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Abstract. We consider the Schrödinger system with Newton-type interac-
tions that was derived by R. Klein, A. Majda and K. Damodaran [18] to mod-
elize the dynamics of N nearly parallel vortex filaments in a 3-dimensional
homogeneous incompressible fluid. The known large time existence results are
due to C. Kenig, G. Ponce and L. Vega [17] and concern the interaction of two
filaments and particular configurations of three filaments. In this article we
prove large time existence results for particular configurations of four nearly
parallel filaments and for a class of configurations of N nearly parallel filaments
for any N ≥ 2. We also show the existence of travelling wave type dynamics.
Finally we describe configurations leading to collision.

1. Introduction

In this paper we study the dynamics of N interacting vortex filaments in a
3-dimensional homogeneous incompressible fluid. We focus on filaments that are
all nearly parallel to the z-axis. They are described by means of complex-valued
functions Ψj(t,σ) ∈ C, 1 ≤ j ≤ N , where t ∈ R is the time, σ ∈ R parameterizes the
z-axis, and Ψj(t,σ) is the position of the j-th filament. A simplified model for the
dynamics of such nearly parallel filaments has been derived by R. Klein, A. Majda
and K. Damodaran [18] in the form of the following 1-dimensional Schrödinger
system of equations






i∂tΨj + Γj∂
2
σ
Ψj +

�

k �=j

Γk

Ψj −Ψk

|Ψj −Ψk|
2
= 0, 1 ≤ j ≤ N,

Ψj(0,σ) = Ψj,0(σ).

(1.1)

Here Γj is a real number representing the circulation of the j-th filament1. In the
case where Ψj(t,σ) = Ψj(t) = Xj(t) are exactly parallel filaments, Syst. (1.1) re-
duces to the well-known point vortex system arising in 2-dimensional homogeneous
incompressible fluids
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dXj
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+
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k �=j

Γk

Xj −Xk

|Xj −Xk|
2
= 0, 1 ≤ j ≤ N,

Xj(0) = Xj,0.

(1.2)

The Syst. (1.1) combines on the one hand the linearized self-induction approxima-
tion for each vortex filament, given by the linear Schrödinger equation, and on the
other hand the interaction of the filaments, for any σ, by the point vortex system.
Solutions of the simplified model (1.1) have remarkable mathematical and physical

V.B. is partially supported by the ANR project “R.A.S.”.
1The free Schrödinger operator derived in [18] is actually i∂t + αjΓj∂2

σ , where αj is another
vortex core parameter related to the j-th filament. For simplicity we assume throughout the paper
that αj = 1.
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properties, as described in [21]. The main issue in this context is the possibility of
collision of at least two of the filaments in finite time at some point σ.

Before presenting the known results on nearly parallel vortex filaments let us
briefly review some classical facts on the point vortex system (1.2). Its dynamics
preserves the center of inertia

�
j
ΓjXj(t), the angular momentum

�
j
Γj |Xj(t)|2

and the quantities
�

j �=k

ΓjΓk ln |Xj(t)−Xk(t)|
2 ,

�

j �=k

ΓjΓk |Xj(t)−Xk(t)|
2 .

In case of circulations having all the same signs this implies that no collision among
the vortices can occur in finite time. Therefore there exists a unique global C1

solution (Xj(t))j to (1.2). For N = 2 global existence still holds independently of
the circulation signs since |X1(t) − X2(t)| remains constant. When dealing with
more than two vortices the single-sign assumption of the circulations really matters
- explicit examples of configurations leading to collapse in finite time have been
given by self-similar shrinking triangles [1]. For any circulations the equilateral
triangle is a rotating or translating configuration, and for identical circulations the
ends and the middle of a segment form also a relative equilibrium configuration. For
N ≥ 4 and identical circulations Γj = Γ ∀j, vertices of regular polygons also form
relative equilibrium configurations. They rotate around the center of inertia with
constant angular velocity ω = Γ(N − 1)/(2R2), where R is the size of the polygon.
These polygon configurations are stable if and only if N ≤ 7. The proof of this
result, conjectured by Kelvin in 1878, was recently completed by L. G. Kurakin
and V. I. Yudovitch in 2002 [19] (see also [23]). Finally, the configuration formed
by adding to an N -polygon configuration one point of arbitrary circulation Γ0 at
the center of inertia, is an relative equilibria rotating with constant angular velocity
ω = [Γ(N−1)+2Γ0]/(2R2). A natural observation to be done is that as N increases
the dynamics gets more and more sophisticated.

