Computer Algebra and
 Mathematics with the HP 40GS

Renée De Graeve
Version 3.0

March 10, 2011

Acknowledgments

It was not believed possible to write an efficient program for computer algebra all on one's own. But one bright person by the name of Bernard Parisse didn't know that... and did it!!!
This is his program for computer algebra (called ERABLE), built for the second time into an HP calculator.
The development of this calculator has led Bernard Parisse to modify his program somewhat so that the computer algebra functions could be edited and cause the appropriate results to be displayed in the Equation Editor.
Explore all the capabilities of this calculator, as set out in the following pages.

I would like to thank:

- Bernard Parisse for his invaluable counsel, his remarks on the text, his reviews, and for his ability to provide functions on demand both efficiently and graciously.
- Jean Tavenas for the concern shown towards the completion of the first version of this guide.
(C) 2005, Renée De Graeve

The reproduction, distribution and/or the modification of this document is authorised according to the terms of the GNU Free Documentation License, Version 1.1 or later, published by the Free Software Foundation, with no Invariant Sections, with no Front-Cover Texts, and with no BackCover Texts.
A copy of this license exists under the section entitled :
GNU Free Documentation License (chapter 9, p. 189).

Preface

The HP 40G marked a new stage in the democratisation of the use of symbolic calculation, on the one hand by its competitive price, and on the other hand by making it possible to execute, step-by-step, the principle algorithms taught in mathematics at secondary schools and in the first years of University.

But it was still necessary to add adequate documentation, preferably written by a teacher of mathematics. That is what you find in this guide, written by Renée De Graeve. It contains, naturally, a complete reference of the functions for symbolic calculation, but also demonstrates, using examples taken from study for both certificate and diploma, how to take smart advantage of the calculating power of the HP 40 GS . The guide ends with two chapters dedicated to programming: the first for learning to program, and the second to illustrate the application of algorithmic language to arithmetic programs as taught in French tertiary schools.

This guide is an update for the HP 40 GS calculator, with some documentation improvements in addition to the HP 40 GS software and speed improvements.

Bernard Parisse
Lecturer at the University of Grenoble I

Chapter 1

To Begin

1.1 General Information

1.1.1 Starting the Calculator

Press the ON button.
The HOME screen is displayed.
As you work, you can use the ON button to cancel the current operation. In other words, it has the same function as CANCEL.
To turn the calculator off, press SHIFT plus ON (OFF).
If the calculator fails to respond after several presses of the ON (CANCEL) button, you can press ON and F3 simultaneously to reinitialise the calculator.

1.1.2 What You See

$>$ From top to bottom:
1.The HOME screen
1.a The calculator's status
1.b A horizontal line
1.c A menu bar of commands
2. The keyboard

1. The HOME screen :
1.a The calculator's status gives the HOME screen's current mode:

- RAD, DEG, or GRD when you are working with radians, degrees, or gradians.
- \{FUNCTION \} to indicate the name of the Aplet currently selected here, the Function Aplet.
- Δ to indicate that you can use the up-arrow to move back through the history.
1.b Horizontal line :
- Above the horizontal line is found an overview of the calculations carried out in the HOME screen.
Principle : On the screen, the requested calculation is written on the left, and the result is written on the right.
- Beneath the horizontal line is the command line.

Using the up-arrow, you can move back through the history and, using COPY on the menu bar, copy a command or a preceding result into the command line.
1.c Menu Bar:

The commands on the menu bar are accessible through the six unlabelled grey keys, which we refer to here as :
F1 F2 F3 F4 F5 F6.
The menu bar can contain items consisting of groups of commands; they are marked by a folder icon.
To activate a command on the menu bar, it's enough to press the corresponding Fi key.
In the HOME screen, the menu bar contains two commands:

- STO \triangleright which enables you to store a value in a variable, and
- CAS, which enables you to open the Equation Editor to perform computer algebra.

2. The keyboard :

You have already been introduced to:
The ON key for starting the calculator or for cancelling the current operation, and SHIFT ON for turning the calculator off.
Other keys you must know include:

- The four arrow keys (left, right, up, down), which enable you to move the cursor while you're in the Equation Editor, in a menu, and so on,
- The SHIFT key, which enables you to access two functions with one key,
- The ALPHA key for typing text in upper case, and the SHIFT ALPHA keys for typing text in lower case. To remain in alphabetic mode, you must press and hold the ALPHA key.
- X T θ which enable you to type $\mathrm{X}, \mathrm{T}, \theta, \mathrm{N}$ directly, depending on the active aplet.
- The ENTER key, which is used to confirm a command.

1.2 Notations

The four arrow keys are represented by four triangles:

$$
\Delta \triangleleft \triangleright \nabla
$$

The $S T O \triangleright$ on the HOME menu is represented in the program by:

$$
\text { STO } \triangleright \text { or } \triangleright \text { or }->
$$

In the Equation Editor, the position of the cursor is represented by:

1.3 Online Help

With this calculator, you're able to get practical and efficient online help in either French or English (cf 5.1.1).
You are shown an alphabetised list of computer algebra functions. As with the drop-down menus, you are able to access the functions by pressing the corresponding letter-keys without having to worry about pressing ALPHA. The help consists of a succinct description of the command, as well as an example and its result. Each example can be tested with ECHO (on the menu) and can be either used as is or modified. You can view help for related commands by means of SEE1 SEE2 ... on the menu. You have to use EXIT to return, without change, in the Equation Editor.
For more details, refer to the description of SHIFT 2 (SYNTAX), sections 3.3.2 and 3.4.6.

Chapter 2

Aplets

2.1 APLET Key

The APLET key gives you access to the list of available Aplets.
This calculator in effect enables you to work with Aplets.
But what is an Aplet?
An Aplet is a program stored in the calculator, which enables you to easily obtain three views of a mathematical object (a symbolic view, a numeric view, and a graphic view) and all this is pre-programmed !
The various Aplets enable you to work with mathematical objects such as: functions, sequences, statistical data, and so on...
Certain Aplets illustrate particular classroom lessons.

2.2 The Various aplets

While you're in HOME, you can see the name of the selected aplet by looking at the status line.
Here are the possible choices for the APLET key:

- Sequence

This Aplet enables you to define sequences having the names:
U1, U2 .. U9, U0
One defines U1 (N):

- To be a function of N ,
- To be a function of $\mathrm{U} 1(\mathrm{~N}-1)$,
- To be a function of $\mathrm{U} 1(\mathrm{~N}-1)$ and $\mathrm{U} 1(\mathrm{~N}-2)$.

You define (for example):
$\mathrm{U} 1(\mathrm{~N})=\mathrm{N} * \mathrm{~N}+1$
and then the values of U 1 (1) and U 1 (2) are automatically calculated and displayed.
To display the values of U1 (N), choose U1, then press NUM.
You can find other examples that use the Sequence Aplet in the following section, such as the calculation of the GCD of two numbers (cf 2.3.2), and the calculation of the coefficients of Bézout's Identity (cf 2.3.3).

- Function

This Aplet enables you to define functions having the names:
F1 (X) , F2 (X) .. F9 (X) , F0 (X)
One defines F1 (X) :

- To be an expression of a function of X :

For example, the formula:
$\mathrm{F} 1(\mathrm{X})=\mathrm{X}^{\star} \mathrm{LN}(\mathrm{X})$ defines the function:
$f 1(x)=x \cdot \ln (x)$

- To use Booleans (X (0 etc.) if the function is defined in parts :

For example, a formula of the form:
$\mathrm{F} 1(\mathrm{X})=\mathrm{X}((\mathrm{X}(0)+2(\mathrm{X}((\mathrm{X}>0)$ defines the function:
$f_{1}(x)=x$ if $x<0$ and
$f_{1}(x)=2 \cdot x$ if $x \geq 0$

- Parametric for tracing curves in parametric coordinates.
- Polar for tracing curves in polar coordinates.
- Solve for solving numeric equations.
- Statistics for working with statistics.
- Inference for working with inferential statistics.
- Quad Explorer for exploring quadratic functions.
- Trig Explorer for exploring trigonometric functions.

2.3 Examples using the Sequence Aplet

2.3.1 Notation in Base b

Given a and b, produce the series $q_{n}(n \geq 1)$ and $r_{n}(n \geq 2)$ from the quotients and the remainders of the division of q_{i} by b, defined by:
$q_{1}=a$
$q_{1}=b \cdot q_{2}+r_{2}\left(0 \leq r_{2}<b\right)$
$q_{2}=b \cdot q_{3}+r_{3}\left(0 \leq r_{3}<b\right)$
$q_{n-1}=b \cdot q_{n}+r_{n}\left(0 \leq r_{n}<b\right)$
Note that if $r_{n+1}=0$, the number $r_{n} r_{n-1} \ldots . . r_{3} r_{2}$ is notated in base b of a, while one assumes $2 \leq b \leq 10$.
Put into B the value of the base, for example:
7 STODB
Put into A the number to write in base B (for example, $1789 \mathrm{STO} \triangleright \mathrm{A}$)
Define the following two series:
U1 (1) =A
U1 (2) $=$ FLOOR (A/B)
$\mathrm{U} 1(\mathrm{~N})=\mathrm{FLOOR}(\mathrm{U} 1(\mathrm{~N}-1) / \mathrm{B})$
and
U2 (1) $=0$
$\mathrm{U} 2(2)=\mathrm{A}$ MOD B
$\mathrm{U} 2(\mathrm{~N})=\mathrm{U} 1(\mathrm{~N}-1)$ MOD B
Therefore, $q_{n}=\mathrm{U} 1(\mathrm{~N})$ and $r_{n}=\mathrm{U} 2(\mathrm{~N})$.
We obtain :
$\mathrm{U} 2(2)=4 \quad \mathrm{U} 2(3)=3 \quad \mathrm{U} 2(4)=1 \quad \mathrm{U} 2(5)=5 \quad \mathrm{U} 2(6)=0$
and so the notation in base 7 of 1789 is: 5134 .

2.3.2 Calculating the GCD

This is an application of Euclid's Algorithm on the HP 40 GS.
Here is the description of this algorithm:
If one performs the successive Euclidean divisions:

$$
\begin{array}{rcl}
A= & B \times Q_{1}+R_{1} & 0 \leq R_{1}<B \\
B= & R_{1} \times Q_{2}+R_{2} & 0 \leq R_{2}<R_{1} \\
R_{1}= & R_{2} \times Q_{3}+R_{3} & 0 \leq R_{3}<R_{2} \\
\ldots \ldots \ldots & & \\
R_{n-2}= & R_{n-1} \times Q_{n}+R_{n} & 0 \leq R_{n}<R_{n-1}
\end{array}
$$

then after a finite number of steps (in excess of B), there exists a whole number n such that: $R_{n}=0$.
We have then:
$G C D(A, B)=G C D\left(B, R_{1}\right)=\ldots$
$G C D\left(R_{n-1}, R_{n}\right)=G C D\left(R_{n-1}, 0\right)=R_{n-1}$

Using a sequence, one then writes the sequences of remainders.
With the HP40GS, you use the Sequence Aplet (APLET key, then select Sequence, then START on the menu bar).
To determine the $\operatorname{GCD}(78,56)$, you define the sequence:

$$
\begin{aligned}
& \mathrm{U} 1(1)=78 \\
& \mathrm{U} 1(2)=56 \\
& \mathrm{U} 1(\mathrm{~N})=\mathrm{U} 1(\mathrm{~N}-2) \operatorname{MOD} \mathrm{U} 1(\mathrm{~N}-1)
\end{aligned}
$$

Press NUM to get the numerical list of $\mathrm{U} 1(\mathrm{~N})$ that is, the list of the remainders of the successive divisions...
The final non-zero remainder is 2 , so the $G C D(78,56)=2$.
REMARK:
In HOME, you can use the variables A and B to store the two numbers, and then make $\mathrm{U} 1(1)=\mathrm{A}$ and $\mathrm{U} 1(2)=\mathrm{B}$.
It's also important to note that A MOD $0=A$.

2.3.3 Calculating the Coefficients of Bézout's Identity

Euclid's Algorithm enables you to find a pair U, V such that:
$A \times U+B \times V=P G C D(A, B)$
Using the idea of sequence:
Define "the sequence of remainder" R_{n} and two sequences U_{n} and V_{n}, such that at each step one has:
$R_{n}=U_{n} \times A+V_{n} \times B$.
Seeing that one has:
$R_{n}=R_{n-2}-Q_{n} \times R_{n-1}, U_{n}$ and V_{n} serve to satisfy the same recurrence relation (where Q_{n} is the whole-number quotient of R_{n-2} divided by R_{n-1}).

One then has (from the beginning):
$R_{1}=A R_{2}=B$
$U_{1}=1 U_{2}=0$ since $A=1 \times A+0 \times B$
$V_{1}=0 V_{2}=1$ since $B=0 \times A+1 \times B$
With the HP40GS, using the Sequence Aplet, you then define the sequence of remainders $U 1$ and the sequences $U 2$ and $U 3$ such that for all N one has:
$\mathrm{U} 1(\mathrm{~N})=\mathrm{A} * \mathrm{U} 2(\mathrm{~N})+\mathrm{B} * \mathrm{U} 3(\mathrm{~N})$.
For this, you need the sequence of quotients, which you put into U4.
The sequences $\mathrm{U} 1, \mathrm{U} 2$ and U 3 satisfy the same recurrence relation:
$U_{n}=U_{n-2}-Q_{n} \times U_{n-1}$ with

$$
Q_{n}=\mathrm{U} 4(\mathrm{~N})=\operatorname{FLOOR}(\mathrm{U} 1(\mathrm{~N}-2) / \mathrm{U} 1(\mathrm{~N}-1))
$$

On définit donc :

$$
\begin{aligned}
& \mathrm{U} 1(1)=\mathrm{A} \\
& \mathrm{U} 1(2)=\mathrm{B} \\
& \mathrm{U} 1(\mathrm{~N})=\mathrm{U} 1(\mathrm{~N}-2)-\mathrm{U} 4(\mathrm{~N}) * \mathrm{U} 1(\mathrm{~N}-1) \\
& \mathrm{U} 2(1)=1 \\
& \mathrm{U} 2(2)=0 \\
& \mathrm{U} 2(\mathrm{~N})=\mathrm{U} 2(\mathrm{~N}-2)-\mathrm{U} 4(\mathrm{~N}) * \mathrm{U} 2(\mathrm{~N}-1) \\
& \mathrm{U} 3(1)=0 \\
& \mathrm{U} 3(2)=1 \\
& \mathrm{U} 3(\mathrm{~N})=\mathrm{U} 3(\mathrm{~N}-2)-\mathrm{U} 4(\mathrm{~N}) * \mathrm{U} 3(\mathrm{~N}-1) \\
& \mathrm{U} 4(1)=0 \\
& \mathrm{U} 4(2)=0 \\
& \mathrm{U} 4(\mathrm{~N})=\operatorname{FLOOR}(\mathrm{U} 1(\mathrm{~N}-2) / \mathrm{U} 1(\mathrm{~N}-1))
\end{aligned}
$$

It's important to note that you use $\mathrm{U} 4(\mathrm{~N})$ only for $\mathrm{N}>2$; you have therefore defined the two first values (which are useless!) as zero.
NUM then displays the values of these various sequences, and on the line of the final non-zero remainder you can read the GCD and the coefficients of Bézout's Identity.

2.4 The SYMB, NUM, PLOT and MODES Keys

In general, an Aplet can be viewed in three different ways:
A symbolic view, which corresponds to the SYMB key
A numeric view, which corresponds to the NUM key
A graphic view, which corresponds to the PLOT key
When these keys are SHIFTed (SETUP), this corresponds to choosing the various available parameters (choosing the parameters of the graphic window, the step size for the table etc...).
The SHIFT HOME (MODES) key pressed in HOME screen or in Aplets, corresponds to the choice between Radians, Degrees or Grads.

Chapter 3

CAS user's guide

3.1 Terms and Conditions

Use of the CAS Software requires from the user an appropriate mathematical knowledge. There is no warranty for the CAS Software, to the extent permitted by applicable law. Except when otherwise stated in writing the copyright holder provides the CAS Software As Is without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of the CAS Software is with you. Should the CAS Software prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event unless required by applicable law will any copyright holder be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use the CAS Software (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the CAS Software to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages. If required by applicable law the maximum amount payable for damages by the copyright holder shall not exceed the royalty amount paid by Hewlett-Packard to the copyright holder for the CAS Software

Note that a large part of the HP40GS CAS is (c) Bernard Parisse, Institut Fourier, Université de Grenoble I, France. This part is also licensed under
the LGPL License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
For more details, see
http://www-fourier.ujf-grenoble.fr/~parisse

3.2 Introduction

The word CAS is a shortcut for Computer Algebra System. This chapter gives a brief overview on the HP40GS CAS.

3.2.1 What is CAS?

The CAS enables you to perform exact or symbolic calculations. Make sure you understand the difference between:

- exact or symbolic calculations, which are performed by means of the CAS functions. You work in exact mode, with infinite precision, and
- numeric calculations, which are performed by means of the MATH key's MTH menu, either in the HOME screen or in Aplets or programs. You work in approximate mode, with a precision of 10^{-12}.

Example:

If you're working in the HOME screen:
$1 / 2+1$ / 6 returns 0.6666666666667
whereas in CAS:
$1 / 2+1 / 6$ will return $2 / 3$.
Each mode has advantages and drawbacks, in exact mode there is no round-off error, but some computations require much more time and memory than in numeric mode. For example computing the factorial of 300 is slightly faster in numeric mode than in exact mode.

3.2.2 How do you perform a symbolic calculation?

The HP 40GS has been designed to use computer algebra functions from a special environment: the Equation Editor. You can, however, perform computer algebra in the HOME screen, as long as you take certain precautions (cf 3.4), and it is mandatory if you want do symbolic linear algebra, since the Equation Editor does not handle vectors and matrices.

To open the Equation Editor, press CAS on the menu bar of the HOME screen.
To leave the Equation Editor, press HOME to return to the HOME screen.
Section 3.3 describes how to use the CAS functions from the Equation Editor, section 3.4 how to use the CAS functions from the HOME screen and chapter 5 describes the CAS functions.

3.2.3 Variables

When you use the symbolic calculation functions, you are working with symbolic variables (variables that do not contain a permanent value). In the HOME screen, a variable of this kind must have a name like S1..S5, s1.. $\mathrm{s} 5, \mathrm{n} 1 \ldots \mathrm{n} 5$, but not X which is assigned to a real value (by default X is assigned to 0) and to store for symbolic expressions, the variables are E0,E1..E9. In the Equation Editor, all variables may, or may not be, assigned: for example X is not assigned to a real value by default, computing $\mathrm{X}+\mathrm{X}$ will return 2 X . Moreover, Equation Editor variables may have long names, like $X Y$ or $A B C$, unlike in HOME where implied multiplication is assumed (for example $A B C$ becomes $A * B * C$ in HOME). For these reasons, variables used in the Equation Editor cannot be used in HOME, and vice versa. Using the command PUSH, you can transfer expressions from the HOME screen history to the CAS history (cf section 3.4.4) and using the command POP, you can also transfer expressions from the CAS history to the HOME screen history (cf section 3.4.5).

3.2.4 The current variable

In the Equation Editor, the current variable is the name of the symbolic variable contained in VX, it is almost always X.
The current variable is always S1 in the HOME screen.
Some CAS functions depend on a current variable, for example, the function DERVX calculates the derivative with respect to the current variable.

Hence in the Equation Editor,
DERVX $(2 * X+Y)$ returns 2 if $V X=X$, but
$\operatorname{DERVX}(2 * X+Y)$ returns 1 if $V X=Y$ and
in the HOME screen,
$\operatorname{DERVX}(2 * S 1+S 2)=2$, but
$\operatorname{DERIV}(2 * S 1+S 2, S 2)=1$.

3.3 Using the CAS in the Equation Editor

The Equation Editor enables you to type expressions that you want to simplify, factor, differentiate, integrate, and so on, and then work them through as if on paper.

The CAS key on the HOME menu bar takes you into the Equation Editor, and the HOME key takes you back out.

This section tells you how to write an expression in the Equation Editor using the menus (section 3.3.1) and the keyboard (section 3.3.2), how to select a sub-expression (section 3.3.3), how to call the CAS functions on a sub-expression (section 3.3.3) and how to store values in the Equation Editor variables (section 3.3.5). Chapter 5 explains all the symbolic calculation functions contained in the various menus, together with examples of use. You can consult the online help with SHIFT 2 (SYNTAX) (cf 3.3.2), to get help for the other available functions, and you can use SHIFT MATH (CMDS) (cf 3.3.2), to type them.

3.3.1 The Equation editor menu

The editor is supplied with a menu bar of menus:

1. The TOOL menu contains the commands:

- Cursor mode enables you to go into cursor mode (cf 3.3.3).
- Edit expr. enables you to edit (modify) the highlighted expression.
- Change font enables you to choose to type using large or small characters (you can make this choice at any time).
- Cut copies the selection into the buffer, then erases the selection.
- Copy copies the selection into the buffer.
- Paste copies the buffer to the location of the cursor. The buffer contains, either whatever Copy or Cut has selected the last time, or the highlighted level when you hit COPY in the CAS history toolbar.

2. The ALGB menu contains functions that enable you to perform algebra: factoring, expansion, simplification, substitution...
3. The DIFF menu contains functions that enable you to perform differential calculus: differentiation, integration, series expansion, limits...
4. The REWRI menu contains functions that enable you to rewrite an expression in another form.
5. The SOLV menu contains functions that enable you to solve equations, linear systems, and differential equations.
6. The TRIG menu contains functions that enable you to transform trigonometric expressions.

3.3.2 The keyboard in the Equation Editor

The keys mentioned in this section have different functions depending on whether they are pressed in the Equation Editor or in the HOME screen. For the functionality of these keys outside the Equation Editor, refer to section 3.4.6, or consult the User's Guide.

MATH key

The MATH key, if pressed in the Equation Editor, displays the functions used in symbolic calculation. These functions are contained in menus:

- The five preceding menus (cf 3.3.1) :

Algebra (ALGB), Diff\&Int (DIFF), Rewrite (REWRI), Solve (SOLV), Trig. (TRIG).

- The Complex menu containing functions that enable you to work with complex numbers
- The Constant menu containinge i ∞ pi.
- The Hyperb. menu containing hyperbolic functions
- The Integer menu containing functions that enable you to perform integer arithmetic.
- The Modular menu containing functions that enable you to perform calculations in $Z / p Z$ or $Z / p Z[X], p$ being the value contained in the variable MODULO.
- The Polynom. menu containing functions that enable you to perform calculations with polynomials.
- The Tests menu containing:

ASSUME UNASSUME (to make hypotheses about the parameters, and to modify the variable REALASSUME cf 3.3.5)

$$
>\geq<\leq==\neq \text { AND } \quad \text { OR } \quad \text { NOT }
$$

IFTE (to write an algebraic function having the same result as an IF THEN ELSE)

Refer to section 5.1.9, for the list of the functions contained in the various menus.

SHIFT MATH (CMDS) keys

This key combination opens the list of all the CAS commands available in the Equation Editor.
In this way, functions that are not presented elsewhere can be called from this menu, so you don't have to type them in ALP HA mode.

VARS key

This key, if pressed while you're in the Equation Editor, displays the names of the variables defined in CAS.
Take special note of namVX, which contains the name of the current variable.
To see the contents of a variable, all you have to do is highlight its name and press F2 for VIEW on the menu bar.
To change the contents of a variable, highlight its name and press F3 for EDIT on the menu bar.
Note also on the menu bar:
PURGE, which enables you to destroy an existing variable,
RENAME, which enables you to change the name of an existing variable, NEW, which enables you to define a new variable: just enter the contents (object), then the (name).
For more details, refer to section 3.3.5.

SHIFT 2 (SYNTAX) keys

While you're in the Equation Editor, the key combination SHIFT 2 (SYNTAX) opens the CAS HELP ON menu.
To get help in French, choose Français on the CFG menu, which enables you to change your configuration (cf 5.1.1).
If there is no CAS function selected in the editor, the menu shows a list of
functions available in the Equation Editor. Just highlight a function and press OK to see the help for that function.
If there is a CAS function selected in the editor, for example:
FACTOR (45), the CAS HELP ON menu directly opens the help topic for FACTOR. The help consists of a short description of the command, as well as an example and its result. Each example can be copied into the Equation Editor by means of ECHO on the menu bar, where it can be used as is or modified.
Note that in the help examples, $\mathrm{VX}=\mathrm{X}$ is used as the current variable. If that is not the case for you, the example will be automatically transformed, taking your value of VX into account, when you transfer it with ECHO.
You can also go directly to see the help of a command pointed to by See: with SEE1, SEE2 . . on the menu bar.

SYMB key

Pressing the SYMB key in the Equation Editor enables you to access the CAS history.
The history of the calculations performed in CAS differs from the history of the calculations performed in HOME.
As in the HOME screen history, the requested calculations are written on the left, and the results are written on the right. Using the up-arrow, you can move back through the history.
Press COPY to copy the current CAS history level in the buffer in order to paste it later with TOOL->Paste in the Equation Editor.
Press ENTER, or ECHO on the menu bar, to replace the current Equation Editor selection by the current CAS history level.
Press ON to leave the CAS history without any changes.

SHIFT SYMB or SHIFT HOME keys

While you are working in the Equation Editor, the key combination:
SHIFT SYMB (SETUP) or SHIFT HOME (MODES) open the CAS MODES screen to define the CAS configuration and it is similar to CFG menu (the first item in the ALGB menu on the menu bar, cf 5.1.1).
This enables you to specify:

- The name of the variable contained in VX, by typing its name next to

Indep var.,

- The value of MODULO, by typing its value next to Modulo,
- Whether you want to work in exact mode (or in approximate mode,
if you've chosen Approx with CHK on the menu bar)
- Whether you want to work in real mode (or in complex mode, if you've chosen Complex with CHK on the menu bar)
- Whether you want to work in Direct mode (or in Step by Step mode, if you've chosen Step/Step with CHK on the menu bar)
- Whether you want polynomials to be written in decreasing order according to exponent (or increasing order, if you've chosen Incr Pow with CHK on the menu bar)
- Whether you want numerical factors suppressed (or not, if you've chosen Num. Factor with CHK on the menu bar)
- Whether you want to work in non-rigorous mode (or in rigorous mode, if you've chosen Rigorous with CHK on the menu bar so as not to neglect the absolute values!)
- Whether you want to simplify non-rational expressions if you've chosen Simp Non-Rational (or not, if you clear the selection by pressing CHK on the menu bar).
Use OK or ENTER to confirm your choices.

SHIFT , key

While you are working in the Equation Editor, the key combination:
SHIFT , (MEMORY) plays the role of an "undo" key.
This is very useful when you've made a mistake, because it enables you to cancel the last command.

PLOT key

When you press PLOT in the Equation Editor, a dialog box asks you if you want to graph a function, a parametric curve, or a polar curve.
Depending on what you choose, the highlighted expression is copied into the appropriate aplet, to the location that you have specified as the destination.
Note: This supposes that the current variable is also the variable of the function or curve you want to graph: when the expression is copied, it is evaluated, and the current variable (variable contained in $V X$) is changed to X, T, or θ, depending on the type of plot.
Note : If the function depends on a parameter, it is preferable to give the parameter a value before pressing PLOT. If, however, you want the parameterised expression to be copied with its parameter, then the name of the parameter must consist of a single letter other than X, T, or θ, so that there is no confusion.
If the highlighted expression has real values :
the Function Aplet or Polar Aplet can be chosen, and the graph will be of Function or Polar type.
If the highlighted expression has complex values :
the Parametric Aplet must be chosen, and the graph will be of Parametric type.
If you choose:

- the Function Aplet, the highlighted expression is copied into the chosen function Fi , and the current variable is changed to X during the copy.
- the Parametric Aplet, the real part and the imaginary part of the highlighted expression are copied into the chosen functions Xi, $Y i$, and the current variable is changed to T during the copy.
- the Polar Aplet, the highlighted expression is copied into the chosen function Ri, and the current variable is changed to θ during the copy.

NUM key

Pressing the NUM key in the Equation Editor causes the highlighted expression to be replaced by a numeric approximation.
NUM puts the calculator into approximate mode.

SHIFT NUM key
Pressing the SHIFT NUM key in the Equation Editor causes the highlighted expression to be replaced by a rationnal number.
SHIFT NUM puts the calculator into exact mode.

VIEWS key

Pressing the VIEWS key in the Equation Editor enables you to move the cursor with the \triangleright and \triangleleft arrows to see the entire highlighted expression. Then press OK on the menu bar to return in the Equation Editor.

Short-cut keys

Note: In the Equation Editor, the following short-cut keys are available on the keyboard:
SHIFT 0 for ∞

SHIFT 1 for i
SHIFT 2 to open the CAS HELP ON
SHIFT 3 for π
SHIFT 5 for $<$
SHIFT 6 for $>$
SHIFT 8 for \leq
SHIFT 9 for \geq
SHIFT NUM to put the calculator into exact mode
NUM to put the calculator into approximate mode.

3.3.3 Expressions, subexpressions, selection

When you type expressions in the Equation Editor, the operator that you are typing always carries over to the adjacent or selected expression.
You don't have to preoccupy yourself with where the parentheses go... just select!
You need to view a mathematical expression as a binary tree, and the four arrow keys as enabling you move through the tree in a natural fashion:
The right and left arrow keys enable you to move from one branch to another,
The up and down arrow keys enable you to go up and down a particular tree,
The SHIFT-up and SHIFT-down arrow keys enable you to make multiple selection (cf page 26 example 3).

How do you select?

There are two ways of going into selection mode :

- The up-arrow Δ takes you into selection mode and selects the element adjacent to the cursor.
Example:

$$
1+2+3+4 \Delta
$$

selects 4 , then \triangle selects the entire tree $1+2+3+4$.

- The right-arrow \triangleright takes you into selection mode and selects the branch adjacent to the cursor.
Pressing \triangleright again augments the selection, adding the next branch to the right.

Example:

$$
1+2+3+4 \triangleright
$$

selects $3+4$, then \triangleright selects $2+3+4$, then \triangleright selects $1+2+3+4$.

- Note: If you are typing a templated function with multiple arguments (such as \sum, \int, SUBST, or the like), the right arrow \triangleright enables you to move through the template by changing the location of the cursor. In effect, the left and right arrow, keys \triangleleft and \triangleright enable you to move from one argument to another. In this case, you always use the up arrow Δ to select (cf 3.3.4).

Examples of the way this Equation Editor works:
Press CAS on the menu bar to open the Equation Editor, then type the expressions in the examples.

- Example 1

Typing:

$$
2+\mathrm{X} \times 3-\mathrm{X}
$$

returns:

$$
2+X \cdot 3-x
$$

Press $\triangleright \triangleright \triangleright$ to select the expression, then the ENTER key to produce:

$$
2+2 \cdot X
$$

Typing:

$$
2+\mathrm{X} \triangleright \times 3-\mathrm{x}
$$

returns:

$$
(2+x) \cdot 3-x
$$

Press $\triangleright \triangleright$ to select the expression, then the ENTER key to produce:

$$
6+2 \cdot x
$$

Typing:

$$
2+\mathrm{X} \triangleright \times 3 \Delta-\mathrm{X}
$$

returns:

$$
(2+X) \cdot(3-X)
$$

Press $\triangleright \triangleright \triangleright$ to select the expression, then the ENTER key to produce:

$$
-\left(X^{2}-X-6\right)
$$

- Example 2

To express:

$$
x^{2}-3 \cdot x+1
$$

type:

$$
\mathrm{X} \mathrm{x}^{\mathrm{y}} 2 \triangleright-3 \mathrm{X}+1
$$

To express:

$$
-x^{2}-3 \cdot x+1
$$

type:

$$
(-) \mathrm{X} \mathrm{x}^{\mathrm{y}} 2 \triangleright \triangleright-3 \mathrm{X}+1
$$

In effect, you must select $-X^{2}$ before typing the rest.

- Example 3

To express:

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}
$$

Here, the tree ends in a + , and there are four branches; each of these branches ends in $\mathrm{a} \div$ and has two leaves.
Press CAS on the menu bar to open the Equation Editor, then type the first branch:

$$
1 \div 2
$$

then select this branch with

$$
\triangleright
$$

Then, type
and the second branch:

$$
1 \div 3
$$

then select this branch with

Then, type
and the third branch:

$$
1 \div 4
$$

then select this branch with

Then, type
and the fourth branch:

$$
1 \div 5
$$

then select this branch with

$$
\triangleright
$$

At this point, the desired expression :

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}
$$

is in the Equation Editor, and $\frac{1}{5}$ is selected.
To move back through the tree and select:

$$
\frac{1}{3}+\frac{1}{4}
$$

type

$$
\triangleleft \triangleleft
$$

to select the $\frac{1}{3}$, then press

SHIFT \triangleright

which enables you to select two contiguous branches, the one already selected and the one to the right of it, like this:

$$
\frac{1}{3}+\frac{1}{4}
$$

Advantage : If you want, you can calculate the selected part by pressing ENTER.
This produces:

$$
\frac{1}{2}+\frac{7}{12}+\frac{1}{5}
$$

with the $\frac{7}{12}$ selected.
If you want to perform the partial calculation

$$
\frac{1}{2}+\frac{1}{5}
$$

you must first perform a permutation so that the $\frac{1}{2}$ and the $\frac{1}{5}$ are side by side. To do this, type:

$$
\text { SHIFT } \triangleleft
$$

which exchanges the selected element with its neighbour to the left. This produces:

$$
\frac{7}{12}+\frac{1}{2}+\frac{1}{5}
$$

with the $\frac{7}{12}$ still selected. Press :

$$
\triangleright \text { SHIFT } \triangleright
$$

to select :

$$
\frac{1}{2}+\frac{1}{5}
$$

Pressing ENTER then produces the result.

- Summing up: SHIFT \triangleright enables you to select the selected element and its neighbour to the right. SHIFT \triangleleft enables you to exchange the selected element with its neighbour to the left. The selected element remains selected, even if you move it.

How to modify an expression

If you're typing an expression, the DEL key enables you to erase what you've typed.

If you're selecting, you can:

- Cancel the selection without deleting the expression, by typing :

DEL

The cursor moves to the end of the deselected portion.

- Replace the selection with an expression, just by typing the desired expression
- Transform the selected expression by applying a CAS function to it: you
call the function via one of the CAS menu options.
- Delete the selected expression by typing:

ALPHA SHIFT DEL (ALPHA CLEAR)

- Delete a selected unary operator "the top of the tree" by typing:

> SHIFT DEL (CLEAR)

For example, to replace SIN (expr) with COS (expr), select SIN (expr), then press SHIFT DEL and press COS.

- Delete a binary infix operator and one of its argument by selecting the argument you want delete and typing:

SHIFT DEL (CLEAR)

For example : if you have the expression $1+2$, you select 1 , then SHIFT DEL deletes $1+$ and it leaves only 2 .
So, to delete $F(X)=$ of the expression $F(X)=X^{2}-X+1$ you select $F(X)$, then press SHIFT DEL, and this produces $X=X^{2}-X+1$ (you have deleted the unary operatora F), then SHIFT DEL, produces $X^{2}-X+1$ (you have deleted X and the operator $=$).

- Delete a binary operator by editing the expression, you select :
Edit expr.
from the TOOL menu on the menu bar, and then make the correction.
- Copy an element from the CAS history. You access to the CAS history by pressing SYMB. In the history, pressing ENTER or selecting ECHO on the menu bar inserts the copy where the cursor is, or in place of the selection. You can also use COPY, on the history menu bar, to copy the selection in the buffer, or the commands Cut, Copy and Paste from the TOOL menu on the Equation Editor menu bar to delete, copy and paste expressions as you would with any text editor (cf.3.3.1).

The cursor mode

The cursor mode enables you to select a large expression quickly. To go into cursor mode, select:
Cursor mode in the TOOL menu,
then use the arrow keys to include your selection in a box (when you release the arrow key, the expression pointed to by the cursor is enclosed).
Then, press ENTER to select the contents of the box.

To see everything

By selecting Change font from the TOOL menu on the menu bar, you can increase or decrease the font size of the expression. This enables you to view a large expression in its entirety when you need to.
If this is insufficient to see the whole expression, then you'll need to go into cursor mode:
select Cursor mode in the TOOL menu, then use the arrow key \triangleright, and then use ENTER to quit cursor mode,
or you can also press:
the VIEWS key, then use the arrow key \triangleright, and press OK on the menu bar to quit VIEWS screen.

3.3.4 Accessing the CAS functions

While you are in the Equation Editor, you can access all CAS functions, and you can access them in various ways.

General principle:
When you have written an expression in the Equation Editor, all you have to do is press ENTER to evaluate the selection (or the entire expression, if nothing is selected).

How to type \int and \sum

\sum is found on the keyboard, all you have to do is type:

$$
\mathrm{SHIFT}+\left(\sum\right)
$$

The symbol \int is also found on the keyboard, it can be produced by typing:

$$
\operatorname{SHIFT} \text { d/dX }\left(\int\right)
$$

The symbols \int and \sum are treated as prefix functions with multiple arguments.
\int and \sum are automatically placed before the selected element, if there is one (hence "prefix functions").
You can move the cursor with the arrow keys:

$$
\triangleright \triangleleft
$$

Enter the expressions according to the rules of selection explained earlier, but you must first go into selection mode by pressing \triangle.

Note: Do not use the index i to define a summation, because i designates the complex-number solution of $x^{2}+1=0$.
\sum performs exact calculations if its argument has a dicrete primitive else \sum performs approximate calculations, even in exact mode. For example in exact, or numeric mode :

$$
\sum_{k=0}^{4} \frac{1}{k!}=2.70833333334
$$

whereas in exact mode :

$$
1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}=\frac{65}{24}
$$

the symbol! is obtained by typing SHIFT \times.
Note that \sum can symbolically calculate summations of rational fractions and hypergeometric series that allow a discrete primitive.
Example:
If you type:

$$
\sum_{K=1}^{4} \frac{1}{K \cdot(K+1)}
$$

then select the entire expression and press ENTER, you obtain:

$$
\frac{4}{5}
$$

If you type:

$$
\sum_{K=1}^{\infty} \frac{1}{K \cdot(K+1)}
$$

then select the entire expression and press ENTER, you obtain:
1

How to call infix functions

These functions are typed between their arguments, for example :
AND | MOD, are infix functions.
You can either:

- type them in Alpha mode (using AND MOD), then type the arguments, or
- call them by selecting a CAS menu option or by pressing a key, provided
you have already written and selected the first argument.
You move from one argument to the other by using the arrow keys $\triangleright \triangleleft$. The comma, enables you to write a complex number:
when you type $1+2 \cdot$ i or $(1,2)$, the parentheses are automatically placed when you type the comma.
If you want to type $(-1,2)$, you must of course select -1 before you type the comma.

