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1 License

Erable v2.99 c© 06/1997 by Bernard Parisse, with integers routines from ALG48,
c© 1997 by Claude-Nicolas Fiechter and Mika Heiskanen. HORN%%ext and BAIRSText:
c© 06/1995 by Ram Naresh Gudavalli

The Erable package is made of a kernel library and the erable library which
needs the library. The kernel library is a work based on ALG48 (using long integer
routines) hence is submitted to the license of ALG48 (see the file license.txt).
People who don’t make software or authors of softwares which are free of charge
may use the erable library according to the GNU General Public License (see
the file copying.gnu). Authors of non-free software(s) may use erable in the
same conditions if they send me free of charge a copy of any software from which
they are the author.

2 Installation.

2.1 Getting the binaries from a computer.

WARNING: if you have installed ALG48, you must either upgrade to
version 4.01 or desinstall it. erable assume that if ALG48 is installed,
then version 4.01 is installed Connect your HP to your computer. Run
kermit in server mode on your computer, and type:
{ kernel.lib erableg.lib ALGBG } KGET
on your HP48 GX model or:
{ kernel.lib erable.lib ALGB } KGET
on your HP48 SX model.

2.2 Getting the binaries from another HP48.

Put your HP48 in server mode. On the other HP, type the following little
program:

<< :&:787 RCL :&:788 RCL RCLKEYS -> kernel.lib erable.lib touches
<< { kernel.lib erable.lib touches } SEND
>>

>>

and EVAL it.

2.3 Installing the binaries

The kernel library must be installed in port 0 or port 1, for port 0 type:
’kernel.lib’ DUP RCL SWAP PURGE 0 STO
The erable library may be installed in any port, for example in port 2:
’erable.lib’ DUP RCL SWAP PURGE 2 STO

Optional but recommended:
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• if you got ALGB or ALGBG from your computer, go in the ALGB or ALGBG
folder and hit INIT. This will assign keys in user mode and create a little
CST menu.

• if you got touches from another HP, type:
’touches’ DUP RCL SWAP PURGE STOKEYS
to assign keys in user mode.

If you are short in memory, you can erase parts or the whole ALGB (respec-
tively ALGBG) directory: e.g. for a HP48GX with 128K, I recommend to install
kernel.lib, erable.lib, EQSTK, TED and UFL.

3 Introduction.

3.1 Overview.

erable is a computer algebra system for the HP48. The main features are sim-
plifications (including complexes and square roots), integration, first order dif-
ferential equations, partial fraction decomposition, Laplace and inverse Laplace
transform, limits, Taylor and asymptotic series, row reduction to echelon form of
matrices, linear system (including over and underdetermined), eigenvalues and
eigenvectors, quadratic forms, permutations, variables substitution, ... With
erable you will be able to solve fast all the problems solved by a TI92 and some
problems which are not solved by a TI92: some integrals (the Risch algorithm
is not implemented in the TI92), some Taylor series, arithmetic, diagonalisation
of matrices, change of variables,...

Examples (# means not solved natively by the TI92):

1 +
√

2
1 + 2

√
2

EXPA
3
7

+
1
7

√
2

eiπ/6 TSIMP
√

3
2

+
i

2

ln(1 + i) TSIMP
ln(2)

2
+

1
4
πi∫

1
ex − 1

dx RISCH ln(ex − 1)− x

#
∫

(1 + 2x2)ex
2
dx RISCH xex

2

#
∫ b

a

ex

x
dx, ex = y EXEC

∫ eb

ea

y

y ln(y)
dy

# sin(x)/(ex − 1), x, 4 SERIES 1− 1
2
x− 1

12
x2 +

1
12
x3 +O(x4)

# cos(x)2 1 LAP
1

2x
+

1
4(x− 2i)

+
1

4(x+ 2i)

5



#
1

(x2 + 1)(x+ 1)
ILAP

−1
2

cos(x) +
1
2

sin(x) +
1
2
e−x

#y′ = xy2 ’X*SQ(Y(X))’ DSOLVE EXPA y =
y0

e−1/2x2+1/2x2
0 1 1 a

1 a 1
a 1 1

 rref

 a− 1 0 a2 − 1
0 a− 1 −a+ 1
0 0 −a2 − a+ 2


#
(

0 1
−1 2

)
JORDAN Char (1)(1, 0); Eigen (1)(−1,−1)

3.2 Warnings.

• Using a computer algebra system does not mean that you don’t have to
think. Most of the time, all works perfectly and you get the answer within
30 seconds. But sometimes, after 1 or 2 minutes, you don’t get the answer
or you get a Insufficient memory error. In this case, you should think
“Is there a different way to get the answer? Is there a way which will be
easier for the system?” And most of the time, there is a better way! Think
of double integrals where you can reverse the integration order or define
integrals where you may do a variable translation to have less variables,
or linearity in inverse Laplace transform, ... You should learn maths and
algorithms to get the best of any computer algebra system. And a system
is never complete, you will need to program sometimes!

• Most of the problems in the real life don’t have exact answers but can
only be solved approximately. Think of integrals, differential equations,
great matrices (say e.g. 100×100), ... Before learning how to solve exactly
a problem, I strongly recommend to learn how to solve numerically a
problem. Then for a real life problem, you will know when you must stop
finding an exact solution and begin to use a numerical algorithm.

3.3 erable— and alg48—.

erable is partially derived from the alg48 package. The arithmetic functions
of erable are derived from those of alg48. erable and alg48 have some other
common features like simplifications, partial fraction expansion or rational in-
tegration. The main differences are:

• erable is most of the time slower (about 2 times I would say, this is
only a mean, sometimes alg48 is 3 times faster than erable, sometimes
erable is 1 to 2 faster than alg48). Why? Because erable handles
complexes and square roots natively: e.g. erable simplifies expressions
like (1+i)/(1+2i), (1+

√
2)/(1−2

√
2), e5iπ/6. Hence arithmetic operations

in erable must be generic, that’s why they are slower. On the other
hand, erable treats matrices as global objects for simplifications, as alg48
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simplifies matrices element by element, hence erable may be faster if
matrices are involved.

• erable accepts strings embedded in symbolics, this means that if you
EXPAnd (5x+ 12)16 with erable you’ll get the exact answer.

• erable handles numerical data (non integers real and complexes)

• erable has a partial implementation of the Risch integration algorithm:
it handles most of the common integrals, not only rational fractions.

• alg48 (version 4) implements the complete factorization algorithm over
the rationals, erable finds only first order factors of the square-free fac-
torization and then, for 1-variable polynomials, calls the numeric solver if
necessary and tries to rebuild 2nd order factor. Hence, alg48 factors the
expanded form of (x4 + x3 + 1)(x4 + x + 1) but not x4 + 1 and erable
does not factor the first example but factors the second one.

• The main specific feature of alg48 is the Gröbner base computation. The
main specifics features of erable are eigenvalues and eigenvectors of ma-
trices, differential equations (first order: linear, Bernouilli, homogenous;
linear with constant coefficients), limits and Taylor series, quadratic forms,
permutations, variable substitutions.

If you have enough memory, do like me: keep both on your calc and choose the
right instruction!

3.4 Implementation notes.

This software is written in ML and Sysrpl with HP48 supported entries and
standard instructions (and a few unsupported but static entries), hence it should
work on all versions of the HP48. Of course, you should backup your calc before
trying it: no software is bug free!

This package was written on a 90Mhz Pentium PC running under Linux ver-
sion 2, with XFree86 (X-Windows system), the GNU emacs editor, my patched
version of the x48 emulator (with almost instantaneous file transferts) with JAZZ
installed, the gtools package (HP48 GNU compiler) and kermit.

3.5 Next upgrades.

The latest versions are available by anonymous ftp in the directory:
ftp://fourier.ujf-grenoble.fr/pub/hp48/
If you have a WEB client, you may prefer to go to my professional homepage:
http://www-fourier.ujf-grenoble.fr/~parisse/english.html
or to my personal homepage:
http://perso.wanadoo.fr/bernard.parisse
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4 Main functions of the library

erable has two major modes: complex and real mode. The user flag 13 is set
in complex mode and cleared in real mode (default state). This mode affects
the way erable output results. For example, partial fraction decomposition is
made over IC or over IR depending of the current mode. If you see unwanted i
on the stack, this means that erable is probably in complex mode, you can go
back to real mode either by clearing flag 13 (13 CF) or by typing VER.

Remarque 1 List of lists are used to represent symbolic matrices, in other
words a symbolic matrice is entered like a numeric matrice, replacing [ by and
] by . Symbolic vectors are allowed as well (represented as lists).

4.1 Main functions.

The main functions of the erable library are assigned to keys in user mode. If
you don’t see the word USER in the status area (or with JAVA if you see NORM in
the status area), you should go in USER mode: press once or twice the left shift
key followed by the α key.