A first result on nearly parallel vortex filaments has been given in [18]. The
authors proved that for N = 2 the linearized system around the exactly paral-
lel filaments solution of (1.2) is stable if the circulations have the same sign and
unstable otherwise. Moreover, they made numerical simulations suggesting global
existence for (1.1) in the first case and collision in finite time in the second case.
Their first conjecture on global existence was proved then by C. Kenig, G. Ponce
and L. Vega [17] for filaments Ψj obtained as small H1 perturbations of exactly
parallel filaments Xj ,

Ψj(t,σ) = Xj(t) + uj(t,σ), 1 ≤ j ≤ N. (1.3)

More precisely, it has been proved in [17] that for uj(0) sufficiently small in H1(R)
-and therefore in L∞(R)- global existence and uniqueness of the solution to Syst.
(1.1) hold for all vortex solutions (Xj)j of equal circulations and such that |Xj(t)−
Xk(t)| = d for 1 ≤ j �= k ≤ N . The only such possible configurations areN = 2 with
any pair (X1, X2), and N = 3 with (X1, X2, X3) an equilateral triangle. Moreover,
local existence und uniqueness hold for any number N of filaments and any circu-
lations Γj and the solution exists at least up to times of order | ln

�
j
�uj(0)�H1 |.

Finally, let us mention that P.-L. Lions and A. Majda [20] developed an equilib-
rium statistical theory for nearly parallel filaments using the approximation given
by Syst. (1.1).

The purpose of this article is to study other specific configurations of vortex
filaments. In order to obtain large time existence results we will strongly use the
symmetry properties of the configuration of the straight filaments (Xj)j in itself,
and those of the perturbation (uj)j on the other hand.



3

In the first part of this paper we focus on the case where N ≥ 3 and (Xj)j is
a regular rotating polygon of radius 1 with N vertices, with or without its center.
The index j = 0 refers to the center of the polygon and 1 ≤ j ≤ N to the vertices
of the polygon. Since (1.1) is invariant under translations, we can suppose that the
center of inertia of the polygon is set at the origin, i.e. X0(t) = 0 for all t. We shall
impose that the circulations in the vertices have the same value Γ and that ω has
the same sign as Γ. For simplicity we consider

Γj = 1, 1 ≤ j ≤ N.

In the cases where the center of the polygon is not considered, the angular speed
ω is (N − 1)/2, hence positive. In the cases when the center of the polygon is
considered, the circulation Γ0 must be larger than −(N − 1)/2.

We will consider very specific perturbations of the configuration (Xj)j , assuming
that all the perturbations are the same for each of the straight filaments, a dilation
combined with a rotation. More precisely we shall focus on solutions having the
form

Ψj(t,σ) = Xj(t)Φ(t,σ), (1.4)

with Ψ(t,σ) close to Xj(t) in some sense as |σ| → ∞. Let us notice that this
dilation-rotation type of perturbations keeps the symmetry of the polygon for all
(t,σ). A natural example of such perturbations are the ones with Φ − 1 small in
H1(R). Our result below allows to handle a larger class of perturbations of the
regular rotating polygon, including also for example all small constant rotations of
the polygon.