How to call prefix functions

These functions are typed before their arguments (which is the usual case). To call a prefix function:
you can type the first argument, select it, then call the function using a menu,
or, you can call the function using a menu or a keystroke in Alpha mode, then type the arguments.
The following example illustrates the different ways of calling a prefix function.
Example:
Say you want to factor the expression $x^{2}-4$, then find its value for $x=4$. You know that FACTOR is the function for factoring, and that this function is found in the ALGB menu.
You also know that SUBST is the function for substituting a value for a variable in an expression, and that this function is found in the ALGB menu as well.

First possibility: Function call, then arguments
Press the F2 key to activate the ALGB on the menu bar, then highlight FACTOR and press ENTER.
$\operatorname{FACTOR}(\boldsymbol{4})$ is displayed in the editor, with the cursor between the parentheses.
Type your expression, using the rules of selection given earlier:

$$
\mathrm{XXX}^{\mathrm{y}} 2 \triangleright-4 \triangleright \triangleright \triangleright
$$

The following is now selected:

$$
\operatorname{FACTOR}\left(\mathrm{X}^{2}-4\right)
$$

Pressing ENTER then produces the result:

$$
(X+2) \cdot(X-2)
$$

The result is selected, and replaces the command.
You do not see this, but after each ENTER, the display is written to the history, so in this case, $\operatorname{FACTOR}\left(\mathrm{X}^{2}-4\right)$ and the answer $(\mathrm{X}+2) \cdot(\mathrm{X}-2)$ are written to the history (press SYMB to see the history and then press ON to return to the Equation Editor).
At this point, you can erase the preceding result with ALPHA SHIFT DEL (CLEAR), because the result is selected.
Press the key that activates ALGB on the menu bar, then highlight SUBST and press ENTER.

$$
\operatorname{SUBST}(\triangleleft, \bullet)
$$

is displayed in the editor, with the cursor between the parentheses at the 1 ocation of the first argument.
Type your expression, using the rules of selection given earlier:
Note: Here, SUBST has two arguments, so you must go into selection mode using \triangle :

$$
\mathrm{XX}^{\mathrm{y}} 2 \Delta \Delta-4 \triangleright \mathrm{X}=4 \triangleright \triangleright
$$

The following is now selected:

$$
\operatorname{SUBST}\left(X^{2}-4, X=4\right)
$$

Pressing ENTER then produces the result:

$$
4^{2}-4
$$

The result is selected, and replaces the command. Pressing ENTER then yields the simplified result:

12

Naturally, $\operatorname{SUBST}\left(\mathrm{X}^{2}-4, \mathrm{X}=4\right), 4^{2}-4$ and 12 are all written to the history.
REMARK:
When you call a CAS function that has arguments, you can type it in Alpha mode with its parentheses.

Second possibility: Arguments, then function call

First of all, type the expression and select it using the rules of selection given earlier.
In this case, type:

$$
\mathrm{XX}^{\mathrm{y}} 2 \triangleright-4 \triangleright \triangleright
$$

Then call FACTOR:
press the key F2 that activates ALGB on the menu bar, then highlight FACTOR
and press ENTER.
This produces:

$$
\operatorname{FACTOR}\left(\mathrm{X}^{2}-4\right)
$$

Pressing ENTER then yields the result:

$$
(X+2) \cdot(X-2)
$$

The result is selected, and replaces the command.
Naturally, $\operatorname{FACTOR}\left(\mathrm{X}^{2}-4\right)$ and $(\mathrm{X}+2) \cdot(\mathrm{X}-2)$ are both written to the history.
Recall now that because your result is selected, you can apply another command to it.
At this point, then, call SUBST: press the key F2 that activates ALGB on the menu bar, then highlight SUBST and press ENTER.

$$
\operatorname{SUBST}((X+2) \cdot(X-2),
$$

is displayed in the editor, with your expression as the first argument between the parentheses, and with the cursor at the location of the second argument.
All you have to do then is type:
$X=4$ then, $\triangleright \triangleright$, followed by ENTER.
This produces:

$$
(4+2) \cdot(4-2)
$$

Pressing ENTER then yields:

Naturally, $\operatorname{SUBST}\left(X^{2}-4, X=4\right),(4+2) \cdot(4-2)$ and 12 are all written to the history.
REMARK:
If you call a CAS function while you're writing an expression, whatever is currently selected is copied into the function's first or "main" argument. If nothing is selected, the cursor is placed at the appropriate location for completing the arguments.

3.3.5 Equation editor variables

You can store objects in variables, then access an object by using the name of its variable.
Notes:
1- Variables used in CAS cannot be used in HOME, and vice versa.

2- In HOME or in the program editor, use STO (represented here as STO \triangleright or \triangleright or ->) to store an object in a variable.
3- In CAS, use the STORE command (cf. 3.3.5) to store a value in a variable. 4- The VARS key displays a menu that contains all the available variables. Pressing this key while you are in HOME displays the names of the variables defined in HOME and in the Aplets.
Pressing this key while you are in the Equation Editor displays the names of the variables defined in CAS.

To store an object in a CAS variable : STORE

In CAS, it is necessary to use the STORE command to store an object in a variable, or to use the VARS key in the Equation Editor (and then choose NEW or EDIT on the menu bar; cf. 3.3.2).
All you need to provide is the name of the variable.
STORE is found in the ALGB menu on the Equation Editor menu bar.
Example:
Type:

$$
\operatorname{STORE}\left(X^{2}-4, A B C\right)
$$

Or, type:

$$
\mathrm{X}^{2}-4
$$

then select it and call STORE, then type $A B C$, then, ENTER confirms the definition of the variable $A B C$. To destroy the variable, use the VARS key in the Equation Editor (then choose PURGE on the menu bar; cf. 3.3.2), or invoke the UNASSIGN command on the ALGB menu by typing (for example):
UNASSIGN(ABC)

Predefined CAS variables

VX contains the name of the current symbolic variable.
Generally this is X, so you should not use X as the name of a numeric variable, or erase the contents of X with the UNASSIGN command in the ALGB menu after having done a symbolic calculation by typing, for example, UNASSIGN (X).

EPS contains the value of epsilon used in the EPSXO command (cf. 5.11.2).

MODULO contains the value of p for performing symbolic calculations in $Z / p Z$ or in $Z / p Z[X]$. You can change the value of p either with the

MODSTO command in the MODULAR menu, (by typing, for example, MODSTO (13)
to give p a value of 13), or use SHIFT SYMB to open the CAS MODES screen and change Modulo.

PERIOD must contain the period of a function before you can find its Fourier coefficients (cf. 5.9.4).

PRIMIT contains the primitive of the last integrated function.
REALASSUME contains a list of the names of the symbolic variables that are considered reals. If you've chosen the Cmplx vars option on the CFG configuration menu, these are by default:
$X, Y, t, S 1, S 2$, as well as any integration variables that are in use. Of course, if you've chosen the Real vars option on the CFG configuration menu, all symbolic variables are considered reals (cf. 5.1.1). You can also use an assumption to define a variable such as $X>1$.
In a case like this, you use the ASSUME ($\mathrm{X}>1$) command to make REALASSUME contain $X>1$. The command UNASSUME (X) destroys all the assumptions we've previously made about X .

To see or to modify all these variables, as well as those that you've defined in CAS, press VARS in the Equation Editor, then on EDIT on the menu bar (cf. 3.3.2).

3.4 CAS in the HOME screen

You can use many computer algebra functions directly in the HOME screen, as long as you take certain precautions. CAS functions that take matrices arguments work only from HOME. For the description of these functions see chapter 4.

3.4.1 HOME variables

You can not use the same variable names in HOME as in the Equation Editor. For example X can not be used as a symbolic variable, since the A. . Z variables names are numeric variables, and always contain a real value (0 by default).
The names of the symbolic HOME variables are :
S1..S5, s1..s5, n1..n5.
Unlike with Equation Editor variables, it is not possible to assign a value to a HOME symbolic variable: note that $\mathrm{s} 1 \ldots \mathrm{~s} 5$ and $\mathrm{n} 1 . \mathrm{n} 5$ are sometimes returned by QUAD and ISOLATE respectively instead of a sign (it should be replaced by ± 1 to get both solutions in QUAD, for instance,
$\operatorname{QUAD}(S 1 * S 1-9, S 1)$ returns $s 1 * 6 / 2$) or instead of an integer (e.g. for isolation inside a trigonometric function, for instance, ISOLATE (SIN (S1) , S1) returns 3.14.. +n1).
If you want to store symbolic expressions in HOME you must use the symbolic expression variables E0 . E9. If you want to store lists of symbolic expressions in HOME you must use the variables L0 . .L9.

3.4.2 Storing an object in a HOME variable : STOD

STO \triangleright enables you to store an object in a HOME variable. STO® is obtained by pressing F1 on the HOME menu bar or on program editor menu bar,. A variable can store only one kind of object, this kind is determined by the variable name (see above).
For example, type:
$S 1^{2}+2 \times S 1$ STO \triangleright E1, then,
DERIV(E1, S1)
you get:
$2 * S 1+2$.

3.4.3 Some tricks and examples.

CAS functions may be accessed from HOME, either from the CAS submenu of the MATH key's menu bar (F4 key), or directly (type the function name in alpha mode). Note that:

- Certain calculations will be performed in approximate mode because numbers are interpreted as reals instead of integers in HOME. To do exact calculations, you should use the command XQ, it converts an approximate argument into an exact argument. For example, if you work with Radians:

$$
\begin{gathered}
\operatorname{ARG}(\mathrm{XQ}(1+\mathrm{i}))=\frac{\pi}{4} \\
\operatorname{ARG}(1+\mathrm{i})=0.7853 \ldots \\
\operatorname{FACTOR}(\operatorname{XQ}(45))=3^{2} * 5 \\
\operatorname{FACTOR}(45)=45
\end{gathered}
$$

- The symbolic HOME variable S1 serves as the current variable for the relevant CAS functions in HOME. For example :

$$
\operatorname{DERVX}\left(\mathrm{S}^{2}+2 \times \mathrm{S} 1\right)=2 * \mathrm{~S} 1+2
$$

The result $2 * \mathrm{~S} 1+2$ does not depend on the Equation Editor variable VX). Note that a few CAS function can not work inside HOME because they require to change the current variable.

- Remember that you must use :

S1, S2, . S5,s1,s2,..s5,n1, n2, ..n5 for symbolic variables and E0,E1, .E9 to store symbolic expressions. For example, if you type :

$$
\mathrm{S} 1^{2}-4 \times \mathrm{S} 2 \mathrm{STO} \triangleright \mathrm{E} 1
$$

then you have :

$$
\begin{gathered}
\operatorname{DERVX}(\mathrm{E} 1)=\mathrm{S} 1 * 2 \\
\operatorname{DERIV}(\mathrm{E} 1, \mathrm{~S} 2)=-4 \\
\operatorname{INTVX}(\mathrm{E} 1)=1 / 3 * \mathrm{~S}^{3}-4 *(\mathrm{~S} 2 * \mathrm{~S} 1)
\end{gathered}
$$

- If you want to work with symbolic matrices, you must store them in L0, L1..L9, because symbolic matrices are interpreted in the same these matrices are interpreted in the same way as lists of lists (whereas numeric matrices are stored in M0, M1..M9). The CAS linear algebra instructions accept list of lists as input. For example, if you type in HOME:

$$
\mathrm{XQ}(\{\{\mathrm{~S} 2+1,1\},\{\sqrt{2}, 1\}\}) \mathrm{STO} \mathrm{~L} 1
$$

then you have :

$$
\operatorname{TRAN}(\mathrm{L} 1)=\{\{\mathrm{S} 2+1, \sqrt{2}\},\{1,1\}\}
$$

Some numeric linear algebra instructions do not work on list of lists, but will after a conversion by AXL, like:
DET(AXL(L1))) STO \triangleright E1
you get:
S2 $-(-1+\sqrt{2})$
Section 4 describes CAS instructions that work only from HOME, including some CAS symbolic linear algebra instructions. For more information you can also use the on-line help (HELP or e.g. HELPWITH TRAN) or look at the HP49G, HP49G+ or HP48GII CAS documentation available from:
http://www-fourier.ujf-grenoble.fr/~parisse

3.4.4 Send expressions from HOME into the CAS history : PUSH

In the HOME screen, you can use the PUSH command to send expressions into the CAS history.
In the HOME screen, you type:
PUSH (S1+1)
and $S 1+1$ is written to the CAS history.

3.4.5 Retrieve expressions written to the CAS history in HOME : POP

In the HOME screen, you can use the POP command to retrieve the last expression written to the CAS history.
In the HOME screen, you type:
POP
and, for example, $\mathrm{S} 1+1$ is written to the HOME screen history and $\mathrm{S} 1+1$ is removed from the CAS history.

3.4.6 The keyboard in the HOME screen

MATH key

This opens the menu of mathematical functions.
This key, if pressed in the HOME screen, open a window containing the mathematical (numeric) functions grouped by theme, since the MTH option on the menu bar (F1 key) is selected by default.
If you choose CAS on this window's menu bar (F4 key), you'll find the same menus as when you press the MATH key in the Equation Editor: this gives you access to all available computer algebra functions, grouped by theme, from the HOME screen.

SHIFT F6 keys

The key combination SHIFT F6(CAS on the menu bar) opens CAS MODES screen, which enables you change the CAS configuration from the HOME screen (cf 3.3.2).

SHIFT 2 (SYNTAX) keys

The key combination SHIFT 2 (SYNTAX) places HELPWITH in the command line. All you need to do then is complete the line with the name of the command or CAS function for which you want help. You can enter the name of a CAS function with MATH and CAS on this window's menu bar (F 4 key), but take care to omit the parentheses.
For example: HELPWITH DERVX opens the CAS help topic on DERVX. If you want general CAS help in the HOME screen, press HELP, then ENTER. This gives you help on the CAS functions available in the HOME screen. To get help in French, choose Français in the CFG menu, which enables you to change your configuration (cf 5.1.1).
Each example can be copied into the HOME screen history by means of ECHO on the menu bar, where it can be used as is or modified, and naturally, the variable X of the example is replaced automatically by S 1 .
In addition, the examples are sometimes modified automatically to change in HOME screen, reals to integers using the XQ function.
For example, you type in the HOME screen:

HELPWITH PROPFRAC

or
HELP then you select PROPFRAC in CAS HELP ON
You obtain the example for PROPFRAC :

$$
\operatorname{PROPFRAC}\left(X Q\left(\frac{43}{12}\right)\right)=3+\frac{7}{12}
$$

whereas if, in the equation editor, you select PROPFRAC on the CAS HELP ON, the example is :

$$
\operatorname{PROPFRAC}\left(\frac{43}{12}\right)
$$

but typing in HOME :

$$
\operatorname{PROPFRAC}\left(\frac{43}{12}\right)
$$

gives

Chapter 4

The CAS functions only valid in HOME screen

These functions have as arguments matrix or vectors and return matrix or vectors.

4.1 Linear systems

In this paragraph, we call "augmented matrix" of the system $A \cdot X=B$ (or matrix "representing" the system $A \cdot X=B$), the matrix obtained augmenting the matrix A to the right with the column vector B.

4.1.1 Resolution of a linear system of equations : REF

REF solves a linear system of equations written in matrix form:

$$
A \cdot X=B
$$

The argument of REF is the augmented matrix of the system (the matrix obtained augmenting matrix A to the right with the column vector B).
The result is a matrix [A1, B1] : A1 has zeros under its principal diagonal, and the solutions of:

$$
\mathrm{A} 1 \cdot \mathrm{X}=\mathrm{B} 1
$$

are the same as:
$A \cdot X=B$

For example, solve the system:

$$
\left\{\begin{array}{llr}
3 \cdot x+y & = & -2 \\
3 \cdot x+2 \cdot y & = & 2
\end{array}\right.
$$

Typing:

$$
\operatorname{REF}([[3,1,-2][3,2,2]])
$$

gives:

$$
\left[\begin{array}{ccc}
1 & \frac{1}{3} & \frac{-2}{3} \\
0 & 1 & 4
\end{array}\right]
$$

So, $y=4$ and $x=-2 / 3-4 / 3=-2$

4.1.2 Resolution of a linear system of equations : rref

rref solves a linear system of equations written in matrix form:

$$
A \cdot X=B
$$

TThe argument of rref is the augmented matrix of the system (the matrix obtained augmenting matrix A to the right with the column vector B).
The result is a list containing the list of pivot elements used by the command and a matrix [A1, B1] : A1 has zeros both above and under its principal diagonal, and the solutions of:

$$
\mathrm{A} 1 \cdot \mathrm{X}=\mathrm{B} 1
$$

are the same as:

$$
A \cdot X=B
$$

It is interesting to use rref in step-by-step mode.
For example, to solve the system:

$$
\left\{\begin{array}{llr}
3 \cdot x+y & = & -2 \\
3 \cdot x+2 \cdot y & = & 2
\end{array}\right.
$$

Typing

$$
\operatorname{rref}([[3,1,-2][3,2,2]])
$$

gives:

$$
\left.\left\{\begin{array}{ll}
1 & 1
\end{array}\right\}\left[\begin{array}{rrr}
3 & 0 & -6 \\
0 & 1 & 4
\end{array}\right]\right\}
$$

Typing

$$
\operatorname{rref}([[1, \mathrm{~S} 1][\mathrm{S} 1,1]])
$$

gives:

$$
\left\{\left\{S 1^{2}-1,1\right\}\left[\begin{array}{rr}
S 1^{2}-1 & 0 \\
0 & -\left(S 1^{2}-1\right)
\end{array}\right]\right\}
$$

4.2 Polynomials

4.2.1 List of factors: FACTORS

FACTORS has either a polynomial or a list of polynomials as argument. FACTORS returns a list containing the factors of the polynomial and their exponents.
Typing:

$$
\operatorname{FACTORS}\left(S 1^{2}-2 * S 1+1\right)
$$

gives:

$$
\{S 1-1,2 .\}
$$

Typing:

$$
\operatorname{FACTORS}\left(S 1^{4}-2 * S 1^{2}+1\right)
$$

gives:

$$
\{\mathrm{S} 1-1,2, \mathrm{~S} 1+1,2\}
$$

Typing:

$$
\operatorname{FACTORS}\left(\left\{S 1^{3}-2 * S 1^{2}+1, S 1^{2}-\mathrm{S} 1\right\}\right)
$$

gives:

$$
\begin{gathered}
\{\{S 1-1,1,2 * S 1+-1+\sqrt{5}, 1,2 * S 1-(1+\sqrt{5}), 1,4,-1\} \\
\{S 1,1, S 1-1,1\}\}
\end{gathered}
$$

4.2.2 Rational function given by its roots and poles : FCOEF

FCOEF has as argument a vector whose components are the roots and poles of a rational function $F[x]$, followed by their multiplicity.
FCOEF returns the rational function $F[x]$.
Typing:

$$
\operatorname{FCOEF}([1,2,0,3,2,-1])
$$

gives:

$$
\mathrm{S} 1^{3} *(\mathrm{~S} 1-1)^{2} /(\mathrm{S} 1-2)
$$

4.2.3 Roots and poles ofa rational function : FROOTS

FROOTS has a rational function $F[x]$ as argument.
FROOTS returns a vector whose components are the roots and the poles of $F[x]$, followed by their multiplicity.
Typing:

$$
\operatorname{FROOTS}\left(\frac{S 1^{5}-2 \cdot S 1^{4}+S 1^{3}}{S 1-2}\right)
$$

gives:

$$
[2,-1,0,3,1,2]
$$

The result means that: 2 is a pole of order 1,0 is a triple root, and 1 is a double root of $F[x]=\frac{x^{5}-2 \cdot x^{4}+x^{3}}{x-2}$ since $(x-1)^{2} \cdot x^{3}=x^{5}-2 \cdot x^{4}+x^{3}$.

4.2.4 Grœbner basis : GBASIS

GBASIS has two arguments : a vector of polynomials with several variables and the vector of names of these variables.
GBASIS returns a Grobner basis of the polynomial ideal built by the polynomials which are in the first argument.
We choose to write the polynomial variables with the order of the last argument and to write the polynomials in decreasing power. If I is an ideal and if $\left(G_{k}\right)_{k \in K}$ is a Grobner basis of this ideal I then if F is a non zero polynomial in I, the greatest power term of F is divisible by the greatest power term of a G_{k}.
Property: If you do an euclidian division of F by its correspondant G_{k}, then if you continue with the remainder of this division, we have at end, a null remainder.
Typing :

$$
\operatorname{GBASIS}\left(\left[2 \cdot \mathrm{~S} 1 \cdot \mathrm{~S} 2-\mathrm{S}^{2}, \mathrm{~S}^{2}-2 \cdot \mathrm{~S} 1 \cdot \mathrm{~S} 2\right],[\mathrm{S} 1, \mathrm{~S} 2]\right)
$$

gives:

$$
\left[\mathrm{S} 1^{2}-\mathrm{S} 2^{2}, 2 \cdot \mathrm{~S} 1 \cdot \mathrm{~S} 2-\mathrm{S} 2^{2}, \mathrm{~S} 2^{3}\right]
$$

4.2.5 Græbner reduction : GREDUCE

GREDUCE has three arguments : a polynomial with several variables, a vector made with polynomials which are a Græbner basis and a vector of names of these variables.
GREDUCE returns the reduction (+ a constant) of the polynomial given in
the first argument with respect to the Græbner basis given in the second argument.
Typing :

$$
\operatorname{GREDUCE}\left(\mathrm{S} 1 * \mathrm{~S} 2-1,\left[\mathrm{~S}^{2}-\mathrm{S} 2^{2}, 2 * \mathrm{~S} 1 * \mathrm{~S} 2-\mathrm{S} 2^{2}, \mathrm{~S} 2^{3}\right],[\mathrm{S} 1, \mathrm{~S} 2]\right)
$$

gives:

$$
\left(S 2^{2}-2\right) / 2
$$

that is to say $\mathrm{Y}^{2}-2$ is the reduce polynomial of $2 \cdot \mathrm{X} \cdot \mathrm{Y}-2\left(\mathrm{Y}^{2}-2\right.$ is the remainder of $2 \cdot(\mathrm{X} \cdot \mathrm{Y}-1)$ by $\left.\mathrm{G}_{2}=2 \cdot \mathrm{X} \cdot \mathrm{Y}-\mathrm{Y}^{2}\right)$.

4.2.6 Lagrange's polynomial : LAGRANGE

LAGRANGE has as argument a matrix with two rows and n columns:
the first row corresponds to the abscissa values x_{i}, and the second row corresponds to ordinate values $y_{i}(i=1 . . n)$.
LAGRANGE returns the polynomial P of degree $n-1$, so that $P\left(x_{i}\right)=y_{i}$.
Typing:

$$
\operatorname{LAGRANGE}([[1,3],[0,1]])
$$

gives:

$$
\frac{S 1-1}{2}
$$

in fact $\frac{x-1}{2}=0$ for $x=1$ and $\frac{x-1}{2}=1$ for $x=3$

4.2.7 GCD of a list : LGCD

LGCD denotes the gcd (greatest common divisor) of a list of whole numbers or of a list of polynomials.
LGCD returns the GCD of all whole numbers of the list or the GCD of all polynomials of the list.
Typing:

$$
\operatorname{LGCD}(\{125,45,35\})
$$

gives:

5

Typing:

$$
\operatorname{LGCD}\left(\left\{S 1^{2}+2 * S 1+1, S 1^{3}+1, S 1^{2}-1, S 1^{2}+S 1\right\}\right)
$$

gives:

$$
\mathrm{S} 1+1
$$

4.2.8 resultant of two polynomials: RESULTANT

RESULTANT has two polynomials as arguments.
RESULTANT returns the resultant of the two polynomials. The resultant of two polynomials is non zero if and only if the polynomials are prime together. It is the determinant of their Sylvester matrix S.
The Sylvester matrix S of two polynomials $A[X]=\sum_{i=0}^{i=n} a_{i} X^{i}$ and $B[X]=$ $\sum_{i=0}^{i=m} a_{i} X^{i}$ is a square matrix with $m+n$ rows and columns; its first m rows are made from the coefficients of $A[X]$:

$$
\left(\begin{array}{ccccccc}
s_{11}=a_{n} & s_{12}=a_{n-1} & \cdots & s_{1(n+1)}=a_{0} & 0 & \cdots & 0 \\
s_{21}=0 & s_{22}=a_{n} & \cdots & s_{2(n+1)}=a_{1} & s_{2(n+2)}=a_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
s_{m 1}=0 & s_{m 2}=0 & \cdots & s_{m(n+1)}=a_{m-1} & s_{m(n+2)}=a_{m-2} & \cdots & a_{0}
\end{array}\right)
$$

and the following n rows are made in the same way from the coefficients of $B[X]$:

$$
\left(\begin{array}{ccccccc}
s_{(m+1) 1}=b_{m} & s_{(m+1) 2}=b_{m-1} & \cdots & s_{(m+1)(m+1)}=b_{0} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots
\end{array}\right)
$$

For example, typing:

$$
\operatorname{RESULTANT}\left(\mathrm{S} 1^{3}-\mathrm{S} 2 * \mathrm{~S} 1+\mathrm{S} 3,3 * \mathrm{~S}^{2}-\mathrm{S} 2\right)
$$

gives:

$$
-\left(4 * S 2^{3}-27 * S 3^{2}\right)
$$

4.2.9 Division by the PGCD :SIMP 2

SIMP 2 has two whole numbers (or two lists of whole numbers with the same length) as arguments. These two whole numbers are considered as representing a fraction.
SIMP 2 returns the simplified fraction, represented as a list of two whole numbers.
Typing:

$$
\operatorname{SIMP2}(18,15)
$$

gives:

$$
\{6,5\}
$$

Typing:

$$
\operatorname{SIMP2}(\{18,28\},\{15,21\})
$$

gives:

$$
\{6,5,4,3\}
$$

SIMP2 has two polynomials (or two lists of polynomials with the same length) as arguments. These two polynomials are considered as representing a rational fraction.
SIMP 2 returns the simplified rational fraction, represented as a list of two polynomials.
Typing:

$$
\operatorname{SIMP2}\left(S 1^{3}-1, S 1^{2}-1\right)
$$

gives:

$$
\left\{S 1^{2}+S 1+1, S 1+1\right\}
$$

4.2.10 Sturm's sequences: STURM

STURM has a polynomial P as argument.
STURM returns a list containing the Sturm's sequences of P and their multiplicities.
The Sturm sequence R_{1}, R_{2}, \ldots can be obtained from a square-free factor F of P as follows:
R_{1} is the opposite of the remainder of the euclidean division of F by F^{\prime}; then, R_{2} is the opposite of the remainder of the euclidean division of F^{\prime} by R_{1},
and so on, until $R_{k}=0$.
For example, type:

$$
\operatorname{STURM}\left(\mathrm{S1}^{3}+1\right)
$$

You obtain:

$$
\left\{[1],-1,\left[S 1^{3}+1,-3 \cdot S 1^{2}-1\right], 1 .\right\}
$$

The first element of the list denotes that the denominator of P (that is, the element with -1 power), is 1 .

4.2.11 Zeros of a polynomial : ZEROS

ZEROS has two arguments: a polynomial P and a variable name.
ZEROS returns a list containing the zeros of P with respect to the given variable, wITHOUT their multiplicity.
Type:

$$
\operatorname{ZEROS}\left(S 1^{4}-1, S 1\right)
$$

gives:

- in real mode (change the mode with SHIFT F6 and UNCHK Complex)

$$
\{-1,1\}
$$

- in complex mode (change the mode with SHIFT F6 and CHK Complex)

$$
\{i,-1,-i, 1\}
$$

4.3 Rational fractions

4.3.1 Numerator and denominator of a fraction : FXND

FXND has a rational fraction as argument, and returns a list containing the simplified numerator and denominator of this fraction.
Typing:

$$
\operatorname{FXND}(3 / 6)
$$

gives:

$$
\{1,2\}
$$

Type:

$$
\operatorname{FXND}\left(\left(S 1^{2}-1\right) /(S 1-1)\right)
$$

You obtain:

$$
\left\{\mathrm{S}^{2}-1, \mathrm{~S} 1-1\right\}
$$

4.4 Modular calculations

4.4.1 Resolution of a linear system of equations: RREFMOD

RREFMOD solves a system of linear equations $A X=B$ in $Z / p Z$.
The argument is the matrix A augmented with the vector B as its rightmost column. The result is a matrix composed of $A 1$ and $B 1$, where $A 1$ has zeros both above and under its principal diagonal, and the system $A 1 X=B 1$ is equivalent to $A X=B$.
To solve, in $Z / 13 Z$:

$$
\left\{\begin{array}{c}
x+2 \cdot y=9 \\
3 \cdot x+10 \cdot y=0
\end{array}\right.
$$

Typing :
MODSTO(13)

$$
\operatorname{RREFMOD}([[1,2,9][3,10,0]])
$$

gives :

$$
[[2,0,6],[0,4,-1]]
$$

that is, $2 . X=6$ and $4 . Y=-1$ or, which is the same, $X=3 Y=3$ (since $-4 * 3=1(\bmod 13))$.

4.5 Variables

4.5.1 The symbolic variables of an expression : LNAME

LNAME has an expression as argument, and returns a vector whose components are the symbolic variable names the expression contains.
Typing :

$$
\operatorname{LNAME}(\mathrm{S} 1 * \mathrm{~S} 2 * \mathrm{SIN}(\mathrm{~S} 1))
$$

gives :

$$
[\mathrm{S} 1, \mathrm{~S} 2]
$$

4.5.2 The variables of an expression : LVAR

LVAR has an expression as argument, and returns a vector such that the original expression is a rational fraction with respect to the components of this vector.
Typing :

$$
\operatorname{LVAR}(\mathrm{S} 1 * \mathrm{~S} 2 * \operatorname{SIN}(\mathrm{~S} 1))
$$

gives :

$$
[\operatorname{SIN}(S 1), S 1, S 2]
$$

4.6 Numeric calculus

4.6.1 Omit the values smaller than EPS : EPSXO

EPSXO has as argument an expression; in the expression, it replaces all numeric values whose magnitude is smaller than EPS with zero and returns the result.
Type:

$$
\operatorname{EPSX0}(0.001+\mathrm{S} 1)
$$

You obtain (when EPS=0.01) :

$$
0+S 1
$$

You obtain (when EPS=0.0001):

$$
.001+\text { S1 }
$$

4.6.2 Solve numerically a system : MSLV

MSLV solves numerically a system of non-polynomial equations.
MSLV has three vectors as arguments: a vector containing the equations, a vector containing the system's variables, and a vector containing an initial guess for the solution.
MSLV returns a vector containing an approximate solution of the given system of equations.
While the command is running, the first display line shows the last estimate \vec{V}, and the second line shows the modulo of $\Delta \vec{V}$
For example, type:

$$
\operatorname{MSLV}([\operatorname{SIN}(S 1)+S 2, S 1+\operatorname{SIN}(S 2)-1],[S 1, S 2],[0,0])
$$

You obtain:

$$
[1.82384112611,-.968154636174]
$$

List of values: TABVAL

TABVAL has an expression and a list of numbers as arguments.
TABVAL returns a list. This list holds two lists : the list of numbers given as input and the list of the value the expression where the variable S1 is replaced by the list of numbers given as input.
For example, typing:

$$
\operatorname{TABVAL}\left(\mathrm{S}^{2}+\mathrm{S} 1,\{1,2,3, \mathrm{XQ}(\sqrt{5}\})\right.
$$

gives:

$$
\{\{1,2,3, \sqrt{5}\},\{2,6,12,5+\sqrt{5}\}\}
$$

4.6.3 Time for evaluation of the answer : TEVAL

TEVAL has a command as argument.
TEVAL returns the list of the answer and the time for the evaluation of this
answer (unit=second).
For example, typing:

$$
\operatorname{TEVAL}\left(\operatorname{FACTOR}\left(S 1^{2}-1\right)\right)
$$

gives:

$$
\{(\mathrm{S} 1-1) *(\mathrm{~S} 1+1), 0.2991\}
$$

4.6.4 Numeric approximation : XNUM

XNUM has either an expression or an array as argument.
XNUM enables approximate mode and returns the numeric approximation of its argument.
Type:

$$
\operatorname{XNUM}(\sqrt{2})
$$

You obtain:

$$
1.41421356237
$$

4.6.5 Exact value : XQ

XQ has a real numeric expression as argument.
XQ enables exact mode and returns either a rational or a real approximation of the expression.
Typing:
XQ(1.41421)
gives:

$$
\frac{66441}{46981}
$$

Typing:

$$
\mathrm{XQ}(1.414213562)
$$

gives:
$\sqrt{2}$

4.7 The lists

4.7.1 Concatenation : AUGMENT

AUGMENT has as arguments two vectors, or two lists, or a list and an element.