The redefined keys are most of the time preceded by the α and right-shift
keys. For example, the add addition function of erable is obtained in USER

mode by hiting threes keys: α , Right Shift , + .
The same method applies for other operations. The +, −, ∗, /, yx,

√
x, ∂,∫

, 1/x, ± keys are redefined (after α and Right Shift ) as add, SUBT, MULT,
DIV1, POWER, SQRT, CHS, der, RISCH, INVL. These commands extend the usual
HP commands to all erable data types, except for the RISCH program, which
tries to integrate with respect to the main variable (contained in ’VX’: usually
’X’).

The other α-right shift-redefined keys are:

• the 9 key calls EXPA which extends the EXPAN function of the HP. It fully
expands rational expressions in one pass.

• the 6 keys is redefined as COLC which tries to factorize an expression (this
has a similar effect to the COLCT instruction).

• the 3 keys calls TSIMP, the simplification program for transcendental func-
tions (exponentials and logarithms).

• The EVAL key calls the EXEC function which is used to execute something
(e.g replace a variable by a value, or execute a program) on an object

• the 2 keys lets you switch from numeric to symbolic array representation
of an array.

• the 7 key finds the roots and poles of a rational fraction (function FROOTS),

• the 4 key evaluates an object at stack level 1 and returns an approximation
of the time needed (tEVAL function).
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• the 1 key switches on or off the complex mode (i.e. user flag 13), the same
key but α-left shifted switches on or off the internal flag 17. The new
state is displayed. The R key has a similar effect for the recurse flag (21)
(if α-right-shifted, for the α-left-shift-R this switches the +/− integration
flag on or off)

Let’s finish this section by two redefined keys which are not α-right shifted:

• On SX models, the →Q and →NUM keys (not alpha shifted) are redefined
to handle matrices. They toggle user flags 12, 14 and 15 (XNUM to clear
and XQ to set).

• On a G/GX models, use α - Right Shift -Q or →NUM (not shifted).

5 Simplifications.

5.1 Main simplifications instructions.

Two kinds of simplifications are provided: full rational simplification (EXPA) and
transcental presimplification (TSIMP). In many situations, full rational simplifi-
cation achieve the whole simplification, but sometimes you will need to detect
relations between exponentials and logarithms, in this situation you should call
TSIMP, followed by EXPA or COLC to finish the simplification. Note that TSIMP
consider trigonometric functions as complex exponentials, and simplify them
this way and that the output of TSIMP is affected by the state of the flag 13
(complex flag): if cleared, then complex logarithms and exponentials are con-
verted to arctan and sin/cos functions.

For convenience, arithmetic operations of erable perform automatic rational
simplifications: e.g. add is equivalent to + EXPA.

The COLC instruction may be used as a simplification instruction, it tries to
factorize a symbolic.

5.2 Other simplifications instructions

• EXPLN: replace transcendental functions by exponentials and logarithms
and tries to expand the result as a sum of exponentials. Example: in
complex mode, sin(x)2 EXPLN returns 1/2− 1/4e2ix − 1/4e−2ix.

• TRIG: replace complex exponentials and logarithms by trigonometric func-
tions and tries to simplify sinus and cosinus fonctions together (applying
sin2 + cos2 = 1). Example: tan(x2 ) sin(x) returns 1− cos(x).

• PFEXPA: like EXPA but only in subexpressions between + and −. Usefull
before or after integration. The PFCOLC instruction behaves like PFEXPA
but calls COLC on subexpressions.
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5.3 Recurse flag.

If flag 21 is set, “variables” of an expression are simplified recursively (global
name are evaluated, integrals are evaluated by a call to RISCH). Warning: deriva-
tives of user-functions are not evaluated (you have to do an explicit substitution
with EXEC for this).

6 Limits, Taylor and asymptotic series.

The program SERIES compute Taylor series, asymptotic development and limit
at finite and infinite points. It should cover a lot of weierd limits, even some that
are not handled by the TI92 (not surprising!) nor by maple (more surprising!)
like:

lim
x→0

sin(1/x+ x)− sin(1/x)

Syntax:
Put on the stack the following arguments in this order

• the function (mandatory of course) f(x)

• the variable if the limit point is 0 or an equation x = a if the limit point
is a (and the variable is x). This entry is optional if the stack as only 1
argument.

• the order for series expansion (optional), by default 4 (minimum 2, maxi-
mum 20).

Type SERIES, this computes the bidirectional limit (at level 1), the equivalent
e(x) (at level 2), f(x)/e(x) (at level 3), the relative rest (at level 4), the Taylor
development (at level 5) and the limit point (at level 6). If you type LIMIT, you
get only the limit.

For one-directional limit: put an equation x = a+0 for limit at a (left limit)
or x = a− 0 (right limit).

For limits at infinity: you may use the ∞ symbol (from keyboard type α-
right shift-I). Infinity means non signed infinity, for plus infinity use ’ABS(∞)
or 0 +∞, for minus infinity use −∞ (unary minus) or 0−∞.

Examples:
1/x x =∞ SERIES
1/x x = 0 +∞ SERIES
1/x x = 0−∞SERIES
sin(x)/x x SERIES
sin(x)/x x = 0 +∞SERIES√

(2 + x) x 5 SERIES
sin(1/x+ x)− sin(x) x SERIES
(ln(− ln(x+ x2))− ln(− ln(x))) ∗ ln(x)/x x = 0 + 0 SERIES

Note that SERIES and LIMIT are still in beta-testing.
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7 Derivation and integration.

7.1 Derivation

The erable derivation instruction is der, it computes the derivative of a (list
of) function(s) like the built-in instruction but does not evaluate numeric ex-
pressions (like

√
2 or 1

2 ). If level 1 is a list, der returns the gradient of level 2:
2: ’X^2+2*X*LN(Y)-1/Y’, 1: { X Y }

-> { ’2*X+2*LN(Y)’ ’2*X*(1/Y)+1/Y^2’ }
der returns djZ(X,Y,...) for the derivative of the user-defined function

Z(X,Y,...) with respect to the j-th variable of z(x, y, ...). Example:
Suppose that x → z(x) is the primitive of

√
x3 − 1. Type ’Z(X)’ X der, you

get ∂1z(x) on the stack. Enter
√
x3 − 1 and hit = then enter DEFINE. Now, you

can type ’Z(X^2)’ X der EVAL and get 2x
√

(x2)3− 1.
Now try ’Z(X,X^2)’ X der.

7.2 Integration

The main integration command is RISCH. The LIN command may be used to
linearize trigonometric expressions, it is called by RISCH if polynomials of sin(x)
and cos(x) are integrated. The RISCH program accepts functions or integrals as
input and (tries to) return the primitive or the evaluated primitive.

Some examples for RISCH:

• 1
x2−4 →

1
4 ln(x− 2)− 1

4 ln(x+ 2)

• x ln(x)→ 1
2x

2 ln(x)− 1
4x

2

•
√
x2 − 1→ 1

2 ln(−x+
√
x2 − 1) + x

2

√
x2 − 1:

• 1/(sin(x) + 2)→ −2
3

√
3 arctan(−2 tan(x/2)−1

3

√
3)

The RISCH program should be used in conjonction with the TSIMP function to
get “weak normalization”. It is a partial implementation of the Risch algorithm:
it works with pure transcendental extensions (i.e. square root are generically
not allowed), and exponential polynomial part must not contain logarithms or
other exponentials. Examples:

ln ln(x),
1

ex2+1 − 1
, x3e(

x+1
x+2 )

are allowed (and returned since they do not have a antiderivative which may be
expressed with elementary functions), but:√

ln(x)2 − 1, eln(x)2+1

are not allowed as input. Trigonometric expressions are converted in exponen-
tials or logarithms (if linearisation is not the direct solution). Fractions of the
type F (x,

√
ax2 + bx+ c) are detected.
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In conjonction with EXPA, you should obtain some non trivial results: e.g.∫ 2

1

1
x3 + 1

=
ln(3)− 2 ln(2)

6
+

π

18

√
3

(call EXPA in real mode).

7.3 Integration by part

Integration by part is implemented via the IPP command. You have to put a
defined integral

∫ b
a
f(t) dt at level 2 and a function u(t) at level 1. Let v = f/u′,

then IPP returns ∫ b

a

f(t) dt = [uv(t)]ba −
∫ b

a

uv′(t) dt

You may call IPP twice or more. In this case, the transformation applies on the
first integral of the second member of the equality. Example:∫ x

0

arcsin(t)2 dt

’T’ IPP
√

1− T 2 IPP EXPA returns the antiderivative of arcsin(x)2. Try:∫ x

0

exp(t) sin(2t) dt

with exp(t) IPP twice.

