
1 Installation
Insure that you have installed GMP, FLTK, optionnaly GSL, NTL and PARI
and you that have a recent version of gcc (e.g. 2.95, 2.96, note that GCC 3.0
will compile GMP but not FLTK AFAIK). Then :
tar xvfz giac-0.2.2.tar.gz
cd giac-0.2.2
./configure --enable-fltk-support --enable-debug-support
make
Now become root:
su
and eventually :
make install

2 Using the cas command.
You can invoke cas directly from the command line (in an xterm window for
example). But (except for very simple input) you must quote the arguments
so that the shell does not interpret badly parentheses or *, For example :
cas 'factor(x^3-1)'
Or you can call factor as a command, like :
factor x^3-1
Note that you don't require quote here since argument can not be interpreted
by the shell.

You can also put a �lename instead of an argument. Then all commands
in this �lename will be executed. For example, using your favorite editor (e.g.
emacs) create a �le named test containing:
factor(x^100-1);
rref([[1,2,3],[4,5,6]])
(note that you don't have to quote inside a �le) and run :
cas test

If you want to assign variables a value, just make a �le having the variable
name with the value of the variable in the �le. For example, edit a �le named
mat, write [[1,2,3],[4,5,6]], save the �le and try one of the following com-
mand :
cas 'ker(mat)'
ker mat

You can store the result of a cas command using the usual redirection sym-
bol, for example :
ker mat > kermat will create a �le named kermat that you can use as a vari-
able name later. You can also pipe the result of a command as argument of
another command, e.g. :
gcd x^4-1 x^6-1 | factor

1

The syntax is as similar as possible to usual CAS (especially HP49/40G
CAS). Vectors are delimited by [] and coordinates are separated by ,. Matri-
ces are vectors of vectors.

If you want to know how much time was needed to evaluate your cas query,
just de�ne the environment variable SHOW_TIME, if your shell is tcsh :
setenv SHOW_TIME 1
will de�ne the environment variable and
unsetenv SHOW_TIME
will unde�ne it. With bash,
export SHOW_TIME=1
de�nes the variable and
unset SHOW_TIME
unde�nes the variable.

Currently implemented :
1. usual arithmetic on integers, reals, complex, vectors and matrices: abs,

arg, conj, evalf, im, inv, max, min, re, sign, sqrt. For the usual
operations, since * is interpreted by the shell, you must quote '*' or
escape * the multiplication symbol. For division, I use currently the
quoted or escaped symbol %, this is likely to change.

2. more advanced arithmetic: cyclotomic, egcd, gcd, ichinrem, iquo, irem,
is_prime (returns 2 if certainly prime, 0 if not prime, 1 if probably prime),
nextprime, prevprime, jacobi, legendre, smod.

3. transcendental functions: acos, acosh, alog, asin, asinh, atan, atanh,
cos, cosh, exp, Log, log10, sin, sinh, tan, tanh.

4. polynomial functions: normal: rational simpli�cation
factor: factorization over the integers or Gau� integers
partfrac: partial fraction expansion
resultant: resultant of 2 polynomials
solve: solving polynomial-like equations

5. rewriting functions: fdistrib (full distribute � over +)
simplify: currently rational simpli�cation only
texpand, tlin: trigonometric expansion and linearization

6. calculus: derive: derivation
lim, series : limits and series expansion
integrate: integration of rational fractions

7. linear algebra: rref, ker, image, det, pcar, trace, tran, egv, egvl,
jordan.

8. conversion functions: e2r (entier to rational) and r2e (rational to entier).
They expect a list of variables with respect to which the expression should
be a rational fraction, you can use lname or lvar to get this list. The

2

internal format for rational fractions is parsed directly from the command
line:
� integers, Gau� integers: usual notation (2, 3-5*i)
� dense univariate polynomial: like a vector with coe�cients by de-
scending power ([1,2,3] for x2 + 2x+ 3)

� sparse univariate polynomial and series expansion: a sum of monomi-
als, each monomial is a couple of coe�cient and exponent separated
by ,, e.g. f1,1/2g+f2,3g for x1=2 + 2x3. For a series expansion, use
undef as coe�cient for the remainder term.

� sparse multivariate polynomials: same notation, but the second term
of the couple is a vector of indices, the powers of the variables in
the monomial, e.g. f 2,[1,3]g , for the 2-d polynomial 2xy3 with
respect to the list of variables [x; y].

