,0],size=[1,0],circle=[1,2,3,4],title="Graph H")

Graph G Graph H

1 2

34

> is_subgraph_isomorphic(H,G)

true

> is_subgraph_isomorphic(H,G,induced_subgraph)

false

4.3.5 Recognizing special graphs
identify_graph(G,〈haar_graph=<n>〉)

The command identify_graph is used for testing a graph for isomorphism against special
graphs known to giac. It takes a graph G as its mandatory argument and returns the list of
special graphs which are isomorphic to G. Each entry in the list is a list comprised of the respective
constructor and a sequence of parameters.

The optional argument haar_graph=<n>, where n is an integer between 0 and 60 (by default
n= 25), is used for setting an upper limit for the number of vertices in each partition of a Haar
graph. Haar graphs with more than 2 n vertices will not be tested for an isomorphism. If n=0,
then Haar graphs are not tested at all. This is also equivalent to setting haar_graph=false.

Note that identify_graph outputs only the lowest index of an isomorphic Haar graph.

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> identify_graph(G)

[[kneser_graph; 5; 2]; [odd_graph; 3]; [petersen_graph; 5; 2]; [graph; �petersen�]]

> G:=petersen_graph(16,7)

an undirected unweighted graph with 32 vertices and 48 edges

> identify_graph(G)

[[petersen_graph; 16; 7]; [haar_graph; 32786]]

In the following example, we remove an edge together with all incident vertices from the
Hoffman-Singleton graph. The remaining graph is isomorphic to the Sylvester graph, as discovered
by identify_graph.

4.3 Graph isomorphism 97

> G:=graph("hoffman-singleton")

an undirected unweighted graph with 50 vertices and 175 edges

> ed:=choice(edges(G))

[36; 37]

> H:=delete_vertex(G,concat(ed,neighbors(G,ed[0]),neighbors(G,ed[1])))

an undirected unweighted graph with 36 vertices and 90 edges

> identify_graph(H)

[[graph; �sylvester�]]

4.4 Graph polynomials

4.4.1 Tutte polynomial
tutte_polynomial(G,〈x,y〉)

The command tutte_polynomial is used for computing Tutte polynomials. It takes one or
three arguments, an undirected graph G(V ;E) and optionally two variables or values x and y. It
returns the the bivariate Tutte polynomial4.1 TG of G or the value TG(x; y) if the optional arguments
are given. If G is weighted, then it is treated as a multigraph: the weight w of an edge e, which
must be a positive integer, is interpreted as the multiplicity of e, for each e2E. Note that self-
loops are not supported.

The strategy is to apply the recursive definition of Tutte polynomial [36] together with the
vorder heuristic proposed by Haggard et al. [37] and improved by Monagan [56]. The subgraphs
appearing in the computation tree are cached and reused whenever possible, pruning the tree
significantly. Subgraphs are cached in their canonical form, for which nauty is required.

> K4:=complete_graph(4)

an undirected unweighted graph with 4 vertices and 6 edges

> tutte_polynomial(K4,x,y)

x3+3x2+4x y+2 x+ y3+3 y2+2 y

> tutte_polynomial(K4,x,1)

x3+3 x2+6 x+6

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> f:=tutte_polynomial(G)

y6+ 9 y5+ 10 y4 x+ 35 y4+ 15 y3 x2+ 65 y3 x+ 75 y3+ 30 y2 x3+ 105 y2 x2+ 171 y2 x+ 84 y2+

12 y x5 + 70 y x4 + 170 y x3 + 240 y x2 + 168 y x + 36 y + x9 + 6 x8 + 21 x7 + 56 x6 + 114 x5 +

170 x4+ 180 x3+ 120x2+ 36 x

4.1. See [36], [10, p. 97] and [11, p. 335].

98 Graph properties

https://en.wikipedia.org/wiki/Tutte_polynomial
https://en.wikipedia.org/wiki/Tutte_polynomial

This result coincides with that in [10, p. 103], which is supposed to be correct. Alternatively,
it can be verified by applying the recursive definition with an arbitrary edge e2E, as below.

> ed:=edges(G)[0]

[0; 1]

> Gdelete:=delete_edge(G,ed)

an undirected unweighted graph with 10 vertices and 14 edges

> Gcontract:=contract_edge(G,ed)

an undirected unweighted graph with 9 vertices and 14 edges

> expand(f-tutte_polynomial(Gdelete)-tutte_polynomial(Gcontract))

0

The value TG(1; 1) is equal to the number of spanning forests in G [11, p. 345]�in this case,
the number of spanning trees in Petersen graph. For verification, the same number is computed by
using the specialized command number_of_spanning_trees, which uses a much faster algorithm.

> tutte_polynomial(G,1,1)

2000

> number_of_spanning_trees(G)

2000

For a graph G and its dual G� the following relation holds: TG(x; y)=TG�(y; x). Therefore, if
TG(x; y)= TG(y; x) then G and G� are isomorphic (since Tutte polynomial is a graph invariant).
A simple example of such graph is tetrahedral graph. Since it is planar and biconnected, its dual
can be determined by using the command plane_dual.

> G:=graph("tetrahedron")

an undirected unweighted graph with 4 vertices and 6 edges

> draw_graph(G)

0

1

2

3

> is_biconnected(G) and is_planar(G)

true

> H:=plane_dual(G)

an undirected unweighted graph with 4 vertices and 6 edges

> T:=tutte_polynomial(G)

x3+3x2+4x y+2 x+ y3+3 y2+2 y

4.4 Graph polynomials 99

> expand(T-subs(T,[x,y],[y,x]))

0

> is_isomorphic(G,H)

true

Multiple edges can be specified as edge weights.

> M:=make_weighted(G)

an undirected weighted graph with 4 vertices and 6 edges

> M:=set_edge_weight(set_edge_weight(M,[0,1],2),[2,3],3)

an undirected weighted graph with 4 vertices and 6 edges

> edges(M,weights)

[[[0; 1]; 2]; [[0; 2]; 1]; [[0; 3]; 1]; [[1; 2]; 1]; [[1; 3]; 1]; [[2; 3]; 3]]

> tutte_polynomial(M,x,y)

x3+x2 y2+2 x2 y+3x2+3x y3+6 x y2+6 x y+2x+ y6+3 y5+6 y4+7 y3+5 y2+2 y

4.4.2 Chromatic polynomial
chromatic_polynomial(G,〈t〉)

The command chromatic_polynomial, is used for computing chromatic polynomials. It takes
one or two arguments, an undirected unweighted graph G(V ;E) and optionally a variable or value
t. It returns the chromatic polynomial PG of G or the value PG(t) if the second argument is given.

PG and the Tutte polynomial TG satisfy the following relation (see [36] and [11, p. 346]):

PG(t)= (¡1)jV j¡�(G) t�(G)TG(1¡ t; 0);

where �(G) is the number of connected components of G.
The value PG(k), where k > 0 is an integer, is equal to the number of all distinct k-colorings

of vertices in G. As shown in the example below, Petersen graph cannot be colored by using only
two colors, but is 3-colorable with 120 distinct colorings (all using the same three colors).

> P:=chromatic_polynomial(graph("petersen"),x)

x (x¡ 2) (x¡ 1) (x7¡ 12 x6+ 67 x5¡ 230 x4+ 529 x3¡ 814x2+ 775 x¡ 352)

> subs(P,x=2)

0

> subs(P,x=3)

120

4.4.3 Flow polynomial
flow_polynomial(G,〈x〉)

The command flow_polynomial is used for computing flow polynomials. It takes one or two
arguments, an undirected unweighted graphG(V ;E) and optionally a variable or value x. It returns
the flow polynomial QG of G or the value QG(x) if the second argument is given.

100 Graph properties

https://en.wikipedia.org/wiki/Tutte_polynomial#Chromatic_polynomial
https://en.wikipedia.org/wiki/Tutte_polynomial#Chromatic_polynomial
https://en.wikipedia.org/wiki/Tutte_polynomial#Flow_polynomial
https://en.wikipedia.org/wiki/Tutte_polynomial#Flow_polynomial

QG and the Tutte polynomial TG satisfy the following relation (see [36] and [10, p. 110]):

QG(x)= (¡1)jE j¡jV j+�(G)TG(0; 1¡x);

where �(G) is the number of connected components of G.
The value QG(k), where k > 0 is an integer, is equal to the number of all nowhere-zero k-flows

in G. In such flows, the total flow fv entering and leaving vertex v is congruent modulo k, hence
fv 2f1; 2; :::; k¡ 1g for all v 2V [11, p. 347]. As shown in the example below, Petersen graph has
zero 4-flows and 240 5-flows.

> Q:=flow_polynomial(graph("petersen"))

x6¡ 15 x5+ 95x4¡ 325 x3+ 624 x2¡ 620x+ 240

> Q | x=4

0

> Q | x=5

240

4.4.4 Reliability polynomial
reliability_polynomial(G,〈p〉)

The command reliability_polynomial is used for computing reliability polynomials. It takes
one or two arguments, an undirected graph G(V ;E) and optionally a variable or value p. It returns
the all-terminal reliability polynomial RG of G or the value RG(p) if the second argument is given.
If G is weighted, then it is treated as a multigraph: the weight w of an edge e, which must be a
positive integer, is interpreted as the multiplicity of e, for each e2E.

RG and the Tutte polynomial TG satisfy the following relation [56]:

RG(p)= (1¡ p)jV j¡�(G) pjE j¡jV j+�(G)TG(1; p¡1);

where �(G) is the number of connected components of G.
If G is connected, then the value RG(p), where p2 [0;1], is equal to the probability that G does

not fail (i.e. stays connected) after removing each edge with probability p [34, pp. 354�355].
In the following example, it is clear that the graph G will stay connected with probability

(1¡ p)2 if each of its two edges is removed with probability p.

> G:=graph(%{[1,2],[2,3]%})

an undirected unweighted graph with 3 vertices and 2 edges

> R:=reliability_polynomial(G,p)

p2¡ 2 p+1

> factor(R)

(p¡ 1)2

Adding a new edge should increase the reliability of G, since the latter is connected. Indeed,
the difference S ¡R below is positive for 0< p< 1.

> S:=reliability_polynomial(add_edge(G,[1,3]),p)

2 p3¡ 3 p2+1

4.4 Graph polynomials 101

https://en.wikipedia.org/wiki/Tutte_polynomial#Reliability_polynomial
https://en.wikipedia.org/wiki/Tutte_polynomial#Reliability_polynomial

> factor(S-R)

2 p (p¡ 1)2

Multiple edges can be specified as edge weights.

> M:=graph(%{[[1,2],2],[[2,3],1],[[3,1],1]%})

an undirected weighted graph with 3 vertices and 3 edges

> factor(reliability_polynomial(M))

(x¡ 1)2 (2 x2+2 x+1)

The following graph represents the Arpanet (early internet) in December 1970.

> V:=["MIT","LINCOLN","CASE","CMU","HARVARD","BBN","UCSB","UCLA","STANFORD",
"SRI","RAND","UTAH","SDC"]:;

> A:=graph(V,trail("BBN","HARVARD","CMU","CASE","LINCOLN","MIT","UTAH","SRI",
"STANFORD","UCLA","UCSB","SRI","UCLA","RAND","BBN","MIT"),trail("RAND","SDC",
"UTAH"))

an undirected unweighted graph with 13 vertices and 17 edges

> Arpanet:=set_vertex_positions(A,[[1.0,1.0],[0.9,1.2],[0.5,1.1],[0.6,0.8],[1.0,
0.6],[1.0,0.8],[-1.1,0.1],[-0.8,0.3],[-0.6,0.5],[-0.8,0.7],[-0.8,-0.1],[-0.3,
0.9],[-0.5,0.2]])

an undirected unweighted graph with 13 vertices and 17 edges

> draw_graph(Arpanet)

MIT

LINCOLN

CASE

CMU

HARVARD

BBN

UCSB

UCLA

STANFORD

SRI

RAND

UTAH

SDC

If we were allowed to add a single edge to Arpanet in order to improve its reliability, which
choice would be optimal? Below is the analysis for an edge from Stanford to CMU.

> R:=reliability_polynomial(Arpanet,p)

(p¡ 1)12 (280 p5+ 310 p4+ 186 p3+ 63 p2+ 12 p+1)

> S:=reliability_polynomial(add_edge(Arpanet,["STANFORD","CMU"]),p)

(p¡ 1)12 (976 p6+ 1118 p5+ 703 p4+ 276 p3+ 72 p2+ 12 p+1)

> labels=["p","R(p),S(p)"]; plot([R,S],p=0..1,color=[blue,red])

102 Graph properties

p

 R(p),S(p)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

The improvement is defined as the area enclosed by the two curves.

> approx(integrate(S-R,p=0..1))

0.0419486688063

4.5 Connectivity

4.5.1 Connected, biconnected and triconnected graphs

is_connected(G)
is_biconnected(G)
is_triconnected(G)

The commands is_connected, is_biconnected and is_triconnected are used for deter-
mining if a graph is connected, biconnected or triconnected (3-connected), respectively. Each of
these commands takes a graph G(V ;E) as its only argument and returns true if G possesses the
required level of connectivity. Otherwise, it returns false.

If G is directed, the edge directions are simply ignored (the commands operate on the under-
lying graph of G).

The strategy for checking 1- and 2-connectivity is to use depth-first search (see [33, p. 20]
and [73]). Both algorithms run in O(jV j+ jE j) time. The algorithm for checking 3-connectivity is,
however, less efficient: it works by choosing a vertex v 2 V and checking if the subgraph induced
by V n fvg is biconnected, moving on to the next vertex if so, and repeating the process until all
vertices are visited exactly once or a non-biconnected subgraph is found for some v. In the latter
case the input graph is not triconnected. The complexity of this algorithm is hence O(jV j jE j).

> G:=graph_complement(complete_graph(2,3,4))

an undirected unweighted graph with 9 vertices and 10 edges

> is_connected(G)

false

> C:=connected_components(G)

[[0; 1]; [2; 3; 4]; [5; 6; 7; 8]]

> H:=induced_subgraph(G,C[2])

an undirected unweighted graph with 4 vertices and 6 edges

> is_connected(H)

true

4.5 Connectivity 103

https://en.wikipedia.org/wiki/Connectivity_(graph_theory)#Connected_graph
https://en.wikipedia.org/wiki/Biconnected_graph
https://en.wikipedia.org/wiki/K-vertex-connected_graph
https://en.wikipedia.org/wiki/K-vertex-connected_graph
https://en.wikipedia.org/wiki/K-vertex-connected_graph
https://en.wikipedia.org/wiki/K-vertex-connected_graph
https://en.wikipedia.org/wiki/K-vertex-connected_graph
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Depth-first_search

> is_biconnected(path_graph(5))

false

> is_biconnected(cycle_graph(5))

true

> is_triconnected(graph("petersen"))

true

> is_triconnected(cycle_graph(5))

false

4.5.2 Connected and biconnected components
connected_components(G)
biconnected_components(G)

The commands connected_components and biconnected_components are used for decom-
posing a graph into connected and biconnected components, respectively. Both commands take
a graph G(V ;E) as its only argument and return the minimal partition fV1; V2; :::; Vkg of V such
that the subgraph Gi�G induced by Vi is connected resp. biconnected for each i=1; 2; :::; k. The
partition is returned as a list of lists V1; V2; :::; Vk.

If G is directed, the edge directions are simply ignored (the commands operate on the under-
lying graph of G).

The connected components of G are readily obtained by depth-first search in O(jV j+ jE j)
time. To find the biconnected components of G, Tarjan's algorithm is used [73], which also runs
in linear time.

> G:=graph_complement(complete_graph(3,5,7))

an undirected unweighted graph with 15 vertices and 34 edges

> is_connected(G)

false

> C:=connected_components(G)

[[0; 1; 2]; [3; 4; 5; 6; 7]; [8; 9; 10; 11; 12; 13; 14]]

> G:=highlight_subgraph(G,induced_subgraph(G,C[1]))

an undirected unweighted graph with 15 vertices and 34 edges

> G:=highlight_subgraph(G,induced_subgraph(G,C[2]),magenta,cyan)

an undirected unweighted graph with 15 vertices and 34 edges

> draw_graph(G)

0

12

3

4

56

7

8

9

10

1112

13

14

104 Graph properties

https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
https://en.wikipedia.org/wiki/Biconnected_component
https://en.wikipedia.org/wiki/Biconnected_component

> H:=graph(trail(1,2,3,4,2),trail(4,5,6,7,5))

an undirected unweighted graph with 7 vertices and 8 edges

> draw_graph(H)

1

2

3

45

6

7

> is_biconnected(H)

false

> biconnected_components(H)

[[5; 6; 7]; [4; 5]; [2; 3; 4]; [1; 2]]

4.5.3 Vertex connectivity
vertex_connectivity(G)

The command vertex_connectivity is used for computing vertex connectivity in undirected
graphs. It takes an undirected connected graph G(V ; E) as its only argument and returns the
largest integer k for which G is k-vertex-connected, meaning that G remains connected after
removing fewer than k vertices from V .

The strategy is to use the algorithm by Esfahanian and Hakimi [25], which is based on the
maximum-flow computing approach by Even [27, Section 6.2]. The algorithm makes jV j¡ �¡1+
� (� ¡ 1)

2
calls to maxflow command, where � is the minimum vertex degree in G.

> vertex_connectivity(graph("petersen"))

3

> vertex_connectivity(graph("clebsch"))

5

> G:=random_planar_graph(1000,0.5,2)

an undirected unweighted graph with 1000 vertices and 1865 edges

> is_biconnected(G)

true

> vertex_connectivity(G)

2

2.582 sec

4.5.4 Graph rank
graph_rank(G,〈S〉)

The command graph_rank is used for computing graph rank. It takes one or two arguments, a
graph G(V ;E) and optionally a set of edges S�E (by default S=E), and returns jV j ¡ k where
k is the number of connected components of the spanning subgraph of G with edge set S.

4.5 Connectivity 105

https://en.wikipedia.org/wiki/K-vertex-connected_graph
https://en.wikipedia.org/wiki/K-vertex-connected_graph
https://en.wikipedia.org/wiki/Rank_(graph_theory)
https://en.wikipedia.org/wiki/Rank_(graph_theory)

> G:=graph(%{[1,2],[3,4],[4,5]%})

an undirected unweighted graph with 5 vertices and 3 edges

> graph_rank(G)

3

> graph_rank(G,[[1,2],[3,4]])

2

4.5.5 Articulation points
articulation_points(G)

The command articulation_points is used for obtaining the set of articulation points (cut-
vertices) of a graph. It takes a graph G(V ; E) as its only argument and returns the list of artic-
ulation points of G. A vertex v 2V is an articulation point of G if the removal of v increases
the number of connected components of G.

The articulation points of G are found by depth-first search in O(jV j+ jE j) time [33].

> articulation_points(path_graph([1,2,3,4]))

[2; 3]

> length(articulation_points(cycle_graph(1,2,3,4)))

0

4.5.6 Strongly connected components
strongly_connected_components(G)
is_strongly_connected(G)

The command strongly_connected_components is used for decomposing digraphs into strongly
connected components. A digraph H is strongly connected if for each pair (v; w) of distinct
vertices in H there is a directed path from v to w in H. The command is_strongly_connected
can be used to determine whether a graph is strongly connected.

strongly_connected_components takes a digraph G(V ;E) as its only argument and returns
the minimal partition fV1; V2; :::; Vkg of V such that the subgraph Gi�G induced by Vi is strongly
connected for each i=1; 2; :::; k. The result is returned as a list of lists V1; V2; :::; Vk.

is_strongly_connected takes a digraph G as its only argument and returns true if G has
exactly one strongly connected component. Otherwise, it returns false.

The strategy is to use Tarjan's algorithm [73], which runs in O(jV j+ jE j) time.

> G:=digraph([1,2,3],%{[1,2],[1,3],[2,3],[3,2]%})

a directed unweighted graph with 3 vertices and 4 arcs

> draw_graph(G)

1

23

106 Graph properties

https://en.wikipedia.org/wiki/Biconnected_component
https://en.wikipedia.org/wiki/Biconnected_component
https://en.wikipedia.org/wiki/Strongly_connected_component
https://en.wikipedia.org/wiki/Strongly_connected_component
https://en.wikipedia.org/wiki/Strongly_connected_component

> is_connected(G)

true

> is_strongly_connected(G)

false

> strongly_connected_components(G)

[[2; 3]; [1]]

> G:=random_digraph(8,15)

a directed unweighted graph with 8 vertices and 15 arcs

> draw_graph(G)

0 1

2

3

45

6

7

> strongly_connected_components(G)

[[0; 4]; [3]; [7]; [1; 2; 5; 6]]

4.5.7 Edge connectivity
edge_connectivity(G)

The command edge_connectivity is used for computing the edge connectivity of an undi-
rected graph. It takes an undirected connected graph G(V ; E) as its only argument and returns
the largest integer k for which G is k-edge connected, meaning that G remains connected after
fewer than k edges are removed from E.