8 Ordinary differential equations.

8.1 Linear differential equations (systems) with constant
coefficients.

The most efficient tool for these equations is the Laplace transform defined by:

L(y)(s) =
∫ ∞

0

e−sty(t) dt

Example: solve y′ + 2y = cos(x). Apply L, since:

L(y′)(s) = sL(y)(s)− y(0)

we get:
(s+ 2)L(y) = L(cos(x))(s) + y(0)

hence:

y(t) = L−1

( s
s2+1 + y(0)

s+ 2

)
= L−1

( s
s2+1

s+ 2

)
+ y(0)L−1(

1
s+ 2

)

since L(cos(x))(s) = s/(s2 + 1).
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8.1.1 Laplace transform.

The program LAP takes 2 arguments: a function f at level 2 and a divisor g
at level 1 (usually the characteristic equation of the linear o.d.e.) and returns
L(f)/g (Laplace transform is performed with respect to the variable contained
in VX). If you need the Laplace transform alone, type 1 for g. For the above
example, you would type cos(x) and x+ 2 then LAP.

You may wonder why I added the g function? The reason is that inverse
Laplace transform of rational fractions is obtained by partial fraction decompo-
sition, and it is easier to decompose expressions with subexpressions separated
by + or −, hence it is faster to divide by the characteristic equation each term
of the Laplace transform of f .

8.1.2 Inverse laplace transform.

The program ILAP performs inverse Laplace transform of rational fractions.
Example: ’X/(X^2+1)’ ’X+2’ / ILAP and you get the answer:

y(t) =
1
5

(2 cos(x) + sin(x)) +
−2
5
e−2x

Important remark: The name of the Laplace variable is the same name as
the normal variable (and is contained in VX).

8.1.3 Linear differential equations systems with constant coefficients.

Example: suppose we want to solve the following system:{
y′1(x) = y1(x) − y2(x) + 1
y′2(x) = 2y1(x) + 4y2(x) + ex

with initial data y1(0) = y2(0) = 0.
For scalar linear differential equations with constant coefficients, it is a well-

known procedure to use Laplace transform, e.g. to solve

ay′′ + by′ + cy = f(x)

one would perform the L-transform and get:

(ap2 + bp+ c)L(y) = L(f)(p) + a(pf(0) + f ′(0)) + bf(0)

where f(0) and f ′(0) are the initial consitions at x = 0. If L(f) is a rational
fraction, ILAP allows you to recover y by inverse Laplace transform of

L(f)(p) + a(pf(0) + f ′(0)) + bf(0)
ap2 + bp+ c

But this method may be applied to systems of linear differential equations, the
aim of LDEC is to help you solving 1st order systems (note that higher order
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systems may always be rewritten as 1st order systems). Let y = (y1, ..., yn) be
a vector of functions of x and suppose that we want to solve:

y′ = Ay + b

where A is a n× n constant matrix and b a vector of n functions of x. Denote
by L(b) the vector of the n Laplace transform of the n functions of b , and by
y(0) the vector of n initial data at x = 0 . Then

(pId−A)L(y) = L(b) + y(0)

and:
L(y) = (pId−A)−1(L(b) + y(0))

The purpose of LDEC is to compute

(pId−A)−1(L(b) + y(0))

given A and L(b) + y(0). The stack should be prepared as:
stk2: A,
stk1: L(b) + y(0)
then type LDEC and you will get at stack level 1:

(pId−A)−1(L(b) + y(0))

Stack level 3 is the comatrix, stack level 2 is the determinant of A.
Back to the example above: The matrix A is then:

[ [ 1 -1 ] [ 2 4 ] ]
and since Laplace(1)=1/p and Laplace(ex)=1/(p − 1), we put L(b) + y(0) on
the stack:
{ ’1/X’ ’1/(X-1)’ }
(here VX is set as usual to ’X’). After calling LDEC, we get:
{ ’(X^2-6*X+4)/(X^2-X)/((X-3)*(X-2))’ ’(X+2)/X/((X-3)*(X-2))’ }
which is the { Laplace(y1 ) Laplace(y2) }. Now to recover y1 or/and y2 just hit
EVAL and ILAP for each coordinate. You’ll get:{

y1 = −1/2ex − 2/3 + 2e2x − 5/6e3x

y2 = 1/3− 2e2x + 5/3e3x

To compute the solution of the LDEC with initial data y1(0) = 1, y2(0) = 2 just
replace { ’1/X’ ’1/(X-1)’ } by { ’1/X+1’ ’1/(X-1)+2’ }..

8.2 First order linear equation.

The DSOLVE program recognizes and solves the following equations types:

• y′(x) = f(y(x)),

• y′(x) = f(x, y(x)) with f homogenous,
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• y′(x) = g(x)y(x) + h(x)y(x)α, α ∈ IR (Bernouilli type)

• y′(x) = f(x)g(y) (separable, if f and g are rationals fractions)

• y′(x) = f(x)y(x) + g(x) (linear)

The input is a symbolic f(x, y(x)). Examples:

Y(X)^2+Y(X) DSOLVE (incomplete)
X*Y(X)+1-X^2 DSOLVE (linear)
(Y(X)-X)/(Y(X)+X) DSOLVE (homogenous)
Y(X)^2+X*Y(X) DSOLVE (Bernouilli)

The output may be y as a function of x or x as function of y or x and y as a
function of t (parametric solution) for an homogenous ode.

9 Substitution, change of variables.

The syntax is ’old_name=expression’ EXEC. oldname may be a global name,
an expression (in this case, the first global name in this expression will be
isolated) or a user-defined function.

For multiples substitutions, the syntax is
{ old_name_1 ... old_name_n } { expr_1 ... expr_n } EXEC
In this case, EXEC does only substitutions.

Examples:

• ’X^2+2*X+5’ ’X=1’ EXEC: evaluate an expression at x = 1.

• ’X=Y^2’ EXEC: change of variables, works in integrals too

• ’2*Z(X)-X*d1Z(X)’ ’Z(X)=X^2 EXEC: in a differential equation, replace
the function z(x) by x2.

• ’Z(X)+d1Z(X)’ ’Z(X)=EXP(-X)*Y(X)’ EXEC:
change of function in a differential equation.

• ’X^2+X*COS(X)’ ’X^2=1-Y’ EXEC: replace x2 by 1− y and replace x by√
1− y.

• ’SIN(X)^2+SIN(X)*COS(X)’ { ’SIN(X)^2’ } { ’1-COS(X)^2’ } EXEC:
replace sin(x)2 by 1−cos(x)2 but does not replace sin(x) by

√
1− sin(x)2.

The EXEC programs checks the object type at stack level 1 and performs the
corresponding action:

• doall function:
if stack 1 is a program, EXEC executes program at stack level 1 recur-
sively on the components of a list object at stack level 2. Example:
{ 1 2 3 } << NEG >> EXEC
is the same as { 1 2 3 } CHS
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• one algebraic substitution:
If stack 1 is an equation (’objA=objB’), replace objA by objB in stack2.

• mulitple substitutions:
If stack 1 and 2 are lists, replace each object of list2 in stack level 3 by
the corresponding object of list1. Example:

’COS(X)+i*SIN(X)’
{ SIN COS }
{ << i * EXP DUP INV - i 2 * / >>

<< i * EXP DUP INV + 2 / >>
}

replace sin and cos by complex exponentials. If you call EXPA after you
get eix.

• variable isolation:
Otherwise, EXEC tries to isolate stack level 1 in stack level 2. Example:

’X^2-5’
X
EXEC

returns ’X’
√

5.

10 Factorization.

10.1 Summary of the instructions.

• COLC: factorize a symbolic fraction (returns a symbolic). Factorization may
be incomplete, but is squarefree and all first order factors are detected.

• FROOTS: given an object as input, outputs the list of var (stack level 3),
the list polynomial (2), and the list of root/multiplicity (1) (each root is
followed by its multiplicity). Examples:

* ’X^3-6*X^2+11*X-6’
-> 3: { X }, 2:’X^3-6*X^2+11*X-6’ , 1: { 2 1 3 1 1 1 }

* ’1/X^2’ -> 3: { X }, 2: ’1/X^2’, 1: { 0 -2 }
* ’X^2-Y^2’ ->
3: { X Y }, 2: ’X^2+2*X*Y+Y^2’, 1: { ’-Y’ 2 }
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For a symbolic, FROOTS factorizes with respect to the variable contained
in VX, or if the symbolic is independant of VX with respect to the first
variable of LVAR applied to the symbolic.

If stack 1 is a real integer, FROOTS computes the roots of a list polynomial
with numeric coefficient using Bairstow method (real coefficients) or La-
guerre method (complex coefficients). During iterations, you can modify
some parameters:

– E*10: (ε × 10) multiplies the test value by 10, use this when there
are multiple roots.