Theorem 1.1. Let N ≥ 3 and (Xj)j be the equilibrium solution given by a regular
rotating polygon of radius 1, with or without its center, with Γj = 1 for 1 ≤ j ≤ N
and positive angular velocity ω. Assume that

Ψj,0(σ) = Xj,0Φ0(σ),

with Φ0 such that

E(Φ0) =
1

2

�
|∂σΦ0|

2 +
ω

2

� �
|Φ0|

2
− 1− ln |Φ0|

2
�

satisfies E(Φ0) ≤ η1, where η1 is an absolute constant2. Then there exists a unique
global solution (Ψj)j of (1.1), with this initial datum, such that

Ψj(t,σ) = Xj(t)Φ(t,σ), t ∈ R

with Φ− Φ0 ∈ C
�
R, H1(R)

�
. Moreover

3

4
≤

|Ψj(t,σ)−Ψk(t,σ)|

|Xj(t)−Xk(t)|
≤

5

4
, t,σ ∈ R.

In particular, if Φ0(σ)
|σ|→∞
−→ 1 then Ψj(t,σ)

|σ|→∞
−→ Xj(t) ∀t, and if Φ0 ∈ 1+H1(R)

then Ψj −Xj ∈ C
�
R, H1(R)

�
.

Remark 1. Theorem 1.1 does not assert that if initially �Φ0 − 1�H1 is small then
�Φ(t)− 1�H1 remains small for all t.

Our analysis is based on the observation that the solution (Ψj)j to Syst. (1.1)
satisfies (1.4) if and only if Φ is solution to the equation

i∂tΦ+ ∂2
σ
Φ+ ω

Φ

|Φ|2
(1− |Φ|2) = 0. (1.5)

2introduced in Lemma 2.1 below.
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Eq. (1.5) is an hamiltonian equation, which preserves the energy

E(Φ) =
1

2

�
|∂σΦ|

2 +
ω

2

� �
|Φ|2 − 1− ln |Φ|2

�
. (1.6)

Note that in the setting of Theorem 1.1 the solutions satisfy |Φ| � 1, so that Eq.
(1.5) is formally similar to the well-known Gross-Pitaevskii equation

i∂tΦ+ ∂2
σ
Φ+ ωΦ(1− |Φ|2) = 0, (1.7)

with energy given by

EGP (Φ) =
1

2

�
|∂σΦ|

2 +
ω

4

� �
|Φ|2 − 1

�2
.

In fact we shall see that both functionals E(Φ) and EGP (Φ) are comparable whenever
|Φ| � 1. A key point in the proof is, as in [17], the fact that if E(Φ0) is small then
the solution Φ enjoys the property

sup
t∈R

��|Φ(t)|2 − 1
��
L∞ ≤

1

4
. (1.8)

This allows us to establish Theorem 1.1 by using the techniques introduced in [26]
by P. E. Zhidkov (see also P. Gérard [12], [13]) for solving the Gross-Pitaevskii
equation in the energy space.

In the case where Φ0 ∈ 1 + H1(R) we mention that the proof in [17] can be
adapted here, by showing that some quantities are still conserved even though
|Xj(t)−Xk(t)| are not all the same.

As far as we have seen, global existence and uniqueness of the filaments hold
for N = 2 with any (Xj)j and any small pertubations, for N = 3 with (Xj)j the
equilateral triangle stable equilibrium and any small pertubations, for any N ≥ 2
with (Xj)j the regular polygon equilibrium and any small pertubations with strong
symmetry conditions. We expect then that global existence might hold for small
N and less restrictive conditions on the perturbations.

In the second part of this paper we study the case

N = 4, Γj = 1,

and we assume that (Xj)j = (X1, X2, X3, X4) is a square of radius 1 rotating with
constant angular speed. Again, since (1.1) is invariant under translations, we can
suppose that the square is centered at the origin. Our main result in this case may
be formulated as follows.

Theorem 1.2. Let N = 4 and (Xj)j be the equilibrium solution given by a rotating
square of radius 1 with Γj = 1. Let (uj,0)j ∈ H1(R)4 and set Ψj,0 = Xj,0 + uj,0.

We introduce the energy3

E0 =
1

2

�

j

�
|∂σΨj,0(σ)|

2 dσ

+
1

2

�

j �=k

�
− ln

�
|Ψj,0(σ)−Ψk,0(σ)|2

|Xj,0 −Xk,0|
2

�
+

�
|Ψj,0(σ)−Ψk,0(σ)|2

|Xj,0 −Xk,0|
2

− 1

�
dσ.