The strategy is to apply Matula's algorithm [77, Section 13.3.1], which constructs a domi-
nating set D�V and calls maxflow command jD j ¡ 1 times.

> G:=cycle_graph([1,2,3,4,5])

an undirected unweighted graph with 5 vertices and 5 edges

> edge_connectivity(G)

2

> K5:=complete_graph(5)

an undirected unweighted graph with 5 vertices and 10 edges

> edge_connectivity(K5)

4

4.5 Connectivity 107

https://en.wikipedia.org/wiki/K-edge-connected_graph
https://en.wikipedia.org/wiki/K-edge-connected_graph

> edge_connectivity(graph("petersen"))

3

> edge_connectivity(graph("clebsch"))

5

4.5.8 Edge cuts
is_cut_set(G,L)

The command is_cut_set is used for determining whether a particular subset of edges of a
graph is an edge cut. It takes two arguments, a graph G(V ;E) and a set L�E, and returns true
if the graph G0(V ;E nL) has more connected components than G. Otherwise, it returns false.

> G:=graph(trail(1,2,3,4,5,6,4,1,3))

an undirected unweighted graph with 6 vertices and 8 edges

> draw_graph(G)

1 2

3

45

6

> E:=[[1,4],[3,4]] �
1 4
3 4

�
> is_cut_set(G,E)

true

> is_connected(delete_edge(G,E))

false

4.5.9 Two-edge-connected graphs
is_two_edge_connected(G)
two_edge_connected_components(G)

The command is_two_edge_connected is used for determining whether an undirected graph is
two-edge-connected. The command two_edge_connected_components is used for splitting a graph
into components having this property. It takes an undirected graph G(V ;E) as its only argument
and returns true if G has no bridges, i.e. edges which removal increases the number of connected
components of G.

two_edge_connected_components takes an undirected graph G(V ;E) and returns the list of
two-edge-connected components of G, each of them represented by the list of its vertices. To obtain
a component as a graph, use the induced_subgraph command.

The strategy for finding bridges [74] is similar to finding articulation points. Once the bridges
of G are found, it is easy to split G into two-edge-connected components by removing the bridges
and returning the list of connected components of the resulting graph. Both algorithms run in
O(jV j+ jE j) time.

108 Graph properties

https://en.wikipedia.org/wiki/Connectivity_(graph_theory)#Definitions_of_components,_cuts_and_connectivity
https://en.wikipedia.org/wiki/Connectivity_(graph_theory)#Definitions_of_components,_cuts_and_connectivity
https://en.wikipedia.org/wiki/K-edge-connected_graph
https://en.wikipedia.org/wiki/K-edge-connected_graph
https://en.wikipedia.org/wiki/K-edge-connected_graph
https://en.wikipedia.org/wiki/K-edge-connected_graph
https://en.wikipedia.org/wiki/K-edge-connected_graph

> is_two_edge_connected(cycle_graph(4))

true

> is_two_edge_connected(path_graph(4))

false

> purge(A,B,C,D,E,F,G,H,I):; G:=graph(%{[A,B],[B,C],[A,C],[D,E],[E,F],[D,F],[C,
D],[A,H],[A,I],[H,I]%})

�Done�; an undirected unweighted graph with 8 vertices and 10 edges

> is_two_edge_connected(G)

false

> draw_graph(G)

A B

C

D

EF

H

I

> comp:=two_edge_connected_components(G)

[[A;B;C;H; I]; [D;E; F]]

To visualize the bridges of G, one can highlight the edges of each component. The non-high-
lighted edges are the bridges.

> for c in comp do G:=highlight_edges(G,edges(induced_subgraph(G,c))); od:;

> draw_graph(G)

A B

C

D

EF

H

I

4.6 Trees

4.6.1 Tree graphs
is_tree(G)

The command is_tree is used for determining whether a graph is a tree. It takes a graph
G(V ; E) as its only argument and returns true if G is undirected, connected and jV j= jE j+ 1.
Otherwise, it returns false. The algorithm runs in O(jV j) time.

> is_tree(complete_binary_tree(3))

true

4.6 Trees 109

https://en.wikipedia.org/wiki/Tree_(graph_theory)

> is_tree(cycle_graph(5))

false

4.6.2 Forest graphs
is_forest(G)

The command is_forest is used for determining whether a graph is a forest. It takes the
a G(V ; E) as its only argument and returns true if each connected component of G is a tree.
Otherwise, it returns false. The algorithm runs in O(jV j+ jE j) time.

> F:=disjoint_union(apply(random_tree,[k$(k=10..30)]))

an undirected unweighted graph with 420 vertices and 399 edges

> is_connected(F)

false

> is_forest(F)

true

> draw_graph(F)

4.6.3 Height of a tree
tree_height(G,〈r〉)

The command tree_height is used for determining either the height of a tree with respect to
the specified root node or the minimal height. It takes a tree graph G(V ;E) as its first argument
and optionally a vertex r2V , which is used as the root node. The command returns the the length
of the longest path in T that has the node r as one of its endpoints. If r is not specified, the return
value is a sequence comprised of the minimal tree height and an expression root=r0, where r02V
is the first vertex such that G has the minimal height with respect to r0.

The strategy for given r is to start a depth-first search from the root node and look for the
deepest node. Therefore the algorithm runs in O(jV j) time. If r is not given, then r0 is determined
by pointers which move from leaf nodes inwards and get combined as they meet, until at most two
of them remain, pointing to the admissible vertices. This algorithm requires O(jV j) time as well.

> G:=random_tree(1000)

an undirected unweighted graph with 1000 vertices and 999 edges

> r:=choice(vertices(G))

953

110 Graph properties

https://en.wikipedia.org/wiki/Tree_(graph_theory)#Forest

> tree_height(G,r)

88

> tree_height(G)

46; root= 189

4.6.4 Prüfer sequences

pruefer_code(L|T)

The command pruefer_code is used for converting a tree into a Prüfer sequence and vice versa.
It takes a Prüfer encoding L or a tree graph T as its only argument and returns a tree corresponding
to L resp. the Prüfer encoding of T . The argument Lmust be a list of integers between 0 and jLj+1
(inclusive) in modes with 0-based indices (e.g. xcas mode) resp. between 1 and jLj+ 2 in modes
with 1-based indices (e.g. maple mode). Encodings output by pruefer_code are also mode-aware.

The strategy is to use linear-time implementations4.2 of the encoding/decoding algorithm [50].
The following examples were entered in xcas mode (0-based indices).

> T:=pruefer_code([5,6,0,4,1,2,10,3,8,11])

an undirected unweighted graph with 12 vertices and 11 edges

> is_tree(T)

true

> G:=graph(%{[1,8],[2,3],[2,7],[4,6],[5,6],[6,7],[6,8],[7,9],[8,10]%})

an undirected unweighted graph with 10 vertices and 9 edges

> is_tree(G)

true

> pruefer_code(G)

[1; 2; 4; 6; 6; 4; 6; 1]

> R:=random_tree(100)

an undirected unweighted graph with 100 vertices and 99 edges

> code:=pruefer_code(R):;

> is_isomorphic(R,pruefer_code(code))

true

pruefer_code can be used for fast uniform random sampling of labeled trees. Namely, for n>2,
each sequence of length n¡ 2 in alphabet of n symbols corresponds to a unique labeled tree on n
vertices. Thus the number of labeled trees on n vertices equals to nn¡2 (also by Cayley's formula).
It is hence enough to select a sequence at random and convert it to its associated tree by using
pruefer_code. In the following example we generate a tree on 10 vertices.

4.2. See https://cp-algorithms.com/graph/pruefer_code.html.

4.6 Trees 111

https://en.wikipedia.org/wiki/Pr%C3%BCfer_sequence
https://en.wikipedia.org/wiki/Pr%C3%BCfer_sequence
https://en.wikipedia.org/wiki/Pr%C3%BCfer_sequence
https://en.wikipedia.org/wiki/Pr%C3%BCfer_sequence
https://cp-algorithms.com/graph/pruefer_code.html
https://cp-algorithms.com/graph/pruefer_code.html
https://cp-algorithms.com/graph/pruefer_code.html
https://cp-algorithms.com/graph/pruefer_code.html
https://cp-algorithms.com/graph/pruefer_code.html
https://cp-algorithms.com/graph/pruefer_code.html
https://cp-algorithms.com/graph/pruefer_code.html
https://cp-algorithms.com/graph/pruefer_code.html
https://cp-algorithms.com/graph/pruefer_code.html

> L:=randvector(10,12)

[8; 8; 2; 4; 2; 6; 3; 2; 2; 8]

> draw_graph(pruefer_code(L),labels=false)

In maple mode (or any other mode with 1-based indices) one should add 1 to each element of
L before passing it to pruefer_code.

For generating unlabeled trees uniformly at random, see Section 1.10.3.

4.6.5 Lowest common ancestor of a pair of nodes

lowest_common_ancestor(G,r,u,v)
lowest_common_ancestor(G,r,[[u1,v1],[u2,v2],..,[uk,vk]])

The command lowest_common_ancestor is used for computing the lowest common ancestor
(LCA) of a pair of nodes in a tree or for each element of a list of such pairs. It takes two mandatory
arguments, a tree graph G(V ;E) and the root node r2V . There are two possibilities for specifying
the nodes to operate on: either the nodes u; v 2V are given as the third and the fourth argument,
or a list of pairs of nodes (u1; v1); (u2; v2); :::; (uk; vk), where ui; vi2V and ui=/ vi for i=1; 2; :::; k,
is given as the third argument. The command returns the LCA of u and v or the list containing
LCA of every pair of nodes ui; vi for i= 1; 2; :::; k. Note that this is much faster than calling
lowest_common_ancestor k times with a single pair of vertices each time.

The strategy is to use Tarjan's offline LCA algorithm [75], which runs in nearly linear time.

> G:=random_tree(20)

an undirected unweighted graph with 20 vertices and 19 edges

> draw_graph(G)

0

1

2 3
4

5 6 7

8

9

10

11 12
13

14

15

16

17

18 19

> lowest_common_ancestor(G,0,16,17)

14

> lowest_common_ancestor(G,0,[[5,6],[7,8],[15,18]])

[4; 0; 14]

112 Graph properties

https://en.wikipedia.org/wiki/Lowest_common_ancestor
https://en.wikipedia.org/wiki/Lowest_common_ancestor
https://en.wikipedia.org/wiki/Lowest_common_ancestor

4.6.6 Arborescence graphs
is_arborescence(G)

The command is_arborescence is used for determining whether a directed unweighted graph
is an arborescence (which is the digraph form of a rotted tree). It takes a digraph G(V ; E) as its
only argument and returns true if there is a vertex u2V such that for any other v 2V there is a
single directed path from u to v. Otherwise, it returns false.

> T:=digraph(%{[1,2],[1,3],[3,4],[3,5],[3,6],[5,7]%})

a directed unweighted graph with 7 vertices and 6 arcs

> is_arborescence(T)

true

> draw_graph(T)

1

2

3

4
5

6

7

4.7 Networks

4.7.1 Network graphs
is_network(G,〈s,t〉)

The command is_network is used for determining whether a graph is a flow network. In this
context, a flow network is directed, connected graph with at least one vertex with in-degree 0 (the
source) and at least one vertex with out-degree 0 (the sink).

is_network takes one or three arguments, a digraph G(V ;E) and optionally the source vertex s
and the sink vertex t. If these vertices are given, then the command returns true if G is a network
with respect to s and t, otherwise it returns false. If the graph G is given as the only argument,
then the command returns a sequence of two objects, the list of all sources in G and the list of all
sinks in G, respectively. If at least one of these lists is empty, then G is implicitly not a network
(both lists are empty if G is not connected).

> N:=digraph(%{[1,2],[1,3],[2,4],[3,4]%})

a directed unweighted graph with 4 vertices and 4 arcs

> draw_graph(N,spring)

1

2
3

4

4.7 Networks 113

https://en.wikipedia.org/wiki/Arborescence_(graph_theory)
http://www.encyclopediaofmath.org/index.php?title=Flow_in_a_network
http://www.encyclopediaofmath.org/index.php?title=Flow_in_a_network

> is_network(N,1,4)

true

> is_network(N,2,3)

false

> G:=digraph(%{[1,3],[2,3],[3,4],[3,5]%})

a directed unweighted graph with 5 vertices and 4 arcs

> draw_graph(G,circle)

1

3

2

4

5

> is_network(G)

[1; 2]; [4; 5]

4.7.2 Maximum flow
maxflow(G,s,t,〈M〉)

The command maxflow is used for computing the maximum flow in a network. It takes three
or four arguments: a network graph G(V ; E), the source s2 V , the sink t 2 V and optionally an
unassigned identifier M. It returns the optimal value for the maximum flow problem for the network
(G;s; t). If the fourth argument is given, then an optimal flow is assigned to M in form of a matrix.

The strategy is to use the algorithm of Edmonds and Karp [24], which solves the maximum
flow problem in O(jV j jE j2) time.

> A:=[[0,1,0,4,0,0],[0,0,1,0,3,0],[0,1,0$3,1],[0,0,3,0,1,0],[0$3,1,0,4],[0$6]]0BBBBBBBBBBBBBB@

0 1 0 4 0 0
0 0 1 0 3 0
0 1 0 0 0 1
0 0 3 0 1 0
0 0 0 1 0 4
0 0 0 0 0 0

1CCCCCCCCCCCCCCA
> N:=digraph([1,2,3,4,5,6],A)

a directed weighted graph with 6 vertices and 10 arcs

> is_network(N)

[1]; [6]

> purge(pos):;

> draw_graph(N,spring,pos)

114 Graph properties

https://en.wikipedia.org/wiki/Maximum_flow_problem
https://en.wikipedia.org/wiki/Maximum_flow_problem

1

4

1

3

1

1

3

11

4

1

23

45

6

> purge(M):; maxflow(N,1,5,M)

�Done�; 3

> M 0BBBBBBBBBBBBBB@

0 1 0 2 0 0
0 0 0 0 2 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCCCCCCCCCCA
To visualize the optimal flow F , one can use the highlight_subgraph command with the

option weights to display the actual flow in the highlighted edges. Non-highlighted edges have the
zero flow. Note that we use vertex positions generated in the above drawing.

> flow:=set_vertex_positions(highlight_subgraph(N,digraph(vertices(N),M),
weights),pos)

a directed weighted graph with 6 vertices and 10 arcs

> draw_graph(flow)

1

2

1

2

1

1

1

11

4

1

23

45

6

4.7.3 Minimum cut

minimum_cut(G,s,t)

The command minimum_cut is used for obtaining minimum cuts in networks. It takes three
arguments, a digraph G(V ;E) and two vertices s; t2V such that (G;s; t) is a network with source
s and sink t. The returned value is a list of edges in E representing a minimum cut in the network.

The strategy is to apply the command maxflow, which finds a maximal flow, and to run depth-
first search on the corresponding residual graph to find a S; T partition of V . The minimum cut
is then the set of all arcs vw2E such that v2S and w2T . The algorithm runs in O(jV j jE j2) time.

> G:=digraph(%{[[0,1],16],[[0,2],13],[[1,2],10],[[1,3],12],[[2,1],4],[[2,4],14],
[[3,2],9],[[3,5],20],[[4,3],7],[[4,5],4]%})

a directed weighted graph with 6 vertices and 10 arcs

> draw_graph(G,spring)

4.7 Networks 115

https://en.wikipedia.org/wiki/Minimum_cut
https://en.wikipedia.org/wiki/Minimum_cut

16

13

10

12

4

14

9

20

7

4

0

1

2

3

4

5

> cut:=minimum_cut(G,0,5)

[[1; 3]; [4; 3]; [4; 5]]

> draw_graph(highlight_edges(G,cut),spring)

16

13

10

12

4

14

9

20

7

4

0

1

2

3

4

5

By the max-flow min-cut theorem, the sum of edge weights in minimum cut is equal to the
value of maximum flow.

> w:=0:; for ed in cut do w:=w+get_edge_weight(G,ed); od:; w

�Done�; �Done�; 23

> maxflow(G,0,5)

23

4.8 Distance in graphs

4.8.1 Vertex distance
vertex_distance(G,v,w|L)

The command vertex_distance is used for computing the length of the shortest path(s) from
the source vertex to some other vertex/vertices of a graph. It takes three arguments, a graph
G(V ;E), a vertex v2V called the source and a vertex w2V called the target or a list L�V nfvg
of target vertices. The command returns the distance between v and w as the number of edges in
a shortest path from v to w, or the list of distances if a list of target vertices is given.

The strategy is to start a breadth-first search [33, p. 35] from the source vertex. Therefore, the
algorithm runs in O(jV j+ jE j) time.

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> vertex_distance(G,1,3)

2

> vertex_distance(G,1,[3,6,9])

[2; 1; 2]

116 Graph properties

https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search

4.8.2 All-pairs vertex distance
allpairs_distance(G)

The command allpairs_distance is used for computing the matrix of distances between all
pairs of vertices in a (weighted) graph. It takes a graph G(V ;E) as its only argument and returns
a square matrix D= [dij] with n= jV j rows and columns such that dij= distance(vi; vj) for all i;
j =1; 2; :::; n, where v1; v2; :::; vn are the elements of V . If vi vj 2/ E, then dij=+1. The strategy
is to apply the algorithm of Floyd and Warshall [28], which runs in O(jV j3) time.

Note that, if G is weighted, it must not contain negative cycles. A cycle is negative if the sum
of weights of its edges is negative.

> G:=graph([1,2,3,4,5],%{[1,2],[1,3],[1,4],[1,5],[2,3],[3,4],[4,5],[5,2]%})

an undirected unweighted graph with 5 vertices and 8 edges

> draw_graph(G)

1

2

34

5

> allpairs_distance(G) 0BBBBBBBBBB@
0 1 1 1 1
1 0 1 2 1
1 1 0 1 2
1 2 1 0 1
1 1 2 1 0

1CCCCCCCCCCA
> H:=digraph(%{[1,2],[1,3],[1,4],[1,5],[2,3],[3,4],[4,5],[5,2]%})

a directed unweighted graph with 5 vertices and 8 arcs

> allpairs_distance(H) 0BBBBBBBBBB@
0 1 1 1 1

+1 0 1 2 3
+1 3 0 1 2
+1 2 3 0 1
+1 1 2 3 0

1CCCCCCCCCCA
> draw_graph(H)

1

2

34

5

> H:=assign_edge_weights(H,5,25)

4.8 Distance in graphs 117

a directed weighted graph with 5 vertices and 8 arcs

> draw_graph(H)

19

2012

7

9

6

24

10

1

2

34

5

> allpairs_distance(H) 0BBBBBBBBBB@
0 17 20 12 7

+1 0 9 15 39
+1 40 0 6 30
+1 34 43 0 24
+1 10 19 25 0

1CCCCCCCCCCA

4.8.3 Diameter
graph_diameter(G)

The command graph_diameter is used for determining the maximum distance among all pairs
of vertices in a graph. It takes a graph G(V ; E) as its only argument and returns the maximum
distance between two nodes in V , i.e. the cost of a maximum-size shortest path in G if the latter
is connected and +1 otherwise.

If G is weighted, then graph_diameter calls allpairs_distance and picks the largest element
in the output matrix. Thus the complexity of the algorithm is O(jV j3) in this case. For unweighted
graphs it is sufficient to run a breadth-first search from each vertex, which requires O(jV j jE j) time.

> graph_diameter(graph("petersen"))

2

> graph_diameter(cycle_graph(19))

9

> graph_diameter(graph_complement(complete_graph(3,3)))

+1

> G:=graph(%{[[1,2],2],[[2,3],3],[[3,4],4],[[4,1],10]%})

an undirected weighted graph with 4 vertices and 4 edges

> draw_graph(G)

2

10

3

4

1

2

3

4

> graph_diameter(G)

118 Graph properties

9

> dijkstra(G,1,4)

[[1; 2; 3; 4]; 9]

4.8.4 Girth
girth(G)
odd_girth(G)

The commands girth and odd_girth are used for computing the (odd) girth of an undirected
unweighted graph. Both commands take a graph G(V ; E) as their only argument and return the
girth and odd girth of G, respectively. The (odd) girth of G is defined to be the length of the
shortest (odd) cycle in G. If there is no (odd) cycle in G, then the command returns +1.

The strategy is to apply breadth-first search from each vertex of the input graph. The runtime
is therefore O(jV jjE j).

> girth(graph("petersen"))

5

> G:=hypercube_graph(3)

an undirected unweighted graph with 8 vertices and 12 edges

> G:=subdivide_edges(G,["000","001"])

an undirected unweighted graph with 9 vertices and 13 edges

> girth(G)

4

> odd_girth(G)

5

> girth(complete_binary_tree(2))

+1

4.9 Acyclic graphs

4.9.1 Acyclic graphs
is_acyclic(G)

The command is_acyclic is used for determining whether there are no directed cycles (closed
paths) in a digraph. A directed graph with no directed cycle is said to be acyclic. is_acyclic
takes a digraph G(V ;E) as its only argument and returns true if G is acyclic and false otherwise.