– E/10: divides the test value/10, for accurate precision (use this after
you have found all multiple roots)

– RAND: reset current iteration (restart with random initial value)
– STOP abort iteration (for the next one or two roots)

Displayed are the last found roots and the current test value (to compare
with the ε value). Before starting the program, you must specify the ε
value and the number of test-successfully iterations using the following
stack input:

– 3: list polynomial,
– 2: test value (positive real),
– 1: iteration number (real integer)

Example:

{ 1 -21 183 -847 2196 -3024 1728 }
1E-4
3
FROOTS
-> approximatively { 3 3 3 4 4 4 }

The result is bad since 3 and 4 are multiple roots.

• FACTO: same stack as FROOT but returns a list of ”prime” factors instead
of roots. Example:

* ’X^3-6*X^2+11*X-6’
-> 3: { X }, 2: ’X^3-6*X^2+11*X-6’, 1: { ’(X-2)’ 1 ’(X-3)’ 1 ’(X-1)’ 1 }

* 21 -> 3: { }, 2: 21, 1: { 3 1 7 1 }

• FCOEF: input is a list of roots/multiplicity, output is a fraction or polyno-
mial with leading coefficient 1 having this roots (and poles). Example:
{ 1 1 2 1 3 1 } -> ’X^3-6*X^2+11*X-6’
{ A -1 2 1 } -> ’(X-2)/(X-A)’
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10.2 A word about factorization.

You should skip this section for a first reading. Factorization of polynomial is
very important in several mathematical functions, like symbolic integration or
matrix diagonalization. It is important to understand the mechanism used by
erable to perform this tasks.

Let’s begin by recalling some mathematicals facts:

• Theorem (d’Alembert):
A polynomial of degre n has exactly n complex roots (counted with mul-
tiplicity).

• Formula exists to get the solution of polynomials up to order 4 but Galois
proved the following theorem last century:
There is no formula for solving a generic polynomial of degre ≤ 5 (by
algebraic operations and extraction of n-th roots)

This means that you can not root a multivariate polynomial of order ≥ 5 (for
such polynomials, systems like Maple, Reduce, Axiom Mathematica or Mupad
use algebraic extension), and that you can only root numerically a univariate
polynomial of order ≥ 5. Note that the generic solution of a polynomial of
order 3 is still complicated and of order 4 very complicated. I think that it is
not possible to handle the generic solution of polynomials of order 3 or 4 on the
HP48 in a raisonable amount of time. Hence, only polynomial of order 2 are
generically solved by erable.

However, in some situations, you can root exactly polynomials of order ≤
3, by searching multiple roots and by finding obvious roots (or obvious factor).
The rooting algorithm of erable search first multiple roots by computing the
GCD of the polynomial and his first derivative (this is the SQFFext algorithm
in the source of erable). Of course flag 12 must be set for this step to be
done. If a univariate polynomial has only integer (or rational) coefficients,
you can find all rational solutions of this polynomial by testing a finite set
of rationals (of the form numerator/denominator where numerator is a divisor
of the constant coefficient and denominator a divisor of the leading coefficient).
This is implemented in erable by the nullnamed XLIB EVIDENText which is
called if flag 14 is set. Hence, erable detects all 1st order factors of a symbolic.

If exact solving fails, erable calls the numeric solver for univariate polyno-
mials (which is the HP48GX PROOT function in erableg.lib or the Bairstow
or Laguerre algorithm in erable.lib) and tries to find second order polyno-
mial with integer coefficients by coupling 2 approximate solutions (this was an
idea of Mika Heiskanen implemented in POLYLIB). Hence erable should find all
rationals and quadratic irrationals roots of a univariate polynomial (unless the
polynomial is bad conditionned).

For multivariate polynomials, the two first steps are achieved (EVIDENText
and SQFFext). erable should find all rational multivariate roots of a polynomial
(1st order factors). Unfortunately, erable does not implement the exhaustiv
search of all 2nd order (or greater) multivariate rationals factors. This can be
performed using the FCTR function of the ALG48 library.
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Abstract of the Sysrpl XLIBs (include erextdec.h and erhash.h in your
source code to use them) to factorize:

• EVIDENText: finds rational roots

• SQFFext: finds square-free factorization of a polynomial

• SOLVext: roots a univariate polynomial numerically and tries to rebuild
quadratic irrationals roots

Abstract of the users commands to factorize:

• COLC:
for symbolic input calls SQFFext, then EVIDENText, does not call SOLVext,
for list input calls only SQFFext

• FROOT: calls SQFFext then EVIDENText then SOLVext,

• FACTO: calls SQFFext then EVIDENText, does not call SOLVext

Flags 12 and 14 may be cleared to skip respectively SQFFext and EVIDENText.

11 Linear algebra.

11.1 Building a matrix

To build a matrix, you may type it as usual with { and } instead of [ and ] or
you may use one of the following instructions:

• idn: to build a symbolic identity matrix

• LCXM: to build a matrice A = (aij)1≤i≤l,1≤j≤c. The program takes 3
arguments: l, c and a program building aij from i and j. Example:
2 4 << SQ + >> LCXM returns a 2× 4 matrix with aij = i+ j2.

• VAND and HILB return Vandermonde and Hilbert matrices given respec-
tively a list of objects or an integer.

11.2 Operations

erable provides the arithmetic usual operations on matrices and vectors (add,
SUBT, MULT, CHS) and:

• STUDMULT: (MATR directory) student multiplication of matrices (term by
term)

• TR: trace of a matrix

• TRAN: transposed of a matrix (true transposed, no conjugation)

• XY: scalar produc of two vectors

• cross: cross product of two 3-d vectors.
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11.3 Gauß -Jordan row reduction.

Summary of the instructions:

• rref: row reduction to echelon form. At level 2, the list of pivoting
coefficients is given, this is usefull to treat particular cases.

• RANG: like rref but creates 0 only under the diagonal.

• det and RDET: determinant (using the O(n∗n!) algorithm or row reduction)

• INVL: inverse of a matrix using row reduction

• LU2: given a square matrix, returns L−1 and U s.t. A = LU (i.e.
A =stk2−1×stk1) where L and U are lower and upper triangular (maybe
w.r.t. to a permutation matrix, this means that computing the inverse of
L or U is trivial). For comparison, the built-in LU returns three matrices
L, U and P s.t. A = PLU .

• SYST and SOLGEN: solution of a linear system.

11.3.1 Solving a linear system.

Suppose you want to find (x, y) s.t.:{
mx + y = −2
mx + (m− 1)y = 2

wherem is a parameter. Enter the following matrix { {M 1 -2} { M ’M-1’ 2 } }
and type the ENTER key to have a copy, then type rref, you get at level 1:
{ { ’-M^2+2*M’ 0 ’2*M’ } { 0 ’2-M’ -4 } }.
This means that:

(2m−m2)x = 2m, (2−m)y = −4.

This is the case iff all the coefficients in the list at level 2 are non 0. You should
have at level 2:
{ -1 ’M+-2’}
The second coefficient vanishes if m = 2. You have to solve for this particular
case again. Recall the original matrix from the stack and type:
’M=2’ EXEC
This replace all occurences of M by 2 in the original matrix. Now type rref
again, you get:
{ { 2 1 -2 } { 0 0 4 } }
The last line means that:

0x+ 0y = 4

which is clearly impossible, the system has no solution.
Another way to solve the system is the SYST instruction. Put the MATRIX on

the stack, type the list of unknown followed by −1 (+1 means that the constant
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row is before the = sign, −1 means after the = sign):
{ X Y -1}
then type SYST, you get the solutions (value tagged by the corresponding un-
known). At level 2, you get the list of cases for which you need a specific study:
{ ’M^2-2*M’ ’-M+2’ -1 ’M+-2’
This means that we have to solve again for m = 0 and m = 2.

For systems, the SOLGEN program provides another way of writing the solu-
tion as an affine space of solutions. Recall the matrix on the stack (simply hit
SYSTEM), type:
’M=0’ EXEC EVAL
and SOLGEN, you get at level 1:
If { }, { X Y }=:{ X -2 }
This means that (x,−2) is solution for every x. The If statement shows nec-
essary conditions for the system to have solutions (here no condition, but if we
try m = 2 instead of m = 0 the system has no solution: the If statement is
If { ’0=-1’} never fulfilled).

Remarque 2 SYST and SOLGEN order the unknown so that principal unknown
are followed by auxiliary unknown. For the m = 0 case, the list of unknown
returned is { Y -1 X }, this means that Y is a principal unknown and X an
auxiliary one.

11.3.2 Inversion

The INVL implements the Gauß method to invert matrices.