AUGMENT concatenates its arguments.
Typing:

$$
\text { AUGMENT }(\{1,2\}, 3)
$$

gives:

$$
\{1,2,3\}
$$

Typing:

$$
\operatorname{AUGMENT}(\{1,2\},\{3,4\})
$$

gives:

$$
\{1,2,3,4\}
$$

4.7.2 Map a function to a list : MAP

MAP has two arguments: a list and a function defining an holomorphic operator.
MAP applies the operator to the list, and returns the result.
Typing:

$$
\operatorname{MAP}(1,0,2, \operatorname{EXP}(\mathrm{~S} 1)
$$

gives:

$$
\{\operatorname{EXP}(1), \operatorname{EXP}(0), \operatorname{EXP}(2)\}
$$

4.8 Quadratic forms

4.8.1 Matrice to quadratic form : AXQ

AXQ has two arguments: a symmetric matrix A representing a quadratic form q and a vector whose components are the quadratic form's variables. AXQ returns the quadratic form q.
Typing :

$$
\operatorname{AXQ}([[0,1],[1,0]],[S 1, S 2])
$$

gives:

$$
2 * S 2 * S 1
$$

4.8.2 Gauss decompsition : GAUSS

GAUSS has two arguments: a quadratic form q and a vector whose components are the quadratic form's variables.
GAUSS returns q expressed as a sum of squares.
Typing:

$$
\operatorname{GAUSS}(2 \cdot \mathrm{~S} 1 \cdot \mathrm{~S} 2,[\mathrm{~S} 1, \mathrm{~S} 2])
$$

gives:

$$
-2 \cdot\left(\frac{\mathrm{~S} 2-\mathrm{S} 1}{2}\right)^{2}+\frac{1}{2} \cdot(\mathrm{~S} 2+\mathrm{S} 1)^{2}
$$

4.8.3 Matrix of a quadratic form : QXA

QXA has two arguments: a quadratic form q and a vector whose components are the form's variables.
QXA returns the matrix A associated with q.
Typing :

$$
\operatorname{QXA}(2 * S 1 * S 2,[S 1, S 2])
$$

gives:

$$
[[0,1],[1,0]]
$$

and with SHOW

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

4.8.4 Sylvester decomposition : SYLVESTER

SYLVESTER has one argument: a symmetric matrix representing a quadratic form q.
SYLVESTER returns a list of two elements: the diagonal elements of the diagonal matrix B (obtained expressing q as a sum of squares) and the matrix of change of base Q.
We have:

$$
{ }^{t} Q \cdot B \cdot Q=A
$$

Typing:

$$
\operatorname{SYLVESTER}([[0,1],[1,0]])
$$

gives:

$$
\left\{\left[\frac{1}{2},-2\right],\left[\begin{array}{cc}
1 & 1 \\
\frac{-1}{2} & \frac{1}{2}
\end{array}\right]\right\}
$$

4.9 Functions of multiple variables

4.9.1 The rotor : CURL

Here $n=3$.
CURL has two arguments: the value [$E 1, E 2, E 3$] of a vectorial function (application from R^{3} in R^{3}) and a vector of R^{3} denoting the variable names.
CURL returns the rotor of $[E 1, E 2, E 3]$.
$\operatorname{CURL}([\mathrm{E} 1, \mathrm{E} 2, \mathrm{E} 3],[\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3])=\left[\frac{\partial \mathrm{E} 3}{\partial \mathrm{~S} 2}-\frac{\partial \mathrm{E} 2}{\partial \mathrm{~S} 3}, \frac{\partial \mathrm{E} 1}{\partial \mathrm{~S} 3}-\frac{\partial \mathrm{E} 3}{\partial \mathrm{~S} 1}, \frac{\partial \mathrm{E} 2}{\partial \mathrm{~S} 1}-\frac{\partial \mathrm{E} 1}{\partial \mathrm{~S} 2}\right]$
Type:

$$
\operatorname{CURL}\left(\left[\mathrm{S} 1 * \mathrm{~S} 3,-\mathrm{S} 2^{2}, 2 * \mathrm{~S} 1 * \mathrm{~S} 2\right],[\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3]\right)
$$

You obtain:

$$
[2 * \mathrm{~S} 1, \mathrm{~S} 1-\mathrm{S} 2 * 2,0]
$$

4.9.2 The gradient : DERIV

DERIV has two arguments: the value of an application $E 1$ from R^{n} in R and a vector of R^{n} denoting the variable names.
DERIV returns the gradient of $E 1\left(\left[\frac{\partial E 1}{\partial S 1}, \frac{\partial E 1}{\partial S 2}, \frac{\partial E 1}{\partial S 3}\right]\right.$ if $\left.n=3\right)$.
Type:

$$
\operatorname{DERIV}\left(2 * S 1^{2} * S 2-S 1 * S 3^{3},[S 1, S 2, S 3]\right)
$$

After simplification, you obtain:

$$
\left[4 \cdot \mathrm{~S} 2 \cdot \mathrm{~S} 1-\mathrm{S} 3^{3}, 2 \cdot \mathrm{~S} 1^{2},-\left(3 \cdot \mathrm{~S} 1 \cdot \mathrm{~S} 3^{2}\right)\right]
$$

4.9.3 The divergence : DIV

DIV has two arguments: the value $[E 1, E 2, E 3]$ of a vectorial function (application from R^{n} in R^{n}) and a vector of R^{n} denoting the variable names. DIV returns the divergence of $[E 1, E 2, E 3]$.

$$
\operatorname{DIV}([\mathrm{E} 1, \mathrm{E} 2, \mathrm{E} 3],[\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3])=\frac{\partial \mathrm{E} 1}{\partial \mathrm{~S} 1}+\frac{\partial \mathrm{E} 2}{\partial \mathrm{~S} 2}+\frac{\partial \mathrm{E} 3}{\partial \mathrm{~S} 3}(\text { here } n=3)
$$

Typing:

$$
\operatorname{DIV}\left(\left[\mathrm{S} 1 * \mathrm{~S} 3,-\mathrm{S} 2^{2}, 2 * \mathrm{~S} 1 * \mathrm{~S} 2\right],[\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3]\right)
$$

gives:

$$
S 3-2 * S 2
$$

4.9.4 The hessian : HESS

HESS has two arguments: the value of an application $E 1$ from R^{n} in R and a vector of R^{n} denoting the variable names.
HESS returns a list containing the hessian of $E 1$, the gradient of $E 1$ and the vector of the variable names.
Typing :

$$
\operatorname{HESS}\left(2 * S 1^{2} * S 2-S 1 * S 3,[S 1, S 2, S 3]\right)
$$

gives:
$\left\{\left[\begin{array}{ccc}2 \cdot 2 \cdot \mathrm{~S} 2 & 2 \cdot 2 \cdot \mathrm{~S} 1 & -1 \\ 2 \cdot 2 \cdot \mathrm{~S} 1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right],\left[4 \cdot \mathrm{~S} 1 \cdot \mathrm{~S} 2-\mathrm{S} 3,2 \cdot \mathrm{~S} 1^{2},-\mathrm{S} 1\right],[\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3]\right\}$
Now, to obtain the critical points of $E 1$, you must type:

$$
\operatorname{SOLVE}\left(\left[4 . \mathrm{S} 1 . \mathrm{S} 2-\mathrm{S} 3,2 . \mathrm{S} 1^{2},-\mathrm{S} 1\right],[\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3]\right)
$$

4.9.5 The laplacian : LAP L

LAPL has two arguments: the value of an application $E 1$ from R^{n} in R and a vector of R^{n} denoting the variable names.
LAPL returns the laplacian of $E 1\left(\frac{\partial^{2} E 1}{\partial S 1^{2}}+\frac{\partial^{2} E 1}{\partial S 2^{2}}+\frac{\partial^{2} E 1}{\partial S 3^{2}}\right.$ if $\left.n=3\right)$.
Type:

$$
\operatorname{LAPL}\left(2 * S 1^{2} * S 2-S 1 * S 3^{3},[S 1, S 2, S 3]\right)
$$

You obtain:

$$
4 * S 2-6 * S 1 * S 3
$$

4.10 Equations

4.10.1 Members of an equation : EXLR

EXLR has an equation as argument (you have to type ==).
EXLR returns a list containing the left and right hand sides of the equation.
Type:

$$
\operatorname{EXLR}(\operatorname{XQ}(2 \cdot S 1+1==3 / 2))
$$

You obtain:

$$
\{2 \cdot S 1+1,3 / 2\}
$$

56CHAPTER 4. THE CAS FUNCTIONS ONLY VALID IN HOME SCREEN

4.11 Matrices

4.11.1 Matrix to list : AXL

When AXL is given a matrix as argument, it returns the same matrix rewritten as a list of lists. Vice versa, AXL transforms a list of lists into a matrix. Typing:

$$
\operatorname{AXL}(\operatorname{XQ}([[1,1 / 2],[3,4]]))
$$

gives:

$$
\{\{1,1 / 2\},\{3,4\}\}
$$

Typing:

$$
\operatorname{AXL}(\operatorname{XQ}(\{\{1,1 / 2\},\{3,4\}\}))
$$

gives:

$$
[[1,1 / 2],[3,4]]
$$

But typing:

$$
\operatorname{AXL}([[1,1 / 2],[3,4]])
$$

gives:

$$
\{\{1,0.5\},\{3,4\}\}
$$

and typing

$$
\operatorname{AXL}(\{\{1,1 / 2\},\{3,4\}\})
$$

gives:

$$
[[1,0.5,[3,4]]
$$

4.11.2 Symbolic matrix to numeric matrix : AXM

If given a symbolic matrix as argument, AXM returns an equivalent (but approximate) numeric matrix.
Type:

$$
\operatorname{AXM}([[1 / 2,2],[3,4]])
$$

You obtain:

$$
[[0.5,2],[3,4]]
$$

4.11.3 Basis vectors : BASIS

BASIS has as argument a list of vectors, defining a vectorial subspace of R^{n}.
BASIS returns a list containing the vectors of a basis of the vectorial subspace.
For example, type:

$$
\operatorname{BASIS}(\{[1,2,3],[1,1,1],[2,3,4]\})
$$

You obtain:

$$
\{[1,0,-1],[0,1,2]\}
$$

4.11.4 Cholesky matrix : CHOLESKY

CHOLESKY has as argument a square matrix M , positive by definition. CHOLESKY returns an upper triangular matrix P so that:
${ }^{t} P * P=M$
Typing:
CHOLESKY([[1, 1], [1, 5]])
gives :

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]
$$

4.11.5 Map an operator to a diagonalizable matrix : DIAGMAP

DIAGMAP has two arguments: a diagonalizable matrix and an expression defining an holomorphic operator.
DIAGMAP applies the operator to the matrix, and returns the result.
Typing:

$$
\operatorname{DIAGMAP}([[1,1],[0,2]], \operatorname{EXP}(S 1))
$$

gives:

$$
\left[\begin{array}{cc}
\operatorname{EXP}(1) & \operatorname{EXP}(2)-\operatorname{EXP}(1) \\
0 & \operatorname{EXP}(2)
\end{array}\right]
$$

4.11.6 Hadamard product : HADAMARD

HADAMARD has two matrices A and B, with the same size, as arguments. HADAMARD returns the element-by-element product between A and B. Type:

$$
\operatorname{HADAMARD}(\mathrm{XQ}([[1 / 2,2],[3,4]]), \mathrm{XQ}([[5,6],[7,8]]))
$$

or

$$
\operatorname{HADAMARD}(\operatorname{XQ}(\{\{1 / 2,2\},\{3,4\}\}), \operatorname{XQ}(\{\{5,6\},\{7,8\}\})
$$

You obtain:

$$
[[5 / 2,12],[21,32]]
$$

but

$$
\operatorname{HADAMARD}([[1 / 2,2],[3,4]],[[5,6],[7,8]])
$$

or

$$
\operatorname{HADAMARD}(\{\{1 / 2,2\},\{3,4\}\},\{\{5,6\},\{7,8\}\}
$$

You obtain:

$$
[[2.5,12],[21,32]]
$$

4.11.7 Hilbert matrix : HILBERT

HILBERT has an integer n as argument.
HILBERT returns the square Hilbert matrix of order n whose elements are given by:

$$
a_{i, j}=\frac{1}{i+j-1}
$$

Type:
HILBERT(4)

You obtain, pressing ENTER, then \uparrow, and then SHOW :

$$
\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right]
$$

4.11.8 Basis of an intersection : IBAS IS

IBASIS has as arguments two lists of vectors, defining two vectorial spaces. IBASIS returns a list containing the vectors of a basis of the intersection between these two vectorial spaces.
Typing:

$$
\operatorname{IBASIS}(\{[1,2]\},\{[2,4]\})
$$

gives:

$$
\{[1,2]\}
$$

4.11.9 basis of the image : IMAGE

IMAGE has as argument a matrix representing a linear application f in terms of the standard basis.
IMAGE returns a list of vectors; they are a basis of the image of f.
Typing:

$$
\operatorname{IMAGE}([[1,2,3],[2,1,3],[3,1,4]])
$$

gives :

$$
\{[1,0,-1 / 3],[0,1,5 / 3]\}
$$

4.11.10 Jordan matrix : JORDAN

JORDAN has a matrix A, of order n, as argument.
JORDAN returns a list composed by the minimal polynomial M of A, the characteristic polynomial P of A, the list of the eigenvectors and characteristic vectors (each vector is preceded by its characteristic value), and the vector of the n eigenvalues of A.
Type:

$$
\operatorname{JORDAN}([[4,1,-2],[1,2,-1],[2,1,0]])
$$

or

$$
\operatorname{JORDAN}(\{\{4,1,-2\},\{1,2,-1\},\{2,1,0\}\})
$$

You obtain pressing ENTER, then \uparrow, and then SHOW :

$$
\begin{array}{r}
\left\{\mathrm{S} 1^{3}-6 \cdot \mathrm{~S} 1^{2}+12 \cdot \mathrm{~S} 1-8, \mathrm{~S}^{3}-6 \cdot \mathrm{~S} 1^{2}+12 \cdot \mathrm{~S} 1-8\right. \\
\{[1,0,0],[2,1,2],[1,0,1]\},[2,2,2]\}
\end{array}
$$

4.11.11 Basis of the kernel : $K E R$

KER has as argument a matrix representing a linear application f in terms of the standard basis.
KER returns a list of vectors; they are a basis of the kernel of f.
Typing:

$$
\operatorname{KER}([[1,2,3],[2,1,3],[3,1,4]])
$$

gives:

$$
\{[1,1,-1]\}
$$

4.11.12 Make a matrix : LCXM

LCXM has as arguments two integers, n and p, and an expression of S1 (a row number) and og S 2 (a column number) and yielding the value of $a_{i, j}$. LCXM returns a $n \cdot p$ matrix having coefficients $a_{i, j}$. Type:

$$
\operatorname{LCXM}(2,3, S 1+S 2)
$$

You obtain:

$$
[[1+1,1+2,1+3],[2+1,2+2,2+3]]
$$

and then after simplification :

$$
[[2,3,4],[3,4,5]]
$$

4.11.13 List of several elements: MAD

MAD has a square matrix A, of order n, as argument.
MAD returns a list containing the determinant of A, the inverse of A, a list containing the matrix coefficients of a polynomial Q, and of the characteristic poloynomial P of A.
We have:

$$
P(x)=(-1)^{n} \cdot \operatorname{det}(A-x \cdot I)
$$

The polynomial with matrix coefficients $P(A)-P(x) \cdot I$ is divisible by $A-x \cdot I$ (since its value is zero for $x=A$). Let $Q(x)$ be their quotient. Since $P(A)=0$, we have $P(A)-P(x) \cdot I=-P(x) \cdot I=(A-x$. $I) \cdot Q(x)$.
Therefore, $Q(x)$ is also the co-matrix of $A-x \cdot I$ and the following holds: $Q(x)=I \cdot x^{n-1}+\ldots+B_{0}$, where B_{0} is the co-matrix of A (with the sign exchanged if n is even!).
Type:

$$
\operatorname{MAD}([[1,1 / 2],[1,3]])
$$

or

$$
\operatorname{MAD}(\{\{1,1 / 2\},\{1,3\}\})
$$

You obtain:
$\left\{5 / 2,[[6 / 5,-1 / 5],[-2 / 5,2 / 5]],\{[[1,0],[0,1]],[[-3,1 / 2],[1,-1]]\}, S 1^{2}-4 * S 1+5 / 2\right\}$
or pressing ENTER, then \uparrow, and then SHOW gives:

$$
\left\{\frac{5}{2},\left[\begin{array}{cc}
\frac{6}{5} & -\frac{-1}{5} \\
\frac{-2}{5} & \frac{2}{5}
\end{array}\right],\left\{\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-3 & 1 / 2 \\
1 & -1
\end{array}\right]\right\}, \mathrm{S}^{2}-4 \cdot \mathrm{~S} 1+\frac{5}{2}\right\}
$$

4.11.14 Characteristic polynomial : PCAR

PCAR has a matrix A, of order n, as argument.
PCAR returns the characteristic polynomial P of $A\left(P[x]=(-1)^{n} \cdot \operatorname{det}(A-\right.$ $x \cdot I)$) Type:

$$
\operatorname{PCAR}([[4,1,-2],[1,2,-1],[2,1,0]])
$$

or

$$
\operatorname{PCAR}(\{\{4,1,-2\},\{1,2,-1\},\{2,1,0\}\})
$$

You obtain:

$$
\mathrm{S} 1^{3}-6 * \mathrm{~S}^{2}+12 * \mathrm{~S} 1-8
$$

4.11.15 Minimal polynomial : PMINI

PMINI has a matrix A as argument.
PMINI returns another matrix, whose first "zero row" is ended by the minimal polynomial of A.
For example, type:

$$
\operatorname{PMINI}([[1,0],[0,1]])
$$

In step-by-step mode, you obtain:
$\mathrm{L} 2=\mathrm{L} 2-\mathrm{L} 1$
$\left[\begin{array}{rrrrr}1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & S 1 \\ 1 & 0 & 0 & 1 & S 1^{2}\end{array}\right]$
$\mathrm{L} 3=\mathrm{L} 3-\mathrm{L} 1$
$\left[\begin{array}{rrrrr}1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & S 1-1 \\ 1 & 0 & 0 & 1 & S 1^{2}\end{array}\right]$
Reduction result
$\left[\begin{array}{rrrrr}1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & S 1-1 \\ 0 & 0 & 0 & 0 & S 1^{2}-1\end{array}\right]$
The row:
$0,0,0,0, S 1-1$ gives the minimal polynomial of A. So, the minimal polynomial of A : $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is:
S1-1

4.11.16 Q^{*} R decomposition : qr

qr has a square matrix as argument.
qr factors the matrix as $\mathrm{Q} * \mathrm{R}$, where Q is an orthogonal matrix and R is a triangular matrix.
Typing:

$$
\operatorname{qr}([[3,5],[4,5]])
$$

gives:

$$
\left\{\left[\begin{array}{rr}
\frac{3}{5} & \frac{4}{5} \\
\frac{4}{5} & -\frac{3}{5}
\end{array}\right],\left[\begin{array}{ll}
5 & 7 \\
0 & 1
\end{array}\right]\right\}
$$

4.11.17 System to matrix : SYST2MAT

SYST2MAT has two arguments: a vector containing a system of linear equations ($=$ or $==$ is not allowed and so $=0$ is omitted), and a vector whose elements are the system's variables.
SYST2MAT rewrites the system in matrix notation, and returns the matrix.
For example, type:

$$
\text { SYST2MAT }([S 1+S 2, S 1-S 2-2],[S 1, S 2])
$$

You obtain:

$$
\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & -1 & -2
\end{array}\right]
$$

4.11.18 Transposed matrix : TRAN

TRAN has a matrix A as argument.
TRAN returns the input matrix A transposed.
Typing :

$$
\operatorname{TRAN}(\mathrm{XQ}([[1,1 / 2],[3,4]]))
$$

gives:

$$
[[1,3],[1 / 2,4]]
$$

Typing :

$$
\operatorname{TRAN}(X Q(\{\{1,1 / 2\},\{3,4\}\}))
$$

gives:

$$
\{\{1,3\},\{1 / 2,4\}\}
$$

But typing :

$$
\operatorname{TRAN}([[1,1 / 2],[3,4]]))
$$

gives:

$$
[[1,3],[0.5,4]]
$$

4.11.19 Vandermonde matrix : VANDERMONDE

VANDERMONDE has as argument a vector whose components are denoted by x_{i} for $i=0 . . n-1$.
VANDERMONDE returns the corresponding Vandermonde matrix (the k-th row of the matrix is the vector whose components are x_{i}^{k} for $i=0 . . n-1$ and $k=0 . . n-1$).
Type:
VANDERMONDE([1, 2, 3])

You obtain:

$$
[[1,1,1],[1,2,4],[1,3,9]]
$$

Suppose that $\mathrm{E} 1=6, \mathrm{E} 2=2 * \mathrm{~S} 1+\mathrm{S} 1 * \mathrm{~S} 2$ and then type:
VANDERMONDE([E1, E2, E3])

You obtain pressing ENTER, then \uparrow, and then SHOW:

$$
\left[\begin{array}{ccc}
1 & 6 & 36 \\
1 & 2 \cdot \mathrm{~S} 1+\mathrm{S} 1 \cdot \mathrm{~S} 2 & (2 \cdot \mathrm{~S} 1+\mathrm{S} 1 \cdot \mathrm{~S} 2)^{2} \\
1 & \mathrm{E} 3 & \mathrm{E3}^{2}
\end{array}\right]
$$

4.12 The permutations

Permutations are defined with the image list $\{P(1), P(2) \ldots P(n)\}$.
For example, definining the permutation P as $P=\{3,2,1\}$ means that: $P(1)=3, P(2)=2, P(3)=1$.
A cycle is denoted with a list containing the images of an element through the cycle; for example, defining a cycle C as $C=\{3,2,1\}$ means that: $C(3)=2, C(2)=1, C(1)=3$.
Accordingly, a decomposition into cycles is denoted with a list of lists.

4.12.1 Cycles to permutation: C2P

C2P has a list of cycles as argument.
C 2 P returns the permutation having the input list as decomposition into
cycles (see also P2C).
Typing:

$$
\operatorname{C2P}(\{\{1,3,5\},\{2,4\}\})
$$

gives:

$$
\{3,4,5,2,1\}
$$

4.12.2 Composition : CIRC

CIRC has two permutations as arguments.
CIRC returns the permutation obtained by composition: (1^{st} argument \circ $2^{\text {nd }}$ argument).
Typing:

$$
\operatorname{CIRC}(\{3,4,5,2,1\},\{2,1,4,3,5\})
$$

gives:

$$
\{4,3,2,5,1\}
$$

4.12.3 Decomposition into cyclesP 2C

P2C has a permutation as argument.
P2C returns its decomposition into cycles and its signature.
Typing:

$$
\operatorname{P2C}(\{3,4,5,2,1\})
$$

gives :

$$
\{\{\{1,3,5\},\{2,4\}\},-1\}
$$

4.13 The isometries

4.13.1 Isometry's characteristics elements: ISOM

ISOM has as argument a matrix representing a two or three-dimensional linear isometry.
ISOM returns the list of the isometry's characteristics elements and either +1 (for direct isometries) or -1 (for indirect isometries).
For example, type:

$$
\operatorname{ISOM}([[0,0,1],[0,1,0],[1,0,0]])
$$

You obtain:

$$
\{[1,0,-1],-1\}
$$

This result means that the isometry is a simmetry with respect to the plane $x-z=0$.
If you type:

$$
\operatorname{ISOM}\left(\frac{\sqrt{2}}{2} \cdot\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\right)
$$

You obtain:

$$
\{\operatorname{ACOS}(\sqrt{(1 / 2)}, 1\}
$$

therefore, this isometry is a rotation of $\frac{\pi}{4}$ radians.

4.13.2 Isometry's matrix : MKI SOM

In a three-dimensional space, MKISOM has the list of the characteristics elements of an isometry, and either +1 (denoting a direct isometry) or -1 (denoting an indirect isometry) as arguments,
In a two-dimensional space, MKISOM has the characteristic element of an isometry (either an angle or a vector) and either +1 (denoting a direct isometry) or -1 (denoting an indirect isometry) as arguments.
MKISOM returns the matrix representing the given isometry.
For example, type:

$$
\operatorname{MKISOM}(\{[-1,2,-1], \pi\}, 1)
$$

You simplify the answer typing :
XQ (then \uparrow and COPY, then) ENTER
this gives the matrix of a rotation with axis $[-1,2,-1]$ and angle π :

$$
\left[\begin{array}{rrr}
\frac{-2}{3} & \frac{-2}{3} & \frac{1}{3} \\
\frac{-2}{3} & \frac{1}{3} & \frac{-2}{3} \\
\frac{1}{3} & \frac{-2}{3} & \frac{-2}{3}
\end{array}\right]
$$

For example, type:

$$
\operatorname{MKISOM}(\{\pi\},-1)
$$

You obtain the matrix of a symmetry with respect to the origin:

$$
[[-1,0,0],[0,-1,0],[0,0,-1]]
$$

Type:

$$
\operatorname{MKISOM}\left(\left\{[1,1,1], \frac{\pi}{3}\right\},-1\right)
$$

66CHAPTER 4. THE CAS FUNCTIONS ONLY VALID IN HOME SCREEN

You obtain (after simplification) the matrix of a rotation with axis $[1,1,1]$ and angle $\frac{\pi}{3}$ combined with a symmetry with respect to the plane $x+y+z=$ 0 :

$$
\left[\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right]
$$

Type:

$$
\operatorname{MKISOM}\left(\frac{\pi}{2}, 1\right)
$$

You obtain the matrix of a rotation of $\frac{\pi}{2}$ radians in two dimensions:

$$
[[0,-1],[1,0]]
$$

(because $\operatorname{CoS}(1 / 2 * \pi)=0$ and $\operatorname{SIN}(1 / 2 * \pi)=1$)
Type:

$$
\operatorname{MKISOM}([1,1],-1)
$$

You obtain the matrix of a symmetry with respect to $y=x$ in two dimensions:

$$
[[0,-1],[-1,0]]
$$

Chapter 5

CAS Reference from the Equation Editor

When you press on CAS in the HOME menu bar, you open the Equation Editor in wich you can do symbolic calculus. In this chapter, we describe the computer algebra functions as used from the Equation Editor (see section 3.4 and chapter 4 if you want to use CAS functions from HOME).

5.1 CAS menu bar

The Equation Editor has a menu bar : it is the CAS menu bar. TOOL, ALGB, DIFF, REWRI, SOLV and TRIG compose the CAS menu bar.
Only the TOOL menu contains commands, the other menus contain the algebraic functions that can be written in Alpha mode and have on its first line the sub-menu CFG enable you to change your configuration.

5.1.1 Change your configuration : CFG

All the menus, except TOOL display the state of your configuration and enable you to change it.
For example, say that you see the following on the first line of a menu:

This means that :
(1) you are in exact-real mode,
(2) X is the current variable, and
(3) you are working in Step by step mode (S).

If you highlight CFG and press OK, a menu is displayed with this at its head:

$$
\text { CFG : R }=\text { STEP } \uparrow \mathrm{X} 13 \|
$$

This means that :
(1) you are in exact-real mode,
(2) Step by step mode is selected,
(3) polynomials are written with their terms in ascending order by exponent,
(4) X is the current variable,
(5) modular calculations are carried out in $\mathrm{Z} / 13 \mathrm{Z}(p=13)$, and
(6) you are working in Rigorous mode (that is, using absolute values).

You can change this configuration by selecting any of the following:
Quit cfg (when you're finished making changes)
Complex (or Real)
Approx (or Exact)
Direct (or Step/Step if you want to work in Step by Step mode)
$1+x+x^{2} \ldots$ (or $\ldots x^{2}+x+1$) how polynomials will appear,
Sloppy (or Rigorous, if you want to work in absolute values)
Num. factor (or Symb factor)
Cmplx vars (or Real vars if you want all symbolic variables to be treated as reals cf. 3.3.5)
English (or Français if you want the line-based help to be in French)
Default cfg (configuration $R=$ STEP $\downarrow \mathrm{X} 13 \|$.
Press OK to validate each of your choices.
Pressing CANCEL takes you out of the CFG menu (as does choosing quit $\mathrm{C} f \mathrm{~g}$ and confirming it with OK).
The name of the current variable contained in VX, as well as the value of the variable MODULO, can be changed by means of the SHIFT SYMB (SETUP) keystroke, or by using the VARS key (see 3.3.2 and 3.3.2).
REMARKS:

- You can also change your configuration with the SHIFT SYMB (SETUP) (or SHIFT HOME (MODES)) keystrokes pressed in the Equation Editor (see section 3.3.2).
- In CAS, angles are always expressed in Radians.

When you are in HOME screen, you can use the MODES menu (the SHIFT HOME keystrokes) to open the HOME MODES screen and to change ANGLE

MEASURE or open the CAS MODES screen with the SHIFT F6 (CAS on the menu bar) to change your CAS configuration.

5.1.2 Step/Step Mode

You choose Step by Step mode (Step/Step, abbreviated S) when you want to see the details of the calculations.
The details of the calculations are displayed on the screen and you can view the next step by pressing OK.
When the screen is not big enough to display all the information, directional arrows $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ appear on the edge of the screen. You can then scroll the screen to see more information by using the arrow keys $\nabla \Delta$.
If you do not need to see the details of the calculations, choose Direct mode (abbreviated D).

5.1.3 TOOL menu

The functions contained in the TOOL menu are described in section 3.3.1.
Cursor mode
Edit expr.
Change font
Cut
Copy
Paste

5.1.4 ALGB menu

COLLECT
DEF
EXPAND
FACTOR
PARTFRAC
QUOTE
STORE
|
SUBST
TEXPAND
UNASSIGN

70 CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR

5.1.5 DIFF menu

DERIV
DERVX
DIVPC
FOURIER
IBP
INTVX
lim
PREVAL
RISCH
SERIES
TABVAR
TAYLOR0
TRUNC

5.1.6 REWRI menu

DISTRIB
EPSX0
EXPLN
EXP2POW
FDISTRIB
LIN
LNCOLLECT
POWEXPAND
SINCOS
SIMPLIFY
XNUM
XQ

5.1.7 SOLV menu

DESOLVE
ISOLATE
LDEC
LINSOLVE
SOLVE
SOLVEVX

5.1.8 TRIG menu

ACOS2S
ASIN2C
ASIN2T
ATAN2S
HALFTAN
SINCOS
TAN2CS2
TAN2SC
TAN2SC2
TCOLLECT
TEXPAND
TLIN
TRIG
TRIGCOS
TRIGSIN
TRIGTAN

5.1.9 The MATH key

It contains, in addition to the previously described menus (Algebra, Diff\&Int, Rewrite, Trig., Solve) we have:
Complex (i ABS ARG CONJ DROITE IM - RE SIGN)
Constant (e i $\infty \pi$)
Hyperb. (ACOSH ASINH ATANH COSH SINH TANH)
Integer (DIVIS EULER FACTOR GCD IDIV2 IEGCD IQUOT IREMAINDER ISPRIME? LCM MOD NEXTPRIME PREVPRIME)
Modular (ADDTMOD DIVMOD EXPANDMOD FACTORMOD GCDMOD INVMOD MODSTO MULTMOD POWMOD SUBTMOD)
Polynom. (EGCD FACTOR GCD HERMITE LCM LEGENDRE PARTFRAC PROPFRAC PTAYL QUOT REMAINDER TCHEBYCHEFF)
Reals (CEILING FLOOR FRAC INT MAX MIN)
Tests (ASSUME UNASSUME $>\geq<\leq==\neq$ AND OR NOT IFTE)
Refer to sections 3.3.1 and 3.3.2 for descriptions of these menus.

5.2 Integers (and Gaussian Integers)

All the functions in this section are found in the MATH key's Integer menu, except IABCUV ICHINREM PA2B2, which is in the SHIFT MATH

72 CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR
(CMDS) key's menu.
For certain functions, you can use Gaussian integers (numbers of the form $a+i b$, where a and b are integers) in the place of integers.

5.2.1 Unlimited precision

The calculator can manage integers with unlimited precision, such as the following:

100 !
The symbol ! is obtained by typing SHIFT \times
The decimal value of 100 ! is very large, but you can view it by using the VIEWS key.

5.2.2 The divisors of a number : $D I V I S$

DIVIS gives the divisors of a number.
Typing :
DIVIS(12)
gives:

$$
12 \text { OR } 6 \text { OR } 3 \text { OR } 4 \text { OR } 2 \text { OR } 1
$$

Note: $\operatorname{DIVIS}(0)=0$ OR 1

5.2.3 The Euler index : EULER

EULER returns the Euler index for a whole number.
$\operatorname{EULER}(\mathrm{n})$ is equal to the number of whole numbers less than n and prime with n.
Typing:
EULER(21)
gives:
12
In other words:
$E=\{2,4,5,7,8,10,11,13,15,16,17,19\}$ is the set of whole numbers less than 21 and prime with 21 . There are 12 members of the set, so $\operatorname{Cardinal}(\mathrm{E})=12$.

5.2.4 Decomposition into prime factors: $F A C T O R$

FACTOR decomposes an integer into its prime factors.
Typing:

$$
\operatorname{FACTOR}(90)
$$

gives:

$$
2 \cdot 3^{2} \cdot 5
$$

5.2.5 The greatest common divisor : GCD

GCD returns the greatest common divisor of two integers.
Typing:

$$
\operatorname{GCD}(18,15)
$$

gives:

$$
3
$$

In Step by step mode, typing:

$$
\operatorname{GCD}(78,24)
$$

gives:
$78 \bmod 24=6$
$24 \bmod 6=0$
Result 6
Pressing ENTER then causes 6 to be written to the Equation Editor.

5.2.6 Resolution of $a u+b v=c$: IABCUV

$\operatorname{IABCUV}(A, B, C)$ returns U AND V so that $A U+B V=C$.
It is of course necessary that C must be a multiple of $\operatorname{GCD}(A, B)$ to obtain a solution.
Typing :

$$
\operatorname{IABCUV}(48,30,18)
$$

gives:

$$
6 \text { AND - } 9
$$

5.2.7 Chinese remainders:ICHINREM

ICHINREM (A AND P,B AND Q) returns C AND R.
The numbers $X=C+k \cdot R$ where $k \in \mathbb{Z}$ are such that :
$\mathrm{X}=\mathrm{A} \bmod \mathrm{P}$ and $\mathrm{X}=\mathrm{B} \bmod \mathrm{Q}$.
A solution X always exists when P and Q are mutually prime, $(\operatorname{GCD}(P, Q)=1)$
and in this case, all the solutions are congruent modulo $R=P \cdot Q$.
Typing :

$$
\text { ICHINREM(7 AND 10, } 12 \text { AND 15) }
$$

gives :

$$
-3 \text { AND } 30
$$

that is to say that the solutions are such that :
$\mathrm{X}=-3 \bmod 30$
EXAMPLE:
Gives the solutions of :

$$
\left\{\begin{array}{l}
X=3(\bmod 5) \\
X=9(\bmod 13)
\end{array}\right.
$$

Typing :

$$
\text { ICHINREM(3 AND 5, } 9 \text { AND 13) }
$$

gives :

$$
-147 \text { AND } 65
$$

that is to say that the solutions are such that :
$\mathrm{X}=-147 \bmod 65$

5.2.8 Quotient and remainder of two integers : IDIV2

IDIV2 returns the quotient AND the remainder of the Euclidean division between two integers.
Typing:

$$
\operatorname{IDIV} 2(148,5)
$$

gives:
29 AND 3
In step-by-step mode, the calculator shows the division process like it is taught at school. The division is carried out as if in longhand, using the so-called "gallows" algorithm.

5.2.9 Bézout's Identity : IEGCD

$\operatorname{IEGCD}(A, B)$ returns the value of Bézout's Identity for two integers.
In other words, $\operatorname{IEGCD}(\mathrm{A}, \mathrm{B})$ returns U AND $\mathrm{V}=\mathrm{D}$, with $\mathrm{U}, \mathrm{V}, \mathrm{D}$ such that:
$A U+B V=D$ and $D=G C D(A, B)$.
Typing:

$$
\operatorname{IEGCD}(48,30)
$$

gives

$$
2 \text { AND }-3=6
$$

In other words: $2 \cdot 48+(-3) \cdot 30=6$ and $\operatorname{gcd}(48,30)=6$
In Step by step mode, we get:
[$z, u, v]: z=u * 48+v * 30$
$[48,1,0]$
$[30,0,1] *-1$
$[18,1,-1] *-1$
$[12,-1,2]^{*}-1$
$[6,2,-3] *-2$
Result : $[6,2,-3]$
puis ENTER ou OK,

$$
2 \mathrm{AND}-3=6
$$

to be written to the Equation Editor.

5.2.10 The integer Euclidean quotient : IQUOT

IQUOT returns the integer quotient of the Euclidean division of two integers.
Typing:

$$
\text { IQUOT }(148,5)
$$

gives:
29
In Step by step mode, the division is carried out as if in longhand:

148	5
48	---
3	29

Press OK to execute the division step by step, then press ENTER to write the result 29 to the Equation Editor.

5.2.11 The integer remainder : IREMAINDER

IREMAINDER returns the integer remainder from the Euclidean division of two integers.
IREMAINDER is found in the MATH key's Integer menu.
Typing:

$$
\text { IREMAINDER }(148,5)
$$

gives:

3

IREMAINDER works with integers or with Gaussian integers, which is what distinguishes it from MOD.
Example

$$
\operatorname{IREMAINDER}(2+3 \cdot i, 1+i)
$$

returns i
Try calculating:
IREMAINDER(148!, 5! + 2)
(The symbol ! is obtained by typing SHIFT \times).
In Step by step mode, the division is carried out as if in longhand, using the so-called "gallows" algorithm (see 5.2.10 for an example).

5.2.12 Test of pseudo-primality : ISPRIME?

ISPRIME? (N) returns 1 . (TRUE) if N is a pseudo-prime, and 0 . (FALSE) if N is not prime.
DEFINITION: For numbers less than 10^{14}, pseudo-prime and prime mean the same thing. But for numbers greater than 10^{14}, a pseudo-prime is a number with a large probability of being prime (cf. Rabin's Algorithm, section 7.6).
Typing:
ISPRIME?(13)
gives:
1.

Typing:

> ISPRIME?(14)
gives:

5.2.13 The least common multiple : LCM

LCM returns the least common multiple of two integers.
Typing:

$$
\operatorname{LCM}(18,15)
$$

gives:

```
90
```


5.2.14 Remainder of the Euclidean division : MOD

MOD is an infix function that has two integers as arguments.
MOD returns the remainder of the Euclidean division of the arguments. Typing:

$$
3 \text { MOD } 2
$$

produces the result:
1
MOD accepts real numbers ($7.5 \bmod 2.1=1.2$), but not Gaussian integers (cf section 5.5.3).

5.2.15 The smallest pseudo-prime greater than $\mathrm{N}: \mathrm{NEXTPRIME}$

NEXTPRIME (N) returns the smallest pseudo-prime greater than N .
Typing:
NEXTPRIME(75)
gives:

$$
79
$$

5.2.16 Resolution of $a^{2}+b^{2}=p$ with integers: PA2B2

PA2B2 decompose a prime integer p congruent to 1 modulo 4 , as follows:
$p=a^{2}+b^{2}$.
The calculator gives the result as $a+b \cdot i$
Typing :
PA2B2(17)
gives:

$$
4+i
$$

that is, $17=4^{2}+1^{2}$
Typing :
PA2B2(29)
gives:

$$
5+2 \cdot i
$$

that is, $29=5^{2}+2^{2}$

5.2.17 The greatest pseudo-prime less than $\mathrm{N}:$ PREVPRIME

PREVPRIME (N) returns the greatest pseudo-prime less than N .
Typing:

> PREVPRIME(75)
gives:
73

5.3 Modular Calculations

All the functions in this section are found in the MATH key's Modular menu except DIV2MOD, which is in the SHIFT MATH (CMDS) key's menu.
You can carry out calculations in modulo p that is, in Z / pZ or in $\mathrm{Z} / \mathrm{pZ}[\mathrm{X}]$. NOTE: For some commands, p must be prime.
All the examples in this section use a value for p of 13.
It's assumed that you have already typed:
MODSTO(13)
or that you have used the SHIFT SYMB (SETUP) keystroke to switch MODULO to 13 . The representation is the symetric representation (-5 in stead of 8 modulo 13).

5.3.1 Addition in $\mathbf{Z} / \mathbf{p Z}$ or in $\mathbf{Z} / \mathbf{p Z}[\mathbf{X}]$: ADDTMOD

ADDTMOD performs an addition in $Z / p Z$.
Typing:

$$
\operatorname{ADDTMOD}(2,18)
$$

gives:

ADDTMOD performs an addition in $Z / p Z[X]$.
Typing:

$$
\operatorname{ADDTMOD}(11 \mathrm{X}+5,8 \mathrm{X}+6)
$$

gives:

$$
6 \mathrm{X}-2
$$

5.3.2 Quotient and remainder in $\mathbf{Z} / \mathbf{p Z}[\mathbf{X}]$: DIV2MOD

The arguments of DIV2MOD are two polynomials $A[X]$ and $B[X]$. The result is a AND containing both the quotient and the remainder of the euclidean division of A [X] by B [X] in $Z / p Z[X]$.
Typing:

$$
\operatorname{DI2VMOD}\left(X^{3}+X^{2}+1,2 \cdot X^{2}+4\right)
$$

you obtain in $Z / 13 Z$:

$$
-(6 \mathrm{X}+6) \text { AND }-(2 \mathrm{X}+1)
$$

since $X^{3}+X^{2}+1=\left(2 \cdot X^{2}+4\right) \cdot \frac{X+1}{2}+\frac{5 \cdot X-4}{4}$
$2 *(-6)=1 \bmod 13$ and
$4 *(-3)=1 \bmod 13$

5.3.3 Division in $\mathbf{Z} / \mathbf{p Z}$ or in $\mathbf{Z} / \mathbf{p Z}[\mathbf{X}]$: DIVMOD

The arguments are two integers A and B. When B has an inverse in $Z / p Z$, the result is $\frac{A}{B}$ simplified as $Z / p Z$, else there is an error message.
Typing:
DIVMOD(5, 3)
gives:

6

The arguments are two polynomials $A[X]$ and $B[X]$. The result is a rationale fraction $\frac{A[X]}{B[X]}$ simplified as $Z / p Z[X]$.
Typing:

$$
\operatorname{DIVMOD}\left(2 \mathrm{X}^{2}+5,5 \mathrm{X}^{2}+2 \mathrm{X}-3\right)
$$

gives:

$$
-\frac{4 X+5}{3 X+3}
$$

5.3.4 To expand and simplify expressions in \mathbf{Z} / pZ or in $\mathrm{Z} / \mathrm{pZ}[\mathrm{X}]$
 : EXPANDMOD

EXPANDMOD has as an argument a integer expression. EXPANDMOD expands this expression in $Z / p Z$.
Typing:

$$
\operatorname{EXPANDMOD}(2 * 3+5 * 4)
$$

gives:

0

EXPANDMOD has as an argument a polynomial expression.
EXPANDMOD expands this expression in $Z / p Z[X]$.
Typing:

$$
\operatorname{EXPANDMOD}\left(\left(2 \mathrm{X}^{2}+12\right) \cdot(5 \mathrm{X}-4)\right)
$$

gives:

$$
-\left(3 x^{3}-5 x^{2}+5 x-4\right)
$$

5.3.5 To factor polynomials in $\mathbf{Z} / \mathbf{p Z}[\mathbf{X}]$: FACTORMOD

FACTORMOD has as an argument a polynomial.
FACTORMOD factors this polynomial in $Z / p Z[X]$, providing that $\mathrm{p} \leq 97$ and p is prime.
Typing:

$$
\operatorname{FACTORMOD}\left(-\left(3 X^{3}-5 X^{2}+5 X-4\right)\right)
$$

gives:

$$
-\left((3 X-5)\left(X^{2}+6\right)\right)
$$

5.3.6 GCD of the two polynomials in $\mathbf{Z} / \mathrm{pZ}[\mathbf{X}]$: GCDMOD

GCDMOD has two polynomials as arguments.
GCDMOD calculates the GCD of the two polynomials in $Z / p Z[X]$.
Typing:

$$
\operatorname{GCDMOD}\left(2 \mathrm{X}^{2}+5,5 \mathrm{X}^{2}+2 \mathrm{X}-3\right)
$$

gives:

$$
-(6 \mathrm{X}-1)
$$

5.3.7 Inverse in $\mathbf{Z} / \mathbf{p Z}$: INVMOD

INVMOD has as an argument an integer.
INVMOD calculates the inverse of the integer in $Z / p Z$.
Typing:

> INVMOD(5)
gives $($ since $5 \times-5=-25=1(\bmod 13))$:

-5

5.3.8 To put a value in the MODULO variable : MODSTO

You use the MODSTO command to set the value of the MODULO variable p . The examples in this section all use a value for p of 13 that is, they assume that you have already typed:
MODSTO(13)

5.3.9 Multiplication in Z/pZ or Z/pZ[X] : MULTMOD

MULTMOD performs a multiplication in $Z / p Z$.
Typing:
MULTMOD(11, 8)
gives:

$$
-3
$$

MULTMOD performs a multiplication in $Z / p Z[X]$.
Typing:

$$
\operatorname{MULTMOD}(11 \mathrm{X}+5,8 \mathrm{X}+6)
$$

gives:

$$
-\left(3 X^{2}-2 x-4\right)
$$

5.3.10 Power in $\mathbf{Z} / \mathbf{p Z}$ or in $\mathbf{Z} / \mathbf{p Z}[\mathbf{X}]$: POWMOD

POWMOD (A, N) calculates A to the power of N in $Z / p Z[X]$, and POWMOD (A (X), N) calculates A (X) to the power of N in $Z / p Z[X]$.
The MODULO variable p must be a prime number less than 100 .
Typing:
POWMOD $(11,195)$

82 CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR gives if $p=13$: 5
In effect: $11^{12}=1 \bmod 13$ so $11^{195}=11^{3}=5 \bmod 13$
Typing:

$$
\operatorname{POWMOD}(2 X+1,5)
$$

gives:

$$
6 \cdot x^{5}+2 \cdot X^{4}+2 \cdot x^{3}+X^{2}-3 \cdot x+1
$$

since:
$10=-3(\bmod 13) 40=1(\bmod 13) 80=2(\bmod 13)$
$32=6(\bmod 13)$.