The algorithm attempts to find topological order for its vertices. If that succeeds, then the
graph is acyclic, otherwise not. The running time is O(jV j+ jE j).

> is_acyclic(digraph(trail(1,2,3,4,5)))

true

4.9 Acyclic graphs 119

> is_acyclic(digraph(trail(1,2,3,4,5,2)))

false

4.9.2 Topological sorting
topologic_sort(G)
topological_sort(G) alias

The command topologic_sort (alias topological_sort) is used for finding a linear ordering
of vertices of an acyclic digraph which is consistent with the arcs of the digraph. This procedure
is called topological sorting. topologic_sort takes a graph G(V ; E) as its only argument and
returns the list of vertices of G in a particular order: a vertex u precedes a vertex v if (u; v)2E.

Note that topological sorting is possible only if the input graph is acyclic. If this condition
is not met, then topologic_sort returns an error. Otherwise, it finds the required ordering by
applying Kahn's algorithm [47], which runs in O(jV j+ jE j) time.

> purge(a,b,c,d):; G:=digraph(%{[c,a],[c,b],[c,d],[a,d],[b,d],[a,b]%})

�Done�; a directed unweighted graph with 4 vertices and 6 arcs

> is_acyclic(G)

true

> topologic_sort(G)

[c; a; b; d]

4.9.3 st ordering
st_ordering(G,s,t,〈p〉)
st_ordering(G,s,t,D,〈p〉)

The command st_ordering is used for finding st-orderings in undirected biconnected graphs.
It takes three to five arguments. The first three arguments are mandatory: an undirected bicon-
nected4.3 graph G(V ;E), a vertex s2V called the source, a vertex t2V called the sink such that
st 2E. Optionally, one can pass an unassigned identifier D and/or a real value p 2 [0; 1]. The
command returns the permutation of the set V which corresponds to a st-numbering of the vertices.

Given a st-numbering, an orientation of each e= uv 2E can be imposed by comparing the
ordinals n and m assigned its endpoints u and v, respectively; if n<m, then u is the head and
v is the tail of the corresponding arc, and vice versa otherwise. If an unassigned identifier D is
provided, then a copy of G, which is made directed according to these orientations, is assigned to
D. The oriented variant of G is an acyclic graph (or DAG for short).

If the argument p is not specified, the strategy is to apply Tarjan's algorithm [76] which runs
in O(jV j+ jE j) time. If p2 [0; 1] is given, then a parametrized st-ordering is computed, in which
the length of the longest path from s to t in the respective DAG roughly corresponds to p jV j. Thus
by varying p one controls the length of the longest directed path from s to t. The parametrized
variant is implemented according to Papamanthou and Tollis [63] and runs in O(jV j jE j) time.

> purge(a,b,c,d):; G:=graph(%{[a,b],[a,c],[a,d],[b,c],[b,d],[c,d]%})

�Done�; an undirected unweighted graph with 4 vertices and 6 edges

> vertices(G)

4.3. For a biconnected input graph, an st-ordering can be computed for any pair s; t2V such that st2E [76].

120 Graph properties

https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Bipolar_orientation
https://en.wikipedia.org/wiki/Bipolar_orientation
https://en.wikipedia.org/wiki/Bipolar_orientation

[a; b; c; d]

> st_ordering(G,a,d,D)

[0; 2; 1; 3]

> draw_graph(D)

a b

cd

The following program demonstrates the usage of the parametrized st-ordering algorithm for
finding a path between vertices u and v in an undirected, biconnected graph G(V ;E), the length
of which depends on the parameter p2 [0; 1].

FindPath:=proc(G,u,v,p)
local tmp,D,W;
tmp:=!has_edge(G,[u,v]);
if tmp then G:=add_edge(G,[u,v]); fi;
purge(D);
st_ordering(G,u,v,D,p);
if tmp then D:=delete_arc(D,[u,v]); fi;
W:=is_weighted(G) ? weight_matrix(G) : adjacency_matrix(G);
D:=make_weighted(D,-W);
return bellman_ford(D,u,v)[0];

end:;

The procedure FindPath uses Bellman-Ford algorithm to find a longest path from the vertex u2V
to the vertex v2V in the DAGD induced by a parametrized st-ordering of G with parameter p. To
trick Bellman-Ford into finding a longest path instead of the shortest one (which it was originally
designed for), the edges of D are weighted with negative weights. Since D is acyclic, it contains
no negative cycles, so the Bellman-Ford algorithm terminates successfully.

For p= 0 one obtains a relatively short path, but usually not a minimal one. For p= 1 one
obtains near-Hamiltonian paths. For p2 (0; 1), a path of length l which obeys the relation

l� l0+ p (jV j ¡ l0);

where l0 is the average path length for p=0, is obtained.
After compiling the above program in Xcas (by copying it into a programmation cell which

we create by pressing Alt+P), we demonstrate it in the following examples.

> G:=graph("soccerball")

an undirected unweighted graph with 60 vertices and 90 edges

> length(FindPath(G,3,33,0))

12

> length(FindPath(G,3,33,0.5))

39

4.9 Acyclic graphs 121

> length(FindPath(G,3,33,1))

59

4.9.4 Graph condensation

condensation(G)

The command condensation is used for constructing the condensation graph of a given digraph.
It takes a digraph G(V ;E) as its only argument and returns the acyclic digraph G0(V 0;E 0) obtained
by contracting all strongly connected components of G to single vertices. These vertices form
the set V 0. Two vertices u; v 2 V 0 are connected in G0 if and only if there is an arc in G with
tail in the component of G corresponding to u and head in the component of G corresponding
to v. The order of vertices in V 0 is the same as the order of components as returned by the
command strongly_connected_components.

> E:=tran([[1,2,3,3,4,4,4,4,5,5,6,6,6,7,8,8,9,9,10,10,10,11,11,12,13,13,14,15],
[3,1,2,5,1,2,12,13,6,8,7,8,10,10,9,10,5,11,9,11,14,12,14,13,11,15,13,14]]):;
G:=digraph(set[op(E)])

�Done�; a directed unweighted graph with 15 vertices and 28 arcs

> comp:=strongly_connected_components(G)

[[11; 12; 13; 14; 15]; [5; 6; 7; 8; 9; 10]; [1; 2; 3]; [4]]

> c:=[red,green,magenta]:;
for k from 0 to 2 do G:=highlight_vertex(G,comp[k],c[k]); od:;
draw_graph(G,planar,labels=false)

> C:=condensation(G)

a directed unweighted graph with 4 vertices and 4 arcs

> draw_graph(C,spring)

0

1

2

3

122 Graph properties

https://en.wikipedia.org/wiki/Strongly_connected_component#Definitions
https://en.wikipedia.org/wiki/Strongly_connected_component#Definitions

4.10 Matching in graphs

4.10.1 Maximum matching
maximum_matching(G)

The command maximum_matching is used for finding maximum matchings [34, p. 43] in undi-
rected unweighted graphs. It takes an undirected graph G(V ;E) as its only argument and returns a
list of edges e1; e2; :::; em2E such that ei and ej are not adjacent (i.e. have no common endpoints)
for all 16 i < j 6m and that m is maximal. The return value can be interpreted as the list of
matched pairs of vertices in G.

The strategy is to apply the blossom algorithm of Edmonds [23], which runs in O(jV j2 jE j)
time, on connected components of G (one at a time). The implementation combines an efficient
initial heuristic with implicit blossom-shrinking.

> maximum_matching(graph("octahedron"))

[[0; 4]; [1; 3]; [2; 5]]

> G:=graph("soccerball")

an undirected unweighted graph with 60 vertices and 90 edges

> M:=maximum_matching(G):; length(M)

�Done�; 30

> draw_graph(highlight_edges(G,M),labels=false)

> G:=random_graph(10000,0.02)

an undirected unweighted graph with 10000 vertices and 998282 edges

> size(maximum_matching(G))

5000

1.592 sec

4.10.2 Maximum matching in bipartite graphs
bipartite_matching(G)
bipartite_matching(G,minimize|maximize,〈epsilon=<real>〉)

The command bipartite_matching is used for finding maximum (weighted) matchings in
undirected bipartite graphs. It takes an undirected bipartite graph G(V ; E) as its mandatory
argument and returns the maximum matching in G as a list of edges. The strategy is to apply the
algorithm of Hopcroft and Karp [44] which runs in O

¡
jV j

p
jE j

�
time.

4.10 Matching in graphs 123

https://en.wikipedia.org/wiki/Matching_(graph_theory)
https://en.wikipedia.org/wiki/Blossom_algorithm
https://en.wikipedia.org/wiki/Blossom_algorithm

The optional second argument can be either minimize or maximize. If one is given, then Gmust
be a weighted graph. In that case, bipartite_matching finds a minimum/maximum weighted
matching (i.e. solves an assignment problem) using the out-of-kilter algorithm implementation in
GLPK. If the latter is not available, then the task is converted to a transportation problem and
solved by the tpsolve command. Note that negative edge weights are allowed. The return value
is a sequence containing the weight of the matching followed by the list of edges in the matching.

The out-of-kilter algorithm requires all edge weights in G to be integer-valued. If that is not
the case, then bipartite_matching divides the weights by the value epsilon set by the optional
third argument (by default 10¡5) and rounds them subsequently.

> G:=graph("desargues")

an undirected unweighted graph with 20 vertices and 30 edges

> draw_graph(highlight_edges(G,bipartite_matching(G)),labels=false)

> purge(A,B,C,D,E,F):; G:=graph(%{[[A,D],6],[[A,E],2],[[A,F],1],[[B,D],2],[[B,
F],5],[[C,D],3],[[C,E],4],[[C,F],3]%})

�Done�; an undirected weighted graph with 6 vertices and 8 edges

> w_min,ed_min:=bipartite_matching(G,minimize)

7; [[A;E]; [B;D]; [C;F]]

> draw_graph(highlight_edges(G,ed_min))

6

2

1

2

3

4

5
3

A

D EF

B C

> w_max,ed_max:=bipartite_matching(G,maximize)

15; [[A;D]; [B;F]; [C;E]]

> draw_graph(highlight_edges(G,ed_max))

6

2

1

2

3

4

5
3

A

D EF

B C

124 Graph properties

> R:=random_bipartite_graph(5000,20000)

an undirected unweighted graph with 5000 vertices and 20000 edges

> size(bipartite_matching(R))

1417

259 msec

> w,ed:=bipartite_matching(assign_edge_weights(R,1..100),maximize):;

16.508 sec

> size(ed)

1417

4.11 Vertex covers

4.11.1 Finding a vertex cover of the specified size

find_vertex_cover(G,〈k〉)

The command find_vertex_cover is used for obtaining a vertex cover (optionally of the
given size) of an undirected graph. It takes an undirected graph G(V ;E) as its first argument and
returns a vertex cover of G, i.e. a set of vertices C such that each edge e2E has an endpoint in
C. If the optional second argument k> 0 is given, then size of the returned cover must be equal
to k. If there exists no such cover, then the return value is false.

The strategy for k> 0 is to compute an approximation of minimal vertex cover in G using the
algorithm described in Section 4.11.2. If the obtained cover is of size m6 k, then k ¡m vertices
among the remaining ones are added to the cover at random. Otherwise, if m>k, then a cover of
size k is obtained by solving the ILP formulation of the problem.

If k is not specified, find_vertex_cover approximates minimum vertex cover by using Alom's
algorithm [64] which runs in O(jV j2) time and tries to minimize the number of vertices in the cover.
Cover vertices are gathered one at a time, each time choosing a vertex with the maximum incident
edges. Ties are broken by randomly choosing a candidate vertex with the smallest number of edges
connecting it to other candidates. After a vertex is chosen, it is added to the cover and all edges
incident to it are deleted. This procedure is repeated until there are no more edges in the graph.

> G:=random_graph(1000,0.1)

an undirected unweighted graph with 1000 vertices and 49981 edges

> length(find_vertex_cover(G))

956

> H:=random_graph(100,0.1)

an undirected unweighted graph with 100 vertices and 476 edges

> size(find_vertex_cover(H))

75

4.11 Vertex covers 125

https://en.wikipedia.org/wiki/Vertex_cover
https://en.wikipedia.org/wiki/Vertex_cover

> size(minimum_vertex_cover(H))

68

4.11.2 Minimum vertex cover
minimum_vertex_cover(G,〈approx|lp_opts〉)
vertex_cover_number(G)

The command minimum_vertex_cover is used for finding minimum vertex covers of undi-
rected graphs. The command vertex_cover_number is convenient when only the cardinality of a
minimum cover is sought. Both commands take an undirected graph G(V ;E) as their mandatory
argument and return a minimum vertex cover (MVC) C �V of G resp. the cardinality jC j. The
routine for computing MVC in giac operates as follows. The strategy is to split G into connected
components find MVC for each component separately. The union of the obtained covers is a MVC
for G. There are three different kinds of components recognized by the algorithm.

1. If the component C(VC ; EC) is a tree, cycle, or clique, then its MVC is straightforward to
construct. This requires O(jVC j) time.

2. If C is bipartite, then its MVC can be obtained by applying K®nig's theorem which obtains
MVC from maximum matchingM (vertex_cover_number simply computes the size of M).
This requires O

¡
jVC j

p
jEC j

�
time.

3. If C is neither a tree, cycle, clique, or a bipartite graph, then solving the integer linear
programming (ILP) formulation of the MVC problem is attempted. The inclusion of a
vertex v2V is represented by a binary variable xv2f0;1g. The objective to be minimized isP

v2Vxv and the constraints are xv+xw>1 for each vw2E. The branching and reduction
techniques by Akiba and Iwata [3] are used in the process.

If the optional second argument approx is provided, then the solution in the case 3 is approximated
as follows. First, an approximately maximum independent set M in the component C induced by
VC�V is computed by applying the greedy algorithm described in Section 4.12.5. The complement
VC nM is then returned as an approximate MVC of C. This strategy usually gives very good
(near-optimal) results in a short amount of time. It is also used by the exact solver for obtaining
an initial feasible solution.

When finding exact MVC, then a sequence of options lp_opts may be passed to control the
parameters of the GLPK solver. The following options are supported.

� lp_timelimit=L � the solver will be terminated after L milliseconds, where L2N

� lp_gaptolerance=t � the solver will be terminated if the integrality gap is below t2h0;1i

� lp_verbose � show detailed messages from the solver (useful for monitoring the progress)

> G:=random_graph(20,0.1)

an undirected unweighted graph with 20 vertices and 14 edges

> draw_graph(highlight_vertex(G,minimum_vertex_cover(G)),labels=false)

> P:=petersen_graph(8,2)

126 Graph properties

https://en.wikipedia.org/wiki/K%C5%91nig%27s_theorem_(graph_theory)
https://en.wikipedia.org/wiki/K%C5%91nig%27s_theorem_(graph_theory)
https://en.wikipedia.org/wiki/K%C5%91nig%27s_theorem_(graph_theory)
https://en.wikipedia.org/wiki/K%C5%91nig%27s_theorem_(graph_theory)

an undirected unweighted graph with 16 vertices and 24 edges

> C:=minimum_vertex_cover(P)

[0; 2; 3; 4; 6; 7; 8; 9; 12; 13]

> draw_graph(highlight_vertex(P,C))

0 1

2

3

45

6

7

8 9

10

11

1213

14

15

> R:=random_graph(100,0.15)

an undirected unweighted graph with 100 vertices and 729 edges

> size(minimum_vertex_cover(R,approx))

76

> vertex_cover_number(R)

75

6.437 sec

4.12 Cliques and independent sets

4.12.1 Clique graphs
is_clique(G)

Given an undirected graph G(V ;E), a subset S�V is called a clique in G if any two distinct
vertices from S are adjacent in G, i.e. if the subgraph of G induced by the set S is complete. To
check whether an undirected graph is a clique, one can use the is_clique command. It takes an
undirected graph G(V ;E) as its only argument and returns true if every pair of distinct vertices
is connected by a unique edge in E. Otherwise, it returns false.

> K5:=complete_graph(5)

an undirected unweighted graph with 5 vertices and 10 edges

> is_clique(K5)

true

> G:=delete_edge(K5,[1,2])

an undirected unweighted graph with 5 vertices and 9 edges

> is_clique(G)

4.12 Cliques and independent sets 127

false

4.12.2 Finding maximal cliques
find_cliques(G,〈C〉)
find_cliques(G,k,〈C〉)
find_cliques(G,m..n,〈C〉)

A clique in an undirected graph G(V ;E) is maximal if it cannot be extended by adding more
vertices from V to it. To count all maximal cliques in a graph (and optionally list them) one
can use the find_cliques command. It takes an undirected graph G(V ; E) as the mandatory
first argument. If no other arguments are given, the command returns a list of pairs, each pair
consisting of two integers: clique cardinality k and the number nk>0 of k-cliques in G, respectively.
(Therefore, the sum of second members of all returned pairs is equal to the total count of all
maximal cliques in G.) If two arguments are passed to find_cliques, the second argument must
be a positive integer k or an interval with integer bounds m .. n. In the first case the number of
k-cliques is returned; in the second case, only cliques with cardinality between m and n (both
inclusive) are counted.

If C is specified as the last argument, it must be an unassigned identifier. Maximal cliques are
in that case assigned to C as a list of lists of cliques of equal size. This option is therefore used for
listing all maximal cliques.

The strategy used to find all maximal cliques is a variant of the algorithm of Bron and
Kerbosch developed by Tomita et al. [78]. Its worst-case running time is O(3jV j/3). However,
the algorithm is usually very fast, typically taking only a moment for graphs with few hundred
vertices or less.

> G:=sierpinski_graph(3,3)

an undirected unweighted graph with 27 vertices and 39 edges

> find_cliques(G) �
2 12
3 9

�
> G:=random_graph(100,0.5)

an undirected unweighted graph with 100 vertices and 2507 edges

> find_cliques(G,5)

3529

> G:=random_graph(500,0.25)

an undirected unweighted graph with 500 vertices and 31163 edges

> find_cliques(G,5..7) 0@ 5 149442
6 17105
7 349

1A
1.457 sec

> G:=graph("octahedron")

an undirected unweighted graph with 6 vertices and 12 edges

128 Graph properties

> purge(C):; find_cliques(G,C)

�Done�; (3 8)

> C

[[0; 2; 4]; [0; 2; 5]; [0; 3; 4]; [0; 3; 5]; [1; 2; 4]; [1; 2; 5]; [1; 3; 4]; [1; 3; 5]]

4.12.3 Maximum clique
maximum_clique(G)
clique_number(G)

Any largest maximal clique in an undirected graph is called maximum clique. The command
maximum_clique can be used to find one in a graph. If only the size of a maximum clique is desired,
one can use the command clique_number.

maximum_clique takes an undirected graph G as its only argument and returns a maximum
clique in G as a list of vertices. The clique may subsequently be extracted from G using the
command induced_subgraph.

The strategy used to find maximum clique is an improved variant of the classical algorithm of
Carraghan and Pardalos developed by Östergård [60].

clique_number has the same calling syntax, but returns only the size of a maximum clique in G.

> G:=sierpinski_graph(5,5)

an undirected unweighted graph with 3125 vertices and 7810 edges

> maximum_clique(G)

[1560; 1561; 1562; 1563; 1564]

> G:=random_graph(300,0.3)

an undirected unweighted graph with 300 vertices and 13603 edges

> maximum_clique(G)

[53; 93; 103; 179; 183; 224; 277; 289]

> G:=graph_complement(complete_graph(4,3))

an undirected unweighted graph with 7 vertices and 9 edges

> cliq:=maximum_clique(G)

[0; 1; 2; 3]

> draw_graph(highlight_subgraph(G,induced_subgraph(G,cliq)))

0 1

23

4

56

4.12 Cliques and independent sets 129

clique_number takes an undirected graph G as its only argument and returns the number of
vertices forming a maximum clique in G.

> clique_number(G)

4

4.12.4 Maximum independent set

maximum_independent_set(G)
independence_number(G)

The command maximum_independent_set is used for finding maximum independent sets in
undirected graphs. For obtaining just the size of a maximum independent set use the command
independence_number.

maximum_independent_set takes an undirected graph G as its only argument and finds a
maximum clique in the complement of G (see Section 4.12.3), which corresponds to a maximum
independent set in G.

independence_number has the same calling syntax, but returns only the size of a maximum
independent set in G.