{ { ’1/2’ -1 }
{ 1 ’2/3’ } }

INVL
-> { { ’1/2’ ’3/4’ }

{ ’-3/4’ ’3/8’ } }

11.3.3 Determinant

The RDET instruction implements Gauss row reduction to compute determinant.

{ { 1 T T T }
{ 1 K T T }
{ 1 T K T }
{ 1 T T K } }

RDET -> ’(-T+K)*(-T+K)*(-T+K)’

11.3.4 Other examples.

• LU decomposition example:

A =
(

1 2
3 4

)
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LU2 returns:

l =
(

1 0
−3 1

)
U =

(
1 2
0 −2

)
We have A = L−1U .

• Rank of a matrix: 
1 2 4 6
−1 3 5 7
2 1 0 1
2 6 9 14

 ,

hit RANG, and look at the matrix, the rank is the number of non zero lines
(BTW you get a half reduced matrix)

• Linear relations between vectors
Suppose we want to know the rank and linear relations existing between
v1(1, 2, 0), v2(−2,−1, 1), v3(0, 3, 1) ∈ IR3:

{ { 1 2 0 V1 }
{ -2 -1 1 V2 }
{ 0 3 1 V3 } }

then RANG, we get:

{ { 1 2 0 V1 }
{ 0 3 1 ’2*V1+V2’ }
{ 0 0 0 ’-(2*V1)-V2+V3’ } }

The family is of rank 2 (the 3rd line is 0) and −2v1 − v2 + v3 = 0.

11.3.5 Stack input/output for reduction instructions.

Program Input Output
RANG 1: matrix 2: pivots, 1: redcued matrix
rref 1: matrix 2: pivots, 1: rref-ed matrix
RDET 1: matrix 3: pivots, 2: reduced matrix , 1:determinant
INVL 1: matrix 1: inverse
SYST 2: matrix, 1: list of unknowns 4: list unknowns,

3: list of principals and auxiliary unknowns
2: list of pivots
1: list of tagged algebraics

SOLGEN 2: matrix, 1: list of unknowns 5: pivots, 4: list of unknowns,
3: list of principal and auxiliary unknowns
2: list of tagged algebraics, 1: result
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11.4 Diagonalisation

The diagonalisation instructions are:

• MAD: given a square matrix, returns determinant, formal inverse, a list
polynomial (cf. infra) and the characteristic polynomial.

• PCAR: characteristic polynomial using det

• JORDAN: compute eigenvalues and eigenvectors (cf. infra)

Given a square matrix A, JORDAN returns 7 levels:

• 7: det(A)−1

• 6: A−1

• 5: a list polynomial P (A) with matrix coefficient defined by the relation

(xIn −A)P (A) = M(x)In = M(x)In −M(A)

where M denotes the minimal polynomial of A. (this is the list polynomial
returned by MAD if characteristic and minimal polynomial coincides)

• 4: list of eigenvalues (with multiplicities)

• 3: characteristic polynomial

• 2: minimal polynomial M (it divides the characteristic polynomial)

• 1: list of characteristic spaces tagged by the corresponding eigenvalue
(either a vector or a list of Jordan chains, each of them ending by a
”Eigen:”-tagged eigenvector)

Examples:

1.

A =

 1 −1 0
0 1 −1
−1 0 1


returns:

7: 0
6: { { ’1/0’ ’1/0’ ’1/0’ }

{ ’1/0’ ’1/0’ ’1/0’ }
{ ’1/0’ ’1/0’ ’1/0’ } }

5: { {{1 0 0} {{-2 -1 0} {{1 1 1}
{0 1 0} {0 -2 -1} {1 1 1}
{0 0 1} {-1 0 -2}} {1 1 1}} }

4: {0 1 ’3/2+i/2*V3’ 1 ’3/2-i/2*V3’ 1 }
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3: ’X^3-3*X^2+3*X’
2: ’X^3-3*X^2+3*X’
1: { :0: {1 1 1}

:’3/2+i/2*V3’: {1 ’-1/2-i/2*V3’ ’-1/2+i/2*V3’}
:’3/2-i/2*V3’: {1 ’-1/2+i/2*V3’ ’-1/2-i/2*V3’} }

This means that A has 3 eigenvalues 3±
√

3i
2 , and a basis of eigenvectors is:

{(1, 1, 1), (1,
−1∓ i

√
3

2
,
−1± i

√
3

2
)}

corresponding to 0, (3 +
√

3i)/2, (3−
√

3i)/2. The characteristic and mini-
mal polynomial are identical (this is generically the case) X3−3X2 + 3X.
The matrix is not invertible (’1/0’ is infinite) and has a 0 determinant.

2. For the identity matrix I2, we get:

7: 1
6: { { 1 0 } { 0 1 } }
5: { {{1 0}

{0 1}} }
4: {1 2}
3: ’X^2-2*X+1’
2: ’X-1’
1: { :1, Eigen: { 0 1 } :1, Eigen: { 1 0 } }

The minimal polynomial is X − 1, different form the characteristic poly-
nomial (X − 1)2 = X2 − 2X + 1.

3.  1 2 1
2 0 0
1 0 3


4. A formal example:

{ { 1 A }
{ A 1 } }

5. In dimension greater than 2, the factorisation routines may fail. For this
reason, you may call MAD, factor the characteristic polynomial (e.g. by
trying the FCTR instruction of ALG48) before calling JORDAN. If you have
ALG48 installed, try this:

{ { 1 1 A }
{ 1 A 1 }
{ A 1 1 } }

MAD FCTR JORDAN
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Note that this example is solved by typing JORDAN directly but it may fail
in other situations.

6. Jordan cycles example:

A =

 3 −1 1
2 0 1
1 −1 2

 ,

returns:

7: -4
6: : { { ’1/4’ ’1/4’ ’-1/4’ }

{ ’-3/4’ ’5/4’ ’-1/4’ }
{ ’-1/2’ ’1/2’ ’1/2’ } }

5: { [[ 1 0 0] [[ -2 -1 1] [[ 1 1 -1]
[ 0 1 0] [ 2 -5 1] [-3 5 -1]
[ 0 0 1]] [ 1 -1 -3]] [-2 2 2]] }

4: { 2 2 1 1}
3: ’X^3-5*X^2+8*X-4’
2: ’X^3-5*X^2+8*X-4’
1: { :2, Char: { 2 2 1 } :2, Eigen:{ 1 1 0 } :1: { 0 1 1 } }

This means that 2 has multiplicity 2, but the corresponding eigenspace
is only 1-dimensional (spanned by (1, 1, 0) the last vector of the Jordan
chain). The first vector (2, 2, 1) is only a characteristic vector, his image
by (A− 2I) is the eigenvector (1, 1, 0) .

Remarque 3 If flag 12 is set (normal state), then eigenvectors and character-
istic vectors are divided by their common greatest divisor. In case of Jordan
chains, this means that the image of the i-th vector of the chain by A − λIn is
not necesseraly equal (but always colinear) to the i+ 1-th vector of the chain.

11.5 The MMULT— instruction.

This multiplication takes 3 arguments: 2 objects at levels 3 and 2, and a real
at level 1: the product type:

• 0: matrix, matrix

• 1: matrix, vector

• 2: matrix, scalar,

• 3: vector, scalar

• 6: scalar, matrix

• 7: scalar, vector
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It is useless in interactive mode (if you plan to write your own program over
erable, you may need MMULT to switch to internal mode data representation for
speed).

12 Quadratic forms.

The main program is GAUSS to perform reduction of a quadratic form q. There
are two ways to use GAUSS:

• symbolic input:
Input: a quadratic form q (symbolic) at level 1 or the quadratic form q at
level 2 and the list of variables at level 1.
Output:

– stk5: D the list of diagonal coefficients (only the number of positive
and negative coefficients is characteristic of q )

– stk4: P (the columns vectors of P−1 form a q-orthogonal basis of A
at level 3)

– stk3: A (A is the matrix of q in the dual base of the coordinates-forms
at level 2, we have A = P tDP where P t denotes the transposed of
P )

– stk2: list of variables

– stk1: symbolic as a sum of independent squares

Examples:

Example 1:
’X^2+4*X*Y-2*X*Z+4*Y^2+6*Y*Z+7*Z^2’ GAUSS
5: { 1 ’-25/6’ ’1/6’ }
4: { { 1 2 -1 } { 0 1 0 } { 0 5 6 } }
3: { { 1 2 -1 } { 2 4 3 } { -1 3 7 } }
2: { X Y Z }
1: ’1/6*(6*Z+5*Y)^2+ -25/6*Y^2+(-Z+2*Y+X)^2’

Example 2: same example but with variable in the reverse order
’X^2+4*X*Y-2*X*Z+4*Y^2+6*Y*Z+7*Z^2’ { Z Y X } GAUSS
5: { ’1/7’ ’7/19’ ’-25/19’ }
4: { { 7 3 -1 } { 0 ’19/7’ ’17/7’ } { 0 0 1 } }
3: { { 7 3 -1 } { 3 4 2 } { -1 2 1 } }
2: { Z Y X }
1: ’-25/19*X^2+7/19*(17/7*X+19/7*Y)^2+1/7*(-X+3*Y+7*Z)^2

Example 3: if you want to orthogonalize with parameter, you need to
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enter the list of variables of the quadratic form
’X^2+2*A*X*Y’ { Y X } GAUSS
5: { ’-A^2’ 1 }
4: { { 1 0 } { A 1 } }
3: { { 0 A } { A 1 } }
2: { Y X }
1: ’(X+A*Y)^2-A^2*Y^2’

• matrix input:
Input (stack level 1): the formal matrix A of the quadratic form q
Output: at stack level 2 D the diagonal coefficients list and at stack level
1 the transition matrix P . We have A = P tDP where P t denotes the
transposed of P . Note that to obtain a q-orthogonal basis, one can take
the columns of the inverse P−1 of P ).