� (internal) algebraic extension objects. Similar notation, but use :
instead of ,. The �rst term of the couple is a polynomial with respect
to an algebraic integer �, de�ned by the second term of the couple.
This second term might be the minimal polynomial of � or another
extension with as �rst term an approximate value or an index and
second term the minimal polynomial in order to di�erentiate the
di�erent roots of the minimal polynomial. The minimal polynomial
is a dense univariate polynomial. For second order extension, there
are only two models of monic minimal polynomials used: x2 � d
if d 6= 1 (mod 4) and x2 � x = d�14 otherwise and by convention
� = p

d in the �rst case or � = 1+pd2 . This to insure that every monic
polynomial of second order can be factored over such an extension
without introducing fractions.

� Fractions: using the / division sign.
A somewhat more complex example :

(sin x ; tan x) | \% | lim
We �rst compute sin(x) and tan(x), then we pipe both answer to the division
function and pipe the result to the limit function. This is equivalent to :
lim 'sin(x)/tan(x)'
but it demonstrates how it is possible to build expressions using the shell syntax:
the shell is used as a polish notation calculator with mixed syntax (in�x for sin
and tan, reverse polish notation when we pipe). This gives some
exibility to
make small programs using the shell.

A �nal example: open a �le testjordan and write :
[[1,1,-1,2,-1],\
[2,0,1,-4,-1],\
[0,1,1,1,1],\
[0,1,2,0,1],\
[0,0,-3,3,-1]]

3

then write the command :
(jordan testjordan ; cas p j) | sto
or cas 'sto(jordan(testjordan),[p,j])' that will compute the Jordan de-
composition of the matrix and store the passage matrix in p and the Jordan
normal form in j. If you want to check that pjp�1 is the original matrix, you
can write the following command :
cas p j 'inv(p)' | * | normal
or cas 'normal(p*j*inv(p))'

3 TEX translation
The LATEX translation of the commands are logged in the �le session.tex in
the current directory except when you set the SHOW_TIME environment variables.
They require a preamble that you can copy from the �le doc/preamble.tex.

Note that every new command is appended to session.tex, it is a good
idea to remove this �le from time to time.

You can translate formulas in LATEX using the cas2tex command and get
directly a compilable LATEX source �le. For example :
cas2tex '[[1,2],[3,4]]' > essai.tex
followed by :
latex essai.tex
Or in one step :
cas2tex '[[1,2],[3,4]]' | latex --
(this produces the �le texput.dvi)

4 Programming in C++
First example :
#include <giac/giac.h>
using namespace std;
using namespace giac;

int main(){
gen e(string("x^2-1"));
cout << factor(e) << endl;

}
Write this as essai.cc and compile it :
g++ -g essai.cc -lgiac -lgmp
and run it :
./a.out

4

4.1 Organization of the source code

Note that you can use #include <giac/giac.h> to include all headers of the
library.

� gen.cc/.h: arithmetic operations on the base class entier
� identificateur.cc/.h: global name
� unary.cc/.h: unary operators class including non unary operations viewed
as unary operation on the vector of it's arguments

� symbolic.cc/.h: symbolic object class
� usual.cc/.h Usual unary operations
� vecteur.cc/.h: linear algebra
� derive.cc intg.cc lin.cc series.cc subst.cc/.h: Calculus. Derive
is OK as well as rational fraction integration, the rest has to be imple-
mented

� moyal.cc/.h: pseudo-di� operators
� tex.cc/.h: LATEX conversion
� sym2poly.cc/.h: conversion polynomials to symbolic
� index.cc/index.h: class for indexation of multivariate tensors
� poly.h, monomial.h: multivariate template class tensors
� gausspol.cc/.h: specialization of template tensors to entier coe�s
� input_parser.yy input_lexer.ll input_lexer.h: parser
� modpoly.cc/.h: univariate dense polynomials over integers and modular
integers (Warning: gcd-like functions do not work if non modular arith-
metic)

� modfactor.cc/.h: factorization of univariate dense square-free polynomi-
als (Requires NTL or PARI for lll and knapsack to be full speed functional)

� series.cc/.h: series expansion and limits using the mrv algorithm.
See giac.texinfo for a short description of the classes available. Some ex-

amples of programs are provided: src/factor.cc, src/normalize.cc, src/cas.cc,
src/partfrac.cc and src/integrate.cc. To compile these programs, you can
either use :
g++ -g name.cc -lgmp -lgiac
or launch emacs and run it's compile command (menu Tools).

5