> G:=complete_graph(3,4)

an undirected unweighted graph with 7 vertices and 12 edges

> draw_graph(G)

0 1 2

3 4 5 6

> maximum_independent_set(G)

[3; 4; 5; 6]

> independence_number(G)

4

> maximum_clique(graph_complement(G))

[3; 4; 5; 6]

4.12.5 Greedy clique finding

greedy_clique(G,〈n〉)
greedy_independent_set(G,〈n〉)

The commands greedy_clique and greedy_independent_set are used for finding large cliques
and independent sets in undirected graphs.

greedy_clique takes an undirected graph G(V ; E) as its mandatory first argument and an
integer n>2 as the optional second argument (by default, n=5). It attempts to find a large clique
in G, returning the list of corresponding vertex labels.

130 Graph properties

https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
https://en.wikipedia.org/wiki/Independent_set_(graph_theory)

The strategy is to apply a greedy randomized adaptive search procedure (GRASP) tailored for
the local maximum clique problem as described by Abello and Pardalos in [1, procedure grasp,
pp. 4�5] with maxitr=n (the number of iterations).

greedy_independent_set attempts to find a large independent set of the graph G, returning
the list of corresponding vertex labels. The strategy is to call greedy_clique on the complement
of G.

> G1:=random_graph(1500,0.75)

an undirected unweighted graph with 1500 vertices and 843214 edges

> size(c1:=greedy_clique(G1))

27

1.512 sec

> is_clique(induced_subgraph(G1,c1))

true

It can be shown that the expected number of cliques of size k in G1 is equal to
�1000

k

�
0.75

�
k
2

�
.

This number gets below 1 for about k= 34, which indicates that a maximum clique should be of
size around 34.

In the following example, the same is tried with a large sparse graph, now running 50 iterations
instead of the default 5.

> G2:=random_graph(3000,0.01)

an undirected unweighted graph with 3000 vertices and 44882 edges

> c2:=greedy_clique(G2,50)

[241; 350; 1216; 2116]

> is_clique(induced_subgraph(G2,c2))

true

By the same argument as before, but now with the formula
�3000

k

�
0.01

�
k
2

�
, it is suggested that

the maximum clique in G2 should be of size about 4.

In the next example a random regular graph is used.

> G3:=random_regular_graph(100,30)

an undirected unweighted graph with 100 vertices and 1500 edges

> greedy_clique(G3)

[7; 29; 38; 46; 68]

Finally, we also find an independent set using 8 iterations.

> greedy_independent_set(G3,8)

[2; 5; 7; 8; 12; 13; 56; 60; 74; 75; 76; 94]

4.12 Cliques and independent sets 131

4.12.6 Minimum clique cover
clique_cover(G,〈opts〉)

A minimum clique cover for an undirected graph G is any minimal set S= fC1; C2; :::; Ckg
of cliques in G such that for every vertex v in G there exists i6 k such that v 2Ci. Such a cover
can be obtained by using the clique_cover command. It takes an undirected graph G(V ;E) as
its mandatory argument and returns the smallest possible cover. A sequence of options opts may
be passed as the second argument, each of which is one of the following.

� b (positive integer) � sets the upper bound k6 b, which enables the heuristic procedures

� lp_timelimit=L � the solver will be terminated after L milliseconds

� lp_verbose � prints detailed messages from the solver (useful for monitoring the progress)

The strategy is to find a minimal vertex coloring in the complement Gc of G. Each set of equally
colored vertices in Gc corresponds to a clique in G. Therefore, the color classes of Gc correspond
to the elements C1; :::; Ck of a minimal clique cover in G. If the upper bound b is set, then finding
a cover by using GRASP (see Section 4.12.5) and DSATUR (see Section 4.14.2) heuristics is
attempted before resorting to the exact algorithm.

There is a special case in which G is triangle-free (i.e. contains no 3-cliques), which is computed
separately by the algorithm. In that case, G contains only 1- and 2-cliques. Therefore, every clique
cover in G consists of a set M �E of matched edges together with the singleton cliques (i.e. the
isolated vertices in V which remain unmatched). The total number of cliques in the cover is equal
to jV j ¡ jM j, hence to find a minimal cover it is required only to find a maximum matching in G,
which can be done in polynomial time (see Section 4.10.1).

> G:=random_graph(30,0.2)

an undirected unweighted graph with 30 vertices and 98 edges

> clique_cover(G)

[[9; 13; 29]; [1; 21; 23]; [17; 28]; [19; 20; 22; 25]; [8; 16; 18]; [5; 6; 15]; [2; 4]; [0; 27]; [24; 26]; [12; 14]; [7;

11]; [3; 10]]

> clique_cover(graph("octahedron"))

[[2; 4; 5]; [1; 3; 6]]

The vertices of Petersen graph can be covered with five, but not with three cliques.

> clique_cover(graph("petersen"),3)

[]

> clique_cover(graph("petersen"),5)

[[7; 9]; [6; 8]; [0; 5]; [3; 4]; [1; 2]]

4.12.7 Clique cover number
clique_cover_number(G)

The command clique_cover_number is used for computing the clique cover number of a graph.
It takes an undirected graph G(V ; E) as its only argument and returns the minimum number of
cliques in G needed to cover the vertex set V . (Precisely, it calls the clique_cover command and
returns the length of the output list.) This number, denoted by �(G), is equal to the chromatic
number �(Gc) of the complement graph Gc of G.

132 Graph properties

https://en.wikipedia.org/wiki/Clique_cover
https://en.wikipedia.org/wiki/Clique_cover
https://en.wikipedia.org/wiki/Clique_cover

> clique_cover_number(graph("petersen"))

5

> clique_cover_number(graph("soccerball"))

30

4.12.8 Split graphs
is_split_graph(G,〈part〉)

The command is_split_graph is used for detecting split graphs and for obtaining decompo-
sitions of split graphs. It takes a single mandatory argument, an undirected graph G(V ; E), and
returns true if and only if G is a split graph, which means that V can be partitioned into a clique
C � V and an independent set D= V nC. If the keyword part is given and G is a split graph,
then the list containing C and D (in that order) is also returned.

The strategy is to apply the criterion of Hammer and Simeone [39] which uses only the degree
sequence of G. The algorithm operates in O(jV j log jV j) time.

> K:=graph(5,%{[0,1],[0,2],[1,2],[1,3],[2,3],[3,4]%})

an undirected unweighted graph with 5 vertices and 6 edges

> draw_graph(K)

0

1

23

4

> is_split_graph(K)

true

> is_split_graph(K,part)

true; [[3; 2; 1]; [0; 4]]

4.12.9 Simplicial vertices
simplicial_vertices(G)

A vertex in an undirected graph is simplicial if its neighborhood is a clique. The command
simplicial_vertices is used for finding such vertices in the given graph. It takes an undirected
graph G(V ;E) as its only argument and returns the list of simplicial vertices in V , i.e. the vertices
for which the corresponding neighborhood-induced subgraphs are complete.

The strategy is to use the algorithm of Kloks et al. [49], which in the present implementation
has the worst-case running time O(jE j3/2).

> G:=graph("goldner-harary")

an undirected unweighted graph with 11 vertices and 27 edges

> simplicial_vertices(G)

4.12 Cliques and independent sets 133

https://en.wikipedia.org/wiki/Split_graph
https://en.wikipedia.org/wiki/Split_graph

[0; 1; 2; 3; 4; 5]

> H:=sierpinski_graph(3,6)

an undirected unweighted graph with 216 vertices and 645 edges

> simplicial_vertices(H)

[0; 43; 86; 129; 172; 215]

> is_clique(induced_subgraph(H,neighbors(H,43)))

true

4.13 Network analysis

4.13.1 Counting triangles
number_of_triangles(G,〈L〉)

The command number_of_triangles is used for counting triangles in graphs. It takes a graph
G as its first, mandatory argument and returns the number n of 3-cliques in G if G is undirected
resp. the number m of directed cycles of length 3 if G is directed. If an unassigned identifier L is
given as the second argument, then the list of triangles is assigned to L. Note that triangle listing
is supported only for undirected graphs.

For undirected graphs the algorithm of Schank andWagner [67, Algorithm forward], improved
by Latapy [52], is used, which runs in O(jE j3/2) time. For digraphs, the strategy is to com-
pute the trace of A3 where A is the adjacency matrix of G. This algorithm requires O(jV j jE j) time.

> number_of_triangles(graph("tetrahedron"))

4

> G:=digraph([1,2,3,4],%{[1,2],[1,4],[2,3],[2,4],[3,1],[4,3]%})

a directed unweighted graph with 4 vertices and 6 arcs

> draw_graph(G,spring)

1

2

3

4

> number_of_triangles(G)

2

> G:=sierpinski_graph(7,3,triangle)

an undirected unweighted graph with 1095 vertices and 2187 edges

> number_of_triangles(G)

134 Graph properties

https://en.wikipedia.org/wiki/Triangle_graph
https://en.wikipedia.org/wiki/Triangle_graph
https://en.wikipedia.org/wiki/Triangle_graph

972

Petersen graph is triangle-free, i.e. contains no 3-cliques.

> number_of_triangles(graph("petersen"))

0

Counting triangles in undirected graphs is very fast, as illustrated by the following example.

> G:=random_graph(10^5,10^6)

an undirected unweighted graph with 100000 vertices and 1000000 edges

> number_of_triangles(G)

25306

1.155 sec

To list all triangles in a graph, pass an unassigned identifier as the second argument; the list
of triangles will be assigned to it.

> G:=graph("octahedron")

an undirected unweighted graph with 6 vertices and 12 edges

> draw_graph(G)

0

1 2

3

4

5

> purge(L):; number_of_triangles(G,L)

�Done�; 8

> L

[[1; 3; 5]; [1; 3; 4]; [0; 3; 5]; [0; 3; 4]; [1; 2; 5]; [1; 2; 4]; [0; 2; 5]; [0; 2; 4]]

4.13.2 Clustering coefficient
clustering_coefficient(G,〈opt〉)
clustering_coefficient(G,v)
clustering_coefficient(G,v1,v2,..,vk)
clustering_coefficient(G,[v1,v2,..,vk])

The command clustering_coefficient is used for computing the average clustering coef-
ficient (or simply: clustering coefficient) of an undirected graph as well as the local clustering
coefficient of a particular vertex in that graph. It takes one or two arguments, an undirected graph
G(V ; E) and optionally a vertex v 2V or a list/sequence of vertices v1; v2; :::; vk 2V . If G is the
only argument, then the clustering coefficient c(G) [12, p. 5] is returned. Otherwise, the local
clustering coefficient cG(v) [12, p. 4] of v resp. a list of local clustering coefficients of v1; v2; :::; vk
is returned. The second argument may also be one of the following options.

4.13 Network analysis 135

https://en.wikipedia.org/wiki/Clustering_coefficient#Network_average_clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient#Network_average_clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient#Network_average_clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient#Network_average_clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient#Network_average_clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient#Local_clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient#Local_clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient#Local_clustering_coefficient

� approx � an approximation of the clustering coefficient c(G), lying within 0.5� 10¡2 of
the exact value with probability p=1¡ 10¡5, is returned

In any case, the return value is�by definition�a rational number in the range [0; 1].
The clustering coefficient of G is defined as the mean of cG(v), v 2V :

c(G)= 1
jV j

X
v2V

cG(v):

c(G) can be interpreted as the probability that, for a randomly selected pair of incident edges (u;v)
and (v;w) in G, the vertices u and w are connected. The number cG(v) is interpreted analogously
but for a fixed v 2V . It represents the probability that two neighbors of v are connected to each
other.

For example, assume that G represents a social network in which uv 2E indicates that u and
v are friends (which is a symmetric relation). In this context, c(v) represents the probability that
two friends of v are also friends of each other.

The time complexity of computing c(G) is O(jE j3/2), whereas the algorithm of Schank and
Wagner [68, Algorithm 1, p. 269] for approximating c(G) runs in O(log jV j) time.

Note that the command random_graph can, by using a preferential attachment rule, generate
realistic random networks with adjustable clustering coefficient.

> G:=graph("diamond")

an undirected unweighted graph with 4 vertices and 5 edges

> draw_graph(G,spring)

1

2

3

4

The command lines below compute c(G), cG(1) and cG(2).

> clustering_coefficient(G,exact)

5
6

> clustering_coefficient(G,1)

2
3

> clustering_coefficient(G,2)

1

The next example demonstrates the performance of clustering_coefficient on a large graph.

> G:=random_graph(25000,10,100)

an undirected unweighted graph with 25000 vertices and 988571 edges

> clustering_coefficient(G)

0.637641843214

1.469 sec

136 Graph properties

> clustering_coefficient(G,approx)

0.637380772718

491 msec

The probability that two neighbors of a vertex in G are connected is therefore about 64%.

4.13.3 Network transitivity
network_transitivity(G)

The command network_transitivity is used for computing the transitivity (also called tri-
angle density or the global clustering coefficient) of a network. It takes a graph G as its only
argument and returns the transitivity T (G) of G [12, p. 5] as a rational number in the range [0; 1]:

T (G)=
3Ntriangles

Ntriplets
:

T (G) is a measure of transitivity of a non-symmetric relation between the vertices of a network. If
G is a digraph, then a triplet in G is any directed path (v; w; z) where v;w; z 2V . For example,
in a Twitter-like social network this could mean that v following w and w following z. The triplet
(v; w; z) is closed if (v; z) 2E, i.e. if v also follows z [82, p. 243]. A closed triplet is called a
triangle. If G is undirected, then Ntriangles equals the number of 3-cliques and Ntriplets equals the
number of two-edge paths in V .

The complexity of computing T (G) is O(�G jE j) for digraphs, where�G is the maximum vertex
degree in G, resp. O(jE j3/2) for undirected graphs.

> G:=graph(%{[1,2],[2,3],[2,4],[3,4],[4,1]%})

an undirected unweighted graph with 4 vertices and 5 edges

> network_transitivity(G)

3
4

Observe that the above result is different than c(G) obtained in Section 4.13.2. Hence c(G)=/
T (G) in general [12, p. 5].

> G:=random_digraph(10,20)

a directed unweighted graph with 10 vertices and 20 arcs

> draw_graph(G)

0 1

2

3

4

56

7

8

9

In the above digraph, the triplet (7; 6; 8) is open while the triplet (7; 6; 4) is closed. Triangles
(1; 5; 7) and (3; 2; 9) are not closed by definition.

> network_transitivity(G)

4.13 Network analysis 137

https://en.wikipedia.org/wiki/Clustering_coefficient#Global_clustering_coefficient

1
8

The transitivity algorithms are suitable for large networks, as demonstrated in the examples
below.

> G:=random_digraph(1000,500000)

a directed unweighted graph with 1000 vertices and 500000 arcs

> nt:=network_transitivity(G):;

2.137 sec

> evalf(nt)

0.500525000328

> H:=random_graph(30000,10,50)

an undirected unweighted graph with 30000 vertices and 1015074 edges

> evalf(network_transitivity(H))

0.135416551785

1.418 sec

4.13.4 Centrality measures
betweenness_centrality(G,〈v〉)
closeness_centrality(G,〈v〉)
communicability_betweenness_centrality(G,〈v〉)
degree_centrality(G,〈v〉)
harmonic_centrality(G,〈v〉)
information_centrality(G,〈v〉,〈approx〉)
katz_centrality(G,alpha,〈v〉)

giac provides several commands for measuring vertex centrality in networks. These commands
compute the indicated centrality measure for the vertex v 2 V in a graph G(V ; E) with jV j> 1.
If v is omitted, then the list of values for every vertex in V is returned, in order as provided by
vertices(G).

Degree centrality of a vertex v 2V is computed using the formula

CD(v)=
deg (v)
jV j ¡ 1 :

Closeness centrality of a vertex v 2V is computed using the formula

C(v)= jV j ¡ 1P
u2V d(u; v)

;

where d(u; v) is the distance from u to v [7].
Harmonic centrality of a vertex v 2V is computed using the formula [54]

H(v)=
X
u2V

1
d(u; v)

:

The worst case complexity for closeness and harmonic centralities is O(jV j3), and only when
computing the scores for all vertices in a weighted graph G. For unweighted graphs, the complexity
drops to O(jV j2+ jV j jE j).

138 Graph properties

https://en.wikipedia.org/wiki/Centrality
https://en.wikipedia.org/wiki/Centrality#Degree_centrality
https://en.wikipedia.org/wiki/Centrality#Degree_centrality
https://en.wikipedia.org/wiki/Closeness_centrality
https://en.wikipedia.org/wiki/Closeness_centrality
https://en.wikipedia.org/wiki/Centrality#Harmonic_centrality
https://en.wikipedia.org/wiki/Centrality#Harmonic_centrality

Betweenness centrality of a vertex v 2V is computed using the formula

CB(v)=
X

s=/ v=/ t2V

�st(v)
�st

;

where �st is total number of shortest paths from s to t and �st(v) is the number of those paths
which pass through v [30]. The strategy is to use the algorithm by Brandes [13] which operates
in O(jV j jE j) time and O(jV j+ jE j) space. Edge weights are ignored.

Communicability betweenness centrality of a vertex v2V is computed using the formula

CCB(v)=
1

(n¡ 1) (n¡ 2)
X
s=/ v

X
t=/ s;v

�
1¡ (eAv)st

(eA)st

�
;

where A is the adjacency matrix of G and Av is the same matrix with the row corresponding to
v filled with zeros [26]. It is always CCB(v)2 [0; 1] and this value is interpreted as the weighted
proportion of walks which pass through v, but do not start nor end in v. Matrix exponentials are
computed in floating-point arithmetic for efficiency; hence the output is always inexact. Note that
G must be (strongly) connected for CCB(v) to be defined for all v 2V .

Information centrality of a vertex v 2V is computed using the formula [71]

CI(v)=
jV jP

u2V (Buu+Bvv¡ 2Buv)
;

where B=(L+J)¡1, L is the Laplacian matrix of G, and J is the jV j� jV j matrix in which every
entry is 1 [69]. The graph G must be undirected and connected (the matrix B does not exist if G
is disconnected). If the optional argument approx is given, then the result is computed using the
floating-point arithmetic, which is faster. Note that information centrality takes edge weights into
account. However, if G is weighted, then the corresponding weight function must be nonnegative.

Katz centrality of a vertex v 2V is computed using the formula

CK(v)=
X
w2V

(I ¡�AT)v;w¡1

where A is the adjacency matrix of G, � < 1

j�j is the attenuation factor (given as the second

argument), and � is an eigenvalue of A with the largest magnitude [48]. Note that if the above
condition on � is not met, then the result is meaningless. If � is a floating-point value, then the
computation is done using the floating-point arithmetic, otherwise it is exact.

> G:=graph(6,%{[0,2],[0,5],[1,3],[1,5],[2,5],[3,4],[3,5],[4,5]%})

an undirected unweighted graph with 6 vertices and 8 edges

> draw_graph(G,circle)

0 1

2

34

5

> degree_centrality(G) �
2
5
;
2
5
;
2
5
;
3
5
;
2
5
; 1

�
> closeness_centrality(G)

4.13 Network analysis 139

https://en.wikipedia.org/wiki/Betweenness_centrality
https://en.wikipedia.org/wiki/Betweenness_centrality
https://en.wikipedia.org/wiki/Katz_centrality
https://en.wikipedia.org/wiki/Katz_centrality

�
5
8
;
5
8
;
5
8
;
5
7
;
5
8
; 1

�
> harmonic_centrality(G) �

7
2
;
7
2
;
7
2
; 4; 7

2
; 5

�
> betweenness_centrality(G) �

0; 0; 0; 1
2
; 0; 13

2

�
> information_centrality(G) �

72
61
;
36
29
;
72
61
;
72
49
;
36
29
;
72
37

�
> katz_centrality(G,0.1)

[1.29598461169; 1.30920894446; 1.29598461169; 1.42822793941; 1.30920894446; 1.66386150517]

> communicability_betweenness_centrality(G)

[0.18821520708; 0.19998571076; 0.18821520708; 0.36343750077; 0.19998571076; 0.84722831422]

The above results show that, according to each of the implemented centrality measures, the
vertex with label 5 is more important than other vertices.

4.14 Graph coloring

4.14.1 Greedy vertex coloring
greedy_color(G,〈p〉)

The command greedy_color is used for coloring vertices of a graph in a greedy fashion. It
takes one mandatory argument, a graph G(V ; E). Optionally, a permutation p of order jV j may
be passed as the second argument. Vertices are colored one by one in the order specified by p (or
in the default order if p is not given) such that each vertex gets the smallest available color. The
list of vertex colors is returned in the order of vertices(G).

Generally, different choices of permutation p produce different colorings. The total number of
different colors may not be the same each time. The complexity of the algorithm is O(jV j+ jE j).

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> greedy_color(G)

[1; 2; 1; 2; 3; 2; 1; 3; 3; 2]

> L:=greedy_color(G,randperm(10))

[2; 1; 2; 4; 1; 1; 2; 4; 3; 3]

Observe that a different number of colors is obtained by executing the last command line. To
display the colored graph, input:

140 Graph properties

https://en.wikipedia.org/wiki/Graph_coloring#Vertex_coloring
https://en.wikipedia.org/wiki/Graph_coloring#Vertex_coloring

value 1 2 3 4 5 6 7
color red green yellow blue magenta cyan black

Table 4.1. Vertex/edge colors in Xcas.