Example:
The matrix of q defined by q(x, y) = 4x2 + 2xy − 3y2 is:

A =
(

4 1
1 −3

)
,

(to get the matrix of q, enter ’4*X^2+2*X*Y-3*Y^2’, then the list of
variables { X Y} and hit QXA). Call GAUSS which returns:

2: { ’1/4’ ’-13/4’ }
1: { { 4 1 } { 0 1 } }

this means that:

A =
(

4 0
1 1

)
×
( ′1/4′ 0

0 ′ − 13/4′

)
×
(

4 1
0 1

)
.

This means that:

q(x, y) = 4x2 + 2xy − 3y2 =
1
4

(4x+ y)2 − 13
4
y2.

The other utilities are QXA and AXQ to switch from algebraic to matricial
representation of a quadratic form (quadratic as symbolic to array). QXA accepts
an optional list of variables at level 1.

Remarque 4 If you want to save time, use numeric mode (instruction XNUM)!

13 Arithmetic.

You may force integer arithmetic by setting flag 10. Otherwise, polynomial
arithmetic is assumed. This is important for instructions like GCD3 or ABCUV.
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• GCD1:
returns the greatest common divisor d of two objects a and b (integers,
Gauß integers, polynomials). Examples:
’X^2+2*X+1’ ’X^2+3*X+2’ GCD1 -> ’X+1’
25 15 GCD1 -> 5
If flag 12 is clear returns 1.

• LCM1: lowest common multiple (GCD1(a, b)×LCM1(a, b) = a×b). Examples:
’X^2+2*X+1’ ’X^2+3*X+2’ LCM1 -> ’(X^2+2*X+1)*(X+2)’
25 15 LCM1 -> 75

• GCD3: extended gcd algorithm, given x and y returns d , u and v s.t.:

ux+ vy = d

(d is a multiple of the GCD of x and y by an invertible, i.e. an integer in
the univariate case)

• ABCUV: (Bezout identity)
solve the equation c=ax+by Examples:

’X^2+2*X+1’ ’X^2+2*X+3’ 1 -> -1 1 1
’X^2+2*X+1’ ’X^2+2*X+3’ 1 -> 0

This means for the first case that:

(X + 1) = −(X2 + 2X + 1) ∗ (−1) + (X2 + 3X + 2) ∗ 1

as in the second case there is no solution because the gcd of x2 + 1 ∗ x+ 1
and x2 + 3 ∗ x+ 2 does not divide 1.

• LGCD: returns the gcd of a list of objects.

• SIMP2: simplifies two objects by dividing them by their GCD. Sets flags
12, 14 and 15. Ex:
stk2: 9, stk1: 6 SIMP2 -> stk2: 3, stk1: 2

• DIVIS: gives a list of divisors of an object. Example:
21 -> { 1 7 3 21 }

• fact and comb: like the built-in FACT and COMB instructions but for long
integers.

• EULER: Euler indicatrix
Given an integer n, returns an integer e: the number of integers lower than
and prime with n. Example for n = 25, e = 20 because 1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24
are prime together with 25.
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• PA2B2 (kernel library):
Given a prime p which is 1 modulo 4, returns a complex z such that
|z|2 = p. Used for factorization of Gauß integers.

• XFRC:
Same as→Q but handles quadratic irrationals (recognize a quadratic irra-
tional if its expansion in contined fraction is ultimately periodic of period
less or equal to 3) Examples:

1.20710678118→ 1
2

+
1
2

√
2 1.5→ 3

2

• ORND:
round object at stack level 2, stack level 1 is the expected denominator of
all rationals of the object. For example, .49999999999 + .2000000001 ∗ x
10 ORND returns .5 + .2 ∗ x.

• re: real part of a fraction, global names are always considered as reals

• im: imaginary part of a fraction,

• conj: conjugate of a fraction,

14 Customization and other utilities.

14.1 Data types.

Data handled by erable have two representation: the user representation which
you use most all the time and the internal representation. If the user flag 17 is
cleared, erable is in user representation mode, otherwise, erable is in internal
representation mode. Sometimes you will be astonished by the results of erable
functions because you believe that you are in user representation mode but you
are in fact in internal mode. You can use the VER instruction to reset all
flags in the usual state.

List of data types:
True data Example User Example Internal Example
Integer 5 real, hex, string 5 hex #5
Float 5.02 real 5.02 long real %% 5.02
Gauss integer 1 + 2i symbolic ’1+2*i’ secondarie :: #1 #2 ;

Complex (1.1,2.3) complex (1.1,2.3) long complex C%% 1.1 2.3

Fractions 2
3 symbolic ’2/3’ symbolic ’#2/#3’

Irr. quadr. 1 + 2
√

5 symbolic ’1+2*V3’ program << #1 #2 #5 >>

Unknowns a, x ... variables A X list variable

Symbolics a + x2 symbolic ’A+X^2’ list variable
Lists { 1 i } list { 1 ’i’ } list { #1 :: #0 #1 ; }

Array [ 1 2 ] array [ [ 1 2 ] [ 3 4 ] ] array [ [ 1 2 ] [ 3 4 ] ]

Symb. array { 1 2 } list { { 1 2 } { 3 4 } list { { #1 #2 } { #3 #4 }

Remarque 5 • If flag 13 is cleared (real mode), all global names and all
non rational functions are considered as real w.r.t. the instructions RE,
IM, CONJ. This could lead to false simplifications if a global name stays for
a complex, or if a non-rational inverse function is called with a usually
forbidden real argument, like LN(-1) or ASIN(2) Solution: in the first
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case, replace your global name, say ’Z’, by ’X+iY’. In the second case, set
flag 13.

• In internal mode, symbolics returned by erable may contain lists. This
is not allowed by the HP compiler/decompiler, hence the stack display may
show something like: ’UNKNOWN/2’ or ’UNKNOWN/UNKNOWN’ or ’UNKNOWN+X’
(e.g. by typing { #1 #2 } { #3 #4 } NDXF) Caution, you can not edit
such objects. Solution: use FXND to know the numerator and denominator
of the above fractions, or use another stack display like EQSTK (by Mika
Heiskanen) or JAVA (by Richard Steventon and Andre Schoorl).

14.2 User flags.

You may change the behaviour of erable by clearing or setting some user flags
(and the system flag -27). Here are the most important flags of erable:

• flag 1: display flag (if set then verbose mode selected)

• flag 10: integer arithmetic (if set then erable expects integer arguments
for instructions like GCD3, ABCUV or DIV2).

• flag 12: simplification flag (if set then erable calls the gcd algorithm if
needed)

• flag 13: complex flag (if cleared, all expressions are assumed to be real
and erable tries to return only real expressions)

• flag 15: real are integer flag (if set, real are assumed to be integer)

• flag 17: internal flag (if set, all data are assumed to be internal)

• flag 21: recurse flag (if set, the simplification algorithms EXPA and TSIMP
will simplify in subexpressions)

• system flag -27: if set, then the user representation of complex numbers
is symbolic.

To set a flag (say flag 12), type 12 SF. To clear this flag, type 12 CF.

14.3 Conversions

• AXL: array ↔ list conversion.