5.3.11 Subtraction in $\mathbf{Z} / \mathbf{p Z}$ or in $\mathbf{Z} / \mathbf{p Z}[X]$: SUBTMOD

SUBTMOD performs a subtraction in $Z / p Z$.
Typing:

$$
\operatorname{SUBTMOD}(29,8)
$$

gives:

SUBTMOD performs a subtraction in $Z / p Z[X]$.
Typing:

$$
\operatorname{SUBTMOD}(11 \mathrm{X}+5,8 \mathrm{X}+6)
$$

gives:

$$
3 X-1
$$

5.4 Rational Numbers

Calculate:

$$
\frac{123}{12}+\frac{57}{21}
$$

After you press ENTER, you get the result:

$$
\frac{363}{28}
$$

If you now invoke the XNUM function on the REWRITE menu, or if you press the NUM key, you get the following result:

If you mix the two representations, for example:

$$
\frac{1}{2}+0.5
$$

the calculator asks to go into approx mode to do the calculation. After responding yes, you get:

$$
1 .
$$

You'll then need to go back into exact mode (CFG, etc... or by typing SHIFT NUM).

5.4.1 The n-th Bernoulli's number : IBERNOULLI

IBERNOULLI has as an integer n as argument.
IBERNOULLI returns the $n^{t h}$ Bernoulli's number $B(n)$.
We have :

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{+\infty} \frac{B(n)}{n!} t^{n}
$$

Remember that the Bernoulli's polynomials B_{k} are defined as :

$$
\begin{gathered}
B_{0}=1 \\
B_{k}^{\prime}(x)=k B_{k-1}(x) \\
\int_{0}^{1} B_{k}(x) d x=0
\end{gathered}
$$

Then, the Bernoulli's numbers are defined as:
$B(n)=B_{n}(0)$
Typing :
IBERNOULLI(6)
gives:

$$
\frac{1}{42}
$$

5.4.2 Whole-number and fractionnal part : PROPFRAC

PROPFRAC is found in the MATH key's POLYNOMIAL menu.
PROPFRAC $\left(\frac{A}{B}\right)$ writes the fraction $\frac{A}{B}$ in the form:

$$
Q+\frac{R}{B} \text { avec } 0 \leq R<B
$$

Typing:

$$
\operatorname{PROPFRAC}\left(\frac{43}{12}\right)
$$

gives:

$$
3+\frac{7}{12}
$$

5.4.3 Symbolic summation : Σ

To calculate symbolic summations of rational fractions and hypergeometric series that allow a discrete primitive, you can use the symbol \sum which can be produced by typing : SHIFT + (see also 3.3.4).
Example:
If you type :

$$
\sum_{K=1}^{\infty} \frac{1}{K \cdot(K+1)}
$$

then select the entire expression and press ENTER, you obtain:

1

If you type:

$$
\sum_{K=1}^{5} \frac{1}{K \cdot(K+1)}
$$

then select the entire expression and press ENTER, you obtain:

$$
\frac{5}{6}
$$

5.5 Real Numbers

Calculate:

$$
\operatorname{EXP}(\pi \times \sqrt{20})
$$

When you press the ENTER key, the response is:

$$
\operatorname{EXP}(2 \times \sqrt{5} \times \pi)
$$

If you then invoke the XNUM function on the REWRITE menu or press the NUM key, the result is:

$$
1263794.7537
$$

In the MATH key's Real menu, you'll find the FLOOR function and in the MATH key's Integer menu, you'll find the MOD function.

5.5.1 The whole part : FLOOR

FLOOR has as an argument a real number, and returns its whole part.
Typing:
FLOOR(3.53)
gives:
3

5.5.2 The Γ function : GAMMA

GAMMA returns the values of the Γ function at the given point. The Γ function is defined as:

$$
\Gamma(x)=\int_{0}^{+\infty} e^{-t} t^{x-1} d t
$$

We have :

$$
\begin{gathered}
\Gamma(1)=1 \\
\Gamma(x+1)=x \cdot \Gamma(x)
\end{gathered}
$$

Typing :
GAMMA(5)
gives:

$$
24
$$

Typing :

$$
\operatorname{GAMMA}\left(\frac{1}{2}\right)
$$

gives :

$$
\sqrt{\pi}
$$

5.5.3 Remainder of the Euclidean division : MOD

MOD is an infix function that has two integers or reals as arguments a and b. MOD returns the remainder of the Euclidean division of the arguments a and b or the real r such that $a=b * q+r$ with q integer and $0 \leq r<b$ or $b<r \geq 0$.
Typing:
3 MOD 2
produces the result:

Typing :

$$
3.2 \text { MOD } 2.1
$$

produces the result :
1.1
because we have $3.2=2.1+1.1$ and $0 \leq 1.1<2.1$
Typing:

$$
3.2 \text { MOD }-2.1
$$

produces the result:

$$
-1
$$

because we have $3.2=(-2.1) *(-2)+1$. and $-2.1<-1 . \leq 0$
Typing :
7.5 MOD 2.15
produces the result :
1.05
because we have $7.5=2.15 * 3+1.05$ and $0 \leq 1.05<2.15$

5.5.4 The derivatives of the Digamma function : PSI

PSI has a number a and an integer n as arguments .
PSI returns the value of the n-th derivative of the Digamma function at a. The function Digamma is the derivative of $\ln (\Gamma(x))$.
Typing :

$$
\operatorname{PSI}(3,1)
$$

gives :

$$
-\frac{5}{4}+\frac{1}{6} \cdot \pi^{2}
$$

5.5.5 The Digamma function : Psi

Psi has as argument a number a.
Psi returns the value of the Digamma function at a.
The Digamma function is defined as the derivative of $\ln (\Gamma(x))$, so we have :
$\operatorname{PSI}(a, 0)=P s i(a)$.
Typing :
Psi(3)
gives (press on NUM) :

5.6 Complex Numbers

NOTE : Complex numbers of the form $a+b \cdot i$, where a and b are real numbers, can be notated (a, b) or $a+b \cdot i$.
The operators $+,-, \star, /, \wedge$ can be used for complex numbers.
Type:

$$
(1+2 \cdot i)^{2}
$$

Then press ENTER.
If you are not in complex mode, the calculator asks to change modes. After responding YES, you get:

$$
-(3-4 \cdot i)
$$

It's worth noting that this expression will not be simplified further: in exact mode, the result is always notated such that the real part of the complex number is positive.
In the MATH key's Complex menu you will find the following functions, all of which have complex numbers as parameters:

ABS to determine the modulus of the parameter,
ARG to determine the argument of the parameter,
CONJ to determine the conjugate of the parameter,
DROITE takes two complex numbers z_{1}, z_{2} as parameters, and returns the equation of the line through the Cartesian points, z_{1}, z_{2}.
IM to determine the imaginary part of the parameter,

- to determine the opposite of the parameter,

RE to determine the real part of the parameter,
SIGN to determine the quotient of the parameter divided by its modulus.

5.6.1 Argument of a complex number : ARG

Typing:

$$
\operatorname{ARG}(3+4 \cdot i)
$$

produces (given that in CAS, you're working in Radians):

$$
\operatorname{ATAN}\left(\frac{4}{3}\right)
$$

REmARK:

You can do the same calculation in HOME, but you get a numeric result (0.64250 . . . if you're working in Radians)
In HOME, typing:

$$
\operatorname{ARG}(\mathrm{XQ}(3+4 \cdot i))
$$

produces:

$$
\operatorname{ATAN}\left(\frac{4}{3}\right)
$$

5.6.2 Conjugate of a complex number : CONJ

Typing:

$$
\operatorname{CONJ}(1+2 \cdot i)
$$

produces the result:

$$
1-2 \cdot i
$$

Note: If you chose Real vars from the CFG configuration menu, then $\operatorname{CONJ}(Z)=Z$; if you chose Cmplx vars, CONJ (Z) will be different from Z as long as Z is not in the list that contains the variable REALASSUME. It is often preferable to write the expression as a quoted expression: QUOTE (expression), to avoid having to rewrite it. For example, if you select Real vars and then type:

$$
\operatorname{SUBST}(\text { QUOTE }(\operatorname{CONJ}(Z)), \mathrm{Z}=1+\mathrm{i})
$$

you get:

$$
\operatorname{CONJ}(1+i)
$$

whereas:

$$
\operatorname{SUBST}(\operatorname{CONJ}(Z), Z=1+i)
$$

produces:

$$
1+i
$$

Of course, if you have selected Cmplx vars, and z is not in the list that contains the variable REALASSUME, then typing:

$$
\operatorname{SUBST}(\operatorname{CONJ}(Z), Z=1+i)
$$

gives:

$$
\operatorname{CONJ}(1+i)
$$

5.6.3 Equation of the line : DROITE

DROITE takes two complex numbers z_{1}, z_{2} as parameters.
DROITE returns the equation of the line through the Cartesian points, z_{1}, z_{2}. Typing:

$$
\operatorname{DROITE}((1,2),(0,1))
$$

or:

$$
\operatorname{DROITE}(1+2 \cdot i, i)
$$

returns:

$$
\mathrm{Y}=\mathrm{X}-1+2
$$

Then, ENTER produces:

$$
\mathrm{Y}=\mathrm{X}+1
$$

5.7 Algebraic Expressions

All functions in this section can be found in the ALGB menu on the menu bar.

5.7.1 Factors over the integers: COLLECT

COLLECT has an expression as a parameter.
COLLECT combines like terms, and factors the expression over the integers.
Examples:
To factor over the integers:

$$
x^{2}-4
$$

type:

$$
\operatorname{COLLECT}\left(\mathrm{X}^{2}-4\right)
$$

which gives in real mode :

$$
(X+2) \cdot(X-2)
$$

To factor over the integers:

$$
x^{2}-2
$$

type:

$$
\operatorname{COLLECT}\left(\mathrm{X}^{2}-2\right)
$$

which gives:

$$
x^{2}-2
$$

5.7.2 Distributivity : EXPAND

EXPAND has an expression as a parameter.
EXPAND expands and simplifies this expression.
Typing:

$$
\operatorname{EXPAND}\left(\left(\mathrm{X}^{2}+\sqrt{2} \cdot \mathrm{X}+1\right) \cdot\left(\mathrm{X}^{2}-\sqrt{2} \cdot \mathrm{X}+1\right)\right)
$$

gives:

$$
\mathrm{x}^{4}+1
$$

5.7.3 Factorization : FACTOR

FACTOR has an expression as a parameter.
FACTOR factors this expression.
Example:
To factor :

$$
x^{4}+1
$$

Key in:

$$
\operatorname{FACTOR}\left(\mathrm{X}^{4}+1\right)
$$

FACTOR can be found in the ALGB menu.
In real mode, the result is:

$$
\left(X^{2}+\sqrt{2} \cdot x+1\right) \cdot\left(X^{2}-\sqrt{2} \cdot x+1\right)
$$

In complex mode (using CFG), the result is:
$\frac{(2 \cdot X+(1+i) \cdot \sqrt{2}) \cdot(2 \cdot X-(1+i) \cdot \sqrt{2}) \cdot(2 \cdot X+(1-i) \cdot \sqrt{2}) \cdot(2 \cdot X-(1-i) \cdot \sqrt{2})}{16}$

5.7.4 Change the order of variables : REORDER

REORDER has two arguments: an expression and the names of variables separated with AND.
REORDER reorders the input expression following the order of variables given by its second argument.
Typing:

$$
\operatorname{REORDER}\left(\mathrm{X}^{2}+2 \cdot \mathrm{X} \cdot \mathrm{~A}+\mathrm{A}^{2}+\mathrm{Z}^{2}-\mathrm{X} \cdot \mathrm{Z}, \mathrm{~A} \text { AND } \mathrm{X} \text { AND } \mathrm{Z}\right)
$$

gives:

$$
\mathrm{A}^{2}+2 \cdot \mathrm{X} \cdot \mathrm{~A}+\mathrm{X}^{2}-\mathrm{Z} \cdot \mathrm{X}+\mathrm{Z}^{2}
$$

5.7.5 Partial simplifications : SEVAL

SEVAL has an expression as argument.
SEVAL simplifies the expression, operating on all but the top-level operator of the expression.
Typing :

$$
\operatorname{SEVAL}(\operatorname{SIN}(3 \cdot X-X)+\operatorname{SIN}(X+X))
$$

gives:

$$
\operatorname{SIN}(2 \cdot X)+\operatorname{SIN}(2 \cdot X)
$$

5.7.6 Substitute a value for a variable : |

| is an infix operator used to substitute a value for a variable in an expression (a bit like the following function SUBST).
| has two parameters: an expression dependent on a parameter, and an equality (parameter=substitute value).
| substitutes the specified value for the variable in the expression.
Typing:

$$
\mathrm{X}^{2}-1 \mid \mathrm{X}=2
$$

gives:

$$
2^{2}-1
$$

5.7.7 Substitute a value for a variable : SUBST

SUBST has two parameters: an expression dependent on a parameter, and an equality (parameter=substitute value).
SUBST substitutes the specified value for the variable in the expression.
Typing:

$$
\operatorname{SUBST}\left(\mathrm{A}^{2}+1, \mathrm{~A}=2\right)
$$

gives:

$$
2^{2}+1
$$

5.8 Polynomials

All functions (except DEGREE) in this section can be found in the MATH key's Polynom. menu.

5.8.1 Resolution of $\mathrm{A}[\mathrm{X}] \mathrm{U}[\mathrm{X}]+\mathrm{B}[\mathrm{X}] \mathrm{V}[\mathrm{X}]=\mathrm{C}[\mathrm{X}]$: ABCUV

This command applies the Bézout identity like EGCD but, now, the arguments are three polynomials, $A, B, C(C$ must be a multiple of $G C D(A, B))$: ABCUV (A [X], B[X], C[X]) returns U[X] AND V[X], where U, V satisfy the following:

$$
\mathrm{C}[\mathrm{X}]=\mathrm{U}[\mathrm{X}] * \mathrm{~A}[\mathrm{X}]+\mathrm{V}[\mathrm{X}] * \mathrm{~B}[\mathrm{X}]
$$

Typing:

$$
\operatorname{ABCUV}\left(X^{2}+2 \cdot X+1, X^{2}-1, X+1\right)
$$

gives:

$$
\frac{1}{2} \text { AND } \frac{-1}{2}
$$

Typing:

$$
\operatorname{ABCUV}\left(X^{2}+2 \cdot X+1, X^{2}-1, X^{3}+1\right)
$$

gives:

$$
\frac{X^{2}-X+1}{2} \text { AND }-\frac{X^{2}-X+1}{2}
$$

5.8.2 Chinese remainders: CHINREM

CHINREM has two AND as arguments : each AND has two polynomials as components.
CHINREM (A[X] AND R[X], B[X] AND Q[X]) returns an AND with two polynomials as components $P[X]$ and $S[X]$. This polyonimals $P[X]$ and $S[X]$ satisfying the following relations when $G C D(R[X], Q[X])=1$: $\mathrm{S}[\mathrm{X}]=\mathrm{R}[\mathrm{X}] \cdot \mathrm{Q}[\mathrm{X}]$, $\mathrm{P}[\mathrm{X}]=\mathrm{A}[\mathrm{X}](\operatorname{modR}[\mathrm{X}])$ and $\mathrm{P}[\mathrm{X}]=\mathrm{B}[\mathrm{X}](\operatorname{modQ}[\mathrm{X}])$.
There is always a solution $P[X]$, if $R[X]$ and $Q[X]$ are mutually primes, and all solutions are congruent modulo $\mathrm{S}[\mathrm{X}]=\mathrm{R}[\mathrm{X}] \cdot \mathrm{Q}[\mathrm{X}]$.
Find the solutions $P[X]$ of:

$$
\left\{\begin{array}{l}
P[X]=X\left(\bmod X^{2}+1\right) \\
P[X]=X-1\left(\bmod X^{2}-1\right)
\end{array}\right.
$$

Typing:

$$
\operatorname{CHINREM}\left(\mathrm{X} \text { AND } \mathrm{X}^{2}+1, \mathrm{X}-1 \text { AND } \mathrm{X}^{2}-1\right)
$$

gives:

$$
-\frac{X^{2}-2 \cdot x+1}{2} \text { AND }-\frac{X^{4}-1}{2}
$$

that is, $P[X]=-\frac{X^{2}-2 \cdot X+1}{2}\left(\bmod -\frac{X^{4}-1}{2}\right)$

5.8.3 Cyclotomic polynomial : CYCLOTOMIC

CYCLOTOMIC has an integer n as argument.
CYCLOTOMIC returns the cyclotomic polynomial of order n. This is a polynomial having the n-th pritmitive roots of the unity as zeros.
For example, when $n=4$ the fourth roots of the unity are: $\{1, i,-1,-i\}$; among them, the primitive roots are: $\{i,-i\}$.
Therefore, the cyclotomic polynomial of order 4 is $(X-i) \cdot(X+i)=$ $X^{2}+1$.
Another example, typing:
CYCLOTOMIC(20)
gives :

$$
x^{8}-x^{6}+x^{4}-x^{2}+1
$$

5.8.4 degree of a polynomial : $D E G R E E$

DEGREE has as an argument a polynomial in the current variable.
DEGREE returns the degree of this polynomial.
Note: The degree of a null polynomial is -1 .
The DEGREE command must be entered using the ALPHA keys.
Typing:

$$
\operatorname{DEGREE}\left(\mathrm{X}^{2}+\mathrm{X}+1\right)
$$

returns:

2

5.8.5 Quotient and remainder : DIV2

The arguments of DIV2 are two polynomials $A[X]$ and $B[X]$.
DIV2 returns the quotient AND the remainder of the euclidean division between the two polynomials $A[X]$ and $B[X]$.
Typing:

$$
\operatorname{DIV} 2\left(\mathrm{X}^{2}+2 \cdot \mathrm{X}+1, \mathrm{X}\right)
$$

gives:

$$
\mathrm{X}+2 \text { AND } 1
$$

The step-by-step mode can be of interest here, because it displays the intermediate steps of the division process.

5.8.6 Bézout's Identity : EGCD

This function returns Bézout's Identity, the EGCD (Extended Greatest Common Divisor). In other words, $\operatorname{EGCD}(\mathrm{A}(\mathrm{X}), \mathrm{B}(\mathrm{X})$) returns $\mathrm{U}(\mathrm{X})$ AND $V(X)=D(X)$, with D, U, V such that:

$$
\mathrm{D}(\mathrm{X})=\mathrm{U}(\mathrm{X}) \cdot \mathrm{A}(\mathrm{X})+\mathrm{V}(\mathrm{X}) \cdot \mathrm{B}(\mathrm{X})
$$

Typing:

$$
\operatorname{EGCD}\left(\mathrm{X}^{2}+2 \cdot \mathrm{X}+1, \mathrm{X}^{2}-1\right)
$$

gives:

$$
1 \text { AND }-1=2 \cdot x+2
$$

Typing:

$$
\operatorname{EGCD}\left(X^{2}+2 \cdot x+1, X^{3}+1\right)
$$

gives:

$$
-(\mathrm{X}-2) \text { AND } 1=3 \cdot \mathrm{X}+3
$$

5.8.7 Factorize a polynomial : FACTOR

FACTOR has a polynomial as an argument.
FACTOR factors this polynomial.
Typing:

$$
\operatorname{FACTOR}\left(\mathrm{X}^{2}-2\right)
$$

gives:

$$
(X+\sqrt{2}) \cdot(X-\sqrt{2})
$$

Typing:

$$
\operatorname{FACTOR}\left(X^{2}+2 \cdot X+1\right)
$$

gives:

$$
(\mathrm{X}+1)^{2}
$$

Typing:

$$
\operatorname{FACTOR}\left(X^{4}-2 \cdot X^{2}+1\right)
$$

gives:

$$
(\mathrm{X}-1)^{2} \cdot(\mathrm{X}+1)^{2}
$$

Typing:

$$
\operatorname{FACTOR}\left(X^{3}-2 \cdot X^{2}+1\right)
$$

gives:

$$
\frac{(x-1) \cdot(2 \cdot x-1+\sqrt{5}) \cdot(2 \cdot x-(1+\sqrt{5}))}{4}
$$

5.8.8 GCD of two polynomials : GCD

GCD returns the GCD (Greatest Common Divisor) of two polynomials.
Typing:

$$
\operatorname{GCD}\left(X^{2}+2 \cdot X+1, X^{2}-1\right)
$$

gives:

$$
\mathrm{X}+1
$$

5.8.9 Hermite polynomial : HERMI TE

HERMITE has as an argument a whole number n.
HERMITE returns the Hermite polynomial of degree n. This is a polynomial of the following type:

$$
H_{n}(x)=(-1)^{n} \cdot e^{\frac{x^{2}}{2}} \frac{d^{n}}{d x^{n}} e^{\frac{-x^{2}}{2}}
$$

That means that :
for $n \geq 0$

$$
H_{n}^{\prime \prime}(x)-x H_{n}^{\prime}(x)+n H_{n}(x)=0
$$

and for $n \geq 1$

$$
\begin{gathered}
H_{n+1}(x)-x H_{n}(x)+n H_{n-1}(x)=0 \\
H_{n}^{\prime}(x)=n H_{n-1}(x)
\end{gathered}
$$

Typing:
HERMITE(6)
produces the result:

$$
64 \cdot X^{6}-480 \cdot X^{4}+720 \cdot X^{2}-120
$$

5.8.10 To evaluate a polynomial : HORNER

HORNER has two arguments : a polynomial $\mathrm{P}[\mathrm{X}]$ and a number a.
$\operatorname{HORNER}(P[X], a)$ returns the polynomial $Q[X]$ (quotient of $P[X]$ divided by $X-a$) AND the value $P[a]$.
Typing :

$$
\operatorname{HORNER}\left(\mathrm{X}^{3}+1,2\right)
$$

gives :

$$
\mathrm{X}^{2}+2 \cdot \mathrm{X}+4 \text { AND } 9
$$

96 CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR

Typing :

$$
\operatorname{HORNER}\left(X^{4}+2 \cdot X^{3}-3 \cdot X^{2}+X-2,1\right)
$$

gives :

$$
\mathrm{X}^{3}+3 \cdot \mathrm{X}^{2}+1 \text { AND }-1
$$

5.8.11 LCM of two polynomials : LCM

LCM returns the LCM (Least Common Multiple) of two polynomials.
Typing:

$$
\operatorname{LCM}\left(X^{2}+2 \cdot x+1, X^{2}-1\right)
$$

gives:

$$
\left(X^{2}+2 \cdot X+1\right) \cdot(X-1)
$$

5.8.12 Legendre polynomial : LEGENDRE

LEGENDRE has as an argument a whole number n.
LEGENDRE returns the polynomial L_{n}, a non-null solution of the differential equation:

$$
\left(x^{2}-1\right) \cdot y^{\prime \prime}-2 \cdot x \cdot y^{\prime}-n(n+1) \cdot y=0
$$

For $n \geq 0$, we have the Rodriguès Formula:

$$
L_{n}(x)=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

and for $n \geq 1$, we have:

$$
(n+1) L_{n+1}(x)=(2 n+1) x L_{n}(x)-n L_{n-1}(x)
$$

Typing:
LEGENDRE(4)
gives:

$$
\frac{35 \cdot X^{4}-30 \cdot X^{2}+3}{8}
$$

5.8.13 Partial fraction expansion : PARTFRAC

PARTFRAC has as an argument a rational fraction.
PARTFRAC returns the partial fraction decomposition of this rational fraction.
Example:
To perform a partial fraction decomposition of a rational function, for example:

$$
\frac{x^{5}-2 \times x^{3}+1}{x^{4}-2 \times x^{3}+2 \times x^{2}-2 \times x+1}
$$

you use the PARTFRAC command.
Type:

$$
\operatorname{PARTFRAC}\left(\frac{\mathrm{X}^{5}-2 * \mathrm{X}^{3}+1}{\mathrm{X}^{4}-2 * \mathrm{X}^{3}+2 * \mathrm{X}^{2}-2 * \mathrm{X}+1}\right)
$$

In real and direct mode, this produces:

$$
X+2+\frac{X-3}{2 \cdot X^{2}+2}+\frac{-1}{2 \cdot X-2}
$$

In complex mode, this produces:

$$
X+2+\frac{\frac{1-3 \cdot i}{4}}{X+i}+\frac{\frac{-1}{2}}{X-1}+\frac{\frac{1+3 \cdot i}{4}}{X-i}
$$

5.8.14 Whole-number and fractional part : PROPFRAC

PROPFRAC has as an argument a rational fraction.
PROPFRAC rewrites this rational fraction so as to bring out its wholenumber part.
$\operatorname{PROPFRAC}(\mathrm{A}(\mathrm{X}) / \mathrm{B}(\mathrm{X}))$ writes the rational fraction $\frac{A[X]}{B[X]}$ in the form:

$$
Q[X]+\frac{R[X]}{B[X]}
$$

where $R[X]=0$, or $0 \leq \operatorname{deg}(R[X])<\operatorname{deg}(B[X])$.
Typing:

$$
\operatorname{PROPFRAC}\left(\frac{(5 \cdot X+3) \cdot(X-1)}{X+2}\right)
$$

gives:

$$
5 \cdot X-12+\frac{21}{X+2}
$$

5.8.15 Rewrite in order of the powers of $(X-a)$: PTAYL

PTAYL takes two parameters: a polynomial $P[X]$ and a number a.
PTAYL rewrites the polynomial $P[X]$ in order of its powers of $X-a$.
Typing:

$$
\operatorname{PTAYL}\left(\mathrm{X}^{2}+2 \cdot \mathrm{X}+1,2\right)
$$

produces the polynomial $\mathrm{Q}[\mathrm{X}]$:

$$
x^{2}+6 \cdot x+9
$$

Note that:

$$
P(X)=Q(X-2)
$$

5.8.16 Euclidean quotient: QUOT

The arguments of QUOT are two polynomials $A[X]$ and $B[X]$. QUOT returns the quotient of the two polynomials $A[X]$ and $B[X]$ divided in decreasing order by exponent.
Typing:

$$
\operatorname{QUOT}\left(\mathrm{X}^{2}+2 \cdot \mathrm{X}+1, \mathrm{X}\right)
$$

gives:

$$
x+2
$$

5.8.17 Euclidean remainder : REMAINDER

The arguments of REMAINDER are two polynomials $A[X]$ and $B[X]$. REMAINDER returns the remainder from the division of the two polynomials $A[X]$ and $B[X]$ divided in decreasing order by exponent.
Typing:

$$
\operatorname{REMAINDER}\left(\mathrm{X}^{3}-1, \mathrm{X}^{2}-1\right)
$$

gives:

$$
\mathrm{X}-1
$$

5.8.18 Number of zeros in $[a, b[$: STURMAB

STURMAB has three arguments: a polynomial $P(X)$ and two numbers a and b.
STURMAB returns the number of zeros of P in $[a, b[$.
For example, typing:

$$
\operatorname{STURMAB}\left(X^{2} \cdot\left(X^{3}+2\right),-2,0\right)
$$

gives:

Typing :

$$
\operatorname{STURMAB}\left(X^{2} \cdot\left(X^{3}+2\right),-2,1\right)
$$

gives:
3

5.8.19 First and 2nd-species Tchebycheff polynomials :

 TCHEBYCHEFFTCHEBYCHEFF has as an argument an integer n.
If $n>0$, TCHEBYCHEFF returns the polynomial T_{n} such that:

$$
T_{n}[x]=\cos (n \cdot \arccos (x))
$$

For $n \geq 0$, we have:

$$
T_{n}(x)=\sum_{k=0}^{[n / 2]} C_{n}^{2 k}\left(x^{2}-1\right)^{k} x^{n-2 k}
$$

For $n \geq 0$ we also have:

$$
\left(1-x^{2}\right) T_{n}^{\prime \prime}(x)-x T_{n}^{\prime}(x)+n^{2} T_{n}(x)=0
$$

For $n \geq 1$, we have:

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

If $\mathrm{n}<0$, TCHEBYCHEFF returns the 2nd-species Tchebycheff polynomial:

$$
T_{n}[x]=\frac{\sin (n \cdot \arccos (x))}{\sin (\arccos (x))}
$$

Typing:
TCHEBYCHEFF(4)
gives:

$$
8 \cdot x^{4}-8 \cdot x^{2}+1
$$

In effect:
$\cos (4 \cdot x)=\operatorname{Re}\left((\cos (x)+i \cdot \sin (x))^{4}\right)$

100 CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR
$\cos (4 \cdot x)=\cos (x)^{4}-6 \cdot \cos (x)^{2} \cdot\left(1-\cos (x)^{2}\right)+\left(\left(1-\cos (x)^{2}\right)^{2}\right.$
$\cos (4 \cdot x)=T_{4}(\cos (x))$ Typing:

$$
\text { TCHEBYCHEFF }(-4)
$$

gives:

$$
8 \cdot x^{3}-4 \cdot x
$$

In effect:
$\sin (4 \cdot x)=\sin (x) \cdot\left(8 \cdot \cos (x)^{3}-4 \cdot \cos (x)\right)$.

5.9 Functions

All the functions in this section can be found in the DIFF menu on the menu bar, except DEF, which is in the ALGB menu, and IFTE, which is in the MATH key's Tests menu.

5.9.1 Define a function : $D E F$

DEF has as argument an equality between (1) the name of a function (with parentheses containing the variable), and (2) an expression defining the function.
DEF defines this function and returns the equality.
Typing:

$$
\operatorname{DEF}\left(\mathrm{U}(\mathrm{~N})=2^{\mathrm{N}}+1\right)
$$

produces the result:

$$
\mathrm{U}(\mathrm{~N})=2^{\mathrm{N}}+1
$$

Typing:

$$
\mathrm{U}(3)
$$

then returns:

Another DEF example

Calculate the first six Fermat numbers $F_{1} . . F_{6}$ and say whether they're prime.
So, you want to calculate $F(k)=2^{2^{k}}+1$ for $k=1 . .6$.
Typing the formula :

$$
2^{2^{2}}+1
$$

gives a result of 17. You can then invoke the ISPRIME? () command, which is found in the MATH key's Integer menu.
The response is 1. , which means TRUE. Using the history (which you access by pressing the SYMB key), you put the expression $2^{2^{2}}+1$ into the Equation Editor with ECHO, and change it to:

$$
2^{2^{3}}+1
$$

Or better, define a function $F(K)$ by selecting DEF from the ALGB menu (on the menu bar), and typing:

$$
\operatorname{DEF}\left(F(K)=2^{2^{K}}+1\right)
$$

The response is $2^{2^{\mathrm{K}}}+1$, and F is now listed amongst the variables (which you can verify using the VARS key.)
For $K=5$, you then type:

$$
F(5)
$$

which gives:

$$
4294967297
$$

You can factor $F(5)$ with FACTOR, which you'll find in the ALGB menu on the menu bar.
Typing:

$$
\operatorname{FACTOR}(F(5))
$$

gives

$$
641 \cdot 6700417
$$

Typing:

$$
F(6)
$$

gives:

$$
18446744073709551617
$$

Using FACTOR to factor it then yields:

$$
274177 \cdot 67280421310721
$$

Note: Pay careful attention to the position of the dot in :

$$
2.5 \text { the approximate representation of } \frac{5}{2}
$$

versus

$$
2 \cdot 5=10
$$

Define a function with conditions: IFTE

IFTE has three arguments: a Boolean (note the use of $==$ to test for equality), and two expressions expr 1 , expr 2 .
IFTE evaluates the condition, then returns expr 1 if the condition is true, or expr 2 if the condition is false.
Typing:

$$
\begin{gathered}
\operatorname{STORE}(2, \mathrm{~N}) \\
\operatorname{IFTE}\left(\mathrm{N}==0,1, \frac{\mathrm{~N}+1}{\mathrm{~N}}\right)
\end{gathered}
$$

produces the result:

$$
\frac{3}{2}
$$

It is easy to define functions using IFTE. For example:

$$
\operatorname{DEF}\left(\mathrm{F}(\mathrm{X})=\operatorname{IFTE}\left(\mathrm{X}==0,1, \frac{\operatorname{SIN}(\mathrm{X})}{\mathrm{X}}\right)\right)
$$

defines the function f such that:

$$
f(x)=\left\{\begin{aligned}
1 & \text { si } x=0 \\
\frac{\sin (x)}{x} & \text { si } x \neq 0
\end{aligned}\right.
$$

5.9.2 Derivative and partial derivative : DERIV

DERIV has two arguments: an expression (or a function) and a variable. DERIV returns the derivative of the expression (or the function) with respect to the variable given as the second parameter (used for calculating partial derivatives).
Example:
Calculate:

$$
\frac{\partial\left(x \cdot y^{2} \cdot z^{3}+x \cdot y\right)}{\partial z}
$$

Typing:

$$
\operatorname{DERIV}\left(\mathrm{X} \cdot \mathrm{Y}^{2} \cdot \mathrm{Z}^{3}+\mathrm{X} \cdot \mathrm{Y}, \mathrm{Z}\right)
$$

gives:

$$
3 \cdot X \cdot Y^{2} \cdot Z^{2}
$$

5.9.3 Derivative : DERVX

DERVX has one argument: an expression.
DERVX calculates the derivative of the expression with respect to the variable stored in VX.
For example, given:

$$
f(x)=\frac{x}{x^{2}-1}+\ln \left(\frac{x+1}{x-1}\right)
$$

Calculate the derivative of f.
Type:

$$
\operatorname{DERVX}\left(\frac{\mathrm{X}}{\mathrm{X}^{2}-1}+\operatorname{LN}\left(\frac{\mathrm{X}+1}{\mathrm{X}-1}\right)\right)
$$

or, if you have stored the definition of $f(x)$ in F that is, if you have typed:

$$
\operatorname{STORE}\left(\frac{X}{X^{2}-1}+\operatorname{LN}\left(\frac{X+1}{X-1}\right), F\right)
$$

then type:
DERVX(F)
or, if you have defined $F(X)$ using DEF that is, if you have typed:

$$
\operatorname{DEF}\left(\mathrm{F}(\mathrm{X})=\frac{\mathrm{X}}{\mathrm{X}^{2}-1}+\operatorname{LN}\left(\frac{\mathrm{X}+1}{\mathrm{X}-1}\right)\right)
$$

then type:

$$
\operatorname{DERVX}(\mathrm{F}(\mathrm{X}))
$$

The result is a complicated expression. Pressing ENTER simplifies it, giving:

$$
-\frac{3 \cdot X^{2}-1}{X^{4}-2 \cdot X^{2}+1}
$$

5.9.4 Fourier coefficients: FOURIER

FOURIER has two parameters: an expression $f(x)$ and a whole number N. FOURIER returns the Fourier coefficient c_{N} of $f(x)$, considered to be a function defined over interval $[0, T]$ and with period T (T being equal to

104CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR

the contents of the variable PERIOD).
If $f(x)$ is a discrete series, then:

$$
f(x)=\sum_{N=-\infty}^{+\infty} c_{N} e^{\frac{2 i N x \pi}{T}}
$$

Example:
Determine the Fourier coefficients of a periodic function f with period $2 \cdot \pi$ and defined over interval $\left[02 \cdot \pi\left[\right.\right.$ by $f(x)=x^{2}$.
Typing:

$$
\begin{gathered}
\operatorname{STORE}(2 \cdot \pi, \operatorname{PERIOD}) \\
\operatorname{FOURIER}\left(\mathrm{X}^{2}, \mathrm{~N}\right)
\end{gathered}
$$

The calculator do not know that N is a whole number, so you have to replace $\operatorname{EXP}(2 * \mathrm{i} * \mathrm{~N} * \pi)$ with 1 and then simplify the expression. We get:

$$
\frac{2 \cdot i \cdot N \cdot \pi+2}{N^{2}}
$$

So if $N \neq 0$, then:

$$
c_{N}=\frac{2 \cdot i \cdot N \cdot \pi+2}{N^{2}}
$$

Typing:

$$
\operatorname{FOURIER}\left(\mathrm{X}^{2}, 0\right)
$$

gives:

$$
\frac{4 \cdot \pi^{2}}{3}
$$

so if $N=0$, then:

$$
c_{0}=\frac{4 \cdot \pi^{2}}{3}
$$

5.9.5 Partial integration : IBP

IBP has two parameters: an expression of the form $u(x) \cdot v^{\prime}(x)$ and $v(x)$. IBP returns the AND of $u(x) \cdot v(x)$ and of $-v(x) \cdot u^{\prime}(x)$ that is, the terms that one must calculate when one performs a partial integration.
It remains then to calculate the integral of the second term of the AND, then add it to the first term of the AND to obtain a primitive of $u(x) \cdot v^{\prime}(x)$.
Typing:

$$
\operatorname{IBP}(\operatorname{Ln}(X), X)
$$

gives:

$$
\mathrm{X} \cdot \mathrm{LN}(\mathrm{X}) \text { AND }-1
$$

One completes the integration by calling INTVX:

$$
\operatorname{INTVX}(\mathrm{X} \cdot \operatorname{LN}(\mathrm{X}) \text { AND }-1)
$$

which produces the result:

$$
\mathrm{X} \cdot \operatorname{LN}(\mathrm{X})-\mathrm{X}
$$

REMARK: If the first IBP (or INTVX) parameter is an AND of two elements, IBP concerns itself only with the second element of the AND, adding the integrated term to the first element of the AND (so that you can perform multiple IBP in succession).