> draw_graph(highlight_vertex(G,vertices(G),L),labels=false)

The mapping of integers to vertex colors in Xcas is shown in Table 4.1. Vertices with color 0
are considered to be uncolored. The same applies to edge colors (see Section 4.14.6).

4.14.2 Minimal vertex coloring
minimal_vertex_coloring(G,〈opts〉)

A vertex coloring of G is minimal (or optimal) if the total number of used colors is minimal.
To obtain such a coloring use the command minimal_vertex_coloring. It takes one mandatory
argument, an undirected graph G(V ; E). Optionally, a sequence of options opts may be passed
as the second argument. The following options are supported.

� sto � the keyword indicating that the colors should be stored as vertex attributes

� lp_timelimit=L � the solver will be terminated after L milliseconds, where L2N
� lp_verbose � show detailed messages from the solver (useful for monitoring the progress)

minimal_vertex_coloring returns the vertex colors in order of vertices(G) or, if the option sto
is given, it stores the colors as vertex attributes and returns a modified copy of G.

The minimal vertex coloring problem (MVCP) is converted to the equivalent integer linear
programming problem and solved by using the branch-and-bound method with specific branching
and backtracking techniques [20], for which the GLPK library is required. Simplicial vertices are
removed prior to the conversion, to be handled afterwards. The lower resp. the upper bound for
the number n of colors is obtained by finding a maximal clique (n cannot be smaller than its
cardinality) resp. by applying the DSATUR heuristic by Brélaz in [14] (which will use at least
n colors). Note that the algorithm performs some randomization when applying heuristics, hence
coloring a graph generally does not take the same amount of computation time in each instance.

> G:=graph("groetzsch")

an undirected unweighted graph with 11 vertices and 20 edges

> coloring:=minimal_vertex_coloring(G)

[2; 1; 3; 2; 3; 4; 1; 3; 1; 1; 2]

> draw_graph(highlight_vertex(G,vertices(G),coloring),labels=false)

4.14 Graph coloring 141

4.14.3 Chromatic number
chromatic_number(G,〈c〉)
chromatic_number(G,approx|interval)

The command chromatic_number is used for exact computation or approximation of the chro-
matic number of a graph. It takes one mandatory argument, an undirected graph G(V ; E), and
optionally a second argument. To obtain only upper and lower bound for the chromatic number
(which is much faster than computing exactly) the option approx or interval should be passed
as the second argument. Alternatively, an unassigned identifier c may be passed as the second
argument, in which case the corresponding coloring is assigned to it in form of a list of colors of
the individual vertices ordered as in vertices(G).

The command returns the chromatic number �G of the graph G in the case of exact computa-
tion. If the option approx or interval is given, then an interval lb..ub is returned, where lb is
the best lower bound and ub the best upper bound for �G found by the algorithm.

The strategy is call minimal_vertex_coloring in the case of exact computation. To approx-
imate the chromatic number, the algorithm establishes the lower bound by finding a maximum
clique. If no maximum clique is found in less than 5 seconds, then the largest clique found is used.
An upper bound is established using the DSATUR heuristic by Brélaz in [14].

> chromatic_number(graph("groetzsch"))

4

> chromatic_number(graph("higman-sims"),approx)

2:::8

4.14.4 Mycielski graphs
mycielski(G)

The command mycielski is used for constructing Mycielski graphs. It takes an undirected
graph G(V ;E) as its only argument and returns the corresponding Mycielski graph M (also called
the Mycielskian of G) with 2 jV j+1 vertices and 3 jE j+ jV j edges. If G is triangle-free then M
is also triangle-free and �M = �G+1.

> P:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> M:=mycielski(P)

an undirected unweighted graph with 21 vertices and 55 edges

> apply(number_of_triangles,[P,M])

[0; 0]

> chromatic_number(P); chromatic_number(M)

3; 4

mycielski can be applied iteratively, producing arbitrarily large graphs from the most simple
ones. For example, Grötzsch graph is obtained as the Mycielskian of a cycle graph on 5 vertices,
which is the Mycielskian of a path graph on two vertices.

> G1:=path_graph(2)

an undirected unweighted graph with 2 vertices and 1 edge

142 Graph properties

https://en.wikipedia.org/wiki/Graph_coloring#Vertex_coloring
https://en.wikipedia.org/wiki/Graph_coloring#Vertex_coloring
https://en.wikipedia.org/wiki/Graph_coloring#Vertex_coloring
https://en.wikipedia.org/wiki/Graph_coloring#Vertex_coloring
https://en.wikipedia.org/wiki/Mycielskian
https://en.wikipedia.org/wiki/Mycielskian

> G2:=mycielski(G1)

an undirected unweighted graph with 5 vertices and 5 edges

> G3:=mycielski(G2)

an undirected unweighted graph with 11 vertices and 20 edges

> is_isomorphic(G2,cycle_graph(5)) and is_isomorphic(G3,graph("groetzsch"))

true

All three graphs are triangle-free. Since it is obviously �G1=2, it follows �G2=3 and �G3=4.

> apply(chromatic_number,[G1,G2,G3])

[2; 3; 4]

4.14.5 k-coloring
is_vertex_colorable(G,k,〈c〉)

The command is_vertex_colorable is used for determining whether the vertices of a graph
can be colored with at most k colors. It takes either two or three arguments: a graph G(V ;E), a
positive integer k, and optionally an unassigned identifier c. The command returns true if G can be
colored using at most k colors. Otherwise, it returns false. If the third argument is given, then a
coloring using at most k colors is assigned to c as a list of vertex colors, in the order of vertices(G).

The strategy is to first apply a simple greedy coloring procedure which runs in linear time. If
the number of required colors is greater than k, the heuristic proposed by Brélaz in [14] is used,
which runs in quadratic time. If the number of required colors is still larger than k, the algorithm
attempts to find the chromatic number �G using k as the upper bound in the process.

> G:=graph("groetzsch")

an undirected unweighted graph with 11 vertices and 20 edges

> is_vertex_colorable(G,3)

false

> is_vertex_colorable(G,4)

true

4.14.6 Minimal edge coloring
minimal_edge_coloring(G,〈opts〉)
chromatic_index(G)

The command minimal_edge_coloring is used for finding a minimal coloring of edges in
a graph, satisfying the following two conditions: any two mutually incident edges are colored
differently and the total number n of colors is minimal. The theorem of Vizing [21, p. 103] states
that every simple undirected graph falls into one of two categories: 1 if n=� or 2 if n=�+1,
where � is the maximum degree of the graph.

minimal_edge_coloring takes one mandatory argument, a graph G(V ; E). Optionally, a
sequence of options opts may be passed as the second argument. The following options are sup-
ported.

� sto � the keyword indicating that the colors should be stored as edge attributes

4.14 Graph coloring 143

https://en.wikipedia.org/wiki/Edge_coloring
https://en.wikipedia.org/wiki/Edge_coloring
https://en.wikipedia.org/wiki/Edge_coloring

� lp_timelimit=L � the solver will be terminated after L milliseconds, where L2N
� lp_verbose � show detailed messages from the solver (useful for monitoring the progress)

If the option sto is specified, a minimal coloring is stored in the input graph (each edge e2E gets
a color ce stored as an attribute) and a modified copy of G is returned. Otherwise, the command
returns a sequence of two objects: integer 1 or 2, indicating the category, and the list of edge colors
in the order as returned by edges.

The strategy is to partition the edges of G into a set of matchings by applying the maximum-
matching algorithm iteratively (see Section 4.10.1). If the partition is of size �, then G is in the
first category and the coloring is obtained from the matchings. Otherwise, a minimal vertex coloring
of the line graph of G is found by using the algorithm described in Section 4.14.2.

The command chromatic_index is used for computing the chromatic index of of a graph. It
takes an undirected graph G(V ;E) as its only argument and returns the size �0(G) of a minimal
edge coloring.

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> minimal_edge_coloring(G)

2; [1; 2; 3; 3; 4; 1; 2; 3; 4; 1; 1; 2; 1; 2; 3]

> draw_graph(minimal_edge_coloring(graph("groetzsch"),sto),labels=false)

> chromatic_index(flower_snark(5))

4

144 Graph properties

https://en.wikipedia.org/wiki/Edge_coloring#Definitions
https://en.wikipedia.org/wiki/Edge_coloring#Definitions

Chapter 5
Traversing graphs

5.1 Walks and tours

5.1.1 Eulerian graphs
is_eulerian(G,〈T〉)

The command is_eulerian is used for determining whether a graph contains an Eulerian trail,
i.e. a trail which passes through each of its edges exactly once [34, p. 395]. A graph is Eulerian
if it has such a trail. An Eulerian trail may be closed, in which case it is an Eulerian circuit.

is_eulerian takes one or two arguments, a (di)graph G(V ; E) and optionally an unassigned
identifier T, and returns true if G is Eulerian. Otherwise, it returns false. If the second argument
is given and G is undirected, then an Eulerian trail is computed and assigned to T.

The strategy for finding an Eulerian trail is to apply Hierholzer's algorithm [41]. It works
by covering one cycle at a time in the input graph. The required time is O(jE j).

> is_eulerian(complete_graph(4))

false

> is_eulerian(complete_graph([1,2,3,4,5]),T); T

true; [1; 2; 3; 4; 1; 5; 2; 4; 5; 3; 1]

> is_eulerian(graph("tetrahedron"))

false

> is_eulerian(graph("octahedron"))

true

> G:=digraph(%{[1,4],[1,3],[2,1],[3,2],[4,5],[5,1]%})

a directed unweighted graph with 5 vertices and 6 arcs

> draw_graph(G)

1

4 3

25

> is_eulerian(G)

145

https://en.wikipedia.org/wiki/Eulerian_path
https://en.wikipedia.org/wiki/Eulerian_path

Input digraph has an Eulerian circuit

true

> H:=digraph(%{[1,2],[2,3],[2,4],[3,4],[3,1],[4,5],[4,6],[5,1],[5,2],[6,3],[6,
5]%})

a directed unweighted graph with 6 vertices and 11 arcs

> draw_graph(H,spring)

1

2

3

4

5

6

> is_eulerian(H)

Input digraph has an Eulerian trail starting at 6 and ending at 1

true

5.1.2 Hamiltonian graphs
is_hamiltonian(G,〈hc〉)

The command is_hamiltonian is used for determining whether a graph is Hamiltonian. The
command can also construct a Hamiltonian cycle in the input graph if the latter is Hamiltonian. It
takes one or two arguments, a (di)graph G(V ;E) and optionally an unassigned identifier hc. The
command returns true if G is Hamiltonian. Otherwise, it returns false. If the second argument
is given, a Hamiltonian cycle is assigned to hc.

The strategy is to apply a simple backtracking algorithm for finding a Hamiltonian cycle.
However, some known characterizations of (non)hamiltonicity are applied first, as follows.

� If G is directed, then the following criteria are applied. If G is not strongly connected, then
it is not Hamiltonian. Otherwise, the criterion of Ghouila and Houri [53] is applied: if
deg(v)> jV j for all v2V , then G is Hamiltonian. Otherwise, the criterion of Meyniel [53]
is applied: if deg(v)+deg(w)> 2 jV j¡1 for any pair of non-adjacent vertices v;w2V , then
G is Hamiltonian.

� If G is undirected, then the criteria listed byDeLeon [19] are applied, in the following order.

Connectivity criterion � If G is not biconnected, then it is not Hamiltonian.

Dirac criterion � If �(G)> jV j
2
, where �(G)=minfdeg(v) :v2V g, then G is Hamil-

tonian.

Bipartite-graph criterion � If G is bipartite with vertex partition V = V1[V2 and
jV1j=/ jV2j, then G is not Hamiltonian.

Ore criterion � If deg(u) + deg(v) > jV j holds for every pair u; v of non-adjacent
vertices from V , then G is Hamiltonian.

Bondy�Chvátal theorem � If the closure cl(G) of G (obtained by finding a pair
u; v of non-adjacent vertices from V such that deg(u)+ deg(v)> jV j, adding a new
edge uv to E and repeating the process until exhaustion) is Hamiltonian, then G is
Hamiltonian. Note that in this case the previously tried criteria are applied to cl(G);
vertex degrees in cl(G) are generally higher than those in G and hence the probability
of success is greater.

146 Traversing graphs

https://en.wikipedia.org/wiki/Hamiltonian_path
https://en.wikipedia.org/wiki/Hamiltonian_path

Nash�Williams criterion (for large edge-density) � If �(G)>max
n
jV j+2

3
; �

o
,

where � is the independence number of G, then G is Hamiltonian.

The backtracking algorithm is space-efficient but may take a long time on larger graphs.

> is_hamiltonian(graph("soccerball"))

true

> is_hamiltonian(graph("octahedron"),hc)

true

> draw_graph(highlight_trail(graph("octahedron"),hc))

13

6

5

42

> is_hamiltonian(graph("herschel"))

false

> is_hamiltonian(graph("petersen"))

false

> is_hamiltonian(hypercube_graph(6))

true

8.455 sec

> G:=digraph(%{[1,2],[1,3],[1,7],[2,1],[2,3],[3,2],[3,4],[4,1],[4,5],[5,2],[5,
6],[6,2],[6,7],[7,3]%})

a directed unweighted graph with 7 vertices and 14 arcs

> purge(hc):; is_hamiltonian(G,hc)

�Done�; true

> draw_graph(highlight_trail(G,hc),spring)

1

2

3

7 4

56

5.1 Walks and tours 147

5.2 Optimal routing

5.2.1 Shortest unweighted paths
shortest_path(G,s,t|T)

The command shortest_path is used for finding shortest paths in unweighted graphs. It takes
three arguments: an undirected unweighted graph G(V ;E), the source vertex s2V and the target
vertex t2V or a list T of target vertices. The shortest path from source to target is returned. If
more targets are specified, then the list of shortest paths from the source to each of these vertices
is returned.

The strategy is to run breadth-first traversal on the graph G starting from the source vertex
s. The complexity of the algorithm is therefore O (jV j+ jE j).

> G:=graph("dodecahedron")

an undirected unweighted graph with 20 vertices and 30 edges

> shortest_path(G,1,16)

[1; 0; 10; 18; 16]

> paths:=shortest_path(G,1,[16,19])

[[1; 0; 10; 18; 16]; [1; 11; 19]]

> H:=highlight_trail(G,paths,[red,green])

an undirected unweighted graph with 20 vertices and 30 edges

> draw_graph(H)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1718

19

5.2.2 Cheapest weighted paths
dijkstra(G,s,〈t|T〉)
bellman_ford(G,s,〈t|T〉)

The commands dijkstra and bellman_ford are used for finding cheapest paths in weighted
(directed) graphs. Both commands take two or three arguments: a weighted (di)graph G(V ;E), a
vertex s2V and optionally a vertex t2V or a list T of vertices in V . It returns the cheapest path
from s to t. If more target vertices are given, then the sequence of such paths to each target vertex
t 2 T is returned. If no target vertex is specified, then all vertices in V n fsg are assumed to be
targets. If dijkstra is used, then the weights of edges in E must all be nonnegative. bellman_ford
takes negative weights, but does not work if the input graph contains negative cycles (in which the
weights of the corresponding edges sum up to a negative value).

A cheapest path from s to t is represented with a list [[v1,v2,...,vk],c] where the first
element consists of path vertices with v1= s and vk= t, while the second element c is the weight
(cost) of that path, equal to the sum of weights of its edges.

148 Traversing graphs

dijsktra computes the cheapest path using Dijkstra's algorithm which runs in O(jV j2)
time [22]. bellman_ford applies a similar algorithm of Bellman and Ford (see [9] and [29]),
which runs in O(jV j jE j) time but imposes fewer requirements upon its input.

> G:=graph(%{[[1,2],1],[[1,6],3],[[2,3],3],[[3,4],7],[[4,5],3],[[5,6],3]%})

an undirected weighted graph with 6 vertices and 6 edges

> res:=dijkstra(G,1,4)

[[1; 6; 5; 4]; 9]

> draw_graph(highlight_trail(G,res[0]))

1

3
3

3

7
3

1

2 6

3

4

5

> dijkstra(G,1)

[[1]; 0]; [[1; 2]; 1]; [[1; 6]; 3]; [[1; 2; 3]; 4]; [[1; 6; 5; 4]; 9]; [[1; 6; 5]; 6]

In the following example, a longest path in an unweighted acyclic graph is found using Bellman-
Ford algorithm and negative unit weights.

> G:=random_network(3,2,acyclic=true)

a directed unweighted graph with 18 vertices and 21 arcs

> draw_graph(G,planar)

0

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17

> W:=make_weighted(G,-adjacency_matrix(G))

a directed weighted graph with 18 vertices and 21 arcs

> L:=[]:; for v in vertices(W) do L.append(bellman_ford(W,v)); od:;

�Done�; �Done�

> lp:=[]:; for p in L do if length(lp) < length(p[0]) then lp:=p[0]; fi; od:;

�Done�; �Done�

> lp

[0; 3; 4; 1; 2; 5; 8; 13; 14]

5.2 Optimal routing 149

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm#CITEREFShimbel1955

5.2.3 k-shortest paths
kspaths(G,s,t,k)

The command kspaths is used for obtaining k-shortest paths from the given source to the
given destination in a (weighted) graph. It takes four arguments, a (weighted) (di)graph G(V ;E),
a source vertex s2 V , a sink vertex t 2 V and a positive integer k. It returns a list containing a
largest number not greater than k of shortest (cheapest) paths from s to t, sorted in ascending
order with respect to their costs (weights). The cost of a path is equal to the sum of weights of its
edges if G is weighted resp. to the number of edges if G is unweighted.

The strategy is to apply the algorithm of Yen [86] which uses Dijkstra's algorithm [22] as a
subroutine. The algorithm runs in O(k jV j3) time.

> purge(C,D,E,F,G,H):;

> DG:=digraph(%{[[C,D],3],[[C,E],2],[[D,F],4],[[E,D],1],[[E,F],2],[[E,G],3],[[F,
G],2],[[F,H],1],[[G,H],2]%})

a directed weighted graph with 6 vertices and 9 arcs

> draw_graph(DG,spring)

3

2

4

1
2

3

2

1

2

C

D

E

F

G

H

> kspaths(DG,C,H,5)

[[C;E; F ;H]; [C;E;G;H]; [C;E;D; F ;H]; [C;E; F ;G;H]; [C;D;F ;H]]

5.2.4 Traveling salesman problem
traveling_salesman(G,〈opts〉)
traveling_salesman(G,M,〈opts〉)

The command traveling_salesman is used for solving traveling salesman problem (TSP)5.1. It
takes the following arguments: a (di)graph G(V ;E), a weight matrix M (optional) and a sequence
of options (optional). The supported options are listed below.

� vertex_distance � use Euclidean distances between vertices as edge weights (undirected
graphs only, with predefined vertex positions)

� approx � a suboptimal tour is obtained by heuristics (undirected graphs only)

� is_included=arc|[arcs] � find an optimal tour containing the specified arc(s) (directed
graphs only)

� k (a positive integer) � find (at most) k shortest tours in a directed graph (default: k=1)

� lp_gaptolerance=t � any MIP solving will be terminated when the integrality gap gets
below t2 h0; 1i

� lp_verbose � show detailed messages from the solver (useful for monitoring the progress)

If G is unweighted and M is not specified, then a Hamiltonian cycle is returned (the adjacency
matrix of G provides edge weights). If G is weighted, then two objects are returned: the optimal
value for the traveling salesman problem and a Hamiltonian cycle which achieves the optimal value.
If M is given and G is unweighted,M is assumed to be the weight matrix of G. If G is a digraph and
the optional argument k is passed, then the first k shortest Hamiltonian cycles are returned in form
of a sequence containing the list of tour costs and the list of the corresponding Hamiltonian cycles.

5.1. For the details on traveling salesman problem and a historical overview see [18].

150 Traversing graphs

https://en.wikipedia.org/wiki/Yen%27s_algorithm
https://en.wikipedia.org/wiki/Yen%27s_algorithm
https://en.wikipedia.org/wiki/Yen%27s_algorithm
https://en.wikipedia.org/wiki/Yen%27s_algorithm
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem

The strategy for undirected graphs is to formulate TSP as an integer linear programming
problem and to solve it by the branch-and-cut algorithm in GLPK. Subtour elimination con-
straints are generated on the fly. The branching rule is implemented according to Padberg and
Rinaldi [62]. To generate feasible solutions during the process, the algorithm combines the method
of Christofides [16], the method of farthest insertion, and a variant of the tour-improvement
heuristic by Lin and Kernighan [40]. These heuristics are also utilized by the approx option.