• SXL:

– VX variable-fraction representation conversion. Switches from alge-
braic to list-polynomials or fractions. Ex:
’(X+1)/(3*X-2)’ <--> ’{1 1}/{3 -2}’ (displayed as ’UNKNOWN/UNKNOWN’)
’X+3’ <--> {1 3}
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– General stack object conversion. Ex:

’X+3*SIN(X)’
{ { 1 ’5*X’ } { ’SIN(X)’ 1 } }
{ ’X^2+7*X’ ’3*SIN(X)’ }
#3h SXL ->
{ ’SIN(X)’ X }
{ 3 { 1 0 } }
{ { 1 { { 5 0 } } } { { 1 0 } 0 } }
{ { { 1 7 0 } } { 3 0 } }

To go back, type { #0 #1 #2 } SXL

The SXL may be used in programs for speed since you may spare user-
internal conversions. Write and test your program in user mode, then add
SXL at the beginning and at the end of your program. Warning: some
instructions of erable can only handle user data (e.g. RISCH), but most
of the basic instruction may be used in internal mode.

• S2L: convert an algebraic polynomial in a list polynomial. Ex:
’1+2*A’ A S2L -> { 2 1 } Accepts lists. Ex:
{ ’1+A’ ’2*A-3’ } A S2L -> { { 1 1 } { 2 -3} }

• L2S: converts back a list polynomial to an algebraic. L2S may be used for
multiple variable polynomial evaluation. Ex:
{ { 1 2 3} {4 5 6} } { X Y } L2S -> ’(Y^2+2*Y+3)*X+(4*Y^2+5*Y+6)’

• EPSX0: strip leadings zeros in list-polynomials, replace objects by 0 if their
absolute value is less than EPS.

• FXND: splits a fraction in numerator (stack 2) and denominator (stack 1).
Ex:
’(X+1)/A’ FXND -> 2:X+1, 1:A
Works as well for fractions of lists polynomials.

• NDXF: reverse of FXND. Ex:
1 2 NDXF -> ’1/2’
Works for all data types (you can get strange symbolics with NDXF).

• XNUM: like the in-build →NUM, but accepts lists (this was not the case on
S/SX models). Clears flags 12, 14 and 15.

• XQ: like the in-build →Q. Sets flags 12, 14 and 15.

• idn: like the built-in IDN but returns a symbolic identity matrix.
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14.4 Polynomials

• HORN executes an Horner scheme. The syntax is:

stk2: P
stk1: r
-> 3: P div (X-r), 2: r, 1: P(r)
Ex: ’X^2+2*X+3’, 5 -> ’X+7’, 5, 38

This means that X2 + 2 ∗X + 3 = (X + 7)(X − 5) + 38.

• PTAYL: Taylor development (for polynomials only):
2: P(X), 1: r -> P(X-r)
Example:
’X^3+2*X’ 2 PTAYL -> ’X^3+6*X^2+14*X+12’
means that X3 + 2X = (X − 2)3 + 6(X − 2)2 + 14(X − 2) + 12

• LEGENDRE and TCHEB: given an integer n, returns a list of n+1 polynomials,
respectively Legendre and Tchebycheff.

• COSN: compute cos(nx) and sin(nx) as polynomial of cos(x) and sin(x).
Input: n (a real integer)
Output: 2: sin(nx) , 1: cos(nx) as polynomials of c (cos(x)) and s (sin(x))
Remark that cosh(nx) and sinh(nx) as polynomials of cosh(x) and sinh(x)
have the same expression.
Example:

3→ (−1 + 4c2)s − 3c+ 4c3

This means that sin(3x) = (−1 + 4 cos(x)2) sin(x) and cos(3x) = −3 ∗
cos(x) + 4 ∗ cos(x)3.

14.5 Permutations

A permutation is represented as a list of images of [1..n] e.g. { 5 1 2 4 3
} means σ(1) = 5, σ(2) = 1, σ(3) = 2, σ(4) = 4 and σ(5) = 3. The P2C
instruction converts this representation to the cycle decomposition, here { { 1
5 3 2 } { 4 } } (stack level 2) and computes the signature of p (stack level 1).
C2P converts back cycle decomposition to usual representation of permutations.
CIRC compose 2 permutations in the usual representation.

14.6 Variables

• LVAR: returns the list of “variables” of an algebraic. The list is sorted by
reverse alphabetic order. Example:
’SIN(A)+B*X+1’ -> { X B ’SIN(A)’ }

• LIDNT: list of global names of an algebraic Example:
’SIN(A)+B*X+1’ -> { X B A }
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14.7 ALGB(G)— directory.

This directory contains the following programs:

• tEVAL: evaluate object 1 and returns the time it tooks to evaluate it. Not
as accurate as TIM of the hacker library.

• LATEX: converts a symbolic to a string, the LATEX traduction of the sym-
bolic. To tex it on a computer, you must include the string in a math.
environment (in $ $ or in \[ \] or in an equation environment, and you
must include the file hp48.tex).

15 Final remarks.

Remaining things to do:

• adapt and integrate the polynomial routines of alg48 for speed,

• rewrite the Gauß reduction to include the Bareiss method,

• rewrite the extended GCD algorithm with the subresultant method,

• extend the Risch algorithm to multiples exponentials, and return an un-
evaluated integrals when there is no closed form,

• improve the factorization algorithm (Berlekamp method over ZZ[i].

I will probably build a contrib directory (or library) if I have sufficient material
to do it, your RPL and SysRPL programs are welcomed. Otherwise, I would
say that erable over the Saturn architecture is almost finished since we have
probably reached the microprocessor limits. Anyway, it is certainly sufficient to
help maths students in their studies, which was my first aim.

I will probably switch to another project like working on C(++) on a fast
CPU (it would be interesting to have a sysrpl implementation written in C(++),
I would only have to rebuild a kernel.lib to have a competitive erable!).
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A All functions of erable— listed in alphabetic
order

The following symbols will be used:

• %: real

• C%: complex

• n: integer (real integer)

• [ ]: numeric array

• { l }: list

• { m }: symbolic array

• p: polynomial ({ p } for a list-polynomial),

• { v }: list of variables

• s: symbolic object

• v: variable (global name or irrational symbolic)

• f : a fraction

• N , D: numerator and denominator of a fraction

• o: object

List of all global variables and programs in HOME, ALGB or ALGBG, or in subdirectories:

Name Function Arguments Returns
CST Cst Menu nothing { l }
fr French short doc nothing string
GETALL Get All Modules nothing nothing
INIT Initialization nothing nothing
INVLAP Last inverse Laplace nothing s
LATEX LATEX conversion 1: s 1: string
MATRIX Last matrix nothing m
PRIMIT Last primitive nothing s
PURG Purge erable nothing nothing
SCST CST-Menu string nothing string
SETFR Set French Flags nothing nothing
SYSTEM Last system nothing {mv}
TAYLR Taylor 3:s, 2: v, 1: n 3: n, 2: l, 1: s
tEVAL Execution time ..., 1: o EVAL(o), 1: time
UKEYS User keys string nothing string
us English short doc nothing string
VX integration variable Rien v
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The 90 functions of the erable library:
Name Function Arguments Returns
ABCUV Bezout ax + by = c 3,2,1:a, b, c 1:1 [3,2: x, y] or 1: 0
AXL array ↔ list [ ] ou { m } { m } or [ ]
AXQ array to s quadratic form { m } s

2: { m }, 1: { v } s
C2P Cycles → permutation { cycles } p
CHS Change signe o −o
COLC Factorization s s
COSN cos, sin(nx) → P (cos x, sin x) n > 0 2: s, 1: s

n < 0 2: { p }, 1: { p }
CIRC Compose 2 permutations 2:p2, 1:p1 p2 ◦ p1
DEGRE Order { p } n
DIV1 Usual division 2: o2, 1: o1 o2/o1
DIV2 Euclidean division 2: o2, 1: o1 2: o2 div o1,1: o2 mod o1
DIVIS List of divisors o { l }
DSOLVE Solve y′(x) = f(y(x), x) f(y(x), x) y(x)
EPSX0 Strip expression o o
EULER Euler indicatrix n ϕ(n)
EXEC Substitution or doall 2: { l }, 1: program 1: { l }

2: s, 1: o1 = o2 s
3: s, 2: { l1 } 1: { l2 } s

EXPA Simplification o o′
EXPLN Conversion en exp, ln s s
FACTO Factorization o 3: { v } 2: f , 1: { f1n1f2n2 ... }
FCOEF roots/poles → Fraction { r1n1r2n2 ... } f
FROOTS Factorisation o 3: { v } 2: f , 1: { s1n1s2n2 ... }
FXND Split a fraction f = N/D 2: N, 1: D
GAUSS Gauß quadratic form reduction 1: A 2: D, 1: P

s 5: D,4: P , 3: A, 2: { v },1: s
2: s, 1: { v } 5: D,4: P , 3: A, 2: { v },1: s

GCD1 Greatest common divisor 2: o2, 1: o1 GCD(o2,o1)
GCD3 GCD (solves au + bv = d) 2,1: a , b GCD(a, b) = d, u, v
HILB Hilbert matrix integer r r × r matrix
HORN Horner scheme 2:p , 1: r 3: p/(X − r) , 2: r, 1: P (r)
ILAP Inverse laplace transform s L−1(s)
INVL Inversion o o−1