5.9.6 Integrals : \int

To calculate an integral, you can use the symbol \int which is found on the keyboard and it can be produced by typing : SHIFT d / dX.
You have just to enter the arguments (you can move the cursor with the arrow keys \triangleright and \triangleleft). For more details cf. 3.3.4.
You can put $+\infty$ or $-\infty$ as limit of the integral.
Example
For the following expression, determine the limit when a approaches $+($:

$$
\int_{2}^{a}\left(\frac{x}{x^{2}-1}+\ln \left(\frac{x+1}{x-1}\right)\right) d x
$$

In the Equation Editor, type:

$$
\int_{2}^{+\infty}\left(\frac{\mathrm{X}}{\mathrm{X}^{2}-1}+\operatorname{LN}\left(\frac{\mathrm{X}+1}{\mathrm{X}-1}\right)\right) \mathrm{dX}
$$

Note: To obtain the symbol $+\infty$, type:

$$
(-)(-) \infty(\text { SHIFT } 0)
$$

This produces:

$$
+\infty-\frac{7 \cdot \operatorname{LN}(3)}{2}
$$

and, after simplification:

$$
+\infty
$$

106CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR

5.9.7 Primitive and definied integral : INTVX

INTVX has one argument : une expression.
INTVX calculates a primitive of its argument with respect to the variable stored in VX.
Exercise 1
Calculate a primitive of $\sin (x) \times \cos (x)$.
Typing:

$$
\operatorname{INTVX}(\operatorname{SIN}(X) \cdot \operatorname{COS}(X))
$$

gives, in Step by step mode:

$$
\begin{gathered}
\operatorname{COS}(\mathrm{X}) \cdot \operatorname{SIN}(\mathrm{X}) \\
\operatorname{Int}\left[\mathrm{u}^{\prime} * \mathrm{~F}(\mathrm{u})\right] \text { with } \mathrm{u}=\operatorname{SIN}(\mathrm{X})
\end{gathered}
$$

Pressing OK then sends the result to the Equation Editor:

$$
\frac{\operatorname{SIN}(\mathrm{X})^{2}}{2}
$$

Exercise 2
Given:

$$
f(x)=\frac{x}{x^{2}-1}+\ln \left(\frac{x+1}{x-1}\right)
$$

Calculate a primitive of f.
Type:

$$
\operatorname{INTVX}\left(\frac{\mathrm{X}}{\mathrm{X}^{2}-1}+\operatorname{LN}\left(\frac{\mathrm{X}+1}{\mathrm{X}-1}\right)\right)
$$

Or, if you have stored the definition of $f(x)$ in F , that is, if you have already typed:

$$
\operatorname{DEF}\left(\mathrm{F}(\mathrm{X})=\frac{\mathrm{X}}{\mathrm{X}^{2}-1}+\operatorname{LN}\left(\frac{\mathrm{X}+1}{\mathrm{X}-1}\right)\right)
$$

then type:
INTVX(F)

Or, if you have used DEF to define $F(X)$, that is, if you have already typed:

$$
\operatorname{DEF}\left(\mathrm{F}(\mathrm{X})=\frac{\mathrm{X}}{\mathrm{X}^{2}-1}+\operatorname{LN}\left(\frac{\mathrm{X}+1}{\mathrm{X}-1}\right)\right)
$$

then type:

$$
\operatorname{INTVX}(\mathrm{F}(\mathrm{X}))
$$

The result in all cases is equivalent to:

$$
\mathrm{X} \cdot \operatorname{LN}\left(\frac{\mathrm{X}+1}{\mathrm{X}-1}\right)+\frac{3}{2} \cdot \operatorname{LN}(|\mathrm{X}-1|)+\frac{3}{2} \cdot \operatorname{LN}(|X+1|)
$$

We obtain absolute values only in Rigourous mode.
Exercise 3
Calculate:

$$
\int \frac{2}{x^{6}+2 \cdot x^{4}+x^{2}} d x
$$

Typing:

$$
\operatorname{INTVX}\left(\frac{2}{\mathrm{X}^{6}+2 \cdot \mathrm{X}^{4}+\mathrm{X}^{2}}\right)
$$

gives a primitive:

$$
-3 \cdot \operatorname{ATAN}(X)-\frac{2}{X}-\frac{X}{X^{2}+1}
$$

REMARK:
You can also type:

$$
\int_{1}^{X} \frac{2}{X^{6}+2 \cdot X^{4}+X^{2}} d X
$$

which gives the primitive which is zero for $X=1$:

$$
-3 \cdot \operatorname{ATAN}(X)-\frac{2}{X}-\frac{X}{X^{2}+1}+\frac{3 \cdot \pi+10}{4}
$$

Exercise 4
Calculate:

$$
\int \frac{1}{\sin (x)+\sin (2 \cdot x)} d x
$$

Typing:

$$
\operatorname{INTVX}\left(\frac{1}{\operatorname{SIN}(X)+\operatorname{SIN}(2 \cdot X)}\right)
$$

gives the result:

$$
\begin{gathered}
\frac{1}{6} \cdot \operatorname{LN}(|\operatorname{COS}(\mathrm{X})-1|)+\frac{1}{2} \cdot \operatorname{LN}(|\operatorname{COS}(\mathrm{X})+1|)+ \\
\frac{-2}{3} \cdot \operatorname{LN}(|2 \cdot \operatorname{COS}(\mathrm{X})+1|)
\end{gathered}
$$

REMARK: If the argument to INTVX is the AND of two elements, INTVX concerns itself only with the second element of the AND, and adds the result to the first argument.

5.9.8 To calculate limits : LIMIT or lim

LIMIT or lim has two arguments: an expression dependent on a variable, and an equality (a variable $=$ the value to which you want to calculate the limit).
You can omit the name of the variable and the sign $=$, when this name is in VX).
It is often preferable to use a quoted expression:
QUOTE (expression), to avoid rewriting the expression in normal form (i.e., not to have a rational simplification of the arguments) during the execution of the LIMIT command.
Typing, for example:

$$
\operatorname{LIMIT}\left(\operatorname{QUOTE}\left((2 X-1) \cdot \operatorname{EXP}\left(\frac{1}{\mathrm{X}-1}\right)\right), \mathrm{X}=+\infty\right)
$$

gives:

$$
+\infty
$$

To find a right limit you type, for example:

$$
\operatorname{LIMIT}\left(\frac{1}{\mathrm{X}-1}, \operatorname{QUOTE}(1+0)\right)
$$

gives (if X is the current variable) :

$$
+\infty
$$

To find a leftt limit you type, for example:

$$
\operatorname{LIMIT}\left(\frac{1}{\mathrm{X}-1}, \operatorname{QUOTE}(1-0)\right)
$$

gives (if X is the current variable) :

$$
-\infty
$$

Ii is not necessary to quote the second argument, when it is written with $=$ for example :

$$
\operatorname{LIMIT}\left(\frac{1}{\mathrm{X}-1}, \mathrm{X}=1+0\right)
$$

gives:

$$
+\infty
$$

ExERCISES

For $n>2$ in the following expression, find the limit as x approaches 0 :

$$
\frac{n \cdot \tan (x)-\tan (n \cdot x)}{\sin (n \cdot x)-n \cdot \sin (x)}
$$

You can use the LIMIT command to do this.
Typing:

$$
\operatorname{LIMIT}\left(\frac{\mathrm{N} \cdot \operatorname{TAN}(\mathrm{X})-\operatorname{TAN}(\mathrm{N} \cdot \mathrm{X})}{\operatorname{SIN}(\mathrm{N} \cdot \mathrm{X})-\mathrm{N} \cdot \operatorname{SIN}(\mathrm{X})}, 0\right)
$$

gives:

2

Note To find the limit as x approaches $a^{+}\left(\operatorname{resp} a^{-}\right)$, the second argument is written :
$X=A+0(\operatorname{resp} X=A-0)$, see also 5.9.8.
For the following expression, find the limit as x approaches $+\infty$:

$$
\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}
$$

Typing:

$$
\operatorname{LIMIT}(\sqrt{\mathrm{X}+\sqrt{\mathrm{X}+\sqrt{\mathrm{x}}}}-\sqrt{\mathrm{X}},+\infty)
$$

produces (after a short wait):

$$
\frac{1}{2}
$$

Note:
The symbol ∞ is obtained by typing SHIFT 0 .
To obtain $-\infty$ type:

$$
(-) \infty
$$

To obtain $+\infty$ type:

$$
(-)(-) \infty
$$

You can also find the symbol ∞ in the MATH key's Constant menu.

5.9.9 Plot of an expression : PLOT

PLOT has an expression as argument.
PLOT asks you to select an Aplet and then stores this expression in an Aplet variable.
For example, type:

$$
\operatorname{PLOT}\left(X^{2}+X\right)
$$

You select the Aplet Function, and you choose to save the expression $\mathrm{X}^{2}+\mathrm{X}$ in F 2 . In the history the answer is :

$$
\mathrm{X}^{2}+\mathrm{X}
$$

To obtain the plot of the expression stored in F 2 , you have to quit the CAS (press HOME) and then open the Aplet Function, select the function F2, then press on PLOT

5.9.10 Add the plot of an expression : PLOTADD

PLOTADD has an expression as argument.
PLOTADD asks you to select an Aplet and then stores this expression in an Aplet-variable.
a Typing:

$$
\operatorname{PLOTADD}\left(\mathrm{X}^{2}-\mathrm{X}\right)
$$

You select the Aplet Function, and you choose to save the expression $X^{2}-X$ in $F 3$. In the history the answer is :

$$
X^{2}-x
$$

To obtain the plot of the expressions stored in F2 and F3, you have to quit the CAS (press HOME), to open the Aplet Function, then select the functions F2 and F3, and press on PLOT.

5.9.11 Evaluate a primitive : PREVAL

PREVAL has three parameters: an expression $F(V X)$ dependent on the variable contained in VX, and two expressions A and B.
For example if $V X$ contains X, and if F is a function, $\operatorname{PREVAL}(F(X), A, B)$ returns $F(B)-F(A)$.
PREVAL is used for calculating an integral defined from a primitive: it evaluates this primitive between the two limits of the integral.
Typing:

$$
\operatorname{PREVAL}\left(\mathrm{X}^{2}+\mathrm{X}, 2,3\right)
$$

gives:

5.9.12 Primitive and definied intégral : RISCH

RISCH has two parameters: an expression and the name of a variable.
RISCH returns a primitive of the first parameter with respect to the variable specified in the second parameter.
Typing:

$$
\operatorname{RISCH}\left(\left(2 \cdot X^{2}+1\right) \cdot \operatorname{EXP}\left(X^{2}+1\right), X\right)
$$

gives:

$$
X \cdot \operatorname{EXP}\left(X^{2}+1\right)
$$

REMARK: If the RISCH parameter is the AND of two elements, RISCH concerns itself only with the second element of the AND, and adds the result to the first argument..

5.9.13 Discrete antiderivative : SIGMA

SIGMA has two arguments: the first argument is a function $f(x)$ of a variable x given as the second argument. SIGMA returns the discrete antiderivative of the input function, that is, the function G that satisfies the relation: $G(x+1)-G(x)=f(x)$.
For example, typing :
SIGMA(X • X!, X)
gives:
X!
because $(X+1)!-X!=X \cdot X!$

5.9.14 Discrete antiderivative : S I GMAVX

SIGMAVX has as argument a function f of the current variable VX.
SIGMAVX returns the discrete antiderivative of the input function, that is a function G that satisfies the relation: $G(x+1)-G(x)=f(x)$.
For example, type:

$$
\operatorname{SIGMAVX}\left(\mathrm{X}^{2}\right)
$$

You obtain:

$$
\frac{2 \cdot X^{3}-3 \cdot X^{2}+X}{6}
$$

because $2(X+1)^{3}-3(X+1)^{2}+X+1-2 X^{3}+3 X^{2}-X=6 X^{2}$

5.9.15 Variation table : TABVAR

TABVAR has as a parameter an expression with a rational derivative.
TABVAR returns the variation table for the expression in terms of the current variable.
Typing:

$$
\operatorname{TABVAR}(\operatorname{LN}(X)+X)
$$

In Step by step mode, this gives:
$\mathrm{F}=:(\operatorname{LN}(\mathrm{X})+\mathrm{X})$
$\mathrm{F}^{\prime}=:\left(\frac{1}{\bar{x}}+1\right.$
$\rightarrow: \frac{\mathrm{x}+1}{\mathrm{x}}$
Variation table:

$$
\left[\begin{array}{cccccc}
-\infty & ? & 0 & + & +\infty & X \\
? & ? & -\infty & \uparrow & +\infty & F
\end{array}\right]
$$

5.10 Taylor and asymptotic Expansions

All functions in this section can be found in the DIFF menu on the menu bar.
It is customary to write the expansions in ascending order by exponent of the variable; you set this up by choosing $1+\mathrm{x}+\mathrm{x}^{2} \ldots$ in CFG.

5.10.1 Division in increasing order by exponent : DIVPC

DIVPC has three arguments: two polynomials $A(X)$ and $B(X)($ where $B(0) \neq$ 0), and a whole number n .
DIVPC returns the quotient $Q(X)$ of the division of $A(X)$ by $B(X)$, in increasing order by exponent, and with $\operatorname{deg}(Q) \leq n$ or $Q=0$.
$Q[\mathrm{X}]$ (is then the limited n th-order expansion of $\frac{\mathrm{A}[\mathrm{X}]}{\mathrm{B}[\mathrm{X}]}$ in the vicinity of X $=0$.
Typing:

$$
\operatorname{DIVPC}\left(1+\mathrm{X}^{2}+\mathrm{X}^{3}, 1+\mathrm{X}^{2}, 5\right)
$$

gives:

$$
1+X^{3}-X^{5}
$$

Note: When the calculator asks to go into "increasing powers" mode, respond yes.

5.10.2 Limited n th-order expansion : SERIES

SERIES has three arguments : an expression dependent on a variable, an equality (the variable $x=$ the value a to which you want to calculate the expansion) and a whole number (the order n of the limited expansion).
You can omit the name of the variable and the sign $=$, when this name is in VX)
SERIES returns the limited n th-order expansion of the expression in the vicinity of $x=a$.

- Expansion in the vicinity of $\mathrm{x}=\mathrm{a}$

Example:
Give a limited 4th-order expansion of $\cos (2 \times x)^{2}$ in the vicinity of $x=\frac{\pi}{6}$.
For this you use the SERIES command.
Typing:

$$
\operatorname{SERIES}\left(\operatorname{COS}(2 \cdot X)^{2}, \mathrm{X}=\frac{\pi}{6}, 4\right)
$$

gives:

$$
\left(\left.\frac{1}{4}-\sqrt{3} h+2 h^{2}+\frac{8 \sqrt{3}}{3} h^{3}-\frac{8}{3} h^{4}+0\left(\frac{h^{5}}{4}\right) \right\rvert\, h=\mathrm{X}-\frac{\pi}{6}\right.
$$

- Expansion in the vicinity of $\mathrm{x}=+\infty$ or $\mathrm{x}=-\infty$

Example 1:
Give a 5th-order expansion of $\arctan (x)$ in the vicinity of $\mathrm{x}=+\infty$, taking as infinitely small $h=\frac{1}{x}$.
Typing:

$$
\operatorname{SERIES}(\operatorname{ATAN}(X), X=+\infty, 5)
$$

gives:

$$
\left(\frac{\pi}{2}-h+\frac{h^{3}}{3}-\frac{h^{5}}{5}+\left.0\left(\frac{\pi \cdot h^{6}}{2}\right)\right|_{h=\frac{1}{X}}\right.
$$

Example 2:
Give a 2nd-order expansion of $(2 x-1) e^{\frac{1}{x-1}}$ in the vicinity of $\mathrm{x}=+\infty$, taking as infinitely small $h=\frac{1}{x}$.
Typing:

$$
\operatorname{SERIES}\left((2 \mathrm{X}-1) \cdot \operatorname{EXP}\left(\frac{1}{\mathrm{X}-1}\right), \mathrm{X}=+\infty, 3\right)
$$

gives:

$$
\left(\frac{12+6 h+12 h^{2}+17 h^{3}}{6 \cdot h}+\left.0\left(2 \cdot h^{3}\right)\right|_{h}=\frac{1}{x}\right.
$$

Example 3:
Give a 2nd-order expansion of $\left.(2 x-1) e^{\frac{1}{x-1}}\right)$ in the vicinity of $\mathrm{x}=-\infty$, taking as infinitely small $h=-\frac{1}{x}$.
Typing:

$$
\operatorname{SERIES}\left((2 X-1) \cdot \operatorname{EXP}\left(\frac{1}{\mathrm{X}-1}\right), \mathrm{X}=-\infty, 3\right)
$$

gives:

$$
\left(\frac{-12+6 h-12 h^{2}+17 h^{3}}{6 h}+\left.0\left(-\left(2 h^{3}\right)\right)\right|_{h}=-\frac{1}{\mathrm{X}}\right.
$$

- Unidirectional expansion

You must be in Rigourous mode (Press DIFF, then CFG, then choose Rigourous and then Quit config.).
To perform an expansion in the vicinity of $x=a$ where $x>a$, use a positive real (such as 4. or 4.0) for the order; to perform an expansion in the vicinity of $x=a$ where $x<a$, use a negative real (such as -4.0 or -4.) for the order
Example 1:
Give a 3nd-order expansion of $\frac{(1+X)^{\frac{1}{X}}}{X^{3}}$ in the vicinity of $X=0^{+}$. Typing:

$$
\operatorname{SERIES}\left(\sqrt{\mathrm{X}^{2}+\mathrm{X}^{3}}, \mathrm{X}=0,3.0\right)
$$

gives:

$$
\frac{1}{16} \cdot h^{4}+\frac{-1}{8} \cdot h^{3}+\frac{1}{2} \cdot h^{2}+h+\left.0\left(h^{5}\right)\right|_{h}=X
$$

Example 2:
Give a 3nd-order expansion of $\frac{(1+X)^{\frac{1}{x}}}{X^{3}}$ in the vicinity of $X=0^{-}$. Typing:

$$
\operatorname{SERIES}\left(\sqrt{X^{2}+X^{3}}, X=0,-3.0\right)
$$

gives:

$$
\left(\frac{-1}{16} \cdot h^{4}+\frac{-1}{8} \cdot h^{3}+\frac{-1}{2} \cdot h^{2}+h+\left.0\left(h^{5}\right)\right|_{h}=-X\right.
$$

Example 3:
Give a 3nd-order expansion of $\frac{(1+X)^{\frac{1}{X}}}{X^{3}}$ in the vicinity of $X=0$.
Typing:

$$
\operatorname{SERIES}\left(\sqrt{\mathrm{X}^{2}+\mathrm{X}^{3}}, \mathrm{X}=0,3\right)
$$

gives:
SERIIESError: Unabletofindsign

Note:

If you are in Sloppy mode the three previous examples give the same answer than in the vicinity of $X=0+$

5.10.3 Limited expansion in the vicinity of $\mathbf{0}$: TAYLORO

TAYLORO has a single argument: the function of x to expand. It returns the function's limited 4th-relative-order expansion in the vicinity of $x=0$ (if x is the current variable).
Typing:

$$
\operatorname{TAYLORO}\left(\frac{\operatorname{TAN}(P \cdot X)-\operatorname{SIN}(P \cdot X)}{\operatorname{TAN}(Q \cdot X)-\operatorname{SIN}(Q \cdot X)}\right)
$$

gives:

$$
\frac{P^{3}}{Q^{3}}+\frac{P^{5}-Q^{2} \cdot P^{3}}{4 \cdot Q^{3}} \cdot X^{2}
$$

Note: "th-order" means that the numerator and the denominator are expanded to the 4th relative order (here, the 5th absolute order for the numerator, and for the denominator, which is given in the end, the 2 nd order (5$3)$, seeing that the exponent of the denominator is 3).

5.10.4 Truncate at order $n-1$: TRUNC

TRUNC enables you to truncate a polynomial at a given order (used to perform limited expansions).
TRUNC has two arguments: a polynomial and X^{n}.
TRUNC returns the polynomial truncated at order $n-1$; that is, the returned polynomial has no terms with exponents $\geq n$.
Typing:

$$
\operatorname{TRUNC}\left(\left(1+X+\frac{1}{2} \cdot \mathrm{X}^{2}\right)^{3}, \mathrm{X}^{4}\right)
$$

gives:

$$
1+3 \cdot X+\frac{9}{2} \cdot X^{2}+4 \cdot X^{3}
$$

5.11 Conversion Functions

All functions in this section can be found in the REWRITE menu on the menu bar.

5.11.1 Distributivity of multiplication : DISTRIB

DISTRIB enables you to apply the distributivity of multiplication in respect to addition in a single instance.
DISTRIB enables you, when you apply it several times, to carry out the distributivity step by step.
Typing:

$$
\operatorname{DISTRIB}((X+1) \cdot(X+2) \cdot(X+3))
$$

gives:

$$
x \cdot(x+2) \cdot(x+3)+1 \cdot(x+2) \cdot(x+3)
$$

5.11.2 Disregard small values: EPSXO

EPSXO has as a parameter an expression in X , and returns the same expression with the values less than EPS replaced by zeroes.
Typing:

$$
\operatorname{EPSXO}(0.001+\mathrm{X})
$$

gives, if EPS=0.01:

$$
0+X
$$

or, if EPS=0.0001:

$$
.001+X
$$

5.11.3 Transform $\exp (\mathbf{n} * \ln (\mathbf{x}))$ as a power of x : EXP 2 POW

 EXP 2POW transforms an expression of the form $\exp (n \times \ln (x))$, rewriting it as a power of x.Typing:
EXP2POW(EXP(N • LN(X)))
gives:

$$
X^{N}
$$

Take careful note of the difference between this function and LNCOLLECT, as shown in the following examples: $\operatorname{LNCOLLECT}(\operatorname{EXP}(\mathrm{N} \cdot \operatorname{LN}(\mathrm{X})))=\operatorname{EXP}(\mathrm{N} \cdot \operatorname{LN}(\mathrm{X}))$
$\operatorname{LNCOLLECT}(\operatorname{EXP}(\operatorname{LN}(X) / 3))=\operatorname{EXP}(\operatorname{LN}(X) / 3)$
$\operatorname{EXP} 2 P O W(\operatorname{EXP}(\operatorname{LN}(X) / 3))=\sqrt[3]{X}$

5.11.4 Transform a trigonometric expression into complex exponentials: EXP LN

EXP LN takes as an argument a trigonometric expression.
EXPLN transforms the trigonometric function into exponentials and logarithms without linearising it.
EXPLN puts the calculator into complex mode.
Typing:

$$
\operatorname{EXPLN}(\operatorname{SIN}(X))
$$

gives:

$$
\frac{\operatorname{EXP}(i \cdot X)-\frac{1}{\operatorname{EXP}(i \cdot X)}}{2 \cdot i}
$$

5.11.5 Distributivity : FDISTRIB

FDISTRIB has an expression as argument.
FDISTRIB enables you to apply the distributivity of multiplication with respect to addition all at once.
Typing:

$$
\operatorname{FDISTRIB}((X+1) \cdot(X+2) \cdot(X+3))
$$

gives:

$$
X \cdot X \cdot X+3 \cdot X \cdot X+X \cdot 2 \cdot X+3 \cdot 2 \cdot X+X \cdot X \cdot 1+3 \cdot X \cdot 1+X \cdot 2 \cdot 1+3 \cdot 2 \cdot 1
$$

after simplification (ENTER) :

$$
X^{3}+6 \cdot x^{2}+11 \cdot x+6
$$

5.11.6 Linearise the exponentials : LIN

LIN has as an argument an expression containing exponentials and trigonometric functions.
LIN converts trigonometric expressions to exponentials and then linearises the complex exponentials (in terms of $\exp (n \cdot x))$).
LIN puts the calculator into complex mode when dealing with trigonometric functions.

Example 1
Typing:

$$
\operatorname{LIN}\left((\operatorname{EXP}(X)+1)^{3}\right)
$$

gives:

$$
3 \cdot \operatorname{EXP}(X)+1+3 \cdot \operatorname{EXP}(2 \cdot X)+\operatorname{EXP}(3 \cdot X)
$$

Example 2
Typing:

$$
\operatorname{LIN}(\operatorname{SIN}(\mathrm{X}))
$$

gives:

$$
-\left(\frac{i}{2} \cdot \operatorname{EXP}(i \cdot X)\right)+\frac{i}{2} \cdot \operatorname{EXP}(-(i \cdot X))
$$

Example 3
Typing:

$$
\operatorname{LIN}\left(\operatorname{COS}(\mathrm{X})^{2}\right)
$$

gives:

$$
\frac{1}{4} \cdot \operatorname{EXP}(-(2 \cdot i \cdot X))+\frac{1}{2}+\frac{1}{4} \cdot \operatorname{EXP}(2 \cdot i \cdot X)
$$

5.11.7 Regroup the logarithms : LNCOLLECT

LNCOLLECT has as an argument an expression containing logarithms.
LNCOLLECT regroups the terms in the logarithms. It is therefore preferable to use an expression that has already been factored (using FACTOR).
Typing:

$$
\operatorname{LNCOLLECT}(\operatorname{Ln}(X+1)+\operatorname{LN}(X-1))
$$

gives:

$$
\operatorname{LN}((\mathrm{X}+1)(\mathrm{X}-1))
$$

5.11.8 Transform a power : POWEXP AND

POWEXPAND writes a power in the form of a product.
Typing:

$$
\operatorname{POWEXPAND}\left((X+1)^{3}\right)
$$

gives:

$$
(X+1) \cdot(X+1) \cdot(X+1)
$$

This allow you to do the developpement of $(x+1)^{3}$ in step by step, using DISTRIB several times on the precedent result.

5.11.9 Simplify : SIMPLIFY

SIMPLIFY simplifies an expression automatically.
As with all automated simplification routines, however, one should not expect miracles.
Typing:

$$
\operatorname{SIMPLIFY}\left(\frac{\operatorname{SIN}(3 \cdot X)+\operatorname{SIN}(7 \cdot X)}{\operatorname{SIN}(5 \cdot X)}\right)
$$

gives, after simplification:

$$
4 \cdot \cos (X)^{2}-2
$$

5.11.10 Evaluation of reals : XNUM

XNUM has an expression as a parameter.
XNUM puts the calculator into approximate mode and returns the numeric value of the expression.
Typing:

$$
\operatorname{XNUM}(\sqrt{2})
$$

gives:

$$
1.41421356237
$$

5.11.11 Rational approximation : XQ

XQ has a real numeric expression as a parameter.
XQ puts the calculator into exact mode and gives a rational or real approximation of the expression.
Typing:
XQ(1.41421)
gives:

$$
\frac{66441}{46981}
$$

Typing:

$$
\mathrm{XQ}(1.414213562)
$$

gives:

5.12 Equations

All the functions in this section are found in the SOLV menu on the menu bar.

5.12.1 The zeros of an expression :ISOLATE

ISOLATE returns the values that are the zeros of an expression or an equation.
ISOLATE has two parameters: an expression or equation, and the name of the variable to isolate (ignoring REALASSUME).
Typing:

$$
\operatorname{ISOLATE}\left(\mathrm{X}^{4}-1=3, \mathrm{X}\right)
$$

gives in real mode:

$$
(X=\sqrt{2}) O R(X=-\sqrt{2})
$$

and in complex mode:

$$
(X=\sqrt{2} \cdot i) \text { OR }(X=-\sqrt{2}) \text { OR }(X=-(\sqrt{2} \cdot i)) \text { OR }(X=\sqrt{2})
$$

5.12.2 Solve equations : SOLVE

SOLVE has as two parameters:
(1) either an equality between two expressions, or a single expression (in which case $=0$ is implied), and
(2) the name of a variable.

SOLVE solves the equation in \mathbb{R} in real mode and in \mathbb{C} in complex mode (ignoring REALASSUME).
Typing:

$$
\operatorname{SOLVE}\left(X^{4}-1=3, X\right)
$$

gives, in real mode:

$$
(X=-\sqrt{2}) \text { OR }(X=\sqrt{2})
$$

or, in complex mode:

$$
(X=-\sqrt{2}) \text { OR }(X=\sqrt{2}) \text { OR }(X=-i \cdot \sqrt{2}) \text { OR }(X=i \sqrt{2})
$$

5.12.3 Solve equations : SOLVEVX

SOLVEVX has as a parameter either
(1) an equality between two expressions in the variable contained in $V X$, or
(2) a single such expression (in which case $=0$ is implied).

SOLVEVX solves the equation.
Example 1
Typing:

$$
\operatorname{SOLVEVX}\left(\mathrm{X}^{4}-1=3\right)
$$

gives, in real mode:

$$
(X=-\sqrt{2}) \text { OR }(X=\sqrt{2})
$$

or, in complex mode, even if you have chosen X as real :

$$
(X=-\sqrt{2}) O R(X=\sqrt{2}) O R(X=-i \cdot \sqrt{2}) O R(X=i \sqrt{2})
$$

Example 2
Typing:

$$
\operatorname{soLVEVX}((X-2) \cdot \operatorname{SIN}(X))
$$

gives, in real mode:

$$
\left(\mathrm{X}=-2 \cdot \pi \cdot \mathrm{n}_{1}\right) \text { OR }\left(\mathrm{X}=2 \cdot \pi \cdot \mathrm{n}_{1}\right) \text { OR }(\mathrm{X}=2)
$$

5.13 Systems

All the functions in this section are found in the SOLV menu on the menu bar.

5.13.1 Solve linear system : LINSOLVE

LINSOLVE enables you to solve a system of linear equations.
It's assumed that the various equations are of the form expression $=0$. LINSOLVE has two arguments: the first members of the various equations separated by AND, and the names of the various variables separated by AND. Example 1
Typing:

$$
\text { LINSOLVE }(\mathrm{X}+\mathrm{Y}+3 \text { AND } \mathrm{X}-\mathrm{Y}+1, \mathrm{X} \text { AND } \mathrm{Y})
$$

122 CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR
gives:

$$
(\mathrm{X}=-2) \text { AND }(\mathrm{Y}=-1)
$$

or, in Step by step mode (CFG etc...):
$\mathrm{L} 2=\mathrm{L} 2-\mathrm{L} 1$
$\left[\begin{array}{lll}1 & 1 & 3\end{array}\right]$
$\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]$
ENTER
$\mathrm{L} 1=2 \mathrm{~L} 1+\mathrm{L} 2$
$\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & -2 & -2\end{array}\right]$
ENTER
Reduction Result
$\left[\begin{array}{ccc}2 & 0 & 4 \\ 0 & -2 & -2\end{array}\right]$
ENTER
The following is then written to the Equation Editor:

$$
(\mathrm{X}=-2) \operatorname{AND}(\mathrm{Y}=-1)
$$

Example 2
Type:

$$
(2 \cdot X+Y+Z=1) \text { AND }(X+Y+2 \cdot Z=1) \text { AND }(X+2 \cdot Y+Z=4)
$$

Then, invoke LINSOLVE and type the unknowns:
X AND Y AND Z
and press the ENTER key.
The following result is produced if you're in Step by step mode (CFG etc...): $\mathrm{L} 2=2 \mathrm{~L} 2-\mathrm{L} 1$

$$
\left[\begin{array}{llll}
2 & 1 & 1 & -1 \\
1 & 1 & 2 & -1 \\
1 & 2 & 1 & -4
\end{array}\right]
$$

puis ok
$\mathrm{L} 3=2 \mathrm{~L} 3-\mathrm{L} 1$
$\left[\begin{array}{llll}2 & 1 & 1 & -1 \\ 0 & 1 & 3 & -1 \\ 1 & 2 & 1 & -4\end{array}\right]$
...and so on until, finally:
Reduction Result
$\left[\begin{array}{cccc}8 & 0 & 0 & 4 \\ 0 & 8 & 0 & -20 \\ 0 & 0 & -8 & -4\end{array}\right]$
then press ENTER and

$$
\left(\mathrm{X}=-\frac{1}{2}\right) \text { AND }\left(\mathrm{Y}=\frac{5}{2}\right) \text { AND }\left(\mathrm{Z}=-\frac{1}{2}\right)
$$

is written to the Equation Editor.

5.13.2 Solve non linear system : SOLVE

SOLVE accepts non-linear equations if they are polynomial. Otherwise, MSLV should be used in HOME to get a numerical solution. It's assumed that the various equations are of the form expression $=0$. SOLVE has as arguments, the first members of the various equations separated by AND, and the names of the various variables separated by AND.
Typing:

$$
\operatorname{SOLVE}\left(\mathrm{X}^{2}+\mathrm{Y}^{2}-3 \text { AND } \mathrm{X}-\mathrm{Y}^{2}+1, \mathrm{X} \text { AND } \mathrm{Y}\right)
$$

gives:

$$
(\mathrm{X}=1) \operatorname{AND}(\mathrm{Y}=-\sqrt{2}) \text { OR }(\mathrm{X}=1) \text { AND }(\mathrm{Y}=\sqrt{2})
$$

5.14 Differential Equations

All the functions in this section are found in the SOLV menu on the Equation Editor menu bar.

5.14.1 Solve of differential equations : DESOLVE

DESOLVE enables you to solve differential equations (for linear differential equations having constant coefficients, it is better to use LDEC).
DESOLVE has two arguments : the differential equation where y^{\prime} is written $\operatorname{d1Y}(X)$ (or the differential equation and the initial conditions separated by AND), and the unknown $Y(X)$.
You have to be in real mode.

124CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR

Example 1
Solve:

$$
\begin{gathered}
y^{\prime \prime}+y=\cos (x) \\
y(0)=c_{0} \quad y^{\prime}(0)=c_{1}
\end{gathered}
$$

Typing:

$$
\operatorname{DESOLVE}(\operatorname{d1d1Y}(\mathrm{X})+\mathrm{Y}(\mathrm{X})=\operatorname{Cos}(\mathrm{X}), \mathrm{Y}(\mathrm{X}))
$$

gives:

$$
\mathrm{Y}(\mathrm{X})=\mathrm{cC} 0 \cdot \operatorname{Cos}(\mathrm{X})+\frac{\mathrm{X}+2 \cdot \mathrm{cC} 1}{2} \cdot \operatorname{SIn}(\mathrm{X})
$$

$\mathrm{cC0} 0$ and $\mathrm{cC1}$ are integration constants $(\mathrm{y}(0)=\mathrm{cC0} \mathrm{y}(0)=\mathrm{cC1})$.
You can then assign values to the constants using the SUBST command. To produce the solutions for $y(0)=1$, type:

$$
\operatorname{SUBST}\left(\mathrm{Y}(\mathrm{X})=\mathrm{cC0} \cdot \operatorname{COS}(\mathrm{X})+\frac{\mathrm{X}+2 \cdot \mathrm{cC} 1}{2} \cdot \operatorname{SIN}(\mathrm{X}), \mathrm{cC0}=1\right)
$$

which gives:

$$
\mathrm{Y}(\mathrm{X})=\frac{2 \cdot \operatorname{COS}(\mathrm{X})+(\mathrm{X}+2 \cdot \mathrm{cC} 1) \cdot \operatorname{SIN}(\mathrm{X})}{2}
$$

Example 2 :
Solve:

$$
\begin{gathered}
y^{\prime \prime}+y=\cos (x) \\
y(0)=1 \quad y^{\prime}(0)=1
\end{gathered}
$$

It is possible to solve for the constants from the outset.
Typing
$\operatorname{DESOLVE}((\operatorname{d1d1Y}(\mathrm{X})+\mathrm{Y}(\mathrm{X})=\operatorname{COS}(\mathrm{X})) \operatorname{AND}(\mathrm{Y}(0)=1) \operatorname{AND}(\mathrm{d} 1 \mathrm{Y}(0)=1), \mathrm{Y}(\mathrm{X}))$
Gives :

$$
Y(X)=\cos (X)+\frac{X+2}{2} \cdot \operatorname{SIn}(X)
$$

5.14.2 Laplace transform and inverse Laplace transform :
 LAP and ILAP

LAP is the Laplace transform of the expression given as argument. We consider this expression as the value of a function of the variable stored in VX.