The strategy for directed graphs is to use branch-and-cut to solve an integer linear program-
ming formulation of the problem which incorporates enhanced subtour elimination constraints by
Miller, Tucker and Zemlin [66].

One can obtain suboptimal tours by using the lp_gaptolerance option. The latter can also
be combined with approx, in which case it affects finding a minimum bipartite matching which is
a part of the heuristic in [16].

The following example, we find a shortest tour in Markström graph. The default layout is
used for computing the distances between vertices. The result is visualized in two ways: by using
highlight_trail and by showing only the tour edges.

> G:=graph("markstroem")

an undirected unweighted graph with 24 vertices and 36 edges

> cost,tour:=traveling_salesman(G,vertex_distance):;

> draw_graph(highlight_trail(G,tour),labels=false,[0,0],size=[0,1]);
draw_graph(subgraph(G,trail2edges(tour)),labels=false,[1.5,0],size=[0,1],
title="Optimal tour")

Optimal tour

Amatrix may be given alongside an undirected graph to specify the edge weights. Alternatively,
one can pass the weighted graph as a single argument.

> G:=graph("octahedron")

an undirected unweighted graph with 6 vertices and 12 edges

> M:=randmatrix(6,6,1,10).*adjacency_matrix(G)0BBBBBBBBBBBBBB@

0 0 6 4 7 1
0 0 1 2 4 9
7 8 0 0 5 8
7 8 0 0 10 6
3 4 2 6 0 0
6 9 4 1 0 0

1CCCCCCCCCCCCCCA
> cost,tour:=traveling_salesman(G,M)

22.0; [0; 5; 3; 1; 2; 4; 0]

> draw_graph(highlight_trail(make_weighted(G,M),tour),spring)

5.2 Optimal routing 151

6

4

7 1

1

2

4 9

5 8

10
6

0

1

2

3

4
5

In the following examples, we find shortest Hamiltonian cycle(s) in a weighted directed graph.

> D:=digraph(%{[[1,2],2],[[1,3],3],[[2,3],2],[[2,5],4],[[3,2],3],[[3,5],5],[[4,
1],2],[[4,1],1],[[4,2],4],[[5,4],3]%})

a directed weighted graph with 5 vertices and 9 arcs

> draw_graph(D,circle=[1,3,2,5,4])

2

3

2

4

3

5

3

2

4

1

2

3

5

4

> traveling_salesman(D)

14.0; [1; 2; 3; 5; 4; 1]

> traveling_salesman(D,is_included=[2,5])

15.0; [1; 3; 2; 5; 4; 1]

> traveling_salesman(D,2)

[14.0; 15.0];
�
1 2 3 5 4 1
1 3 2 5 4 1

�
In the next example, an instance of Euclidean TSP with 40 cities is solved to optimality. The

positions are chosen randomly in [0; 1]� [0; 1].

> n:=40:;

> pos:=[randvector(2,0..1)$(k=1..n)]:;

> G:=set_vertex_positions(complete_graph(n),pos)

an undirected unweighted graph with 40 vertices and 780 edges

> cost,tour:=traveling_salesman(G,vertex_distance):;

2.518 sec

> cost

5.17957370372

152 Traversing graphs

> draw_graph(subgraph(G,trail2edges(tour)),labels=false)

For large instances of Euclidean TSP it is recommended to use the keyword approx, like in the
following instance with 1000 cities. The positions are chosen randomly in a unit circle.

> n:=1000:;

> pos:=[]:;

> while size(pos)<n do
repeat a:=2*rand()-1; b:=2*rand()-1; until sqrt(a^2+b^2)<=1;
pos.append(a+i*b);

od:;

> H:=set_vertex_positions(complete_graph(n),pos)

an undirected unweighted graph with 1000 vertices and 499500 edges

> cost,tour:=traveling_salesman(H,vertex_distance,approx):;

142.976 sec

> cost

43.1689559257

> draw_graph(subgraph(H,trail2edges(tour)))

5.3 Spanning trees

5.3.1 Construction of spanning trees
spanning_tree(G,〈r〉)

The command spanning_tree is used for construction of spanning trees in graphs. It takes
one or two arguments, an undirected graph G(V ;E) and optionally a vertex r2V . It returns the
spanning tree T (rooted in r) of G, obtained by depth-first traversal in O(jV j+ jE j) time.

5.3 Spanning trees 153

https://en.wikipedia.org/wiki/Spanning_tree
https://en.wikipedia.org/wiki/Spanning_tree

> P:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> T1:=spanning_tree(P)

an undirected unweighted graph with 10 vertices and 9 edges

> draw_graph(P)

0

1

23

4

5

6

78

9

By extracting T1 from P as a subgraph, it inherits vertex positions from P .

> draw_graph(subgraph(P,edges(T1)))

0

1

23

4

5

6

78

9

> T2:=spanning_tree(P,4)

an undirected unweighted graph with 10 vertices and 9 edges

> edges(T1)

[[0; 1]; [1; 2]; [2; 3]; [3; 4]; [4; 9]; [5; 7]; [5; 8]; [6; 8]; [6; 9]]

> edges(T2)

[[0; 1]; [0; 4]; [1; 2]; [2; 3]; [3; 8]; [5; 7]; [5; 8]; [6; 9]; [7; 9]]

5.3.2 Minimal spanning tree
minimal_spanning_tree(G)

The command minimal_spanning_tree is used for obtaining minimal spanning trees in undi-
rected graphs. It takes an undirected graph G(V ;E) as its only argument and returns its minimal
spanning tree as a graph. If G is not weighted, then the unity weights are assumed for all edges.

The strategy is to apply Kruskal's algorithm which runs in O(jE j log jV j) time.

> A:=[[0,1,0,4,0,0],[1,0,1,0,4,0],[0,1,0,3,0,1],[4,0,3,0,1,0],[0,4,0,1,0,4],[0,
0,1,0,4,0]]:;

154 Traversing graphs

https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Minimum_spanning_tree

> G:=graph(A)

an undirected weighted graph with 6 vertices and 8 edges

> T:=minimal_spanning_tree(G)

an undirected weighted graph with 6 vertices and 5 edges

> edges(T,weights)

[[[0; 1]; 1]; [[1; 2]; 1]; [[2; 3]; 3]; [[2; 5]; 1]; [[3; 4]; 1]]

> draw_graph(highlight_subgraph(G,T))

1

4
1 43

1

1

4

0

1

2

3

4

5

5.3.3 Counting the spanning trees and forests in a graph
number_of_spanning_trees(G)

The command number_of_spanning_trees is used for counting spanning trees and forests in
a graph. It takes an undirected graph G(V ;E) as its only argument and returns the total number
of (labeled) spanning trees in G if G is connected or the total number of spanning forests in G
otherwise. The number of spanning forests is equal to the product of numbers obtained by counting
spanning trees in each of the connected components of G.

The strategy is to use Kirchhoff's Theorem [84, Theorem 2.2.12, p. 86]. The number of
spanning trees is equal to the first principal minor of the Laplacian matrix of G.

> number_of_spanning_trees(graph("octahedron"))

384

> number_of_spanning_trees(graph("dodecahedron"))

5184000

> number_of_spanning_trees(hypercube_graph(4))

42467328

> number_of_spanning_trees(graph("soccerball"))

375291866372898816000

5.3.4 Vertex reachability
is_reachable(G,u,v)
reachable(G,u)

The commands is_reachable and reachable are used for obtaining information about reach-
ability of vertices in a graph from a given vertex. Both commands takes a (di)graph G(V ; E) as
their first argument and a vertex u 2 V . is_reachable additionally takes a vertex v 2 V as its
third argument and returns true if there is a path from u to v in G, else returns false. reachable
returns the list of vertices in V which are reachable from u (including u itself).

5.3 Spanning trees 155

https://en.wikipedia.org/wiki/Spanning_tree#Counting_spanning_trees
https://en.wikipedia.org/wiki/Spanning_tree#Counting_spanning_trees
https://en.wikipedia.org/wiki/Spanning_tree#Counting_spanning_trees
https://en.wikipedia.org/wiki/Spanning_tree#Counting_spanning_trees
https://en.wikipedia.org/wiki/Spanning_tree#Counting_spanning_trees
https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem
https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem
https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem
https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem

The strategy is to start a breadth-first search from u. Hence both algorithms run in at most
O(jV j+ jE j) time.

> C34:=graph_complement(complete_graph(3,4))

an undirected unweighted graph with 7 vertices and 9 edges

> draw_graph(C34)

0

12

3 4

56

> is_reachable(C34,3,5); is_reachable(C34,3,2)

true; false

> reachable(C34,3)

[4; 5; 6; 3]

> G:=digraph([1,2,3,4],%{[1,2],[1,4],[2,3],[4,3]%})

a directed unweighted graph with 4 vertices and 4 arcs

> draw_graph(G)

1

2

3

4

> is_reachable(G,1,3); is_reachable(G,2,4)

true; false

> reachable(G,1), reachable(G,2), reachable(G,3), reachable(G,4)

[2; 4; 3]; [3]; []; [3]

156 Traversing graphs

Chapter 6
Visualizing graphs

6.1 Drawing graphs

6.1.1 Overview
draw_graph(G,〈opts〉)

The draw_graph command is used for visualizing graphs. It takes one or two arguments, the
mandatory first one being a graph G(V ;E). This command assigns 2D or 3D coordinates to each
vertex v 2 V and produces a visual representation of G based on these coordinates. The second
(optional) argument is a sequence of options. Each optional argument is one of the following.

� labels=true|false � controls the visibility of vertex labels and edge weights (by default
true, i.e. the labels and weights are displayed)

� spring � applies the multilevel force-directed algorithm

� tree〈=r|[r1,r2,...]〉 � draws the tree or forest graph G, optionally specifying the root
node for each tree (by default the first node is used)

� bipartite � draws the bipartite graph G, separating vertex partitions from one another

� circle〈=L〉 or convexhull〈=L〉 � draws the graph G by spreading the hull vertices from
list L�V (assuming L=V by default) across the unit circle and putting all other vertices
in origin and applying a force-directed vertex placement algorithm to generate the layout
while keeping the hull vertices fixed

� planar or plane � draws the planar graph G using a force-directed algorithm

� plot3d� draws the graph G as if the spring option was enabled, but with vertex positions
in 3D instead of 2D

� [x,y,〈z〉] � sets the anchor point of the layout, which corresponds to the bottom-left
corner in 2D drawings

� size=[width,height,〈depth〉] � sets the size of the layout's bounding box

� scale=<real> � sets the scaling factor of the layout

� title=<string> � prints the title above the drawing (left-aligned)

� an unassigned identifier � sets the destination for storing the list of vertex positions (in
order as returned by vertices)

The style options spring, tree, circle, planar and plot3d cannot be mixed, i.e. at most one can
be specified. The option labels may be combined with any of the style options. Note that edge
weights will not be displayed in 3D.

If no style option is specified, the algorithm first checks whether G is a tree or a bipartite graph,
in which cases it is drawn accordingly. Otherwise, the graph is drawn as if the option circle was
specified.

Tree, circle and bipartite drawings are obtained in linear time, while force-directed algorithms
require O(jV j2) time.

6.1.2 Spring method
When the option spring is specified, then G is drawn using the force-directed algorithm described
in [45]. The idea, originally due to Fruchterman and Reingold [31], is to simulate physical
forces in a spring-electrical model where the vertices and edges represent equally charged particles
and springs connecting them, respectively.

157

In a spring-electrical model, each vertex is being repulsed by every other vertex with a force
inversely proportional to the distance between them. At the same time, it is attracted to each of its
neighbors with a force proportional to the square of the distance. Assuming that xv is the vector
representing the position of the vertex v 2V , the total force Fv applied to v is equal to

Fv=
X

w2V nfvg
¡ CK2

kxv¡xwk2
(xv¡xw)+

X
w2N(v)

kxv¡xwk
K

(xv¡xw);

where N(v) is the set of neighbors of v and C, K are certain positive real constants (actually, K
may be any positive number, it affects only the scaling of the entire layout). Applying the forces
iteratively and updating vertex positions in each iteration (starting from a random layout) leads the
system to the state of minimal energy. By applying a certain �cooling� scheme to the model which
cuts down the force magnitude in each iteration. the layout �freezes� after a number of iterations
large enough to achieve a minimal-energy state.

The above force-directed method is computationally expensive and a pleasing layout usually
cannot be obtained for larger graphs since the algorithm, starting with a random initial layout, gets
easily �stuck� in a local energy minimum. To avoid this, a multilevel scheme is applied. The input
graph is iteratively coarsened, either by removing the vertices from a maximal independent vertex
set or by contracting the edges of a maximal matching in each iteration. Each coarsening level is
processed by the force-directed algorithm, starting from the deepest (coarsest) one and �lifting�
the obtained layout to the first upper level, using it as the initial layout for that level. The lifting
is done using the prolongation-matrix technique described in [46].

If the structure of the input graph is symmetric, then a layout obtained by a force-directed
method typically reveals the symmetries. To make these even more prominent, the layout is subse-
quently rotated such that the axis, with respect to which the layout exhibits the largest symmetry
score, becomes vertical (this is done only for 2D drawings). Symmetry detection is computationally
expensive (up to O(jV j7) when using the symmetry measure of Purchase [83], for instance),
hence the algorithm accounts only the convex hull and the barycenter of the layout, which may
not always be enough to produce an optimal result. Nevertheless, this approach is fast and usually
works for highly symmetrical graphs.

The spring method is also used for creating 3D graph layouts, which are obtained by passing
the option plot3d to the draw_graph command.

> G1:=graph(trail(1,2,3,4,5,2))

an undirected unweighted graph with 5 vertices and 5 edges

> G2:=star_graph(3)

an undirected unweighted graph with 4 vertices and 3 edges

> G:=tensor_product(G1,G2)

an undirected unweighted graph with 20 vertices and 30 edges

> draw_graph(G,spring,labels=false)

> S:=sierpinski_graph(5,4)

158 Visualizing graphs

an undirected unweighted graph with 1024 vertices and 2046 edges

> draw_graph(S,spring)

8.568 sec

Note that vertex labels are automatically suppressed because of the large number of vertices.

> draw_graph(graph("soccerball"),plot3d,labels=false)

click k: kill 3d view

yx

z

> G1:=graph("icosahedron"):; G2:=graph("dodecahedron"):;

�Done�; �Done�

> G1:=highlight_edges(G1,edges(G1),red)

an undirected unweighted graph with 12 vertices and 30 edges

> G2:=highlight_edges(G2,edges(G2),magenta)

an undirected unweighted graph with 20 vertices and 30 edges

> G:=disjoint_union(G1,G2)

an undirected unweighted graph with 32 vertices and 60 edges

> draw_graph(G,plot3d,labels=false)

click k: kill 3d view

z y
x

6.1 Drawing graphs 159

6.1.3 Drawing trees
If the tree[=r] option is specified and the input graph G is a tree such that r2V , then G is drawn
using the algorithm similar to that of Walker [81] with the vertex r as the root node. If r is not
specified, then the first node which admits the minimum height of the tree is used instead.

When drawing a rooted tree, one usually requires the following aesthetic properties [15].

A1. The layout displays the hierarchical structure of the tree, i.e. the y-coordinate of a node is
given by its level.

A2. The edges do not cross each other.

A3. The drawing of a sub-tree does not depend on its position in the tree, i.e. isomorphic sub-
trees are drawn identically up to translation.

A4. The order of the children of a node is displayed in the drawing.

A5. The algorithm works symmetrically, i.e. the drawing of the reflection of a tree is the reflected
drawing of the original tree.

Generally, the algorithm implemented in giac satisfies all the above properties exceptA3. Instead,
it tries to spread the inner sub-trees evenly across the available horizontal space. It works by
organizing the structure of the input tree into levels by using depth-first search and laying out
each level subsequently, starting from the deepest one and climbing up to the root node. In the
end, another depth-first traversal is made, shifting the sub-trees horizontally to avoid intersections
between their edges. The algorithm runs in O(jV j) time and uses the minimum of horizontal space
to draw the tree with respect to the specified root node r.

> draw_graph(random_tree(100))

6.1.4 Drawing planar graphs
The algorithm for drawing planar graphs implemented in giac applies augmentation techniques to
extend the input graph G to a graph G0, which is homeomorphic to a triconnected graph, by adding
temporary edges. The augmented graph G0 is drawn using Tutte's barycentric method (see [79]
and [34, p. 293]) which puts each vertex in the barycenter of its neighbors. It is guaranteed that a
(non-strict) convex drawing will be produced, without edge crossings. Finally, the duplicate of the
outer face and temporary edges inserted during the augmentation stage are removed from layout.

Tutte's algorithm requires that vertices of the outer face are initially placed on the boundary of
a convex polygon. In order to produce a more flexible layout, the present algorithm duplicates the
outer face such that the subgraph induced by the vertices on both the outer face and its duplicate
is a prism graph. The duplicates of the outer-face vertices form a fixed regular polygon, allowing
the original beneath it to take a more natural shape, and are deleted once the layout is frozen.

The augmentation process consists of two stages. The first stage consists of decomposing G
into biconnected components (blocks) by using a depth-first search [33, p. 25] and decomposing
each block into faces by using Demoucron's algorithm (see [33, p. 88] and [57]). Embeddings
obtained for each blocks are combined by adding one temporary edge for each articulation point,
thus joining the two corresponding blocks. Figure 6.1a shows the outer faces of two blocks B1 and
B2, connected by an articulation point (cut vertex). The temporary edge (shown in green) is added
to join B1 and B2 into a single block. After �folding up� the tree of blocks, the algorithm picks the
largest face in the resulting biconnected graph to be the outer face of a planar embedding.

160 Visualizing graphs

B1

B2

temp. edge

f

a chord f

g

vl

vk

(a) (b) (c)

Fig. 6.1. (a) Joining blocks by adding a temporary edge; (b) a chorded face f ; (c) faces f and g having
two vertices but no edges in common

The second stage of the augmentation process consists of recursively decomposing each non-
convex inner face into several convex polygons by adding temporary edges. An inner face f=(v1; :::;
vn) is non-convex if there exist k and l such that 16 k < l¡ 1<n and either vk vl 2E, in which
case the edge vk vl is a chord (see Figure 6.1b for an example) or there exists a face g=(w1; w2; :::;
vk; :::; vl; :::; wm¡1; wm) such that the vertices vk+1; :::; vl¡1 are not contained in g (see Figure 6.1c
for an example). In Figure 6.1, temporary edges added by the algorithm are drawn in green.

This method of drawing planar graphs operates in O(jV j2) time, which makes it usable for
graphs with up to several thousands vertices. A drawback of this method is that it sometimes
creates clusters of vertices which are very close to each other, resulting in a very high ratio of
the area of the largest inner face to the area of the smallest inner face (not considering the
outer, infinite-area face). In order to cope with this issue, draw_graph redraws the graph several
times (unless it is triconnected), each time randomizing the augmentation, and picks the layout
which minimizes the above ratio. The number of redraws is inversely proportional to jV j, hence
draw_graph does not hang on large graphs. For jV j< 500, at least two drawings are computed.
(Of course, one can always call draw_graph repeatedly in attempt to obtain a better result.) This
strategy usually works well for biconnected graphs; however, 1-connected sparse graphs are often
drawn poorly. In such cases consider using the spring option.

> G:=graph(trail(1,2,3,4,5,6,7,8,9,10,1),trail(11,12,6,11,1,12))

an undirected unweighted graph with 12 vertices and 15 edges

> draw_graph(G,planar)

1 2

3

4

567

8

9

10

11
12

Note that the inner diamond-like shape in the above drawing would end up flattened�making
the two triangular faces invisible�if the input graph was not augmented; since the vertices with
labels 11 and 12 are �attracted� to each other (namely, the two large faces are �inflating� themselves
to become convex), they would end up in the same position.

In the second example the input graph is connected but not biconnected (it has two articulation
points). It is obtained by removing a vertex from the Sierpi«ski triangle graph ST33. Note that the
syntax mode is set to Xcas in this example, so the first vertex label is zero.

> G:=sierpinski_graph(3,3,triangle)

an undirected unweighted graph with 15 vertices and 27 edges

6.1 Drawing graphs 161

> G:=delete_vertex(G,3)

an undirected unweighted graph with 14 vertices and 23 edges

> draw_graph(G,planar,labels=false)

6.1.5 Circular graph drawings
The drawing method selected by specifying the option circle=L or convexhull=L when calling
draw_graph on a triconnected graph G(V ; E) where L� V , uses the following strategy. First,
positions of the vertices from L are fixed so that they form a regular polygon on the unit circle.
Other vertices, i.e. all vertices from V nL, are placed in origin. Then an iterative force-directed
algorithm [65], similar to Tutte's barycentric method, is applied to obtain the final layout.

This approach gives best results for symmetrical graphs such as flower snarks. In addition, if the
input graph is planar and triconnected and the outer hull represents a face in a planar embedding,
then the drawing will contain no edge crossings. Some very short edges may, however, end up
crossing each other since the number of force-update iterations is limited.