IPP Integration by part
∫ b
a
f(t)dt, u [uv]ba −

∫ b
a
uv′(t)dt (v = f/u′)

JORDAN Diagonalisation endomorphism 7 à 1: cf. section 11
LAP Laplace transform 2:f, 1:g L(f)/g
L2S Evaluation 2: { p }, 1:v p(v)

2: { p },1: { v } p(v)
LCM1 Least common multiple 2: o2, 1: o1 LCM(o2,o1)
LCXM Matrix creation 3: r, 2: c, 1: prog 1: r × c matrix
LDEC Linear Diff. Equ. Systems 2: { m }, 1: { v } 3,2: (m − x)−1, 1: (m − x)−1v
LEGENDRE Polynomials integer r list of r + 1 polynomials
LGCD GCD of a list { l } o=GCD
LIDNT List of variables s 2: s, 1: { v }
LIMIT Limit 3:s, 2:v, 1:n s
LIN Linearization C%, s ou { p } s

LU2 LU decomposition M L−1, U
LVAR list of variables o { v }
MAD inverse, char. polyn., etc. o 4: det, 3: 1/o, 2: { p },1: { p }
MMULT special product 3: o2, o1, n “o2 × o1”
MULT product 2: o2, o1 o2 × o1
NDXF create a fraction 2: N, 1: D f = N/D
ORND Round an object 2: o, 1: D o
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P2C Permutation → cycles p 3: p, 2: cycles, 1: signature
PCAR Characteristic polynomial endomorphism s

PF Partial fraction f

∑
i
fi

PFCOLC COLC between + and −
∑

i
fi

∑
i
fi

PFEXPA EXPA between + and −
∑

i
fi

∑
i
fi

POWER integral power 2: o, 1: n on

PREVAL Evaluation 3: primitive, 2,1:bornes s
PTAYL Taylor for polynomials 2: P (X), 1: o P (X − o)
QXA s quadratic form to array 2: s, 1: { v } { m }

s { m }
RANG Réduction sous-diagonale { m } 2: spec. cases, 1:{ m }
RDET Determinant (rref) endomorphism { m } 2: { m }, 1: determinant
RED Gauß reduction matrix or system cf. section 11
RISCH Symbolic integration s s
S2L Symbolic to list 2: o, 1: { v } 2: { v },1:{ p }

2: o, 1: v { p }
SERIES Series 3: s, 2: v, 1: n 6: 6-1: s
SIMP2 Simplification 2: o2, 1: o1 2: o′2, 1: o′1
SOLGEN Solves a linear system 2:{ m }, 1: { v } cf. section 11
SQRT Square root n or C% or s n or C% or s
STUDMULT “students” × of matrices M, M′ “MṀ′ ”
SUBT Substraction 2: o2, 1: o1 o2 − o1
SXL Conversion Internal [user] User [internal]
SYST Solves a linear system 2:{ m }, 1: { v } cf. section 11
TCHEB Polynomials integer r list of r + 1 polynomials

TR trace [ ] or { m }= (aij)1≤i,j≤n
∑n

i=1
aii

TRAN transposed [ ] or { m } [ ] ou { m }
TRIG Trigonometry: → sin, cos, arctan s s
TSIMP Simplification (transcendental) s s
VAND Vandermonde matrix list of objects matrix
VER Version rien % 2.99
XFRC To quadratic irrational o o
XNUM → Numeric o o
XQ → Rational o o
XY Scalar product of 2 vectors 2: x 1: y x.y
add Addition 2: o2, 1: o1 o2 + o1
comb Combinaisons 2: n, 1: n′ Cn

′
n

conj Conjugate o o
cross Wedge product 2: x, 1: y x ∧ y
der derivative 2: s, 1: v 1: s
det Determinant (expand) endomorphism determinant
fact Factorielle n n!
idn identity real integer or matrix identity matrix
im imaginary part o =(o)
re real part o <(o)
rref Row reduction M { s }, reduced matrix
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Functions of the kernel library (see ALG48 documentation too):

Name Function Arguments Returns
{kernel.lib} (0:788)
MOD+ Modular addition 3: n1, 2:n2, 1: n (n1 + n2) mod n
MOD- Modular substraction 3: n1, 2:n2, 1: n (n1 − n2) mod n
MOD* Modular multiplicatin 3: n1, 2:n2, 1: n (n1 ∗ n2) mod n
MOD/ Modular division 3: n1, 2:n2, 1: n (n1/n2) mod n
MODPOW Modular power 3: n1, 2:n2, 1: n n

n2
1

mod n

MODINV Modular inversion 2: n1, 1: n n
−1
1

mod n

PA2B2 Prime factorization 1: p (p ≡ 1[4]) 1: a + ib/ a2 + b2 = p

B User Keys.

α - Right Shift -ed keys:
Princ. Key Second. Key Function
EVAL EXEC

R (recursive) sets/clears flag 21
SIN Derivative der
COS Integration RISCH
√ √ SQRT
yx yx POWER
1/x 1/x INVL
± pm CHS
7 SOLVE FROOTS
8 PLOT EXPLN
9 ALGEBRA EXPA
Division Division DIV1
4 TIME TIM
5 TRIG
6 COLC
× MULT
1 (complex flag) clears/sets flag 13
2 AXL
3 UNITS TSIMP
- SUBT
SPC rref
+ + add

Other redefined keys:

• On S/SX: 33.2 (XQ) and 33.3 (XNUM)

• On G/GX: 33.2 (XNUM) and 35.6 (XQ).

• α- Left Shift -R (on both models): sets/clears flag 23 (used by RISCH)

• α- Left Shift -1 (both models): sets/clears internal flag
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C User flags

List of the flags used by erable (* if cleared by VER, # if set by VER):

• 01: if set then verbose mode else quiet mode.

• 10: internal use, if set then erable performs integer arithmetic otherwise
erable performs polynomial arithmetic

• # 11: internal use, cleared if a non-rational algebraic is found

• # 12: if clear then GCD returns always 1 (→ no simplification in algebraics
and no search of multiple roots of polynomials)

• # 13: if set then complex mode, else real mode (modifies the way of
simplifying expressions with re, im and conj and the way of rooting poly-
nomials)

• # 14: if set then searchs formal first order factors

• # 15: if set enables construction of integer fractions and square roots of
integers

• * 16: internal use, if set then inverse Laplace transform

• * 17: cleared to use user data representation, set to use internal data
representation.

• * 18: internally used by INT, if set then INT integrates a fraction of sin / cos

• * 19: internally used by INT, if set then integration else partial fraction
decomposition.

• * 20: internally used by DIAG, if set then force multiplication of lists to be
matrice times polynomials in Horner scheme

• # 21: if set then recursive simplification for EXPA and TSIMP

• * 22: if set then the rule i2 = −1 is not applied

• * 23: if set then RISCH does not try linearity

• * 24: if set then positivity of expressions are tested at x = 0 instead of
x→ +∞.

• * 25: if set then the rule
√
x

2 = x is not applied

You should only modify flags 12,13,14,15,17 and 21 to 25.

38



D Thanks to ...

Many people helped me during the creation and diffusion of erable:

• Claude-Nicolas Fiechter and Mika Heiskanen for letting me use their long
integer routines for erable. Special thanks to Mika for explanations about
the source code of ALG48.

• Some of my students and netsurfers tested various versions of erable
and encouraged me to improve it: particularly Christophe Burdin, Craig
Clifford, Jerome Coss, David Czinczenheim, Ludovic Dumaine, Frederic
Hermann, Eric Gorka, Stephane Monboisset, Lionel Pilot, Eric Saya, Quan
Tong Duc, Samy Venin, John Wilson ... Special thanks to Gilles Virone
who showed me first what an HP28/48 is able to do.

• all anonymous ftp sites administrators, particularly those of fourier.ujf-
grenoble.fr (André Voutier), ftp.funet.fi, cbs.cis.com, hplyot.obspm.fr, hpcvbbs.cv.hp.com
and wuarchive.wustl.edu,

• I used the following softwares to create erable: the EQSTK, JAVA stack
displays ([7], [15]), the JAZZ debugger ([12]), the Metakernel ([10]), var-
ious compilers (JAZZ, the HP tools ([1]), the RPL based tools ([14]) and
eventually the GNU tools ([13]).

• I looked at the following book and softwares: [6], [2], [5], [3], [4], [9], [11],
[8] . One of the best reference is certainly [3] and references therein. M.
Heiskanen WWW-homespage has a lot of interesting math links.
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