We also introduce the quantity

Ẽ0 = max

�
E0;

�u1,0 + u3,0�
2
L2

2
+

�u2,0 + u4,0�
2
L2

2

�

and we assume that
Ẽ0 ≤ η2

3Note that E0 ≥ 0.
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for an absolute small constant η2 > 0. Then there exists an absolute constant
C > 0, and there exists a time T , with

T ≥ Cmin





1

Ẽ0
1/4

maxj,k �uj,0 − uk,0�
1/2
L2

,
1

Ẽ0
1/3




 ,

such that there exists a unique corresponding solution (Ψj)j to Syst. (1.1) on [0, T ],
satisfying Ψj = Xj + uj, with uj ∈ C

�
[0, T ], H1(R)

�
, and such that

3

4
≤

|Ψj(t,σ)−Ψk(t,σ)|

|Xj(t)−Xk(t)|
≤

5

4
, t ∈ [0, T ], σ ∈ R.

Finally, if the initial perturbation is parallelogram-shaped, namely

�u1,0 + u3,0�L2 = �u2,0 + u4,0�L2 = 0,

then the solution (Ψj)j is globally defined.

Remark 2. In the proof of Theorem 1.2 we shall actually establish a local existence
result for any N , any parallel configuration (Xj)j, any set of positive circulations
(Γj)j and any perturbations with small energy, but not necessarily small in H1.
This is a slight improvement of the result in [17], see also the next two remarks.

Remark 3. As we shall see, we can infer from the smallness of the energy E0 and
from Sobolev embeddings that the nearly parallel filaments Ψj,0 are not too far from
the straight filaments Xj,0 and that E0 ≤ C

�
j
�uj,0�

2
H1 . Conversely, if we assume

that
�

j
�uj,0�H1 is sufficiently small then one can show that Ẽ0 ≤ C

�
j
�uj,0�

2
H1

and the assumptions of Theorem 1.2 are satisfied. Therefore the hypothesis on the
energy is less restrictive than the one on the H1 norm, see also the next remark.

Remark 4. From 0 ≤ E0 ≤ C
�

j
�uj,0�

2
H1 it follows that Ẽ0 ≤ C

�
j
�uj,0�

2
H1 so

the time of existence is a priori larger than in [17]. Moreover, for all � > 0 Theorem
1.2 allows for initial perturbations of the form

Ψ�

j,0(σ) = eiϕ
�(σ)Xj,0 + T �(σ),

with ϕ�, T � such that �(ϕ�, T �)�H1 = O(1). This amounts to rotating and trans-
lating the square (Xj)j at each level σ. By taking oscillating phases of the form
ϕ�(σ) =

√
εϕ0(εσ) with a fixed ϕ0 ∈ H1, which implies �ϕ��L2 ≥ O(1), �∇ϕ��L2 =

O(�) and by choosing T � such that �T ��H1 = O(�) we compute

Ẽ0 = O(�2),
�

j

�uj,0�
2
H1 ≥ O(1).

Therefore Theorem 1.2 provides a unique solution a least up to time of order 1/
√
ε,

while the H1 norm of the perturbations is of order one. This suggests that the
energy space is more appropriate for the analysis of (1.1) than classical Sobolev
spaces.

The proof of Theorem 1.2 follows the one of Theorem 1.1 combined with the one
in [17]. In particular, we consider, as in [17], the energy

E(t) =
1

2

�

j

�
|∂σΨj(t,σ)|

2 dσ

+
1

2

�

j �=k

�
− ln

�
|Ψj(t,σ)−Ψk(t,σ)|2

|Xj(t)−Xk(t)|2

�
+

�
|Ψj(t,σ)−Ψk(t,σ)|2

|Xj(t)−Xk(t)|2
− 1

�
dσ,

(1.9)

and show that the solution can be extended as long as E(t) remains small. For this
purpose we show that uj can be extended locally from a time t0 by a fixed point
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argument for small H1 perturbations wj of the linear evolutions of the initial data,

i.e. uj(t) = ei(t−t0)∂
2
σuj(t0) +wj(t). In here we use crucially the fact that the devi-