> G:=graph([1,2,3,4,5,6,7,8,9],%{[1,2],[1,6],[1,7],[2,3],[3,4],[3,8],[4,5],[5,
6],[5,9],[7,8],[7,9],[8,9]%})

an undirected unweighted graph with 9 vertices and 12 edges

> draw_graph(G,circle=[1,2,3,4,5,6])

1 2

3

45

6

7

8

9

To draw a planar triconnected graph, one should pass one of its faces as the outer hull. In the
following example we draw a circular planar layout of the Frucht graph.

> G:=graph("frucht")

an undirected unweighted graph with 12 vertices and 18 edges

Get the list of faces:

> purge(F):; is_planar(G,F)

�Done�; true

> apply(length,F)

162 Visualizing graphs

[7; 4; 3; 5; 3; 5; 3; 6]

> draw_graph(G,circle=F[0],labels=false)

> draw_graph(G,circle=F[6],labels=false)

6.1.6 Drawing disconnected graphs
If the input graph has two or more connected components, then each component is drawn separately
and the drawings are subsequently arranged such that the bounding box of the whole drawing has
the smallest perimeter under condition that as little space as possible is wasted inside the box.

> G:=random_planar_graph(100,0.9,0)

an undirected unweighted graph with 100 vertices and 68 edges

> draw_graph(G,planar)

6.1.7 Setting layout position, size, and title
Graph drawings may be moved around, scaled, and resized using optional arguments. This is useful
for combining several drawings in one figure or adding graph drawings to larger graphical scenes.
Individual drawings may also be given a title. Note that the graph attribute name, if provided with
a value, is used as the title in case the latter is not set.

Below we draw the first two discovered snarks in one figure.

> P:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

6.1 Drawing graphs 163

> B:=graph("blanusa")

an undirected unweighted graph with 18 vertices and 27 edges

> draw_graph(P,[0,0],size=[0,1],title="Petersen graph",labels=false);
draw_graph(B,[1.32,0],size=[0,1],title="Blanu²a snark",labels=false)

Petersen graph Blanu�✁ ✂✄✁☎✆

If graph has a name, it is printed automatically. To override this behavior, set the title option
to "" (an empty string).

> S:=set_graph_attribute(graph("sousselier"),"name"="Sousselier graph")

Sousselier graph: an undirected unweighted graph with 16 vertices and 27 edges

> draw_graph(S,labels=false)

Sousselier graph

6.2 Vertex positions

6.2.1 Setting vertex positions
set_vertex_positions(G,L)

The command set_vertex_positions is used for assigning custom coordinates to the vertices
of a graph. It takes two arguments, a graph G(V ; E) and the list L of positions to be assigned
to vertices in order of vertices(G). The positions may be complex numbers, lists of coordinates
or geometrical objects created by using the command point. set_vertex_positions returns a
modified copy G0 of G containing the specified layout.

Any subsequent call to draw_graph with G0 as an argument and without specifying the drawing
method will result in displaying vertices at the stored coordinates. However, if a drawing style is
specified, the stored layout is ignored, although it remains stored in G0.

> G:=digraph([1,2,3,4,5],%{[1,2],[2,3],[3,4],[2,5]%})

a directed unweighted graph with 5 vertices and 4 arcs

> draw_graph(G,circle)

164 Visualizing graphs

1

2

3
4

5

> H:=set_vertex_positions(G,[[0,0],[0.5,0],[1.0,0],[1.5,0],[0.5,1]])

a directed unweighted graph with 5 vertices and 4 arcs

> draw_graph(H)

1 2 3 4

5

6.2.2 Generating vertex positions
Vertex positions can be generated for a particular graph G by using the draw_graph command
with the additional argument P which should be an unassigned identifier. After the layout is
obtained, it is assigned to P as a list of positions (complex numbers for 2D drawings or points for
3D drawings) for each vertex in order of vertices(G).

By using the set_vertex_positions command, a desired layout obtained by calling draw_graph
can be easily stored to the graph for future reference. In particular, each subsequent call of
draw_graph with G as an argument will display the stored layout. The example below illus-
trates this property by setting a custom layout to the octahedral graph.

> G:=graph("octahedron")

an undirected unweighted graph with 6 vertices and 12 edges

> purge(P):; draw_graph(G,P,spring):;

�Done�; �Done�

Now P contains the vertex coordinates, which are stored toG by using set_vertex_positions.

> G:=set_vertex_positions(G,P)

an undirected unweighted graph with 6 vertices and 12 edges

> draw_graph(G)

0
1

23

45

6.2 Vertex positions 165

Note that, after a particular layout is fixed, it stays valid after a removal of vertices or edges,
contracting an edge, or adding a new edge. The stored layout is invalidated after a new vertex is
added to the graph (unless its position is specified by set_vertex_attribute upon the creation)
or after discarding the position attribute of an existing vertex.

6.2.3 Custom layout example: spectral graph drawing
In this section it is demonstrated how set_vertex_positions can be used to obtain spectral
drawings of graphs.

Let G(V ;E) be an undirected, connected graph with jV j=m. Furthermore, let � :V !Rn be
a graph drawing of G in Rn. The matrix of a graph drawing � is a m�n matrix R whose
i-th row corresponds to the row vector �(vi) containing coordinates of the point representing vi in
Rn. Typically, it is desired that n is (much) smaller than m. The drawing is balanced if sum of
entries in each column of R equals to 1.

The energy of a drawing R is given by

"(R)=
X

vivj2E
wij k�(vi)¡ �(vj)k2;

where wij is the weight of vivj. (If G is unweighted, then wij=1 for all 16 i; j 6m.) A drawing
is considered to be �good� if it minimizes the energy function " under certain constraints which
prevent vertices from occupying the same position. The function " can be expressed in terms of
the (non-normalized) Laplacian matrix L:

"(R)= tr (RTLR):

In order to avoid trivial minimum-energy layouts, it is reasonable to assume that the columns of
R are pairwise orthogonal and that they have unit length. Therefore,

RTR= I ;

where I is identity matrix. A drawing which satisfies the above condition is called orthogonal
drawing.

The following theorem provides a way to find minimum graph drawings under this condition.
Note that, since G is undirected and connected, its Laplacian matrix has exactly one zero eigen-
value and m¡1 strictly positive�but not necessarily distinct�eigenvalues (see Section 4.2.2). We
assume that n<m. For details on spectral graph drawing, see [51].

Theorem 6.1. Let the eigenvalues of L be 0=�1<�26�36 ���6�m. Then the minimal energy of
any balanced orthogonal drawing of G in Rn is equal to �2+�3+ ���+�n+1. The m�n matrix R
whose columns are unit eigenvectors u2; :::;un+1 associated with �2; :::;�n+1, respectively, represents
a balanced orthogonal drawing of minimal energy.

In particular, for n=2 and n=3 one obtains graph drawings in the two- resp. three-dimensional
Euclidean space. For example, we can write a function spectral_layout which takes G as its
argument and returns a copy of G with a spectral 2D layout stored to it. The code is given below.

spectral_layout:=proc(G)
local L,R,evals,ev,S,m,k;
purge(k);
m:=number_of_vertices(G);
L:=evalf(laplacian_matrix(G)); // Laplacian matrix (approx)
evals:=[eigenvals(L)]; // list of eigenvalues
ev:=tran(eigenvectors(L)); // list of corresponding eigenvectors
S:=sort(zip(evals,[k$(k=0..m-1)])); // sort eigenvalues
R:=tran([ev[S[1][1]],ev[S[2][1]]]); // get the second and third eigenvector
return set_vertex_positions(G,R);

end:;

After compiling the above program in Xcas (by copying it into a programmation cell which we
create by pressing Alt+P), we demonstrate it in the following examples.

166 Visualizing graphs

> C:=cycle_graph(5)

an undirected unweighted graph with 5 vertices and 5 edges

> draw_graph(spectral_layout(C),labels=false)

> A:=[[0,1,1,0,0],[1,0,1,1,1],[1,1,0,1,0],[0,1,1,0,1],[0,1,0,1,0]]0BBBBBBBBBB@
0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

1CCCCCCCCCCA
> G:=graph(A)

an undirected unweighted graph with 5 vertices and 7 edges

> draw_graph(spectral_layout(G),labels=false)

> draw_graph(spectral_layout(graph("groetzsch")),labels=false)

Unlike the methods used by draw_graph command, spectral graph layout takes edge weights
into account. Assuming that all weights are positive, endpoints of edges with larger weights tend
to get closer to each other, as in the next example.

6.2 Vertex positions 167

> W:=[[0,1,0,3],[1,0,2,0],[0,2,0,4],[3,0,4,0]]0BBBBBB@
0 1 0 3
1 0 2 0
0 2 0 4
3 0 4 0

1CCCCCCA
> purge(A,B,C,D):; H:=graph([A,B,C,D],W)

�Done�; an undirected weighted graph with 4 vertices and 4 edges

> draw_graph(spectral_layout(H))

1

3

2

4

A

B

C

D

On the other hand, the underlying graph of H is unweighted and hence drawn as a regular
polygon.

> draw_graph(spectral_layout(underlying_graph(H)))

A

B

C

D

6.3 Highlighting parts of graphs

6.3.1 Highlighting vertices

highlight_vertex(G,v,〈c〉)
highlight_vertex(G,[v1,v2,..,vk],〈c〉)
highlight_vertex(G,[v1,v2,..,vk],[c1,c2,..,ck])

The command highlight_vertex changes color of one or more vertices in a graph. It takes
two or three arguments: a graph G(V ; E), a vertex v 2V or a list of vertices v1; v2; :::; vk2V and
optionally the new color c or a list of colors c1; c2; :::; ck for the selected vertices (the default is green).
It returns a modified copy of G in which the specified vertices are colored with the specified color(s).

> G:=graph("dodecahedron")

an undirected unweighted graph with 20 vertices and 30 edges

168 Visualizing graphs

> L:=maximum_independent_set(G)

[1; 4; 6; 9; 12; 13; 17; 18]

> draw_graph(highlight_vertex(G,L))

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1718

19

6.3.2 Highlighting edges and trails

highlight_edges(G,e,〈c〉)
highlight_edges(G,[e1,e2,..,ek],〈c〉)
highlight_edges(G,[e1,e2,..,ek],[c1,c2,..,ck])
highlight_trail(G,T,〈c〉)
highlight_trail(G,[T1,T2,..,Tk],〈c〉)
highlight_trail(G,[T1,T2,..,Tk],[c1,c2,..,ck])

To highlight an edge or a set of edges in a graph, use the highlight_edges command. If the
edges form a trail, then it is usually more convenient to use the highlight_trail command.

highlight_edges takes two or three arguments: a graph G(V ; E), an edge e2E or a list of
edges e1; e2; :::; ek2E and optionally the new color c or a list of colors c1; c2; :::; ck for the selected
edges (the default color is red). It returns a modified copy of G in which the specified edges are
colored with the specified color.

highlight_trail takes two or three arguments: a graph G(V ; E), a trail T or a list of trails
T1; T2; :::; Tk and optionally the new color c or a list of colors c1; c2; :::; ck. The command returns the
copy of G in which edges between consecutive vertices in each of the given trails are highlighted
with color c (by default red) or the trail Ti is highlighted with color ci for i=1; 2; :::; k.

> M:=maximum_matching(G)

[[0; 1]; [2; 3]; [4; 5]; [6; 7]; [8; 18]; [9; 19]; [10; 12]; [11; 13]; [14; 16]; [15; 17]]

> draw_graph(highlight_edges(G,M))

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1718

19

> draw_graph(highlight_trail(G,[1,2,3,4,5,6,7,8,9],green))

6.3 Highlighting parts of graphs 169

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1718

19

6.3.3 Highlighting subgraphs
highlight_subgraph(G,S,〈weights〉)
highlight_subgraph(G,S,c1,c2,〈weights〉)
highlight_subgraph(G,[S1,S2,..,Sk],〈c1,c2〉)

The command highlight_subgraph is used for highlighting subgraph(s) of a graph. It takes
two or four input arguments: a graph G(V ; E), a subgraph S(V 0; E 0) of G or a list of subgraphs
S1; S2; :::; Sk in G and optionally the new colors c1; c2 for the edges and vertices of the selected
subgraph(s), respectively. It returns a modified copy of G with the selected subgraph(s) colored
as specified. If colors are not given, then red and green are used, respectively.

The option weights may be passed as an additional argument if G and S are weighted graphs.
In that case, the weights of edges in E 0�E in G are overwritten with those defined in S for the
same edges, which is useful for e.g. visualizing maximum flows in networks.

> G:=graph(%{[1,2],[2,3],[3,1],[3,4],[4,5],[5,6],[6,4]%})

an undirected unweighted graph with 6 vertices and 7 edges

> draw_graph(highlight_vertex(G,articulation_points(G),magenta))

1 2

3

45

6

> B:=biconnected_components(G)

[[4; 5; 6]; [3; 4]; [1; 2; 3]]

> S:=induced_subgraph(G,B[0])

an undirected unweighted graph with 3 vertices and 3 edges

> draw_graph(highlight_subgraph(G,S))

1 2

3

45

6

170 Visualizing graphs

Bibliography
[1] James Abello and Panos M. Pardalos. On maximum clique problems in very large

graphs. External Memory Algorithms, 11 1998. https://pdfs.semanticscholar.org/ef3c/
4fe8cea69f0fcd1939b1c3efca021e6d054d.pdf.

[2] Shehzad Afzal and Clemens Brand. Recognizing triangulated Cartesian graph products. Discrete Mathe-
matics, 312:188�193, 2012.

[3] Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/FPT algorithms in practice: A case study
of vertex cover. Theoretical Computer Science, 609:211�225, 2016.

[4] L. Alonso and R. Schott. Random unlabelled rooted trees revisited. In Proc. Int. Conf. on Computing and
Information 1994, pages 1352�1367.

[5] Vesna Andova, Franti²ek Kardo², and Riste �krekovski. Mathematical aspects of fullerenes. Ars Mathematica
Contemporanea, 11:353�379, 2016.

[6] Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks. Physical Review E,
71:036113, 2005.

[7] Alex Bavelas. Communication patterns in task-oriented groups. J. Acoust. Soc. Am, 22(6):725�730, 1950.
[8] Mohsen Bayati, Jeong Han Kim, and Amin Saberi. A sequential algorithm for generating random graphs.

Algorithmica, 58(4):860�910, 2010.
[9] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87�90, 1958.
[10] Norman Biggs. Algebraic graph theory. Cambridge University Press, Second edition, 1993.
[11] Béla Bollobás. Modern Graph Theory. Graduate Texts in Mathematics. Springer, Corrected edition, 2002.
[12] Coen Boot. Algorithms for determining the clustering coefficient in large graphs. Bachelor's thesis, Faculty

of Science, Utrecht University, 2016.
[13] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology,

25(2):163�177, 2001. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2024.
[14] Daniel Brélaz. New methods to color the vertices of a graph. Communications of the ACM, 22(4):251�256,

1979.
[15] Cristoph Buchheim, Michael Jünger, and Sebastian Leipert. Improving walker's algorithm to run in linear

time. In M. T. Goodrich and S. G. Kobourov, editors, Graph Drawing 2002, Lecture Notes in Computer
Science vol 2528, pages 344�353. Springer-Verlag Berlin Heidelberg, 2002.

[16] Nicos Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Report 388,
Graduate School of Industrial Administration, 1976.

[17] Uro² �ibej and Jurij Miheli£. Improvements to Ullmann's algorithm for the subgraph isomorphism problem.
International Journal of Pattern Recognition and Artificial Intelligence, 29, 07 2015.

[18] WilliamJ. Cook. In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton
University Press, 2012.

[19] Melissa DeLeon. A study of sufficient conditions for hamiltonian cycles. Rose-Hulman Undergraduate Math-
ematics Journal, 1(1), Article 6, 2000. https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6.

[20] Isabel M. Díaz and Paula Zabala. A branch-and-cut algorithm for graph coloring. Discrete Applied Mathe-
matics, 154(5):826�847, 2006.

[21] Reinhard Diestel. Graph Theory. Springer-Verlag, New York, 1997.
[22] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269�271,

1959.
[23] JackEdmonds. Paths, trees, and flowers. InGessel I. andGC. Rota, editors,Classic Papers in Combinatorics,

pages 361�379. Birkhäuser Boston, 2009. Modern Birkhäuser Classics.
[24] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for network flow

problems. Journal of the ACM, 19(2):248�264, 1972.
[25] Abdol H. Esfahanian and S. Louis Hakimi. On computing the connectivities of graphs and digraphs. Networks,

14(2):355�366, 1984.
[26] Ernesto Estrada, Desmond Higham, and Naomichi Hatano. Communicability betweenness in complex net-

works. Physica A: Statistical Mechanics and its Applications, 388:764�774, 05 2009. https://arxiv.org/
pdf/0905.4102.pdf.

[27] Shimon Even. Graph Algorithms. Computer software engineering series. Computer Science Press, 1979.
[28] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.
[29] L. R. Ford. Network flow theory. Rand Corporation, 1956.
[30] Linton Freeman. A set of measures of centrality based upon betweenness. Sociometry, 40(1):35�41, 1977.
[31] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement. Software: Practice

and Experience, 21(11):1129�1164, 1991.
[32] Mohammad Ghebleh. The circular chromatic index of Goldberg snarks. Discrete Mathematics,

307(24):3220�3225, 2007. https://www.sciencedirect.com/science/article/pii/S0012365X07001203.
[33] Alan Gibbons. Algorithmic graph theory. Cambridge University Press, 1985.

171

https://pdfs.semanticscholar.org/ef3c/4fe8cea69f0fcd1939b1c3efca021e6d054d.pdf
https://pdfs.semanticscholar.org/ef3c/4fe8cea69f0fcd1939b1c3efca021e6d054d.pdf
https://pdfs.semanticscholar.org/ef3c/4fe8cea69f0fcd1939b1c3efca021e6d054d.pdf
https://pdfs.semanticscholar.org/ef3c/4fe8cea69f0fcd1939b1c3efca021e6d054d.pdf
https://pdfs.semanticscholar.org/ef3c/4fe8cea69f0fcd1939b1c3efca021e6d054d.pdf
https://pdfs.semanticscholar.org/ef3c/4fe8cea69f0fcd1939b1c3efca021e6d054d.pdf
https://pdfs.semanticscholar.org/ef3c/4fe8cea69f0fcd1939b1c3efca021e6d054d.pdf
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2024
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2024
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2024
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2024
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2024
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2024
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2024
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2024
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2024
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6
https://arxiv.org/pdf/0905.4102.pdf
https://arxiv.org/pdf/0905.4102.pdf
https://arxiv.org/pdf/0905.4102.pdf
https://arxiv.org/pdf/0905.4102.pdf
https://arxiv.org/pdf/0905.4102.pdf
https://arxiv.org/pdf/0905.4102.pdf
https://arxiv.org/pdf/0905.4102.pdf
https://www.sciencedirect.com/science/article/pii/S0012365X07001203
https://www.sciencedirect.com/science/article/pii/S0012365X07001203
https://www.sciencedirect.com/science/article/pii/S0012365X07001203
https://www.sciencedirect.com/science/article/pii/S0012365X07001203
https://www.sciencedirect.com/science/article/pii/S0012365X07001203
https://www.sciencedirect.com/science/article/pii/S0012365X07001203
https://www.sciencedirect.com/science/article/pii/S0012365X07001203
https://www.sciencedirect.com/science/article/pii/S0012365X07001203
https://www.sciencedirect.com/science/article/pii/S0012365X07001203
https://www.sciencedirect.com/science/article/pii/S0012365X07001203
https://www.sciencedirect.com/science/article/pii/S0012365X07001203

[34] Chris Godsil and Gordon F. Royle. Algebraic graph theory. Graduate Texts in Mathematics. Springer, First
edition, 2001.

[35] Donald Goldfarb and Michael D. Grigoriadis. A computational comparison of the dinic and network simplex
methods for maximum flow. Annals of Operations Research, 13(1):81�123, 1988.

[36] Gary Haggard, David J. Pearce, and Gordon Royle. Computing Tutte polynomials. ACM Transactions on
Mathematical Software, 37(3), 2010. Article No. 24.

[37] Gary Haggard, David J. Pearce, and Gordon Royle. Edge-selection heuristics for computing Tutte polyno-
mials. Chicago Journal of Theoretical Computer Science, 2010. Article 6.

[38] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph. I. Journal of
the Society for Industrial and Applied Mathematics, 10:496�506, 1962.

[39] Peter Ladislaw Hammer and Bruno Simeone. The splittance of a graph. Combinatorica, 1(3):275�284, 1981.
[40] Keld Helsgaun. General k-opt submoves for the Lin�KernighanTSP heuristic.Math. Prog. Comp., 1:119�163,

2009.
[41] Carl Hierholzer. Ueber die möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu

umfahren. Mathematische Annalen, 6(1):30�32, 1873.
[42] Andreas M. Hinz, Sandi Klavºar, and Sara S. Zemlji£. A survey and classification of sierpi«ski-type graphs.