ILAP is the inverse Laplace transform of the expression given as argument. We consider this expression as the value of a function of the variable stored in VX.
Laplace tranform (LAP) and inverse Laplace transform (ILAP) are useful to solve linear differential equations with constant coefficients, for example:

$$
\begin{gathered}
y^{\prime \prime}+p \cdot y^{\prime}+q \cdot y=f(x) \\
y(0)=a y^{\prime}(0)=b
\end{gathered}
$$

The following relations hold:

$$
\begin{aligned}
\operatorname{LAP}(Y)(X) & =\int_{0}^{+\infty} e^{-X \cdot T} Y(T) d T \\
\operatorname{ILAP}(F)(X) & =\frac{1}{2 \cdot i \cdot \pi} \int_{C} e^{Z \cdot X} F(Z) d Z
\end{aligned}
$$

where C is a closed contour enclosing the poles of F .
The following property is used:

$$
\operatorname{LAP}\left(\mathrm{Y}^{\prime}\right)(\mathrm{X})=-\mathrm{Y}(0)+\mathrm{X} \cdot \operatorname{LAP}(\mathrm{Y})(\mathrm{X})
$$

The solution Y of
$\mathrm{Y}^{\prime \prime}+\mathrm{P} \cdot \mathrm{Y}^{\prime}+\mathrm{Q} \cdot \mathrm{Y}=\mathrm{F}(\mathrm{x}), \quad \mathrm{Y}(0)=\mathrm{A}, \quad \mathrm{Y}^{\prime}(0)=\mathrm{B}$ is then:

$$
\operatorname{ILAP}\left(\frac{\operatorname{LAP}(\mathrm{F}(\mathrm{X}))+(\mathrm{X}+\mathrm{P}) \cdot \mathrm{A}+\mathrm{B}}{\mathrm{X}^{2}+\mathrm{P} \cdot \mathrm{X}+\mathrm{Q}}\right)
$$

Example:
Solve:

$$
\begin{gathered}
y^{\prime \prime}-6 \cdot y^{\prime}+9 \cdot y=x \cdot e^{3 \cdot x} \\
y(0)=a \\
y^{\prime}(0)=b
\end{gathered}
$$

Typing:

$$
\operatorname{LAP}(X \cdot \operatorname{EXP}(3 \cdot X)) \operatorname{ENTER}
$$

gives:

$$
\frac{1}{X^{2}-6 \cdot X+9}
$$

Typing:

$$
\operatorname{ILAP}\left(\frac{\frac{1}{X^{2}-6 \cdot X+9}+(X-6) \cdot A+B}{X^{2}-6 \cdot X+9}\right)
$$

gives the solution y :

$$
\left(\frac{X^{3}}{6}-(3 \cdot A-B) \cdot X+A\right) \cdot \operatorname{EXP}(3 \cdot X)
$$

126CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR

5.14.3 Linear differential equations having constant coefficients : LDEC

LDEC enables you to directly solve linear differential equations having constant coefficients.
The parameters are the second member and the characteristic equation.
Solve:

$$
y \prime \prime-6 \cdot y \prime+9 \cdot y=x \cdot e^{3 \cdot x}
$$

Typing:

$$
\operatorname{LDEC}\left(X \cdot \operatorname{EXP}(3 \cdot X), X^{2}-6 \cdot X+9\right)
$$

gives:

$$
-\left(\frac{(18 \cdot \mathrm{X}-6) \cdot \mathrm{cC0}-\left(6 \cdot \mathrm{X} \cdot \mathrm{cC1}+\mathrm{X}^{3}\right)}{6} \cdot \operatorname{EXP}(3 \cdot \mathrm{X})\right)
$$

$c C 0$ and $\mathrm{cC1}$ are integration constants $(y(0)=c C 0$ and $y \prime(0)=c C 1)$.

5.15 Trigonometric Expressions

All the functions in this section are found in the TRIG menu on the CAS menu bar.

5.15.1 Transform the arccos into arcsin : ACOS2S

ACOS2S has as an argument a trigonometric expression.
ACOS2S transforms the expression by replacing :
$\arccos (x)$ with $\frac{\pi}{2}-\arcsin (x)$.
Typing:

$$
\operatorname{ACOS} 2 S(\operatorname{ACOS}(X)+\operatorname{ASIN}(X))
$$

gives, when simplified :

$$
\frac{\pi}{2}
$$

5.15.2 Transform the arcsin into arccos: AS IN2C

ASIN2C has as an argument a trigonometric expression.
ASIN2C transforms the expression by replacing :
$\arcsin (x)$ with $\frac{\pi}{2}-\arccos (x)$.
Typing:

$$
\operatorname{ASIN} 2 C(\operatorname{ACOS}(X)+\operatorname{ASIN}(X))
$$

gives, when simplified:

$$
\frac{\pi}{2}
$$

5.15.3 Transform the arcsin into arctan : ASIN2 T

ASIN2T has as an argument a trigonometric expression.
ASIN2T transforms the expression by replacing :
$\arcsin (x)$ with $\arctan \left(\frac{x}{\sqrt{1-x^{2}}}\right)$.
Typing:

$$
\operatorname{ASIN} 2 T(\operatorname{ASIN}(\mathrm{X}))
$$

gives:

$$
\operatorname{ATAN}\left(\frac{\mathrm{X}}{\sqrt{1-\mathrm{X}^{2}}}\right)
$$

5.15.4 Transform the arctan into arcsin : ATAN2S

ATAN2S has as an argument a trigonometric expression.
ATAN2S transforms the expression by replacing $\arctan (x)$ with $\arcsin \left(\frac{x}{\sqrt{1+x^{2}}}\right)$.
Typing:

$$
\operatorname{ATAN} 2 S(\operatorname{ATAN}(X))
$$

gives:

$$
\operatorname{ASIN}\left(\frac{\mathrm{X}}{\sqrt{\mathrm{X}^{2}+1}}\right)
$$

5.15.5 Transform exponential into hyperbolic functions :

EXP 2HYP
EXP2HYP has an expression enclosing exponantials as argument.
EXP2HYP transforms this expression with the relation :
$\exp (a)=\sinh (a)+\cosh (a)$.
Typing :

$$
\operatorname{EXP} 2 H Y P(\operatorname{EXP}(A))
$$

gives:

$$
\operatorname{SINH}(\mathrm{A})+\operatorname{COSH}(\mathrm{A})
$$

Typing :

$$
\operatorname{EXP} 2 \operatorname{HYP}(\operatorname{EXP}(-\mathrm{A})+\operatorname{EXP}(\mathrm{A}))
$$

gives:

$$
2 \cdot \operatorname{COSH}(\mathrm{~A})
$$

5.15.6 Transform in terms of $\tan (\mathbf{x} / 2)$: HALFTAN

HALFTAN has as an argument a trigonometric expression.
HALFTAN transforms $\sin (x), \cos (x)$ and $\tan (x)$ in the expression, rewriting them in terms of $\tan \left(\frac{x}{2}\right)$.
Typing:

$$
\operatorname{HALFTAN}\left(\frac{\operatorname{SIN}(2 \cdot \mathrm{x})}{1+\operatorname{COS}(2 \cdot \mathrm{X})}\right)
$$

gives, after simplification:

$$
\operatorname{TAN}(X)
$$

Typing:

$$
\operatorname{HALFTAN}\left(\operatorname{SIN}(X)^{2}+\operatorname{COS}(X)^{2}\right)
$$

gives $\left(S Q(X)=X^{2}\right)$:

$$
\left(\frac{2 \cdot \operatorname{TAN}\left(\frac{x}{2}\right)}{\operatorname{SQ}\left(\operatorname{TAN}\left(\frac{X}{2}\right)\right)+1}\right)^{2}+\left(\frac{1-\operatorname{SQ}\left(\operatorname{TAN}\left(\frac{X}{2}\right)\right)}{\operatorname{SQ}\left(\operatorname{TAN}\left(\frac{x}{2}\right)\right)+1}\right)^{2}
$$

or, after simplification:

5.15.7 Transform the complex exponentials into sin and cos: SINCOS

SINCOS takes as an argument an expression containing complex exponentials.
SINCOS then rewrites this expression in terms of $\sin (x)$ and $\cos (x)$.
Typing:

$$
\operatorname{SINCOS}(\operatorname{EXP}(i \cdot X))
$$

gives after turning on complex mode, if necessary :

$$
\operatorname{COS}(\mathrm{X})+\mathrm{i} \cdot \operatorname{SIN}(\mathrm{X})
$$

5.15.8 Transform $\tan (x)$ with $\sin (2 x)$ and $\cos (2 x):$ TAN2 CS 2

TAN2CS2 takes as an argument a trigonometric expression.
TAN2CS2 transforms this expression by replacing $\tan (x)$ with $\frac{1-\cos (2 \cdot x)}{\sin (2 \cdot x)}$.
Typing:

$$
\operatorname{TAN2CS2}(\operatorname{TAN}(\mathrm{X}))
$$

gives:

$$
\frac{1-\operatorname{CoS}(2 \cdot x)}{\operatorname{SIN}(2 \cdot x)}
$$

5.15.9 Replace $\tan (\mathbf{x})$ with $\sin (\mathbf{x}) / \cos (\mathbf{x}):$ TAN2 SC

TAN2 SC has as an argument a trigonometric expression.
TAN2SC transforms this expression by replacing $\tan (x)$ with $\frac{\sin (x)}{\cos (x)}$.
Typing:

$$
\operatorname{TAN2SC(TAN}(\mathrm{X}))
$$

gives:

$$
\frac{\sin (\mathrm{X})}{\cos (\mathrm{X})}
$$

5.15.10 Transform $\tan (x)$ with $\sin (2 x)$ and $\cos (2 x):$ TAN $2 S C 2$

TAN2SC2 has as an argument a trigonometric expression.
TAN2SC2 transforms this expression by replacing $\tan (x)$ with $\frac{\sin (2 \cdot x)}{1+\cos (2 \cdot x)}$.
Typing:

$$
\operatorname{TAN} 2 \operatorname{SC} 2(\operatorname{TAN}(X))
$$

gives

$$
\frac{\operatorname{SIn}(2 \cdot x)}{1+\operatorname{Cos}(2 \cdot x)}
$$

5.15.11 Reconstruct the sine and the cosine of the same angle : TCOLLECT

TCOLLECT has as an argument a trigonometric expression.
TCOLLECT linearises this expression in terms of $\sin (n \cdot x)$ and $\cos (n \cdot x)$, then (in Real mode) reconstructs the sine and cosine of the same angle. Typing:

$$
\operatorname{TCOLLECT}(\operatorname{SIN}(X)+\operatorname{COS}(X))
$$

gives:

$$
\sqrt{2} \cdot \operatorname{Cos}\left(\mathrm{X}-\frac{\pi}{4}\right)
$$

130 CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR

5.15.12 Develop transcendental expressions : TEXPAND

TEXPAND has as argument a transcendental expression (that is an expression with trigonometric or exponantial or logarithmic functions.
TEXPAND develops this expression in terms of $\sin (x), \cos (x), \exp (x)$ or $\ln (x)$.
Example 1
Typing:

$$
\operatorname{TEXPAND}(\operatorname{EXP}(X+Y))
$$

gives:

$$
\operatorname{EXP}(\mathrm{X}) \cdot \operatorname{EXP}(\mathrm{Y})
$$

Example 2
Typing:

$$
\operatorname{TEXPAND}(\operatorname{LN}(\mathrm{X} * \mathrm{Y}))
$$

gives:

$$
\operatorname{LN}(\mathrm{Y}) \cdot \operatorname{LN}(\mathrm{X})
$$

Example 3
Typing:

$$
\operatorname{TEXPAND}(\operatorname{COS}(\mathrm{X}+\mathrm{Y}))
$$

gives:

$$
\operatorname{CoS}(\mathrm{Y}) \cdot \operatorname{COS}(\mathrm{X})-\operatorname{SIN}(\mathrm{Y}) \cdot \operatorname{SIN}(\mathrm{X})
$$

Example 4
Typing:

$$
\operatorname{TEXPAND}(\operatorname{COS}(3 \cdot X))
$$

gives:

$$
4 \cdot \cos (X)^{3}-3 \cdot \cos (X)
$$

Example 5
Typing:

$$
\operatorname{TEXPAND}\left(\frac{\operatorname{SIN}(3 \cdot \mathrm{X})+\operatorname{SIN}(7 \cdot \mathrm{X})}{\operatorname{SIN}(5 \cdot \mathrm{X})}\right)
$$

gives, after pressing ENTER to simplify:

$$
4 \cdot \cos (X)^{2}-2
$$

5.15.13 Linearise une trigonometric expression : TLIN

TLIN has as an argument a trigonometric expression.
TLIN linearises this expression in terms of $\sin (n \cdot x)$ and $\cos (n \cdot x)$.
Example 1
Typing:

$$
\operatorname{TLIN}(\operatorname{COS}(\mathrm{X}) \cdot \operatorname{CoS}(\mathrm{Y}))
$$

gives:

$$
\frac{1}{2} \cdot \cos (X-Y)+\frac{1}{2} \cdot \cos (X+Y)
$$

Example 2
Typing:

$$
\operatorname{TLIN}\left(\operatorname{CoS}(X)^{3}\right)
$$

gives:

$$
\frac{1}{4} \cdot \cos (3 \cdot x)+\frac{3}{4} \cdot \cos (x)
$$

Example 3
Typing:

$$
\operatorname{TLIN}\left(4 \cdot \operatorname{CoS}(X)^{2}-2\right)
$$

gives:

$$
2 \cdot \cos (2 \cdot x)
$$

5.15.14 Simplify using $\sin (x)^{2}+\cos (x)^{2}=1:$ TRIG

TRIG has as an argument a trigonometric expression.
TRIG simplifies this expression using the identity $\sin (x)^{2}+\cos (x)^{2}=1$.
Typing:

$$
\operatorname{TRIG}\left(\operatorname{SIN}(\mathrm{x})^{2}+\operatorname{COS}(\mathrm{x})^{2}+1\right)
$$

gives:
2

5.15.15 Simplify using the cosines : TRIGCOS

TRIGCOS has as an argument a trigonometric expression.
TRIGCOS simplifies this expression, using the identity $\sin (x)^{2}+\cos (x)^{2}=$ 1 to rewrite it in terms of cosines.
Typing:

$$
\operatorname{TRIGCOS}\left(\operatorname{SIn}(X)^{4}+\operatorname{COS}(X)^{2}+1\right)
$$

gives:

$$
\cos (x)^{4}-\cos (x)^{2}+2
$$

5.15.16 Simplify using the sines : TRIGSIN

TRIGSIN has as an argument a trigonometric expression.
TRIGSIN simplifies this expression, using the identity $\sin (x)^{2}+\cos (x)^{2}=$ 1 to rewrite it in terms of sines.
Typing:

$$
\operatorname{TRIGSIN}\left(\operatorname{SIN}(X)^{4}+\operatorname{COS}(X)^{2}+1\right)
$$

gives:

$$
\operatorname{SIN}(X)^{4}-\operatorname{SIN}(X)^{2}+2
$$

5.15.17 Simplify using the tangents: TRIGTAN

TRIGTAN has as an argument a trigonometric expression.
TRIGTAN simplifies this expression, using the identity $\sin (x)^{2}+\cos (x)^{2}=$ 1 to rewrite it in terms of tangents.
Typing:

$$
\operatorname{TRIGTAN}\left(\operatorname{SIn}(X)^{4}+\operatorname{COS}(X)^{2}+1\right)
$$

gives:

$$
\frac{2 \cdot \operatorname{TAN}(X)^{4}+3 \cdot \operatorname{TAN}(X)^{2}+2}{\operatorname{TAN}(X)^{4}+2 \cdot \operatorname{TAN}(X)^{2}+1}
$$

5.15.18 Simplification with complex exponentials : TS IMP

TSIMP has an expression as argument.
TS IMP simplifies the expression rewriting it in function of complex exponentials, and then reducing the number of variables (enabling complex mode in the process).
Use TSIMP only as a last resort.
Typing:

$$
\operatorname{TSIMP}\left(\frac{\operatorname{SIN}(3 \cdot \mathrm{X})+\operatorname{SIN}(7 \cdot \mathrm{X})}{\operatorname{SIN}(5 \cdot \mathrm{X})}\right)
$$

You obtain after simplification (that is, after copying the result 2 times):

$$
\frac{\operatorname{EXP}(i \cdot X)^{4}+1}{\operatorname{EXP}(i \cdot X)^{2}}
$$

5.16 Version number of your CAS : VER

VER returns the version number of your CAS.
Typing:
VER
gives:

$$
4.20050219
$$

This result means that you have a version 4 CAS, dated 19 February 2005.
Instead, VERSION returns the version number of the calculator's ROM as a whole.
Type in HOME screen:
VERSION
You obtain:

134CHAPTER 5. CAS REFERENCE FROM THE EQUATION EDITOR

Chapter 6

Worked Exercises with the HP40

6.1 Introduction

Begin by selecting CAS:
to do this, press F 6 for CAS on the menu bar.
The various commands used in this chapter are found:

- in the Equation Editor menus:

ALGB (CFG DEF FACTOR SUBST TEXPAND)
DIFF (DERIVX DERIV INTVX LIMIT TABVAR)
REWRITE (DISTRIB LIN POWEXPAND XNUM)
SOLV (LINSOLV)
and in the MATH key's menu:
Complex (DROITE RE IM)
Integer (IEGCD ISPRIME? PROPFRAC).
Next, put the calculator into exact real algebraic mode:
to do this, press ALGB on the menu bar and highlight CFG , then press OK on the menu bar.
It suffices then to choose Default cfg , then OK on the menu bar, but you can also choose Direct mode or Step by step mode (Step/step), then quit the configuration menu with CANCEL on the menu bar.
Do not forget that you must press ENTER after each command!
In the remainder of this chapter, you will find portions of the 1999 mathematical proof of Brevet d'Amiens, and the 1999 mathematical proof (series
S) of Bac.

The examples illustrate as many features of the HP 40 GS as possible... It is worth noting, though, that it is still up to the student to take care to check the calculations and to know what course to follow when carrying out calculations.

6.2 Exercises on Brevet

6.2.1 Exercise 1

Given A :

$$
\frac{\frac{3}{2}-1}{\frac{1}{2}+1}
$$

calculate the result of A in the form of an irreducible fraction, showing each step of the calculation.
In the Equation Editor, enter the value of A by typing:
$3 \div 2 \triangleright-1 \triangleright \triangleright \div 1 \div 2 \triangleright+1$
\triangleright selects the denominator.
ENTER simplifies the denominator, giving:

$$
\frac{\frac{3}{2}-1}{\frac{3}{2}}
$$

Then, select the numerator using \triangleleft, ENTER simplifies the numerator, giving:
$\frac{\frac{1}{2}}{\frac{3}{2}}$
\triangle selects the entire fraction, and ENTER simplifies the fraction, giving:

$$
\frac{1}{3}
$$

6.2.2 Exercise 2

Given the number C :

$$
C=2 \sqrt{45}+3 \sqrt{12}-\sqrt{20}-6 \sqrt{3}
$$

write C in the form $d \sqrt{5}$, where d is a whole number.

In the Equation Editor, we enter the value of C by typing:
$2 \sqrt{ } 45 \triangleright \triangleright+3 \sqrt{ } 12 \triangleright \triangleright-\sqrt{ } 20 \triangleright \triangleright-6 \sqrt{ } 3$
$\triangleright \triangleright \square$ selects $-6 \sqrt{3}$ and
\triangleleft selects $-\sqrt{20}$
$\nabla \nabla$ selects $-\sqrt{20}$
Invoke the FACTOR command, which is found in the ALGB menu.
Pressing ENTER then causes 20 to be factored into $2^{2} \cdot 5$.
\triangle selects $\sqrt{2^{2} \cdot 5}$ and ENTER returns $2 \sqrt{5}$
\triangleright selects $-2 \sqrt{5}$
SHIFT \triangleleft exchanges $3 \sqrt{12}$ with $-2 \sqrt{5}$
\triangleleft selects $2 \sqrt{45}$
$\nabla \triangleright \nabla$ selects 45 .
Invoke the FACTOR command, which is found in the ALGB menu.
Pressing ENTER then causes 45 to be factored into $3^{2} \cdot 5$.
\triangle selects $\sqrt{3^{2} \cdot 5}$ and ENTER replaces $\sqrt{3^{2} \cdot 5}$ with $3 \sqrt{5}$,
\triangle selects $2 \cdot 3 \sqrt{5}$,
SHIFT \triangleright selects $2 \cdot 3 \sqrt{5}$ and $-2 \sqrt{5}$, and then ENTER completes the operation and gives:
$4 \sqrt{5}$.
It remains to transform $3 \sqrt{12}$ and to see that this term is combined with $-6 \sqrt{3}$.
The result is:
$C=4 \sqrt{5}$

6.2.3 Exercise 3

Given the expression $D=(3 x-1)^{2}-81$.
1.Expand and reduce D.
2.Factor D.
3.Solve the equation: $(3 x-10)(3 x+8)=0$.
4.Evaluate D for $x=5$.

1. First, write D into the Equation Editor.
typing:
$3 \mathrm{X}-1 \triangleright \triangleright \mathrm{x}^{\mathrm{y}} 2 \triangleright-81$
Select $(3 X-1)^{2}(\triangleright \triangleleft)$, then press ENTER to expand the expression.
This gives:
$9 X^{2}-6 X+1-81$
To do the expansion step by step, press MEMORY (SHIFT ,) to recall the previous expression, then invoke POWEXPAND for $(3 . X-1)^{2}$, then execute

DISTRIB a couple of times on the result to obtain:
$9 X^{2}-6 X+1$
\triangle selects the entire expression, then pressing ENTER reduces it to:
$9 \mathrm{X}^{2}-6 \mathrm{X}-80$
2. Search for D in the history (SYMB key), then highlight D and press ENTER to confirm your choice.
Invoke FACTOR to obtain:
$(3 X+8)(3 X-10)$
You can also retrieve the original expression, select 81 to factor it into 3^{4}, and work out the difference between the two squares...
3. Invoke the SOLVEX command, then press ENTER to obtain:

$$
\left(x=-\frac{8}{3}\right) \text { OR }\left(X=\frac{10}{3}\right)
$$

4. Search for D in the history (SYMB key), then highlight D and press ENTER to confirm your choice.
Invoke SUBST, then complete the second argument:
$X=-5$
Then press $\triangleright \triangleright \triangleright$ and ENTER to obtain :
$(3 \cdot(-5)-1)^{2}-81$
Pressing ENTER once more yields the result:
175
therefore, $D=175$ when $X=-5$.

6.2.4 Exercise 4

A baker produces two different assortments of biscuits and macaroons.
A packet of the first assortment contains 17 biscuits and 20 macaroons.
A packet of the second assortment contains 10 biscuits and 25 macaroons. Both packets cost $90 c$.
Calculate the price of one biscuit, and the price of one macaroon.
Let x be the price in cents of one biscuit, and y the price of one macaroon.
The problem is then to solve:

$$
\left\{\begin{array}{l}
17 x+20 y=90 \\
10 x+25 y=90
\end{array}\right.
$$

In the Equation Editor, type:
$\operatorname{LINSOLVE}(17 \cdot \mathrm{X}+20 \cdot \mathrm{Y}-90$ AND $10 \cdot \mathrm{X}+25 \cdot \mathrm{Y}-90, \mathrm{X}$ AND Y$)$

If you are working in Step by step mode, this produces:
$\mathrm{L}_{2}=17 \mathrm{~L}_{2}-10 \mathrm{~L}_{1}$
$\left[\begin{array}{ccc}17 & 20 & -90 \\ 10 & 25 & -90\end{array}\right]$
$\mathrm{L}_{1}=45 \mathrm{~L}_{1}-4 \mathrm{~L}_{2}$
$\left[\begin{array}{rrr}17 & 20 & -90 \\ 0 & 225 & -630\end{array}\right]$
Reduction Result
$\left[\begin{array}{rrr}765 & 0 & -90 \\ 0 & 225 & -630\end{array}\right]$
Pressing ENTER then produces the result:

$$
(\mathrm{X}=2) \operatorname{AND}\left(\mathrm{Y}=\frac{14}{5}\right)
$$

If you select $\frac{14}{5}$, and press the NUM key (or invoke XNUM), you get:

$$
(\mathrm{X}=2) \text { AND }(\mathrm{Y}=2.8)
$$

In other words, the price of one biscuit is $2 c$, and the price of one macaroon is 2.8 c .
Note: If the calculator has gone into Approx mode, put it back into Exact mode using CFG.

6.2.5 Exercise 5

Say that A and B are points having the coordinates:
$A(-1 ; 3)$ and $B(-3 ;-1)$, where the unit of measure is the centimetre.
$1 /$ Find exact length of $A B$ in centimetres.
2/ Determine the equation of the line $A B$.
First Method
Type:
STORE ($(-1,3), A)$
accept the change to Complex mode, if necessary.
$\operatorname{STORE}((-3,-1), B)$
The vector $\overrightarrow{A B}$ has coordinates $\mathrm{B}-\mathrm{A}$.
1/ Typing:

$$
\operatorname{ABS}(B-A)
$$

gives:

$$
2 \sqrt{5}
$$

2/ Apply the DROITE command, on the MATH key's Complex menu:

$$
\operatorname{DROITE}(A, B)
$$

gives:

$$
Y=2 \cdot X+5
$$

Pressing ENTER then produces the result:

$$
Y=2 \cdot X+5
$$

Or second Method
1/ Typing:

$$
(-3,-1)-(-1,3)
$$

gives:

$$
-2-4 \cdot i
$$

Apply the ABS command to get:

$$
\operatorname{ABS}(-2-4 i)
$$

gives:

$$
2 \sqrt{5}
$$

2/ Typing:

$$
\operatorname{DROITE}((-1,3),(-3,-1))
$$

gives:

$$
\mathrm{Y}=2 \cdot(\mathrm{X}--1)+3
$$

Pressing ENTER then produces the result:

$$
Y=2 \cdot X+5
$$

6.3 Exercises on Bac

6.3.1 Exercise 1

Terms of exercise 1

Let m be a point on the circle C of center O and radius 1 . Consider the image M of m defined on their affixes by the transformation $F: z->$ $\frac{1}{2} z 2-z$. When m moves on the circle C, M will move on a curve Γ. The object of this exercice is to study and plot Γ.

1. Let $t \in[-\pi, \pi]$ and m the point on C of affix $z=e^{i \cdot t}$. Find the coordinates of M in terms of t.
2. Compare $x(-t)$ with $x(t)$ and $y(-t)$ with $y(t)$. Show that Γ has a symmetry center.
3. Compute $x^{\prime}(t)$ and find the variations of x over $[0, \pi]$.
4. Same question for y.
5. Show the variations of x and y in the same table.
6. Put the points of Γ corresponding to $t=0, \pi / 3,2 \pi / 3, \pi$ and draw the tangent to Γ at these points. Draw the part of Γ corresponding to $t \in[0, \pi]$. Draw Γ.

Correction

The object of this exercise is to trace the curve Γ described by M and given by $\frac{1}{2} \cdot z^{2}-z$, when m, given by z describes a circle C with center O and having a radius of 1 . Let t be a real number in $[-\pi, \pi]$, and let m be the point of C given by $z=e^{i \cdot t}$.

1. Calculating the coordinates of M :

First, make t the VX variable (SHIFT SYMB (SETUP) keys and then Indep var : t)
Then, enter the expression $\frac{1}{2} \cdot z^{2}-z$ into the Equation Editor.
In the Equation Editor, type:

$$
\text { ALPHA } \mathrm{Z} \mathrm{x}^{\mathrm{y}} 2 \triangleright \div 2 \triangleright-\text { ALPHA } \mathrm{Z} \triangleright \triangleright
$$

The expression $\frac{Z^{2}}{2}-Z$ is selected.
Since $z=e^{i \cdot t}$, invoke SUBST and complete the second argument by typing:

$$
\operatorname{SUBST}\left(\frac{\mathrm{Z}^{2}}{2}-\mathrm{Z}, \mathrm{Z}=\operatorname{EXP}(i \times \mathrm{t})\right)
$$

which gives:

$$
\frac{\operatorname{EXP}(\mathrm{i} \cdot \mathrm{t})^{2}}{2}-\operatorname{EXP}(\mathrm{i} \cdot \mathrm{t})
$$

Then, you linearise the expression with the command:
LIN
The result (after accepting the switch to Complex mode) is:

$$
\frac{1}{2} \cdot \operatorname{EXP}(2 \cdot \mathrm{i} \cdot \mathrm{t})+-1 \cdot \operatorname{EXP}(\mathrm{i} \cdot \mathrm{t})
$$

- Now store the result with the STORE command by typing:

$$
\operatorname{STORE}\left(\frac{1}{2} \cdot \operatorname{EXP}(2 \cdot i \cdot t)+-1 \cdot \operatorname{EXP}(i \cdot t), M\right)
$$

then pressing ENTER.
To calculate the real part of this expression, enter the command:

RE

which returns:

$$
\frac{\cos (\mathrm{t} \cdot 2)-2 \cdot \cos (\mathrm{t})}{2}
$$

We suppose that VX contains t (SHIFT HOME (MODES) then Indep var : t).
Then, define the function $x(t)$ by invoking DEF:
Note: You will need to type $=X(t)$, then exchange $X(t)$ with the expression $\frac{\cos (t \cdot 2)-2 \cdot \cos (t)}{2}$. To do this, highlight $X(t)$ with \triangleright and type SHIFT \triangleleft. Highlight the entire expression and select the DEF command:

$$
\operatorname{DEF}\left(\mathrm{x}(\mathrm{t})=\frac{\operatorname{COS}(\mathrm{t} \cdot 2)-2 \cdot \operatorname{COS}(\mathrm{t})}{2}\right)
$$

Then press ENTER.
To calculate the imaginary part of this expression, type the command:
IM (M)
which returns:

$$
\frac{\operatorname{SIN}(\mathrm{t} \cdot 2)-2 \cdot \operatorname{SIN}(\mathrm{t})}{2}
$$

Then, define the function $y(t)$ (in the same way as you defined $x(t))$:

$$
\operatorname{DEF}\left(\mathrm{Y}(\mathrm{t})=\frac{\operatorname{SIN}(\mathrm{t} \cdot 2)-2 \cdot \operatorname{SIN}(\mathrm{t})}{2}\right.
$$

Then press ENTER.
2. To find an axis of symmetry for Γ, calculate $x(-t)$ and $y(-t)$ by typing:

$$
\text { X }(-\mathrm{t}) \text { ENTER }
$$

which produces:

$$
\frac{\operatorname{COS}(\mathrm{t} \cdot 2)-2 \cdot \operatorname{COS}(\mathrm{t})}{2}
$$

In other words: $x(-t)=x(t)$
Then type:

$$
\text { Y }(-\mathrm{t}) \text { ENTER }
$$

which produces:

$$
\frac{-\operatorname{SIN}(\mathrm{t} \cdot 2)+2 \cdot \operatorname{SIN}(\mathrm{t})}{2}
$$

In other words: $y(-t)=-y(t)$
If $M_{1}(x(t), y(t))$ is part of Γ, then $M_{2}(x(-t), y(-t))$ is also part of Γ.
Since M_{1} and M_{2} are symmetrical with respect to the x-axis, we can deduce that the x-axis is an axis of symmetry for Γ.
3. Calculate $x^{\prime}(t)$:

Typing:

$$
\operatorname{DERVX}(\mathrm{X}(\mathrm{t}))
$$

returns:

$$
\frac{2 \cdot(-2 \cdot \operatorname{SIN}(\mathrm{t} \cdot 2)-2 \cdot(-\operatorname{SIN}(\mathrm{t})))}{4}
$$

or, after simplification (ENTER), the reponse is :

$$
-\operatorname{SIN}(\mathrm{t}) \cdot(2 \cdot \operatorname{COS}(\mathrm{t})-1)
$$

You can now define the function $x^{\prime}(t)$ by invoking DEF:
Note: You will need to type $=\mathrm{X1}(\mathrm{t})$, then exchange $\mathrm{X1}(\mathrm{t})$ with the expression $-\operatorname{SIN}(\mathrm{t}) \cdot(2 \cdot \operatorname{COS}(\mathrm{t})-1)$. To do this, highlight $\mathrm{X} 1(\mathrm{t})$ (\triangleright) and type SHIFT \triangleleft. This returns:

$$
\operatorname{DEF}(\mathrm{X} 1(\mathrm{t})=-\operatorname{SIN}(\mathrm{t}) \cdot(2 \cdot \operatorname{COS}(\mathrm{t})-1))
$$

Then press ENTER.
4. Calculate $y^{\prime}(t)$:

Typing:

$$
\operatorname{DERVX}(\mathrm{Y}(\mathrm{t}))
$$

returns:

$$
\frac{2 \cdot(2 \cdot \cos (\mathrm{t} \cdot 2)-2 \cdot \cos (\mathrm{t}))}{4}
$$

and, after simplification (ENTER), the response is :

$$
2 \cdot \cos (\mathrm{t})^{2}-\cos (\mathrm{t})-1
$$

Invoke FACTOR to factor the expression:

$$
\operatorname{FACTOR}\left(2 \cdot \cos (\mathrm{t})^{2}-\operatorname{Cos}(\mathrm{t})-1\right)
$$

then press ENTER, the response is:

$$
(\cos (\mathrm{t})-1) \cdot(2 \cdot \operatorname{coS}(\mathrm{t})+1)
$$

You can now define the function $y^{\prime}(t)$ (in the same way as you defined $x^{\prime}(t)$):

$$
\operatorname{DEF}(\mathrm{Y} 1(\mathrm{t})=(\operatorname{COS}(\mathrm{t})-1) \cdot(2 \cdot \operatorname{COS}(\mathrm{t})+1))
$$

5. Variations of $x(t)$ and $y(t)$

For this, you trace $x(t)$ and $y(t)$ on the same graph.
We suppose that t is contained inVX (SHIFT SYMB (SETUP))
Type $X(t)$ in the Equation Editor and press ENTER.
Then press the PLOT key.
Select Function using the dialog box, and select F1 as the destination.
Then, do the same thing with $Y(t)$, making $F 2$ the destination.
To graph the functions: quit CAS (using the ON (CANCEL) button), choose the Function aplet, and check F1 and F2. You will have to set the window's parameters (SHIFT PLOT), then press PLOT to see the graphs.
Back in the Equation Editor (press the HOME key, then CAS on the menu bar), we can get exact outputs from the curve Γ :

- Values of $x(t)$ and $y(t)$

Find the values of $x(t)$ and $y(t)$ for $t=0, \frac{\pi}{3}, \frac{2 \cdot \pi}{3}, \pi$ by typing in succession (ENTER is pressed twice in most cases for further simplification):
X(0) ENTER

Response: $\frac{-1}{2}$

$$
\mathrm{X}\left(\frac{\pi}{3}\right) \text { ENTER ENTER }
$$

Response: $\frac{-3}{4}$

$$
\mathrm{X}\left(2 \times \frac{\pi}{3}\right) \text { ENTER ENTER }
$$

Response: $\frac{1}{4}$

$$
\mathrm{X}(\pi) \text { ENTER ENTER }
$$

Response: $\frac{3}{2}$
Y(0) ENTER

Response: 0

$$
\mathrm{Y}\left(\frac{\pi}{3}\right) \text { ENTER ENTER }
$$

Response: $\frac{-\sqrt{3}}{4}$

$$
\mathrm{Y}\left(2 \times \frac{\pi}{3}\right) \text { ENTER ENTER }
$$

Response: $\frac{-3 \cdot \sqrt{3}}{4}$

$$
\text { Y }(\pi) \text { ENTER ENTER }
$$

Response: 0

- Slope of the tangents ($m=\frac{y^{\prime}(t)}{x^{\prime}(t)}$)

Find the values of $\frac{y^{\prime}(t)}{x^{\prime}(t)}$ for $t=0, \frac{\pi}{3}, \frac{2 \cdot \pi}{3}, \pi$ by typing in succession:

$$
\operatorname{LIMIT}\left(\frac{\mathrm{Y} 1(\mathrm{t})}{\mathrm{X} 1(\mathrm{t})}, \mathrm{t}=0\right) \operatorname{ENTER}
$$

Response: 0

$$
\operatorname{LIMIT}\left(\frac{\mathrm{Y} 1(\mathrm{t})}{\mathrm{X} 1(\mathrm{t})}, \mathrm{t}=\pi \div 3\right) \operatorname{ENTER}
$$

Response (answer YES when asked UNSIGNED INF . SOLVE?): ∞

$$
\operatorname{LIMIT}\left(\frac{\mathrm{Y} 1(\mathrm{t})}{\mathrm{X} 1(\mathrm{t})}, \mathrm{t}=2 \times \pi \div 3\right) \operatorname{ENTER}
$$

Response: 0

$$
\operatorname{LIMIT}\left(\frac{\mathrm{Y} 1(\mathrm{t})}{\mathrm{X} 1(\mathrm{t})}, \mathrm{t}=\pi\right) \operatorname{ENTER}
$$

Response (answer YES when asked UNSIGNED INF . SOLVE?): (
Here, then, are the variations of $x(t)$ and $y(t)$:

t	0		$\frac{\pi}{3}$		$\frac{2 \pi}{3}$		π
$x^{\prime}(t)$	0	-	0	+	$\sqrt{3}$	+	0
$x(t)$	$\frac{-1}{2}$	\downarrow	$\frac{-3}{4}$	\uparrow	$\frac{1}{4}$	\uparrow	$\frac{3}{2}$
$y(t)$	0	\downarrow	$-\frac{\sqrt{3}}{4}$	\downarrow	$\frac{-3 \sqrt{3}}{4}$	\uparrow	0
$y^{\prime}(t)$	0	-	-1	-	0	+	2
m	0		∞		0		∞

- The curve Γ :

Now graph the parametric curve.
In the Equation Editor, type $\mathrm{X}(\mathrm{t})+\mathrm{i} \times \mathrm{Y}(\mathrm{t})$, then press ENTER.
Then press:
PLOT, and select Parametric using the dialog box, specifying $\mathrm{X} 1, \mathrm{Y} 1$ as the destination.
To make the graph of the curve Γ : quit CAS (using the HOME button), then choose the Parametric aplet. Check X1 (T), Y1 (T), and choose default values in PLOT SETUP.

6.3.2 Exercise 2 (specialty)

Terms of exercise 2

For n a strictly positive integer, we define

$$
a_{n}=4 \times 10^{n}-1, \quad b_{n}=2 \times 10^{n}-1, \quad c_{n}=2 \times 10^{n}+1
$$

1. a/ Compute $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}$ and c_{3}.
b/ Find how many digits the decimal representation of a_{n} and c_{n} have. Show that a_{n} and c_{n} are divisible by 3 .
$\mathrm{c} /$ Using a list of prime smaller than 100 , show that b_{3} is prime.
$\mathrm{d} /$ Show that for every integer $n>0, b_{n} \times c_{n}=a_{2 n}$. Deduce the prime factor decomposition of a_{6}.
e/ Show that $\operatorname{GCD}\left(b_{n}, c_{n}\right)=\operatorname{GCD}\left(c_{n}, 2\right)$. Deduce that b_{n} and c_{n} are prime together.
2. Consider the equation:

$$
\text { (1) } b_{3} x+c_{3} y=1
$$

where the integers x and y are the unknown.
a/ Show that (1) has at least one solution
b/ Apply Euclide's algorithm to c_{3} and b_{3} and find a solution to (1). c/ Find all solutions of (1)

Correction

Define the following for a natural whole number:

$$
a_{n}=4 \times 10^{n}-1, b_{n}=2 \times 10^{n}-1 \text { and } c_{n}=2 \times 10^{n}+1
$$

Begin by typing:

$$
\begin{aligned}
& \operatorname{DEF}\left(A(N)=4 \cdot 10^{\mathrm{N}}-1\right) \\
& \operatorname{DEF}\left(\mathrm{B}(\mathrm{~N})=2 \cdot 10^{\mathrm{N}}-1\right) \\
& \operatorname{DEF}\left(\mathrm{C}(\mathrm{~N})=2 \cdot 10^{\mathrm{N}}+1\right)
\end{aligned}
$$

1. Now do the following:

Calculate

- a) Simply type (in succession):

$$
\mathrm{A}(1)
$$

Result: 39
B(1)
Result: 19
C(1)
Result: 21
A(2)
Result: 399
B(2)
Result: 199

$$
\mathrm{C}(2)
$$

Result: 201
A(3)

Result: 3999

$$
B(3)
$$

Result: 1999
C(3)

Result: 2001

- b) Number of digits, and divisibility In this, the calculator is used only to try out different values of n...
Show that the whole numbers k such that:

$$
10^{n} \leq k<10^{n+1}
$$

have $(n+1)$ digits in decimal notation.
We have:

$$
\begin{gathered}
10^{n}<3 \cdot 10^{n}<a_{n}<4 \cdot 10^{n}<10^{n+1} \\
10^{n}<b_{n}<2 \cdot 10^{n}<10^{n+1} \\
10^{n}<2 \cdot 10^{n}<c_{n}<3 \cdot 10^{n}<10^{n+1}
\end{gathered}
$$

so a_{n}, b_{n}, c_{n} have $(n+1)$ digits in decimal notation.
Moreover, $d_{n}=10^{n}-1$ is divisible by 9 , since its decimal notation can only end in 9 .
We also have:

$$
a_{n}=3 \cdot 10^{n}+d_{n}
$$

and

$$
c_{n}=3 \cdot 10^{n}-d_{n}
$$

so a_{n} and c_{n} are both divisible by 3 .

- c) b_{3} is a prime number

Typing:
ISPRIME?(B(3))
gives:

$$
1 .
$$

which means true.
To prove that $b_{3}=1999$ is a prime number, it is necessary to
show that 1999 is not divisible by any of the prime numbers less than or equal to $\sqrt{1999}$.
As $1999<2025=45^{2}$, that means testing the divisibility of 1999 by $n=2,3,5,7,11,13,17,19,23,29,31,37,41$.
1999 is not divisible by any of these numbers, so we can conclude that 1999 is prime.

- d) $a_{2 n}=b_{n} \times c_{n}$

Typing:

$$
\mathrm{B}(\mathrm{~N}) \cdot \mathrm{C}(\mathrm{~N})
$$

produces:

$$
4 \cdot\left(10^{\mathrm{N}}\right)^{2}-1
$$

after applying the EXP2POW command. This is the value $a_{2 n}$. Decomposition of a_{6} into its prime factors:
Typing:

$$
\operatorname{FACTOR}(\mathrm{A}(6))
$$

yields:

$$
3 \cdot 23 \cdot 29 \cdot 1999
$$

- e) b_{n} and c_{n} are relatively prime.

In this part, the calculator is useful only for trying out different values of n...
To show that c_{n} and b_{n} are relatively prime, it is enough to remark that

$$
c_{n}=b_{n}+2
$$

That means that the common divisors of c_{n} and b_{n} are the common divisors of b_{n} and 2 , as well as the common divisors of c_{n} and 2. b_{n} and 2 are relatively prime because b_{n} is a prime number different from 2. So:

$$
P G C D\left(c_{n}, b_{n}\right)=P G C D\left(c_{n}, 2\right)=P G C D\left(b_{n}, 2\right)=1
$$

2. Given the equation:

$$
b_{3} \cdot x+c_{3} \cdot y=1
$$

- a) It has at least one solution, as it is actually a form of Bézout's Identity.

CHAPTER 6. WORKED EXERCISES WITH THE HP40

In effect, Bézout's Theorem says:
If a and b are relatively prime, there exist x and y such that:

$$
a \cdot x+b \cdot y=1
$$

Therefore, the equation:

$$
b_{3} \cdot x+c_{3} \cdot y=1
$$

has at least one solution.

- b) Typing:

$$
\operatorname{IEGCD}(\mathrm{B}(3), \mathrm{C}(3))
$$

returns:

$$
1000 \text { AND }-999=1
$$

In other words:

$$
b_{3} \times 1000+c_{3} \times(-999)=1
$$

so we have a particular solution:
$x=1000, y=-999$.
The rest can be done on paper:
$c_{3}=b_{3}+2$ and $b_{3}=999 \times 2+1$
so, $b_{3}=999 \times\left(c_{3}-b_{3}\right)+1$, or:

$$
b_{3} \times 1000+c_{3} \times(-999)=1
$$

- c) In this part, the calculator is not used for finding the general solution.
We have:

$$
b_{3} \cdot x+c_{3} \cdot y=1
$$

and

$$
b_{3} \times 1000+c_{3} \times(-999)=1
$$

so, by subtraction:

$$
b_{3} \cdot(x-1000)+c_{3} \cdot(y+999)=0
$$

or:

$$
b_{3} \cdot(x-1000)=-c_{3} \cdot(y+999)
$$

According to Gauss's Theorem, c_{3} is prime with b_{3}, so c_{3} is a divisor of $(x-1000)$.
So, there exists $k \in Z$ such that:

$$
(x-1000)=k \times c_{3}
$$

and

$$
-(y+999)=k \times b_{3}
$$

Solving for x and y , we get:

$$
x=1000+k \times c_{3}
$$

and

$$
y=-999-k \times b_{3}
$$

for $k \in Z$
This gives us:

$$
b_{3} \cdot x+c_{3} \cdot y=b_{3} \times 1000+c_{3} \times(-999)=1
$$

The general solution for all $k \in Z$ is therefore:

$$
\begin{aligned}
& x=1000+k \times c_{3} \\
& y=-999-k \times b_{3}
\end{aligned}
$$

6.3.3 Exercise 3 (non-specialty)

Terms of exercise 2

For n an integer, define:

$$
u_{n}=\int_{0}^{2} \frac{2 x+3}{x+2} e^{\frac{x}{n}} d x
$$

1. a/ Define g over $[0,2]$ by $g(x)=\frac{2 x+3}{x+2}$.

Find the variations of g over $[0,2]$. Show that for every real x in $[0,2], \frac{3}{2} \leq g(x) \leq \frac{7}{4}$.
b) Show that for every real x in $[0,2]: \frac{3}{2} e^{\frac{x}{n}} \leq g(x) e^{\frac{x}{n}} \leq \frac{7}{4} e^{\frac{x}{n}}$.
c) After integration, show that :

$$
\frac{3}{2} n\left(e^{\frac{2}{n}}-1\right) \leq u_{n} \leq \frac{7}{4} n\left(e^{\frac{2}{n}}-1\right)
$$

d) Using $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$.
show that if u_{n} has a limit L as $n \rightarrow \infty$, then $3 \leq L \leq \frac{7}{2}$.
2. a) Show that for every x in $[0,2]: \frac{2 x+3}{x+2}=2-\frac{1}{x+2}$.

Find the value of $I=\int_{0}^{2} \frac{2 x+3}{x+2} d x$.
b) Show that for every x in $[0,2]: 1 \leq e^{\frac{x}{n}} \leq e^{\frac{2}{n}}$.

Deduce that $1 \leq u_{n} \leq e^{\frac{2}{n}} I$.
c) Show that (u_{n}) is convergent and find it's limit L.

Correction

Before you begin, check that the calculator is in exact real mode with X as the current variable; if not, select Default cfg in CFG.
Given:

$$
u_{n}=\int_{0}^{2} \frac{2 x+3}{x+2} e^{\frac{x}{n}} d x
$$

1. Do the following:
2. - Variation of $g(x)=\frac{2 x+3}{x+2}$ for $x \in[0,2]$

Typing:

$$
\operatorname{DEF}\left(\mathrm{G}(\mathrm{X})=\frac{2 \mathrm{X}+3}{\mathrm{X}+2}\right)
$$

then:

$$
\operatorname{TABVAR}(\mathrm{G}(\mathrm{X}))
$$

yields:

$$
\begin{array}{cccccc}
-\infty & + & -2 & + & +\infty & X \\
2 & \uparrow & \infty & \uparrow & 2 & F
\end{array}
$$

The first line gives the sign of $g^{\prime}(x)$ according to x, and the second line the variations of $g(x)$. Note that for TABVAR the function is always called F. We can deduce, then, that $g(\mathrm{x})$ increases over $[0,2]$. If you were in Step by step mode (for this, choose Step/step and then OK on the CFG menu bar), you would obtain (although the function is labelled F):

$$
F=: \frac{2 \cdot X+3}{X+2}
$$

Press ENTER:

$$
\mathrm{F}^{\prime}:=\frac{2 \cdot(\mathrm{X}+2)-(2 \cdot \mathrm{X}+3)}{\mathrm{SQ}(\mathrm{X}+2)}
$$

Using the down-arrow ∇, scroll down the screen:

$$
\rightarrow \frac{1}{(\mathrm{x}+2)^{2}}
$$

Then press ENTER to obtain the table of variations.
If you are not in Step by step mode, you can also request the calculation of the derivative by typing:

$$
\operatorname{DERVX}(\mathrm{G}(\mathrm{X}))
$$

which produces the preceding calculation.
To calculate $g(0)$ and $g(2)$, type:

$$
G(0)
$$

Response: $\frac{3}{2}$

$$
G(2)
$$

Response: $\frac{7}{4}$
whence the inequality:

$$
\frac{3}{2} \leq g(x) \leq \frac{7}{4} \text { for } x \in[0,2]
$$

- b) The calculator is not needed here... simply stating that :

$$
e^{\frac{x}{n}} \geq 0 \text { pour } x \in[0,2]
$$

is sufficient to show that, for $x \in[0,2]$, we have:

$$
\frac{3}{2} e^{\frac{x}{n}} \leq g(x) e^{\frac{x}{n}} \leq \frac{7}{4} e^{\frac{x}{n}}
$$

- c) To integrate the preceding inequality, type:

$$
\int_{0}^{2} e^{\frac{X}{N}} d X
$$

which produces:

$$
N \cdot e^{\frac{2}{N}}-N
$$

We can then deduce that:

$$
\frac{3}{2}\left(n e^{\frac{2}{n}}-n\right) \leq u_{n} \leq \frac{7}{4}\left(n e^{\frac{2}{n}}-n\right)
$$

To justify the preceding calculation, it is necessary to assume that $n \cdot e^{\frac{x}{n}}$ is a primitive of $e^{\frac{x}{n}}$.
If you are not sure, you can type:

$$
\operatorname{INTVX}\left(\operatorname{EXP}\left(\frac{\mathrm{X}}{\mathrm{~N}}\right)\right)
$$

The simplified result is: $N \cdot e^{\frac{x}{N}}$

- d) To find the limit of $\left(n e^{\frac{2}{n}}-n\right)$ when $n \rightarrow+\infty$:

$$
\operatorname{LIMIT}\left(\mathrm{N} \cdot \operatorname{EXP}\left(\frac{2}{\mathrm{~N}}\right)-\mathrm{N}, \mathrm{~N}=+\infty\right)
$$

The result is:

Note:

The variable VX is set equal to N ; use the SHIFT SYMB (SETUP) keys to reset VX to X.
To check the result, we can say that:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1
$$

and that therefore:

$$
\lim _{n \rightarrow+\infty} \frac{e^{\frac{2}{n}}-1}{\frac{2}{n}}=1
$$

or, simplifying:

$$
\lim _{n \rightarrow+\infty}\left(e^{\frac{2}{n}}-1\right) \cdot n=2
$$

If the limit L of u_{n} exists as n tends to $+\infty$ in the inequalities in 1 b), we get:

$$
\frac{3}{2} \cdot 2 \leq L \leq \frac{7}{4} \cdot 2
$$

3. - a) Do the following:
$g(x)=2-\frac{1}{x+2}$ and the calculation of $I=\int_{0}^{2} g(x) d x$
Typing:

$$
\operatorname{PROPFRAC}(\mathrm{G}(\mathrm{X}))
$$

returns:

$$
2-\frac{1}{X+2}
$$

To calculate the integral I, type:

$$
\int_{0}^{2} G(X) d X
$$

This produces:

$$
-(\operatorname{LN}(2)-4)
$$

Working by hand: $2 x+3=2(x+2)-1$, so :

$$
g(x)=2-\frac{1}{x+2}
$$

Then, integrating term by term between 0 and 2 produces:

$$
\int_{0}^{2} g(x) d x=[2 x-\ln (x+2)]_{x=0}^{x=2}
$$

that is, since $\ln 4=2 \ln 2$:

$$
\int_{0}^{2} g(x) d x=4-\ln 2
$$

- b) The calculator is not needed here... simply stating that $e^{\frac{x}{n}}$ increases for $x \in[0,2]$ is sufficient to yield the inequality:

$$
1 \leq e^{\frac{x}{n}} \leq e^{\frac{2}{n}}
$$

Then, through multiplication, $g(x)$ being positive over $[0,2]$, we get:

$$
g(x) \leq g(x) e^{\frac{x}{n}} \leq g(x) e^{\frac{2}{n}}
$$

and then, integrating:

$$
I \leq u_{n} \leq e^{\frac{2}{n}} I
$$

- c) Convergence of u_{n}

Find the limit of $e^{\frac{2}{n}}$ when $n \rightarrow+\infty$:

$$
\operatorname{LIMIT}\left(\operatorname{EXP}\left(\frac{2}{\mathrm{~N}}\right), \mathrm{N}=+\infty\right)
$$

This returns:

1

In effect, $\frac{2}{n}$ tends to 0 as n tends to $+\infty$, so $e^{\frac{2}{n}}$ tends to $e^{0}=1$ as n tends to $+\infty$.
As n tends to $+\infty, u_{n}$ is the portion between I and a quantity that tends to I (cf. inequalities 2b)).
So then, u_{n} converges, and its limit is I.
We have therefore shown that:

$$
L=I=4-\ln 2
$$

6.4 Conclusion

You can see that, by that making good use of the HP 40GS calculator, you can use it for a large proportion of the calculations...
It is necessary to note, however, that arithmetic does require more reasoning. Here, the calculator enables you to check your work...

Chapter 7

Programming

7.1 Implementation

7.1.1 How to edit and save a program

>From the HOME screen, to get access to the catalogue of programs, press the SHIFT 1 (PROGRAM) keys.
A screen then appears containing the list of available programs and a menu bar (EDIT NEW SEND RECV RUN).
To create a new program, press F2 (NEW).
You are asked for the name of the program.
Note: If you are not in Alpha mode, press F4 (A. . Z) to go into it! Type its name, then press F6 (OK).
You enter your program, and your work is automatically saved when you leave the editor by pressing HOME or SHIFT 1 (PROGRAM).

7.1.2 How to correct a program

If the syntax is invalid, the calculator displays:
Invalid Syntax Edit program? Respond by pressing F6 (YES). The calculator automatically positions the cursor where the compiler has detected the error. All you need do then is correct it!

7.1.3 How to run a program

To run a program, open the catalogue of programs by pressing SHIFT 1 (PROGRAM).
A screen is then displayed containing the list of available programs and the menu bar EDIT NEW SEND RECV RUN.
Highlight the name of the program and press F6 (RUN).

7.1.4 How to modify a program

To modify a program (and overwrite the old one), open the catalogue of programs by pressing SHIFT 1 (PROGRAM). A screen is then displayed containing the list of available programs and the menu bar EDIT NEW SEND RECV RUN.
Highlight the name of the program and press F1 (EDIT).
If you want to save and edit the old program under a new name, then:

- Open the catalogue of programs (SHIFT 1 (PROGRAM))
- Press F2 (NEW) and type the new name, then press F6 (OK). The Editor opens.
- Press VARS, then the letter P to highlight Program.
- Using the arrows, highlight the name of the old program, then press F4 (VALUE) (to select VALUE on the menu bar), then F6 (OK).
This copies the text of the old program into the editor.

7.2 Comments

It is important to comment your programs.
In writing algorithms, a comment commonly starts with / / and ends at the end of the line.
In the HP40GS, a comment starts with @ and ends at the end of the line or at the next @, whichever comes first.
Note:
Do not forget to put a space after the @.
The character @ is obtained by typing SHIFT VAR (CHARS), then highlighting the character and choosing ECHO on the menu bar (or ECHO1 ECHO1 OK to have two characters @).

7.2.1 SHIFT 1 (PROGRAM) keys

This key combination, if pressed in HOME, displays the screen :
PROGRAM CATALOG
It shows:

- a list of the programs that you've written, and
- a menu bar containing the commands:

EDIT NEW RUN SEND RECV.
EDIT enables you to edit the highlighted program,
NEW enables you to create a new program,
RUN enables you to run the highlighted program (cf 7.1),
SEND and RECV are functions that enable your calculator to talk to your computer or another calculator.
For example:
If you press SEND on the menu bar, it asks:
HP39/40 (Wire) or Disk Drive
You highlight HP 39/40 (Wire) to send a program to another HP 40GS, or you highlight Disk Drive to send a program to a computer.
Then press OK on the menu bar.
For example, here is how you connect a Linux computer to the HP 40 GS so as to use the program C-Kermit version 7 (which you can find at the URL www. columbia.edu/kermit, or which you can download via anonymous ftp from the site kermit.columbia.edu):
Connect the calculator to a data transfer cable.
On the computer, type:
kermit
set line /dev/ttyS0 (or S1... depending on the number of your serial port)
set speed 9600
set carrier-watch off
serv
On the HP40GS:
Highlight the program called NAME, then press SEND on the menu bar and highlight Disk drive. Then press OK on the menu bar, and the program called NAME on the HP 40 GS is copied into your computer.
OR:
Press RECV on the menu bar and highlight Disk drive. Then press OK on the menu bar, and the calculator displays a list of the HP 40 GS programs on your computer. (Naturally, you have to have already created a directory on your computer where the HP 40 GS programs are stored).

You then highlight GCD, and the program called GCD on your computer is copied into the HP40GS.
For Windows users, the connectivity program is found on the URL:
http://www.hp.com/calculators/france.
To find out more about the use of Kermit with HP calculators, visit the URL: http://www.columbia.edu/kermit/hp48.html

7.3 Variables

7.3.1 Their names

These are the containers in which you can store values, numbers, expressions, and other objects.
With the HP 40 GS , only the 26 letters of the alphabet, and the Greek letter θ are available for storing real numbers.

7.3.2 The concept of local variables

Local variables are used to protect user variables from modifications after a program call. This concept does not exist natively on the HP 40 GS (only global variables are supported).
For advanced users, it is however possible to mimic the local variables mechanism using the CAS history and PUSH and POP. Say for example that our program use the variables A, B, C. At the beginning we can PUSH A then PUSH B then PUSH C. This will save the values of A, B and C in the CAS history. At the end of the program we restore the value of A, B and C using POP and store the value in C, B and A , it must be done in reverse order since the CAS history is a stack container (LIFO=Last In First Out).

7.3.3 The concept of parameters

It is not possible for programs written on the HP 40 GS to natively pass parameters. Hence you cannot use the HP40GS programming language to write functions having parameters.
For advanced users, it is possible to mimic parameters using the CAS history. The caller PUSH a list of parameters in the CAS history, then runs the program, that will have as first instruction a POP instruction. This mechanism does not work in conjonction with the local variables turnaround above. If you want to combine both concepts, you can choose a list vari-
able for parameter transmission and return value, and use local variables as described above.

7.4 User entry

7.4.1 Algorithmic syntax

So that the user is able to enter a value for the variable A during the course of the program's execution, one writes in algorithms:
input A
And for entering values into A and B, one writes:
input A, B

7.4.2 HP 40GS syntax

INPUT A;"TITRE";"A="; 0:
If it annoys you to have to type all the punctuation in the INPUT command, you might prefer to use the PROMPT or PROMPTSTO command instead (thanks to Jean Yves!).
PROMPTSTO (A) or PROMPT A opens a window that asks you to enter the value of A.
In the remainder of this guide, programs that were written before the existence of PROMPT use the subroutine IN, which enables you to enter two values into A and B.

7.5 Output

7.5.1 Algorithmic syntax

In algorithms one writes:
display "A=", A

7.5.2 HP 40 GS syntax

DISP 3;"A="A: 3 represents the number of the line whereA will be displayed
Or:
MSGBOX "A="A:

7.6 The sequence of statements, or "action"

An action is a sequence of one or more statements.

7.6.1 Algorithmic syntax

In algorithmic language, you use the space or the linebreak to terminate the statement.

7.6.2 HP 40GS syntax

: indicates the end of the statement.

7.7 The assignment statement

A value or an expression is stored in a variable by means of an assignment.

7.7.1 Algorithmic syntax

In algorithms, one writes (for example):
2 *A $->B$
to store $2 * \mathrm{~A}$ in B .

7.7.2 HP 40GS syntax

The arrow is obtained by means of the STO \triangleright key on the menu bar.
One types (for example):
$2 *$ A-> B that mean:
press $2 *$ A then press $S T O \triangleright$ on the menu bar then press B.

7.8 Conditional statements

7.8.1 Algorithmic syntax

Conditional statements have two syntax :
If condition then
action
endif
and also :

```
7.9. FOR STATEMENT
If condition then
actionl else
action2
endif
Example:
If A = 10 ou A < B then
B-A->B else
A-B->A
endif
```

163

7.8.2 HP 40GS syntax

IF condition THEN
action :
END:
and also :
IF condition THEN
action1 : ELSE
action2:
END:
NOTE $\mathrm{au}==$ to denote the condition of equality.
Example :
IF $A==10$ OR $A<B$ THEN
$B-A->B$: ELSE
A-B-> A
END :

7.9 FOR statement

7.9.1 Algorithmic syntax

For $I=A$ to B do action endfor and also :
For $I=A$ to B (step P) do action endfor

7.9.2 HP 40GS syntax

```
FOR I = A TO B STEP 1 ; action : END
```

and also :
FOR I = A TO B STEP P ; action : END:

7.10 WHILE statement

7.10.1 Algorithmic syntax

While condition do action endwhile

7.10.2 HP 40GS syntax

```
WHILE condition REPEAT action : END:
```


7.11 Boolean Expressions

A condition is a function that has a Boolean as a value, that is, it is either TRUE or FALSE.

7.11.1 Algorithmic syntax

To express a condition, simply use the operators:

$$
=\gg \leq \geq \neq
$$

7.11.2 HP 40GS syntax

NOTE: for the HP40GS calculator, equality is denoted by:

==

Otherwise, the operators are the same.

7.12 Logical Operators

7.12.1 Algorithmic syntax

To express complex conditions, use the logical operators:
or and not

7.12.2 HP 4 OGS syntax

Or, and, not are represented on the HP40GS as OR, AND, NOT

7.13 Lists

7.13.1 Algorithmic syntax

In algorithms, you use \{ \} to define a list.
For example, $\}$ designates a void list, and $\{1,2,3\}$ is a list with three elements.
The + is used to concatenate two lists, or a list and an element, or an element and a list:
$\{1,2,3\}->$ TAB
$T A B+4->\operatorname{TAB}(T A B$ now designates $\{1,2,3,4\}$
$T A B[2]$ indicates the second element of TAB, here 2.

7.13.2 HP 40 GS syntax

The list variables have the following names: L0, L1, L2, ... L9. You use \{ \} to delimit a list.
For example, $\{1,2,3\}$ is a list with three elements.
But \{\} does not designate a void list; to clear a list you must use the command CLRVAR, e.g.:
CLRVAR LO
will initialise the list L0 as void. You can also use the command SUB which extract a sub-list (if $\mathrm{L} 1=\{1,2,3,4\}$ then SUB $\mathrm{L} 2 ; \mathrm{L} 1 ; 2 ; 3$ make the list $\mathrm{L} 2=\{2,3\}$) and so, SUB $\mathrm{L} 1 ; \mathrm{L} 1 ; 2 ; 1$ to initialise the list L1 as void. Following are some useful commands:
MAKELIST (I*I, I, 1, 10, 2) designates a list of the squares of the first five odd whole numbers (2 indicates the step of I).
L1 (I) designates the Ith element of the list.
CONCAT (L1, $\{5\}$) designates a list having the element 5 in addition to the elements of the list L1.
You can also use:
AUGMENT ($L 1,5$), which designates a list having the element 5 in addition to the elements of the list L1.
SUB L2; L1; 2; 4 is a command that copies into L2 the elements of L1 having indices from 2 to 4 .
Note the difference between functions and commands:
Functions return a value, and they have parentheses enclosing their arguments (which are separated by commas), whereas
Commands do not return values, and their arguments are written directly after the name of the command (and are separated by semi-colons).

7.14 Example: The Sieve of Eratosthenes

7.14.1 Description

To find the prime numbers less than or equal to N :

1. Write the numbers from 1 to N in a list.
2. Cross out 1 , and let 2 be the first value of P. If $P * P \leq N$, then taking the numbers from P to N.
3. Cross out all the multiples of P from $P * P$ onward.
4. Augment P by 1 , If $P * P$ is less than or equal to N, then taking the non-excluded numbers from P to N.
5. Change P to the smallest non-excluded number between P and N.
6. Repeat steps 3, 4 and 5 until $P * P$ exceeds N.

7.14.2 Algorithmic syntax

```
Function sieve(N)
local TAB PRIMES I P
//TAB and PRIMES are lists
{} ->TAB
{} ->PRIMES
//do steps 1 and 2
for I = 2 to N do
    TAB+I -> TAB
endfor
0 + TAB -> TAB
2-> P
//TAB is the list 0 2 3 4 ..N
//1 has been excluded by replacing it with 0
while P*P \leq N do
//exclude all multiples of P from P*P onward
    for I = P to FLOOR(N/P) do
        //FLOOR(N/P) designates the integer part of N/P
        0 -> TAB[I*P]
    endfor
```

```
    P+1-> P
//Find the smallest non-excluded number
//between P and N
    while (P*P }\leqN)\mathrm{ and (TAB[P]=0) do
    P+1 -> P
    endwhile
endwhile
//write the result to the list PRIMES
for I = 2 to N do
    If TAB[I] }\not=0\mathrm{ then
        PRIMES + I -> PRIMES
    endif
endfor
Result: PRIMES
```


7.14.3 HP 40GS syntax

Following is the program SIEVE:
The user must input a value for N .
At the end, the list L2 contains the prime numbers less than or equal to N .

```
INPUT N;"CRIBLE";"N="; ; 10:
ERASE:
MAKELIST(I,I,1,N,1) -> L1:
0 -> L1(1):
2->P:
WHILE P*P \leq N REPEAT
    FOR I = P TO INT(N/P) STEP 1;
        0->L1(I*P):
    END:
    DISP 3;""L1:
    P+1->P :
    WHILE P*P \leq N AND L1(P) == 0 REPEAT
        P+1->P :
    END:
END:
```

\{2\}->L2:
@ on sait que 2 est premier
FOR I=3 TO N STEP 1;
IF L1 (I) $\neq 0$ THEN
CONCAT (L2, \{I\}) ->L2:
END:
END:
DISP 3 ;"PREM" L2:
FREEZE:

Chapter 8

Arithmetic Programs

8.1 GCD and Euclid's Algorithm

Given the two whole positive numbers A and B, find their $G C D$ (Greatest Common Divisor).
Euclid's Algorithm is based on the recursive definition of $G C D$:

$$
\begin{aligned}
G C D(A, 0) & =A \\
G C D(A, B) & =G C D(B, A \bmod B) \text { if } B \neq 0
\end{aligned}
$$

where $A \bmod B$ designate the remainder of the Euclidean division of A by B.
Here is the description of this algorithm:
Perform the successive Euclidean divisions:

$$
\begin{array}{rlll}
A= & B \times Q_{1}+R_{1} & & 0 \leq R_{1}<B \\
B & = & R_{1} \times Q_{2}+R_{2} & \\
0 \leq R_{2}<R_{1} \\
R_{1} & = & R_{2} \times Q_{3}+R_{3} & \\
0 \leq R_{3}<R_{2}
\end{array}
$$

.......

After a finite number of steps, there exists a whole number n such that: $R_{n}=0$.
One then has:
$G C D(A, B)=G C D\left(B, R_{1}\right)=\ldots=$
$G C D\left(R_{n-1}, R_{n}\right)=G C D\left(R_{n-1}, 0\right)=R_{n-1}$.

8.1.1 Algorithmic syntax

- Iterative version

If $B \neq 0$, calculate $R=A \bmod B$. Then, make A equal to B, and B equal to R, and repeat the calculation until $B=0$. The $G C D$ is then A.

```
Function GCD (A,B)
Local R
While B F 0 do
    A mod B ->R
    B ->A
    R ->B
endwhile
Result: A
endfunction
```

- Recursive version

One simply writes the recursive definition given earlier.

```
Function GCD(A,B)
If B f 0 then
    Result: GCD (B,A mod B)
Else
    Result: A
endif
endfunction
```


8.1.2 HP 40 GS syntax

- Iterative version for two whole numbers

First, type the subroutine IN, which enables the user to enter two numbers A and B :

```
INPUT A;"A";;;1:
INPUT B;"B";;;1:
ERASE:
```

Then type the GCD program:
RUN IN:
DISP 3;"PGCD "\{A,B\}:

WHILE $B \neq 0$ REPEAT
A MOD B $->\mathrm{R}$:
B $->A$:
R $->B$:
END:
DISP 4;"PGCD "A:
FREEZE:

- Recursive version for two whole numbers A and B

You cannot create recursive functions on the HP 40 GS... but you can create the program GCDR :

```
DISP 3;"PGCD "{A,B}:
FREEZE:
IF B F O THEN
A MOD B ->R:
B ->A:
R ->B:
PGCDR:
ELSE
DISP 3;"PGCD "A:
FREEZE:
END :
```

First, the values of A and B are stored.
The program GCDR displays the GCD that it is in the process of calculating. The recursive call GCDR returns you to the GCDR program, which you must execute by pressing RUN on the menu bar.
The GCDR program then displays the intermediate GCD calculations.
You can also replace GCDR in the preceding program with RUN GCDR to avoid having to press RUN on the menu bar, and to suppress the display of the intermediate values, so that you can use this program in a larger program that caters for input and output:
>From the recursive program GCDR, we can derive the recursive program PR:

IF $B \neq 0$ THEN
A MOD B $->R$:
B $->A$:

```
R ->B:
RUN PR:
END:
```

The program PR can be inserted into a larger program catering for input and output:

PROMPT A:
PROMPT B:
RUN PR:
ERASE:
MSGBOX A:

- Iterative version for two complex numbers.

If you use the symbolic calculation function IREMA INDER in place of MOD in the preceding programs, GCD (or PR) can then have Gaussian whole numbers as parameters on condition that you replace the names of the variables A, B and R with Z1, Z2 and Z3, and that you change the test for completion. When creating the new version start by recalling the contents of the earlier version, as described in 6.1.4. Here is the iterative version:

```
PROMPT Z1:
PROMPT Z2:
ERASE:
DISP 3;"PGCD "{Z1,Z2}:
WHILE ABS (Z2) }=0\mathrm{ REPEAT
XNUM(IREMAINDER(XQ(Z1),XQ(Z2)) ->Z3:
Z2 ->Z1:
Z3 ->Z2:
END:
DISP 4;"PGCD "Z1:
FREEZE:
```

- Iterative version for two polynomials.

The variables E1, E2, .. enable you to store expressions, which is what you must do if you deal with polynomials! If you use the symbolic calculation function REMAINDER in place of MOD in the preceding programs, $G C D$ (or $P R$) can then have polynomials as parameters on condition that you replace the names of the variables A, B and R with $E 1, E 2, E 3$, and that you change the test for completion. The CAS must be in Exact and Direct modes for this program.

PROMPT E1:
PROMPT E2:
ERASE:
WHILE DEGREE (E2) $\neq-1$ REPEAT
REMAINDER (E1,E2) ->E3:
E2 ->E1:
E3 ->E2:
END:
DISP 4;"PGCD "E1:
FREEZE:
You enter (for example):
$\mathrm{E} 1=\mathrm{S} 1^{2}-1$ and $\mathrm{E} 2=\mathrm{S} 1^{2}-2 * \mathrm{~S} 1+1$ to find the GCD equal to $2 * \mathrm{~S} 1-2$.

8.2 Bézout's Identity

Bézout's function (A,B) returns the list $\{U, V, P G C D(A, B)\}$ (where U and V are such that:
$A \times U+B \times V=P G C D(A, B)$.

8.2.1 Iterative version without lists

Euclid's Algorithm enables us to find a pair U and V such that:
$A \times U+B \times V=P G C D(A, B)$
In effect, if we call A_{0} and B_{0} the values the A and B at the start, then we have:

$$
\begin{aligned}
& A \quad=A_{0} \times U+B_{0} \times V \text { avec } U=1 \text { and } V=0 \\
& B=A_{0} \times W+B_{0} \times X \text { avec } W=0 \text { and } X=1
\end{aligned}
$$

You then derive A, B, U, V, W, X in such a way that the two relations above are always satisfied.
If:
$A=B \times Q+R \quad 0 \leq R<B(R=A \bmod B$ and $Q=E(A / B))$
then:

$$
\begin{gathered}
R=A-B \times Q=A_{0} \times(U-W \times Q)+B_{0} \times(V-X \times Q)= \\
A_{0} \times S+B_{0} \times T \text { avec } S=U-W \times Q \text { and } T=V-X \times Q
\end{gathered}
$$

It remains then to repeat the process with:
B in the role of $A(\mathrm{~B}->\mathrm{A} \quad \mathrm{W}->\mathrm{U} \quad \mathrm{X}->\mathrm{V})$, and
R in the role of $B(\mathrm{R}->\mathrm{B} \quad \mathrm{S}->\mathrm{W} \quad \mathrm{T}->\mathrm{X})$
whence the algorithm:

```
Function Bezout (A,B)
local U,V,W, X, S, T, Q, R
1->U 0->V 0->W 1->X
While B }\not=0\mathrm{ do
```

 \(A \bmod B->R\)
 FLOOR (A/B) ->Q
 \(/ / R=A-B * Q\)
 \(\mathrm{U}-\mathrm{W} * \mathrm{Q}->\mathrm{S}\)
 \(\mathrm{V}-\mathrm{X} * \mathrm{Q}->\mathrm{T}\)
 \(B->A\)
 W->U
 X->V
 \(R->B\)
 \(S->W\)
 T->X
 endwhile
Result: \{U, V, A\}
endfunction

8.2.2 Iterative version with lists

You can simplify the algorithmic syntax below by using fewer variables: for this, use the lists LA, LB, $L R$ to store the triplets $\{U, V, A\},\{W$, $X, B\}$ and $\{S, T, R\}$. This is quite easy, as the calculator knows how to add lists of the same length (by adding elements with the same index), as well as how to multiply a list by a number (by multiplying each of the list's elements by the number).

```
Function Bezout (A,B)
local LA LB LR
{1, 0, A}->LA
{0, 1, B}->LB
While LB[3] F 0 do
```

LA-LB*E (LA[3]/LB[3]) ->LR
LB->LA
LR->LB
endwhile
Result : LA
endfunction

8.2.3 Recursive version with lists

Bézout's Function can be recursively defined by:
$\operatorname{Bezout}(A, 0)=\{1,0, A\}$
If $B \neq 0$, is it necessary to define $\operatorname{Bezout}(A, B)$ as a function of $\operatorname{Bezout}(B, R)$ when
$R=A-B \times Q$ and $Q=F \operatorname{LOOR}((A / B)$.
We have:

$$
\begin{array}{r}
\operatorname{Bezout}(B, R)=L T=\{W, X, \operatorname{pgcd}(B, R)\} \\
\text { avec } W \times B+X \times R=\operatorname{pgcd}(B, R)
\end{array}
$$

with

$$
\begin{aligned}
W \times B+X \times(A-B \times Q) & =\operatorname{gcd}(B, R) \text { or } \\
X \times A+(W-X \times Q) \times B & =\operatorname{gcd}(A, B)
\end{aligned}
$$

whence, if $B \neq 0$ and if $\operatorname{Bezout}(B, R)=L T$, we have:
Bezout $(A, B)=\{L T[2], L T[1]-L T[2] \times Q, L T[3]\}$.

```
function Bezout (A,B)
local LT Q R
If B}\not=0\mathrm{ then
    FLOOR(A/B) ->Q
    A-B*Q->R
    Bezout(B,R)->LT Result: {LT[2], LT[1]-LT[2]*Q, LT[3]}
else Result: {1, 0, A}
endif
endfunction
```


8.2.4 Recursive version without lists

If you use global variables for A, B, D, U, V, T, you can view the function Bezour as using A, B to calculate the values for $\mathrm{U}, \mathrm{V}, \mathrm{D}$ $(A U+B V=D)$ by means of a local variable Q.
One can then write:

```
program Bezour
local Q
If B }=0\mathrm{ then
    FLOOR(A/B) ->Q
    A-B*Q->T
    B->A
    T->B
    Bezour
    U-V*Q->T
    V->U
    T->V
else
    1->U
    0->V
    A}->
endif
```


8.2.5 HP 40GS syntax

- Iterative version with lists

Here, you also use the program IN, which enables the user to enter two numbers A and B :

```
INPUT A;"A";;;1:
INPUT B;"B";;;1:
ERASE:
```

Now type the BEZOUT program:

```
RUN IN:
DISP 3;"BEZOUT "{A,B}:
{1,0,A} ->L1:
{0,1,B} ->L2:
WHILE L2(3) # 0 REPEAT
```

L1-L2*FLOOR(L1 (3) /L2 (3)) ->L3:
L2 ->L1:
L3 ->L2:
END:
DISP 4;"U V PGCD "L1:
FREEZE:

- Recursive version without lists

Type the program BEZOUR, using the commands (thanks to Bernard!!!): PUSH (the command PUSH (A) stores the contents of A on the CAS stack), and
POP (the POP command retrieves values stored on the CAS stack)
PUSH and POP can simulate the local variable Q We have replaced in the translation (cf 8.2.4) the variables R and W by the temporary variable T.
PROGRAM BEZOUR
IF B $\neq 0$ THEN
PUSH (FLOOR (A/B)):
A MOD B->T:
B->A:
T->B:
RUN BEZOUR:
U-V*POP->T:
$\mathrm{V}->\mathrm{U}$:
T->V:
ELSE
1->U:
$0->V$:
A->D:
END :
PUSH ($\operatorname{FLOOR}(A / B)$) has the effect of putting the different values of FLOOR (A/B) onto a stack, and POP recovers them.
T is an auxiliary variable.
BEZOUR takes, as user input, the values of the global variables A and B, and assigns values to the global variables U and V such that:
$\mathrm{A} \cdot \mathrm{U}+\mathrm{B} \cdot \mathrm{V}=\operatorname{GCD}(\mathrm{A}, \mathrm{B})$. We can then write the final program BEZOURT, which caters for the input of A and B and the output of $\{U, V, D\}$:
PROGRAM BEZOURT
PROMPT A:
PROMPT B:

RUN BEZOUR:
ERASE:
MSGBOX $\{\mathrm{U}, \mathrm{V}, \mathrm{D}\}:$
REMARKS (cf. iterative version for two complex 8.1.2):
If you use the symbolic calculation functions IREMAINDER and IQUOT (XQ (Z1), XQ (Z2))
in place of MOD and F LOOR (A / B) in the preceding programs, then BEZOUT and BEZOUR can take Gaussian integers as parameters, on condition that you replace the names of the variables $A, B, R \ldots$ with $\mathrm{Z} 1, \mathrm{Z} 2$, Z3....
If you use the symbolic calculation function REMAINDER in place of MOD in the preceding programs, then BEZOUT and BEZOUR can take polynomials as parameters, on condition that you replace the names of the variables $A, B, R .$. with $E 1, E 2, E 3 \ldots$ and that you change the test for completion.