Discrete Applied Mathematics, 217(3):565�600, 2017.
[43] Milan Hladnik, Dragan Maru²i£, and Tomaº Pisanski. Cyclic Haar graphs. Discrete Mathematics,

244(1):137�152, 2002. Algebraic and Topological Methods in Graph Theory.
[44] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.

SIAM Journal on Computing, 2(4):225�231, 1973.
[45] Yifan Hu. Efficient and high quality force-directed graph drawing. Mathematica Journal, 10:37�71, 2005.
[46] Yifan Hu and Jennifer Scott. A multilevel algorithm for wavefront reduction. SIAM Journal on Scientific

Computing, 23(4):1352�1375, 2001.
[47] Arthur B. Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):558�562, 1962.
[48] Leo Katz. A new status index derived from sociometric index. Psychometrika, 18:39�43, 1953.
[49] Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs efficiently.

Information Processing Letters, 74:115�121, 2000.
[50] K.M. Koh, F. M. Dong, and E. G. Tay. Graphs and their applications (7). Mathematical Medley, 32(2):10�18,

2005.
[51] Yehuda Koren. Drawing graphs by eigenvectors: Theory and practice. Computers &Mathematics with Appli-

cations, 49(11):1867�1888, 2005. http://www.sciencedirect.com/science/article/pii/S089812210500204X.
[52] Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-law)) graphs.

Theor. Comput. Sci., 407:458�473, 2008.
[53] Hao Li, Evelyne Flandrin, and Jinlong Shu. A sufficient condition for cyclability in directed graphs. Discrete

Mathematics, 307(11�12):1291�1297, May 2007.
[54] Massimo Marchiori and Vito Latora. Harmony in the small-world. Physica A: Statistical Mechanics and Its

Applications, 285(3�4):539�546. https://arxiv.org/abs/cond-mat/0008357.
[55] B. D. McKay and A. Piperno. Practical graph isomorphism, II. J. Symbolic Computation, 60:94�112, 2013.
[56] Michael Monagan. A new edge selection heuristic for computing Tutte polynomials. InProceedings of FPSAC

2012, pages 839�850.
[57] WendyMyrwold andWillianKocay. Errors in graph embedding algorithms. Journal of Computer and System

Sciences, 77(2):430�438, 2011.
[58] M. E. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social networks. Proc Natl Acad

Sci USA, 99:2566�2572, 2002.
[59] Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Computer Science and Applied Mathe-

matics. Academic Press, Second edition, 1978.
[60] Patric R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics,

120:197�207, 2002.
[61] Richard Otter. The number of trees. The Annals of Mathematics, 2nd Ser., 49(3):583�599, 1948.
[62] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of large-scale sym-

metric traveling salesman problems. SIAM Review, 33(1):60�100, 1991.
[63] Charalampos Papamanthou and Ioannis G. Tollis. Algorithms for computing a parametrized st-orientation.

Theoretical Computer Science, 408:224�240, 2008.
[64] Smit Patel and Sowmya Kamath S. Comparative analysis of vertex cover computation algorithms for varied

graphs. In Proceedings of 2014 International Conference on Communications and Signal Processing, pages
1535�1539. April 2014.

[65] Bor Plestenjak. An algorithm for drawing planar graphs. Software: Practice and Experience, 29(11):973�984,
1999.

[66] Tadeusz Sawik. A note on the Miller-Tucker-Zemlin model for the asymmetric traveling salesman problem.
Bulletin of the Polish Academy of Sciences: Technical Sciences, 64(3):517�520, January 2016.

[67] T. Schank and D. Wagner. Finding, counting and listing all triangles in large graphs, an experimental study.
In S. E. Nikoletseas, editor, Experimental and Efficient Algorithms. WEA 2005. Lecture Notes in Computer
Science, volume 3503, pages 606�609. Springer, Berlin, Heidelberg, 2005.

[68] Thomas Schank and Dorothea Wagner. Approximating clustering coefficient and transitivity. Journal of
Graph Algorithms and Applications, 9(2):265�275, 2005.

172 Bibliography

http://www.sciencedirect.com/science/article/pii/S089812210500204X
http://www.sciencedirect.com/science/article/pii/S089812210500204X
http://www.sciencedirect.com/science/article/pii/S089812210500204X
http://www.sciencedirect.com/science/article/pii/S089812210500204X
http://www.sciencedirect.com/science/article/pii/S089812210500204X
http://www.sciencedirect.com/science/article/pii/S089812210500204X
http://www.sciencedirect.com/science/article/pii/S089812210500204X
http://www.sciencedirect.com/science/article/pii/S089812210500204X
http://www.sciencedirect.com/science/article/pii/S089812210500204X
http://www.sciencedirect.com/science/article/pii/S089812210500204X
http://www.sciencedirect.com/science/article/pii/S089812210500204X
https://arxiv.org/abs/cond-mat/0008357
https://arxiv.org/abs/cond-mat/0008357
https://arxiv.org/abs/cond-mat/0008357
https://arxiv.org/abs/cond-mat/0008357
https://arxiv.org/abs/cond-mat/0008357
https://arxiv.org/abs/cond-mat/0008357
https://arxiv.org/abs/cond-mat/0008357
https://arxiv.org/abs/cond-mat/0008357
https://arxiv.org/abs/cond-mat/0008357
https://arxiv.org/abs/cond-mat/0008357
https://arxiv.org/abs/cond-mat/0008357

[69] Liren Shan, Yuhao Yi, and Zhongzhi Zhang. Improving information centrality of a node in complex networks
by adding edges. In Proc IJCAI 2018. 2018. https://arxiv.org/abs/1804.06540.

[70] Angelika Steger and Nicholas C. Wormald. Generating random regular graphs quickly. Combinatorics Prob-
ability and Computing, 8(4):377�396, 1999.

[71] Karen Stephenson and Marvin Zelen. Rethinking centrality: Methods and examples. Social Networks,
11(1):1�37, 1989.

[72] R. E. Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM J. Comput., 2(3):211�216,
1973.

[73] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Comp., 1(2):146�160, 1972.
[74] R. E. Tarjan. A note on finding the bridges of a graph. Information Processing Letters, 2(6):160�161, 1974.
[75] R. E. Tarjan. Applications of path compression on balanced trees. Journal of the ACM, 26(4):690�715, 1979.
[76] R. E. Tarjan. Two streamlined depth-first search algorithms. Fundamenta Informaticae, 9:85�94, 1986.
[77] K. Thulasiraman, S. Arumugam, A. Brandstädt, and T. Nishizeki, editors. Handbook of Graph Theory,

Combinatorial Optimization, and Algorithms. CRC Press, 2016.
[78] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time complexity for generating all

maximal cliques and computational experiments. Theoretical Computer Science, 363:28�42, 2006.
[79] W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society, s3-13(1):743�767, 1963.
[80] Julian R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):31�42, 1976.
[81] John Q. Walker II. A node positioning algorithm for general trees. Software: Practice and Experience,

20(7):685�705, 1990.
[82] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Applications. Cambridge

University Press, 1994.
[83] E. Welch and S. Kobourov. Measuring symmetry in drawings of graphs. Computer Graphics Forum,

36(3):341�351, 2017.
[84] Douglas B. West. Introduction to Graph Theory. Pearson Education, 2002.
[85] Herbert S. Wilf. The uniform selection of free trees. Journal of Algorithms, 2:204�207, 1981.
[86] Jin Y. Yen. Finding the k shortest loopless paths in a network. Management Science, 17(11):712�716, 1971.

Bibliography 173

https://arxiv.org/abs/1804.06540
https://arxiv.org/abs/1804.06540
https://arxiv.org/abs/1804.06540
https://arxiv.org/abs/1804.06540
https://arxiv.org/abs/1804.06540
https://arxiv.org/abs/1804.06540
https://arxiv.org/abs/1804.06540

Command Index

add_arc . 64
add_edge . 64
add_vertex . 62
adjacency_matrix 85
allpairs_distance 117
antiprism_graph 26
arrivals . 82
articulation_points 106
assign_edge_weights 60
bellman_ford 148
betweenness_centrality 138
biconnected_components 104
bipartite_matching 124
canonical_labeling 94
cartesian_product 44
chromatic_index 144
chromatic_number 142
chromatic_polynomial 100
clique_cover 132
clique_cover_number 132
clique_number 129
closeness_centrality 138
clustering_coefficient 135
communicability_betweenness_centrality . . 138
complete_binary_tree 21
complete_graph 20
complete_kary_tree 21
condensation 122
connected_components 104
contract_edge 65
contract_subgraph 63
cycle_basis . 36
cycle_graph . 18
degree_centrality 138
degree_sequence 79
delete_arc . 64
delete_edge . 64
delete_vertex 62
departures . 82
digraph . 15
dijkstra . 148
discard_edge_attribute 69
discard_graph_attribute 67
discard_vertex_attribute 68
disjoint_union 42
draw_graph . 157
edge_connectivity 107
edges . 77
export_graph . 74
find_cliques 128
find_cycles . 39
find_vertex_cover 125
flow_polynomial 100
flower_snark . 29
fundamental_cycle 36

get_edge_attribute 69
get_edge_weight 65
get_graph_attribute 67
get_vertex_attribute 68
girth . 119
goldberg_snark 29
graph . 13
graph_automorphisms 94
graph_charpoly 89
graph_complement 39
graph_equal . 78
graph_join . 42
graph_power . 43
graph_rank . 105
graph_spectrum 90
graph_union . 41
graph_vertices 77
greedy_clique 131
greedy_color 140
greedy_independent_set 131
grid_graph . 27
haar_graph . 31
harmonic_centrality 138
has_arc . 82
has_edge . 82
highlight_edges 169
highlight_subgraph 170
highlight_trail 169
highlight_vertex 168
hypercube_graph 24
identify_graph 97
import_graph . 71
incidence_matrix 88
incident_edges 85
independence_number 130
induced_subgraph 36
information_centrality 138
interval_graph 22
is_acyclic . 120
is_arborescence 113
is_biconnected 103
is_bipartite . 84
is_clique . 127
is_connected 103
is_cut_set . 108
is_directed . 77
is_eulerian 145
is_forest . 110
is_graphic_sequence 22
is_hamiltonian 146
is_integer_graph 91
is_isomorphic 91
is_network . 113
is_planar . 46
is_reachable 156

175

is_regular . 80
is_split_graph 133
is_strongly_connected 106
is_strongly_regular 81
is_subgraph_isomorphic 95
is_tournament 83
is_tree . 109
is_triconnected 103
is_two_edge_connected 108
is_vertex_colorable 143
is_weighted . 77
isomorphic_copy 33
katz_centrality 138
kneser_graph . 23
kspaths . 150
laplacian_matrix 86
lcf_graph . 32
line_graph . 46
list_edge_attributes 69
list_graph_attributes 67
list_vertex_attributes 68
lowest_common_ancestor 112
make_directed 61
make_weighted 61
maxflow . 114
maximum_clique 129
maximum_degree 79
maximum_independent_set 130
maximum_matching 123
minimal_edge_coloring 144
minimal_spanning_tree 155
minimal_vertex_coloring 141
minimum_cut 115
minimum_degree 79
minimum_vertex_cover 126
mycielski . 142
neighbors . 82
network_transitivity 137
number_of_edges 77
number_of_spanning_trees 155
number_of_triangles 134
number_of_vertices 77
odd_girth . 119
odd_graph . 23
paley_graph . 30
path_graph . 19
permute_vertices 34
petersen_graph 28
plane_dual . 46
prism_graph . 26
pruefer_code 111
random_bipartite_graph 53

random_digraph 49
random_graph . 49
random_network 59
random_planar_graph 55
random_regular_graph 58
random_sequence_graph 57
random_tournament 58
random_tree . 53
reachable . 156
relabel_vertices 35
reliability_polynomial 101
reverse_graph 41
seidel_spectrum 90
seidel_switch 40
sequence_graph 21
set_edge_attribute 69
set_edge_weight 65
set_graph_attribute 67
set_vertex_attribute 68
set_vertex_positions 164
shortest_path 148
sierpinski_graph 28
simplicial_vertices 133
spanning_tree 154
st_ordering 120
star_graph . 25
strongly_connected_components 106
subdivide_edges 66
subgraph . 35
tensor_product 44
topologic_sort 120
topological_sort 120
torus_grid_graph 27
trail . 19
trail2edges . 19
transitive_closure 45
traveling_salesman 150
tree_height 110
truncate_graph 48
tutte_polynomial 98
two_edge_connected_components 108
underlying_graph 36
vertex_connectivity 105
vertex_cover_number 126
vertex_degree 79
vertex_distance 116
vertex_in_degree 79
vertex_out_degree 79
vertices . 77
web_graph . 26
weight_matrix 89
wheel_graph . 25

176 Command Index

	Introduction
	1 Constructing graphs
	1.1 General graphs
	1.1.1 Undirected graphs
	1.1.2 Directed graphs
	1.1.3 Examples
	Creating vertices
	Creating edges and arcs
	Creating paths and trails
	Specifying adjacency or weight matrix
	Creating special graphs

	1.2 Cycle and path graphs
	1.2.1 Cycle graphs
	1.2.2 Path graphs
	1.2.3 Trails of edges

	1.3 Complete graphs
	1.3.1 Complete \(multipartite\) graphs
	1.3.2 Complete trees

	1.4 Sequence graphs
	1.4.1 Creating graphs from degree sequences
	1.4.2 Validating graphic sequences

	1.5 Intersection graphs
	1.5.1 Interval graphs
	1.5.2 Kneser graphs
	1.5.3 Johnson graphs

	1.6 Special graphs
	1.6.1 Hypercube graphs
	1.6.2 Star graphs
	1.6.3 Wheel graphs
	1.6.4 Web graphs
	1.6.5 Prism graphs
	1.6.6 Antiprism graphs
	1.6.7 Grid graphs
	1.6.8 Sierpiński graphs
	1.6.9 Generalized Petersen graphs
	1.6.10 Snark graphs
	1.6.11 Paley graphs
	1.6.12 Haar graphs
	1.6.13 LCF graphs

	1.7 Isomorphic copies of graphs
	1.7.1 Creating isomorphic copies from permutations
	1.7.2 Permuting vertices
	1.7.3 Relabeling vertices

	1.8 Subgraphs
	1.8.1 Extracting subgraphs
	1.8.2 Induced subgraphs
	1.8.3 Underlying graphs
	1.8.4 Fundamental cycles
	1.8.5 Finding cycles in digraphs

	1.9 Operations on graphs
	1.9.1 Graph complement
	1.9.2 Graph switching
	1.9.3 Transposing graphs
	1.9.4 Union of graphs
	1.9.5 Disjoint union of graphs
	1.9.6 Joining two graphs
	1.9.7 Power graphs
	1.9.8 Graph products
	1.9.9 Transitive closure graph
	1.9.10 Line graph
	1.9.11 Plane dual graph
	1.9.12 Truncating planar graphs

	1.10 Random graphs
	1.10.1 Random general graphs
	1.10.2 Random bipartite graphs
	1.10.3 Random trees
	1.10.4 Random planar graphs
	1.10.5 Random graphs from a given degree sequence
	1.10.6 Random regular graphs
	1.10.7 Random tournaments
	1.10.8 Random network graphs
	1.10.9 Randomizing edge weights

	2 Modifying graphs
	2.1 Promoting to directed and weighted graphs
	2.1.1 Converting edges to arcs
	2.1.2 Assigning weight matrix to unweighted graphs

	2.2 Modifying vertices of a graph
	2.2.1 Adding and removing vertices
	2.2.2 Contracting subgraphs

	2.3 Modifying edges of a graph
	2.3.1 Adding and removing edges
	2.3.2 Accessing and modifying edge weights
	2.3.3 Contracting edges
	2.3.4 Subdividing edges

	2.4 Using attributes
	2.4.1 Graph attributes
	2.4.2 Vertex attributes
	2.4.3 Edge attributes

	3 Import and export
	3.1 Importing graphs
	3.1.1 Loading graphs from DOT and LST files
	3.1.2 The DOT file format specification
	3.1.3 The lst file format specification

	3.2 Exporting graphs

	4 Graph properties
	4.1 Basic properties
	4.1.1 Determining the type of a graph
	4.1.2 Listing vertices and edges
	4.1.3 Equality of graphs
	4.1.4 Vertex degrees
	4.1.5 Regular graphs
	4.1.6 Strongly regular graphs
	4.1.7 Vertex adjacency
	4.1.8 Tournament graphs
	4.1.9 Bipartite graphs
	4.1.10 Edge incidence

	4.2 Algebraic properties
	4.2.1 Adjacency matrix
	4.2.2 Laplacian matrix
	4.2.3 Incidence matrix
	4.2.4 Weight matrix
	4.2.5 Characteristic polynomial
	4.2.6 Graph spectrum
	4.2.7 Seidel spectrum
	4.2.8 Integer graphs

	4.3 Graph isomorphism
	4.3.1 Isomorphic graphs
	4.3.2 Canonical labeling
	4.3.3 Graph automorphisms
	4.3.4 Test for isomorphism against subgraphs
	4.3.5 Recognizing special graphs

	4.4 Graph polynomials
	4.4.1 Tutte polynomial
	4.4.2 Chromatic polynomial
	4.4.3 Flow polynomial
	4.4.4 Reliability polynomial

	4.5 Connectivity
	4.5.1 Connected, biconnected and triconnected graphs
	4.5.2 Connected and biconnected components
	4.5.3 Vertex connectivity
	4.5.4 Graph rank
	4.5.5 Articulation points
	4.5.6 Strongly connected components
	4.5.7 Edge connectivity
	4.5.8 Edge cuts
	4.5.9 Two-edge-connected graphs

	4.6 Trees
	4.6.1 Tree graphs
	4.6.2 Forest graphs
	4.6.3 Height of a tree
	4.6.4 Prüfer sequences
	4.6.5 Lowest common ancestor of a pair of nodes
	4.6.6 Arborescence graphs

	4.7 Networks
	4.7.1 Network graphs
	4.7.2 Maximum flow
	4.7.3 Minimum cut

	4.8 Distance in graphs
	4.8.1 Vertex distance
	4.8.2 All-pairs vertex distance
	4.8.3 Diameter
	4.8.4 Girth

	4.9 Acyclic graphs
	4.9.1 Acyclic graphs
	4.9.2 Topological sorting
	4.9.3 st ordering
	4.9.4 Graph condensation

	4.10 Matching in graphs
	4.10.1 Maximum matching
	4.10.2 Maximum matching in bipartite graphs

	4.11 Vertex covers
	4.11.1 Finding a vertex cover of the specified size
	4.11.2 Minimum vertex cover

	4.12 Cliques and independent sets
	4.12.1 Clique graphs
	4.12.2 Finding maximal cliques
	4.12.3 Maximum clique
	4.12.4 Maximum independent set
	4.12.5 Greedy clique finding
	4.12.6 Minimum clique cover
	4.12.7 Clique cover number
	4.12.8 Split graphs
	4.12.9 Simplicial vertices

	4.13 Network analysis
	4.13.1 Counting triangles
	4.13.2 Clustering coefficient
	4.13.3 Network transitivity
	4.13.4 Centrality measures

	4.14 Graph coloring
	4.14.1 Greedy vertex coloring
	4.14.2 Minimal vertex coloring
	4.14.3 Chromatic number
	4.14.4 Mycielski graphs
	4.14.5 k-coloring
	4.14.6 Minimal edge coloring

	5 Traversing graphs
	5.1 Walks and tours
	5.1.1 Eulerian graphs
	5.1.2 Hamiltonian graphs

	5.2 Optimal routing
	5.2.1 Shortest unweighted paths
	5.2.2 Cheapest weighted paths
	5.2.3 k-shortest paths
	5.2.4 Traveling salesman problem

	5.3 Spanning trees
	5.3.1 Construction of spanning trees
	5.3.2 Minimal spanning tree
	5.3.3 Counting the spanning trees and forests in a graph
	5.3.4 Vertex reachability

	6 Visualizing graphs
	6.1 Drawing graphs
	6.1.1 Overview
	6.1.2 Spring method
	6.1.3 Drawing trees
	6.1.4 Drawing planar graphs
	6.1.5 Circular graph drawings
	6.1.6 Drawing disconnected graphs
	6.1.7 Setting layout position, size, and title

	6.2 Vertex positions
	6.2.1 Setting vertex positions
	6.2.2 Generating vertex positions
	6.2.3 Custom layout example: spectral graph drawing

	6.3 Highlighting parts of graphs
	6.3.1 Highlighting vertices
	6.3.2 Highlighting edges and trails
	6.3.3 Highlighting subgraphs

	Bibliography
	Command Index