8.3 Decomposition into prime factors

8.3.1 Algorithmic syntax

- Initial algorithm

Let N be a whole number.
For all numbers D from 2 to N, test the divisibility of N by D.
If D is a divisor of N, then find the divisors of N / D, and so on... with N / D taking the role of N. The process stops when $N=1$.
As divisors are found, they are stored in the list FACT.

```
function facprimes(N)
local D FACT
2->D
{} -> FACT
While N \not= 1 do
    If N mod D = 0 then
        FACT + D -> FACT
        N/D -> N
    Else
        D+1 -> D
    endif
endwhile
```

Result: FACT
endfunction

- First improvement

One only tests the divisors D that are between 2 and $\operatorname{FLOOR}(\sqrt{N})$.
In effect, if $N=D 1 * D 2$, then we can say:
Let $D 1 \leq F \operatorname{LOOR}(\sqrt{N})$, and let $D 2 \leq F \operatorname{LOOR}(\sqrt{N})$; otherwise, we would have:
$D 1 * D 2 \geq(F \operatorname{LOOR}(\sqrt{N})+1)^{2}>N$.

```
function facprimes(N)
local D FACT
2-> D
{} -> FACT
While D*D \leq N do
    If N mod D = 0 then
            FACT + D -> FACT
            N/D -> N
        Else
            D+1-> D
        endif
endwhile
FACT + N -> FACT
Result: FACT
endfunction
```

- Second improvement

One looks to see whether 2 is a divisor of N, then one tests only the odd divisors D that are between 3 and $F \operatorname{LOOR}(\sqrt{N})$.
In the list FACT, each divisor is written followed by its exponent:
decomp $(12)=\{2,2,3,1\}$.

```
function facprimes(N)
local K D FACT
{} ->FACT
0 -> K
While N mod 2 = 0 do
        K+1 -> K
        N/2 -> N
endwhile
```

```
If K}\not=0\mathrm{ then
    FACT + {2 K} -> FACT
endif
3-> D
While D*D \leq N do
        0 -> K
        While N mod D = 0 do
            K+1 -> K
            N/D -> N
        endwhile
    If K f 0 then
        FACT + (D K( -> FACT
    endif
    D+2 -> D
endwhile
{\tt If N $\neq 1$ 1 then}
\begin{verbatim} FACT + {N 1} -> FACT
endif
Result: FACT
endfunction
```


8.3.2 HP 40GS syntax

This is a translation of the last algorithm.
The HP 40GS calculator does not understand \{\}, so to initialise L1 as an empty list you must type:
CLRVAR L1
or SUB L1;L1;2;1.
Here is the program FACTPRIMES:

```
INPUT N;"N";;;1:
ERASE:
O ->K:
CLRVAR L1:
WHILE N MOD 2 == 0 REPEAT
1+K -> K:
N/2 -> N:
END:
```

```
8.4. CALCULATING A}\mp@subsup{}{}{P}MOD 
1 8 1
IF K f 0 THEN
{2,K} ->L1:
END:
3 ->D:
WHILE D*D \leq N REPEAT
0 -> K:
WHILE N MOD D == O REPEAT
K+1 -> K:
N/D -> N:
END:
IF K # O THEN
CONCAT (L1,{D,K}) -> L1:
END:
2+D -> D:
END:
IF N \not= 1 THEN
CONCAT (L1, {N,1}) -> L1:
END:
DISP 3; "FACT" L1:
FREEZE:
```


8.4 Calculating $A^{P} \bmod N$

8.4.1 Algorithmic syntax

- First algorithm

This algorithm uses two local variables, POWER and I.
Write an iterative program such that at each stage, POWER represents A $(\bmod N)$.

```
function powermod (A, P, N)
local POWER, I
1 -> POWER
for I = 1 to P do
    A*POWER mod N -> POWER
endfor
Result: POWER
endfunction\
```

- Second algorithm

This algorithm uses a single local variable POW, but it varies P such that at each stage of the iteration we have:

```
result = POW * AP (bmodN)
function powermod (A, P, N)
local POW
1 -> POW
While P>0 do
    A*POW mod N -> POW
    P-1 ->P
endwhile
Result: POW
endfunction
```

- Third algorithm

One can easily modify this program by taking into account that:
$A^{2 * P}=(A * A)^{P}$.
Therefore when P is even, we have the relation:
PUI $* A^{P}=$ PUI $*(A * A)^{P / 2}(\bmod N)$
and when P is odd, we have the relation:
$\mathrm{PUI} * \mathrm{~A}^{\mathrm{P}}=\mathrm{PUI} * \mathrm{~A} * \mathrm{~A}^{\mathrm{P}-1}(\bmod \mathrm{~N})$.
We are left with a very fast algorithm for $A^{P}(\bmod N)$.

```
function powermod (A, P, N)
local POW
1->POW
While P<0 do
    If P mod 2=0 then
        P/2->P
        A*A mod N->A
    Else
        A*POW mod N ->POW
        P-1->P
    endif
endwhile
Result: POW
endfunction
```

It goes without saying that if P is odd, then $P-1$ is even.
One can then write:

```
8.5. THE FUNCTION "ISPRIME"
function powermod (A, P, N)
local POW
1->POW
While P<0 do
    If P mod 2=1 then A*POW mod N->POW
        P-1->P
    endif
    P/2- (>P
    A*A mod N->A
endwhile
Result: POW
endfunction
```


8.4.2 HP 40 GS syntax

The calculation of $A^{p} \bmod N$ is treated in the program on the probability method of Mr Rabin. Please refer to the HP 40GS version of that program (cf 8.6).

8.5 The function "isprime"

8.5.1 Algorithmic syntax

- Initial algorithm

Write a Boolean function of N that is equal to TRUE when N is prime and FALSE when it is non-prime.
For this, find whether N has a divisor $\neq 1$ and $\leq \operatorname{FLOOR}(\sqrt{\mathrm{N}})$ (the whole part of the square root of N).
The case where $\mathrm{N}=1$ is treated separately!
Here, the Boolean variable PRIME is used, which is TRUE by default, and which is set to FALSE if a divisor of N is found.

```
Function isprime(N)
local PRIME, I, J
FLOOR((\sqrt{}{N})-> J
If N = 1 then
    FALSE->PRIME
else
    TRUE->PRIME
```

endif
2->I
While PRIME and $I \leq J$ do
If $N \bmod I=0$ then FALSE->PRIME
else
I+1->I
endif
endwhile
Result: PRIME
endfunction

- First improvement

Of course, we can test to see if N is even, then look only for odd divisors of N.

```
function isprime(N)
Local PRIME, I, J
FLOOR(\sqrt{}{N})-> J
If (N = 1) or ( N mod 2 = 0) and ( N\not=2) then
    FALSE->PRIME
else
    TRUE->PRIME
endif
3->I
While PRIME and I \leq(J do
    If N mod I = O then
        False -> PRIME}
        else
            I+2->I
        endif
endwhile
Result: PRIME
endfunction
```

- Second improvement

We can test to see if N is divisible by 2 or 3 , then look only for divisors of N that are of the form $6 \times k-1$ oo $6 \times k+1$.
function isprime(N)
local PRIME, I, J
$\operatorname{FLOOR}(\sqrt{\mathrm{N}})->\mathrm{J}$
If $(N=1)$ or ($N \bmod 2=0)$ or ($N \bmod 3=0)$ then FALSE- (PRIME
else
TRUE->PRIME
endif
If $\mathrm{N}=2$ or $\mathrm{N}=3$ then TRUE->PRIME
endif
5->I
While PRIME and $I \leq J$ do If $(\mathrm{N} \bmod \mathrm{I}=0)$ or $(\mathrm{N} \bmod (\mathrm{I}+2)=0)$ then

FALSE->PRIME
else
I + 6 -> I
endif
endwhile
Result: PRIME
endfunction
end\{verbatim\}

\subsection\{\{\tt HP40GS\} syntax\}

\begin\{verbatim\} }
INPUT N;"N"; ; 1 :
IF N MOD $2==0$ OR N MOD $3==0$ OR N==1 THEN
$0->P$:
ELSE
1->P:
END:
IF $N==2$ OR $N==3$ THEN
1->P:
END:
5->I:
$\operatorname{FLOOR}(\sqrt{\mathrm{N}})->\mathrm{J}:$
WHILE I $\leq J$ AND P REPEAT

IF N MOD $\mathrm{I}==0$ OR N MOD $(\mathrm{I}+2)==0$ THEN
$0->P$:
ELSE
I+6 $->$ I:
END:
END:
ERASE:
DISP 5; P:
FREEZE:

8.6 Mr Rabin's probability method

If N is prime, then all numbers K less than N are prime with N, so according to Fermat's Little Theorem we have:
$K^{N-1}=1(\bmod N)$
If N is not prime, the integers K such that:
$K^{N-1}=1(\bmod N)$
are very few indeed.
A number N such that $K^{N-1}=1(\bmod N)$ for 20 random tries of K is called a pseudo-prime number. The probability method of Rabin consists of choosing a random number $K(1<K<N)$ and calculating:
$K^{N-1}(\bmod N)$
If $K^{N-1}=1(\bmod N)$), another random number is tried, whereas if $K^{N-1} \neq 1(\bmod N)$, it is certain that N is not prime.
If $K^{N-1}=1(\bmod N)$ is obtained for 20 tries of K, one can conclude that N is prime with a very small probability of error.

Naturally, this method is used to test whether large numbers are pseudoprimes, but the command ISPRIME? use the Miller-Rabin method. This method use also Fermat's Little Theorem and is also a probabilist method. It conclude that N is prime with a very small probability of error (less than $(0.25)^{20}$ if you make 20 random tries of K or on the order of 10^{-12}).

8.6.1 Algorithmic syntax

Let us suppose that:
Random (N) returns a random whole number between 0 and $N-1$.
Calculation of:
$K^{N-1} \bmod N$
is carried out using the very fast algorithm developed earlier (cf page 181.

Note the statement:
powermod (K, P, N), the function that calculates $K^{P} \bmod N$.

```
Function isprime(N)
local K, I, P
1->I
1->>P
While P = 1 and I < 20 do
    Random(N-2)+2->K
    powermod(K, N-1, N) ->P
    I+1->I
endwhile
If P =1 then
    Result: TRUE
else
    Result: FALSE
endif
endfunction
```


8.6.2 HP 40GS syntax

PROMPT N:
RANDSEED TIME:
1->I:
1->P:
WHILE $\mathrm{I} ~<~ 20$ AND $\mathrm{P}==1$ REPEAT
FLOOR(RANDOM * (N-2))+2->K:
N-1->M:
@ Calcul de K puissance M mod N dans P.
1->P:
WHILE $0<M$ REPEAT
IF M MOD 2 == 0 THEN
M / 2 -> M :
(K * K) MOD N $->\mathrm{K}$:
ELSE
K*P MOD N -> P:
M - 1 -> M:
END:
END :
@ P contient K puissance $M \bmod N$ et $M=N-1$.
I+1 ->I:

END:
ERASE:
IF $\mathrm{P}==1$ THEN
DISP 3;"PREMIER " N:
ELSE
DISP 3;"NON PREMIER " N:
END:
FREEZE:
REMARK: You can also use the computer algebra function POWMOD, substituting:
MODSTO (N) :
POWMOD (K, N-1) -> P:
for the statements between the comments (@). This results in :
PROMPT N:
RANDSEED TIME:
1->I:
1->P:
WHILE $\mathrm{I}<20$ AND $\mathrm{P}==1$ REPEAT
FLOOR (RANDOM * $(\mathrm{N}-2))+2->\mathrm{K}$:
MODSTO (N) :
POWMOD $(\mathrm{K}, \mathrm{N}-1)->\mathrm{P}$:
I+1 ->I:
END:
ERASE:
IF $P==1$ THEN
DISP 3;"PREMIER " N:
ELSE
DISP 3;"NON PREMIER " N:
END:
FREEZE:

Chapter 9

GNU Free Documentation

License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this Licens This the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used fo any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the that overall subject. (For example, if the Document is in part a textbook of to relhematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Dacument is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyrigh notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoeve to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, a long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages. actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100 , you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which hould, if there were any, be listed in the History section of the Document. You may use the same titte as a previous version if the original publishe in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five). * C. State on the Title page the name of the publisher of the Modified Version, as the publisher. *D. Preserve all the copyright notices of the Document. * E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. * F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. * G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. * H. Include an unaltered copy of this License. *I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. * J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in
section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. * K. In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. * L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. * M. Delete any section entitled "Endorsements". Such a section may not be included in the Modified Version. * N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invarian Sections in the Modified Version's license notice. These titles must be distinct from any other section title

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.
Text in the Modified Version. Ondy made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the sene entity you ree acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as ariant Sections of your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents, forming one section entitled "His tory"; likewise combine any sections entitled "Acknowledgements", and any sections entitled "Dedications". You must delete all sections entitle "Endorsements."

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an "aggregate", and this this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document. If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.
8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant

Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License provided that you also include e original English version of this License. In case of a disagreement between the translation and the original English version of this License, the original English version will prevail.
9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who
 The Free Software Fons or ins License
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new
Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of thi
License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license otices just after the title page

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free er version published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free

Appendix A

Index

Skip 2 pages.

Index

4, 7
$\int, 105$
|, 69, 91
$\sum, 84$
D, 7
-, 71, 87
$->, 7$
$\triangle \triangleleft \triangleright \nabla, 7$
ABCUV, 92
ABS, 71, 87
ACOS2S, 71, 126
ADDTMOD, 71, 78
ARG, 71, 87
ASIN2C, 71, 126
ASIN2T, 71, 127
ASSUME, 20, 36, 71
ATAN2S, 71, 127
AUGMENT, 51
AXL, 56
AXM, 56
$A X Q, 52$

BASIS, 57

C2P, 63
CEILING, 71
CFG, 67
Change font, 18, 69
CHINREM, 92
CHOLESKY, 57
CIRC, 64

CLRVAR, 165
COLLECT, 69, 89
CONJ, 71, 87, 88
Copy, 18, 69
CURL, 54
Cursor mode, 18, 69
Cut, 18, 69
CYCLOTOMIC, 93
DEF, 69, 100
DEGREE, 93
DERIV, 54, 70, 102
DERVX, 70, 103
DESOLVE, 70, 123
DIAGMAP, 57
DISTRIB, 70, 116
DIV, 54
DIV2, 93
DIV2MOD, 79
DIVIS, 71, 72
DIVMOD, 71, 79
DIVPC, 70, 112
DROITE, 71, 87, 88, 139
Edit expr., 18, 69
EGCD, 71, 94
EPSX0, 49, 70, 116
EULER, 71, 72
EXLR, 55
EXP $2 H Y P, 127$
EXP2POW, 70, 116
EXPAND, 69, 90

EXPANDMOD, 71, 80
EXPLN, 70, 117
FACTOR 69, $71,73,90,94$ INTVX, 70, 106
91, 93, 94INVMOD, 71, 81
FACTORMOD, 71, 80
FACTORS, 43
FCOEF, 43
FDISTRIB, 70, 117
FLOOR, 71, 85
FOURIER, 70, 103
FRAC, 71
FROOTS, 44
FXND, 48
GAMMA, 85
GAUSS, 53
GBASIS, 44
GCD, 71, 73, 95
GCDMOD, 71, 80
GREDUCE, 44

HADAMARD, 57
HALFTAN, 71, 128
HELP, 7, 20, 40
HELPWITH, 40
HERMITE, 71, 95
HESS, 55
HILBERT, 58
HORNER, 95
i, 71
IABCUV, 73
IBASIS, 58
IBERNOULLI, 83
IBP, 70, 104
ICHINREM, 74
IDIV2, 71, 74
IEGCD, 71, 75
IFTE, 20, 71, 102
ILAP, 124
IM, 71, 87

IMAGE, 59
INT, 71

IQUOT, 71, 75
IREMAINDER, 71, 76
ISOLATE, 70, 120
ISOM, 64
ISPRIME?, 71, 76, 101
JORDAN, 59
KER, 59

LAGRANGE, 45
LAP, 124
LAPL, 55
LCM, 71, 77, 96
LCXM, 60
LDEC, 70, 126
LEGENDRE, 71, 96
LGCD, 45
lim, 108
LIMIT, 70, 108
LIN, 70, 117
LINSOLVE, 70, 121
LNAME, 49
LNCOLLECT, 70, 118
LVAR, 49

MAD, 60
MAP, 52
MAX, 71
MIN, 71
MKISOM, 65
MOD, 71, 77, 85
MODSTO, 36, 71, 81
MSLV, 50
MULTMOD, 71, 81

NEXTPRIME, 71, 77

INDEX

P2C, 64
PA2B2, 77
PARTFRAC, 69, 71, 97
Paste, 18, 69
PCAR, 61
PLOT, 110
PLOTADD, 110
PMINI, 61
POP, 39, 160, 177
POWEXPAND, 70, 118
POWMOD, 71, 81
PREVAL, 70, 110
PREVPRIME, 71, 78
PROMPT, 161
PROMPTSTO, 161
PROPFRAC, 71, 83, 97
PSI, 86
Psi, 86
PTAYL, 71, 98
PUSH, 39, 160, 177
qr, 62
QUOT, 71, 98
QUOTE, 69, 88, 108
QXA, 53
RE, 71, 87
REALASSUME, 20, 36, 88
REF, 41
REMAINDER, 71, 98
REORDER, 90
RESULTANT, 46
RISCH, 70, 111
rref, 42
RREFMOD, 48
SERIES, 70, 113
SEVAL, 91
SIGMA, 111
SIGMAVX, 111
SIGN, 71, 87

SIMP2, 46
SIMPLIFY, 70, 119
SINCOS, 70, 71, 128
SOLVE, 70, 120, 123
SOLVEVX, 70, 121
STO, 37
STOD, 7
STORE, 35, 69
STURM, 47
STURMAB, 98
SUBST, 69, 91, 124
SUBTMOD, 71, 82
SYLVESTER, 53
SYST2MAT, 62

TABVAL, 50
TABVAR, 70, 112
TAN2CS2, 71, 128
TAN2SC, 71, 129
TAN2SC2, 71, 129
TAYLORO, 70, 115
TCHEBYCHEFF, 71, 99
TCOLLECT, 71, 129
TEVAL, 50
TEXPAND, 69, 71, 130
TLIN, 71, 131
TRAN, 62
TRIG, 71, 131
TRIGCOS, 71, 131
TRIGSIN, 71, 132
TRIGTAN, 71, 132
TRUNC, 70, 115
TSIMP, 132

UNASSIGN, 35, 69
UNASSUME, 20, 36, 71
VANDERMONDE, 63
VER, 133
VERSION, 133

XNUM, 51, 70, 82, 84, 119
$\mathrm{XQ}, 51,70,119$
ZEROS, 47

Appendix B

Table of contents

Skip 2 pages

Contents

1 To Begin 5
1.1 General Information 5
1.1.1 Starting the Calculator 5
1.1.2 What You See 5
1.2 Notations 7
1.3 Online Help 7
2 Aplets 9
2.1 APLet Key 9
2.2 The Various aplets 9
2.3 Examples using the Sequence Aplet 10
2.3.1 Notation in Base b 10
2.3.2 Calculating the GCD 11
2.3.3 Calculating the Coefficients of Bézout's Identity 12
2.4 The SYMB, NUM, PLOT and MODES Keys 13
3 CAS user's guide 15
3.1 Terms and Conditions 15
3.2 Introduction 16
3.2.1 What is CAS? 16
3.2.2 How do you perform a symbolic calculation? 16
3.2.3 Variables 17
3.2.4 The current variable 17
3.3 Using the CAS in the Equation Editor 18
3.3.1 The Equation editor menu 18
3.3.2 The keyboard in the Equation Editor 19
3.3.3 Expressions, subexpressions, selection 24
3.3.4 Accessing the CAS functions 30
3.3.5 Equation editor variables 34
3.4 CAS in the HOME screen 36
3.4.1 HOME variables 36
3.4.2 Storing an object in a HOME variable : STOD 37
3.4.3 Some tricks and examples. 37
3.4.4 Send expressions from HOME into the CAS history : PUSH 39
3.4.5 Retrieve expressions written to the CAS history in HOME : POP 39
3.4.6 The keyboard in the HOME screen 39
4 The CAS functions only valid in HOME screen 41
4.1 Linear systems 41
4.1.1 Resolution of a linear system of equations : REF 41
4.1.2 Resolution of a linear system of equations : rref 42
4.2 Polynomials 43
4.2.1 List of factors: FACTORS 43
4.2.2 Rational function given by its roots and poles :FCOEF 43
4.2.3 Roots and poles ofa rational function : FROOTS 44
4.2.4 Græbner basis : GBASIS 44
4.2.5 Grœbner reduction : GREDUCE 44
4.2.6 Lagrange's polynomial : LAGRANGE 45
4.2.7 GCD of a list: LGCD 45
4.2.8 resultant of two polynomials: RESULTANT 46
4.2.9 Division by the PGCD :SIMP 2 46
4.2.10 Sturm's sequences: STURM 47
4.2.11 Zeros of a polynomial : ZEROS 47
4.3 Rational fractions 48
4.3.1 Numerator and denominator of a fraction : FXND 48
4.4 Modular calculations 48
4.4.1 Resolution of a linear system of equations : RREFMO 48
4.5 Variables 49
4.5.1 The symbolic variables of an expression : LNAME 49
4.5.2 The variables of an expression : LVAR 49
4.6 Numeric calculus 49
4.6.1 Omit the values smaller than EPS : EPSXO 49
4.6.2 Solve numerically a system : MSLV 50
4.6.3 Time for evaluation of the answer : TEVAL 50
4.6.4 Numeric approximation : XNUM 51
4.6.5 Exact value : XQ 51
4.7 The lists 51
4.7.1 Concatenation : AUGMENT 51
4.7.2 Map a function to a list : MAP 52
4.8 Quadratic forms 52
4.8.1 Matrice to quadratic form : AXQ 52
4.8.2 Gauss decompsition : GAUSS 53
4.8.3 Matrix of a quadratic form : QXA 53
4.8.4 Sylvester decomposition : SYLVESTER 53
4.9 Functions of multiple variables 54
4.9.1 The rotor : CURL 54
4.9.2 The gradient : DERIV 54
4.9.3 The divergence : DIV 54
4.9.4 The hessian : HESS 55
4.9.5 The laplacian : LAPL 55
4.10 Equations 55
4.10.1 Members of an equation : EXLR 55
4.11 Matrices 56
4.11.1 Matrix to list : AXL 56
4.11.2 Symbolic matrix to numeric matrix : AXM 56
4.11.3 Basis vectors: BASIS 57
4.11.4 Cholesky matrix : CHOLESKY 57
4.11.5 Map an operator to a diagonalizable matrix : DIAGMAP 5 57
4.11.6 Hadamard product: HADAMARD 57
4.11.7 Hilbert matrix : HILBERT 58
4.11.8 Basis of an intersection: IBASIS 58
4.11.9 basis of the image : IMAGE 59
4.11.10 Jordan matrix : JORDAN 59
4.11.11 Basis of the kernel : KER 59
4.11.12 Make a matrix : LCXM 60
4.11.13 List of several elements : MAD 60
4.11.14 Characteristic polynomial : PCAR 61
4.11.15 Minimal polynomial : PMINI 61
4.11.16 Q*R decomposition : qr 62
4.11.17 System to matrix : SYST2MAT 62
4.11.18 Transposed matrix : TRAN 62
4.11.19 Vandermonde matrix : VANDERMONDE 63
4.12 The permutations 63
4.12.1 Cycles to permutation: C 2 P 63
4.12.2 Composition : CIRC 64
4.12.3 Decomposition into cyclesP 2C 64
4.13 The isometries 64
4.13.1 Isometry's characteristics elements : ISOM 64
4.13.2 Isometry's matrix : MKISOM 65
5 CAS Reference from the Equation Editor 67
5.1 CAS menu bar 67
5.1.1 Change your configuration : CFG 67
5.1.2 Step/Step Mode 69
5.1.3 TOOL menu 69
5.1.4 ALGB menu 69
5.1.5 DIFF menu 70
5.1.6 REWRI menu 70
5.1.7 SOLV menu 70
5.1.8 TRIG menu 71
5.1.9 The MATH key 71
5.2 Integers (and Gaussian Integers) 71
5.2.1 Unlimited precision 72
5.2.2 The divisors of a number : DIVIS 72
5.2.3 The Euler index : EULER 72
5.2.4 Decomposition into prime factors : FACTOR 73
5.2.5 The greatest common divisor : GCD 73
5.2.6 Resolution of $a u+b v=c:$ IABCUV 73
5.2.7 Chinese remainders :ICHINREM 74
5.2.8 Quotient and remainder of two integers: IDIV2 74
5.2.9 Bézout's Identity : IEGCD 75
5.2.10 The integer Euclidean quotient: IQUOT 75
5.2.11 The integer remainder : IREMAINDER 76
5.2.12 Test of pseudo-primality: ISPRIME? 76
5.2.13 The least common multiple : LCM 77
5.2.14 Remainder of the Euclidean division : MOD 77
5.2.15 The smallest pseudo-prime greater than N : NEXTPRIME 77
5.2.16 Resolution of $a^{2}+b^{2}=p$ with integers: PA2B2 77
5.2.17 The greatest pseudo-prime less than $\mathrm{N}:$ PREVPRIME 78 78
5.3 Modular Calculations 78
5.3.1 Addition in Z / pZ or in $\mathrm{Z} / \mathrm{pZ}[\mathrm{X}]$: ADDTMOD 78
5.3.2 Quotient and remainder in Z/pZ[X]: DIV2MOD 79
5.3.3 Division in Z/pZ or in Z/pZ[X] : DIVMOD 79
5.3.4 To expand and simplify expressions in Z / pZ or in $\mathrm{Z} / \mathrm{pZ}[\mathrm{X}]$: EXPANDMOD 80
5.3.5 To factor polynomials in $\mathrm{Z} / \mathrm{pZ}[\mathrm{X}]$: FACTORMOD 80
5.3.6 GCD of the two polynomials in $\mathrm{Z} / \mathrm{pZ}[\mathrm{X}]$: GCDMOD 80
5.3.7 Inverse in Z/pZ : INVMOD 81
5.3.8 To put a value in the MODULO variable : MODSTO . 81
5.3.9 Multiplication in Z / pZ or $\mathrm{Z} / \mathrm{pZ}[\mathrm{X}]$: MULTMOD . . 81
5.3.10 Power in Z / pZ or in $\mathrm{Z} / \mathrm{pZ}[\mathrm{X}]$: POWMOD 81
5.3.11 Subtraction in Z/pZ or in Z/pZ[X] : SUBTMOD . . 82
5.4 Rational Numbers . 82
5.4.1 The n-th Bernoulli's number : IBERNOULLI . . . 83
5.4.2 Whole-number and fractionnal part : PROPFRAC . 83
5.4.3 Symbolic summation: \sum. 84
5.5 Real Numbers . 84
5.5.1 The whole part: FLOOR 85
5.5.2 The Γ function : GAMMA 85
5.5.3 Remainder of the Euclidean division : MOD 85
5.5.4 The derivatives of the Digamma function :PSI . . 86
5.5.5 The Digamma function: Psi 86
5.6 Complex Numbers . 87
5.6.1 Argument of a complex number : ARG 87
5.6.2 Conjugate of a complex number : CONJ 88
5.6.3 Equation of the line : DROITE 88
5.7 Algebraic Expressions 89
5.7.1 Factors over the integers : COLLECT 89
5.7.2 Distributivity : EXPAND 90
5.7.3 Factorization : FACTOR 90
5.7.4 Change the order of variables : REORDER 90
5.7.5 Partial simplifications: SEVAL 91
5.7.6 Substitute a value for a variable : | 91
5.7.7 Substitute a value for a variable : SUBST 91
5.8 Polynomials . 91
5.8.1 Resolution of $\mathrm{A}[\mathrm{X}] \mathrm{U}[\mathrm{X}]+\mathrm{B}[\mathrm{X}] \mathrm{V}[\mathrm{X}]=\mathrm{C}[\mathrm{X}]$: ABCUV 92
5.8.2 Chinese remainders : CHINREM 92
5.8.3 Cyclotomic polynomial : CYCLOTOMIC 93
5.8.4 degree of a polynomial : DEGREE 93
5.8.5 Quotient and remainder : DIV2 93
5.8.6 Bézout's Identity : EGCD 94
5.8.7 Factorize a polynomial : FACTOR 94
5.8.8 GCD of two polynomials : GCD 95
5.8.9 Hermite polynomial : HERMITE 95
5.8.10 To evaluate a polynomial : HORNER 95
5.8.11 LCM of two polynomials : LCM 96
5.8.12 Legendre polynomial : LEGENDRE 96
5.8.13 Partial fraction expansion : PARTFRAC 97
5.8.14 Whole-number and fractional part : PROPFRAC 97
5.8.15 Rewrite in order of the powers of $(X-a)$: PTAYL 98
5.8.16 Euclidean quotient: QUOT 98
5.8.17 Euclidean remainder : REMAINDER 98
5.8.18 Number of zeros in $[a, b[$: STURMAB 98
5.8.19 First and 2nd-species Tchebycheff polynomials : TCHEBYCHEFF 99
5.9 Functions 100
5.9.1 Define a function : DEF 100
5.9.2 Derivative and partial derivative : DERIV 102
5.9.3 Derivative : DERVX 103
5.9.4 Fourier coefficients : FOURIER 103
5.9.5 Partial integration : IBP 104
5.9.6 Integrals : J 105
5.9.7 Primitive and definied integral : INTVX 106
5.9.8 To calculate limits : LIMIT or lim 108
5.9.9 Plot of an expression : PLOT 110
5.9.10 Add the plot of an expression :PLOTADD 110
5.9.11 Evaluate a primitive : PREVAL 110
5.9.12 Primitive and definied intégral : RISCH 111
5.9.13 Discrete antiderivative : SIGMA 111
5.9.14 Discrete antiderivative : SIGMAVX 111
5.9.15 Variation table: TABVAR 112
5.10 Taylor and asymptotic Expansions 112
5.10.1 Division in increasing order by exponent : DIVPC 112
5.10.2 Limited n th-order expansion : SERIES 113
5.10.3 Limited expansion in the vicinity of 0 : TAYLOR0 115
5.10.4 Truncate at order $n-1$: TRUNC 115
5.11 Conversion Functions 116
5.11.1 Distributivity of multiplication : DISTRIB 116
5.11.2 Disregard small values : EPSX0 116
5.11.3 Transform $\exp \left(\mathrm{n}^{*} \ln (\mathrm{x})\right)$ as a power of $\mathrm{x}: \operatorname{EXP} 2 \mathrm{POW}$ 116
5.11.4 Transform a trigonometric expression into complex exponentials : EXPLN 117
5.11.5 Distributivity : FDISTRIB 117
5.11.6 Linearise the exponentials: LIN 117
5.11.7 Regroup the logarithms : LNCOLLECT 118
5.11.8 Transform a power : POWEXPAND 118
5.11.9 Simplify: SIMPLIFY 119
5.11.10 Evaluation of reals : XNUM 119
5.11.11 Rational approximation : XQ 119
5.12 Equations 120
5.12.1 The zeros of an expression :ISOLATE 120
5.12.2 Solve equations: SOLVE 120
5.12.3 Solve equations : SOLVEVX 121
5.13 Systems 121
5.13.1 Solve linear system : LINSOLVE 121
5.13.2 Solve non linear system : SOLVE 123
5.14 Differential Equations 123
5.14.1 Solve of differential equations : DESOLVE 123
5.14.2 Laplace transform and inverse Laplace transform : LAP and ILAP 124
5.14.3 Linear differential equations having constant coef- ficients: LDEC 126
5.15 Trigonometric Expressions 126
5.15.1 Transform the arccos into arcsin : ACOS2S 126
5.15.2 Transform the arcsin into arccos: ASIN2C 126
5.15.3 Transform the arcsin into arctan : ASIN2T 127
5.15.4 Transform the arctan into arcsin : ATAN2S 127
5.15.5 Transform exponential into hyperbolic functions : EXP2HYP 127
5.15.6 Transform in terms of $\tan (\mathrm{x} / 2)$: HALFTAN 128
5.15.7 Transform the complex exponentials into sin and cos: SINCOS 128
5.15.8 Transform $\tan (\mathrm{x})$ with $\sin (2 \mathrm{x})$ and $\cos (2 \mathrm{x})$: TAN2CS2 128
5.15.9 Replace $\tan (\mathrm{x})$ with $\sin (\mathrm{x}) / \cos (\mathrm{x})$: TAN2SC 129
5.15.10 Transform $\tan (\mathrm{x})$ with $\sin (2 \mathrm{x})$ and $\cos (2 \mathrm{x})$: 129
5.15.11 Reconstruct the sine and the cosine of the same an- gle: TCOLLECT 129
5.15.12 Develop transcendental expressions: TEXPAND 130
5.15.13 Linearise une trigonometric expression : TLIN 131
5.15.14 Simplify using $\sin (x)^{2}+\cos (x)^{2}=1$: TRIG 131
5.15.15 Simplify using the cosines: TRIGCOS 131
5.15.16 Simplify using the sines: TRIGSIN 132
5.15.17 Simplify using the tangents: TRIGTAN 132
5.15.18 Simplification with complex exponentials : TSIMP 132
5.16 Version number of your CAS : VER 133
6 Worked Exercises with the HP40 135
6.1 Introduction 135
6.2 Exercises on Brevet 136
6.2.1 Exercise 1 136
6.2.2 Exercise 2 136
6.2.3 Exercise 3 137
6.2.4 Exercise 4 138
6.2.5 Exercise 5 139
6.3 Exercises on Bac 140
6.3.1 Exercise 1 140
6.3.2 Exercise 2 (specialty) 146
6.3.3 Exercise 3 (non-specialty) 151
6.4 Conclusion 156
7 Programming 157
7.1 Implementation 157
7.1.1 How to edit and save a program 157
7.1.2 How to correct a program 157
7.1.3 How to run a program 158
7.1.4 How to modify a program 158
7.2 Comments 158
7.2.1 SHIFT 1 (PROGRAM) keys 159
7.3 Variables 160
7.3.1 Their names 160
7.3.2 The concept of local variables 160
7.3.3 The concept of parameters 160
7.4 User entry 161
7.4.1 Algorithmic syntax 161
7.4.2 HP 40GS syntax 161
7.5 Output 161
7.5.1 Algorithmic syntax 161
7.5.2 HP 40GS syntax 161
7.6 The sequence of statements, or "action" 162
7.6.1 Algorithmic syntax 162
7.6.2 HP 40GS syntax 162
7.7 The assignment statement 162
7.7.1 Algorithmic syntax 162
7.7.2 HP 40GS syntax 162
7.8 Conditional statements 162
7.8.1 Algorithmic syntax 162
CONTENTS 209
7.8.2 HP 40GS syntax 163
7.9 FOR statement 163
7.9.1 Algorithmic syntax 163
7.9.2 HP 40GS syntax 163
7.10 WHILE statement 164
7.10.1 Algorithmic syntax 64
7.10.2 HP 40GS syntax 164
7.11 Boolean Expressions 164
7.11.1 Algorithmic syntax 164
7.11.2 HP 40 GS syntax 164
7.12 Logical Operators 164
7.12.1 Algorithmic syntax 164
7.12.2 HP 40GS syntax 164
7.13 Lists 165
7.13.1 Algorithmic syntax 165
7.13.2 HP 40GS syntax 165
7.14 Example: The Sieve of Eratosthenes 166
7.14.1 Description 166
7.14.2 Algorithmic syntax 166
7.14.3 HP 40GS syntax 167
8 Arithmetic Programs 169
8.1 GCD and Euclid's Algorithm 169
8.1.1 Algorithmic syntax 170
8.1.2 HP 40 GS syntax 170
8.2 Bézout's Identity 173
8.2.1 Iterative version without lists 173
8.2.2 Iterative version with lists 174
8.2.3 Recursive version with lists 175
8.2.4 Recursive version without lists 176
8.2.5 HP 40GS syntax 176
8.3 Decomposition into prime factors 178
8.3.1 Algorithmic syntax 178
8.3.2 HP 40GS syntax 180
8.4 Calculating $A^{P} \bmod N$ 181
8.4.1 Algorithmic syntax 181
8.4.2 HP 40GS syntax 183
8.5 The function "isprime" 183
8.5.1 Algorithmic syntax 183
8.6 Mr Rabin's probability method 186
8.6.1 Algorithmic syntax 186
8.6.2 HP 40GS syntax 187
9 GNU Free Documentation License 189
A Index 193
B Table of contents 195