ation ei(t−t0)∂
2
σuj(t0)− uj(t0) can be upper-bounded in L∞ in terms of the energy

at the initial time E(t0). As observed in [17], for any two parallel filaments and for
the equilateral triangle configuration the energy is conserved, i.e. E(t) = E(0) = E0,
so that global existence follows for small energy perturbations. Unfortunately, un-
der the assumptions of Theorem 1.2 the energy is no longer conserved (unless the
perturbation (uj)j is parallelogram-shaped). Instead, we estimate its evolution in
time, showing that it does not increase too fast, and this control enables us to
obtain a large time of existence.

We finally mention another collection of dynamics that is governed by the linear
Schrödiger equation. For shifted perturbations Ψj = Xj + u, for any Xj with Γj

the same, we obtain that u is a solution of the linear Schrödiger equation. So if u is
regular enough, it has constant H1 norm, so the filaments remain separated for all
time. Moreover, due to the dispersive inequality for the linear Schrödinger equation,
the perturbations spread in time along the parallel configuration Xj . Finally, we
get examples of C∞ perturbations decaying at infinity that generate a singularity
in finite time by considering less regular pertubations than H1 that lead to a L∞

dispersive blow-up for the linear Schrödinger. The self-similar linear Schrödinger
solution constructed from homogeneous data |x|−p with 0 < p < 1 in [7] leads to
solutions blowing-up in L∞ in finite time at one point. Also, the linear Schrödinger
evolution of ei|x|

2
/(1+ |x|2)m with 1/2 < m ≤ 1 has been proved in [6] to be an L2

solution whose modulus blows-up in finite time at one point.

The third part of this work is devoted to travelling waves for Syst. (1.1). Let
us recall that in the case of one single filament, a travelling wave dynamics was
exhibited by H. Hasimoto [15] and experimentally observed by E. J. Hopfinger
and F.K. Browand [16]. Here we construct travelling waves for several filaments
via finite energy travelling wave solutions to Eq. (1.5), i.e. solutions of the form
Φ(t,σ) = v(σ + ct), with v solution of the equation

icv� + v�� + ω
v

|v|2
(1− |v|2) = 0 (1.10)

and having finite energy,

E(v) =
1

2

�
|∂σv|

2 +
ω

2

� �
|v|2 − 1− ln |v|2

�
< ∞. (1.11)

As in Theorem 1.1 we assume that ω > 0. In order to avoid having v approaching
zero we shall impose that the energy is small.

Existence, stability issues and qualitative behaviour near the speed of sound
of travelling waves for Gross-Pitaevskii-type equations and related problems were
extensively studied in the past years (see for instance [10, 4, 11, 14, 3, 22, 9] and the
references therein). For the one-dimensional Gross-Pitaevskii equation (1.7), finite
energy travelling waves (referred to as ”grey solitons” in the context of non-linear
optics) are known to exist for all 0 < c <

√
2ω, and they have the explicit form (see

e.g. [14])

v(σ) = vc(σ) =

����1−
1
2ω (2ω − c2)

cosh2
�√

2ω−c2

2 σ
� e

i arctan ωe

√
2ω−c2σ+c2−ω

c
√

2ω−c2
−i arctan c√

2ω−c2 .

The modulus |vc| of such maps is close to 1 when c is close to
√
2ω, in which case

E(vc) ≤ CEGP (vc) ≤ C(2ω − c2)3/2 (see [14]), so the energy is finite and as small
as needed. Note that therefore the maps vc, with c close to

√
2ω enter the class
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of perturbations presented in Theorem 1.1. Our next result in this context is the
following.

Theorem 1.3. Let c such that 0 < 2ω − c2 < η3 for an absolute small constant
η3 > 0. There exists a travelling wave solution to Syst. (1.1)

Ψj(t,σ) = eitω+i
2πj
N v(σ + ct),

where v ∈ C∞(R) is a solution to Eq. (1.10), with finite energy E(v) ≤ C(2ω −

c2)3/2, such that v never vanishes. The modulus |v| is an even function, increasing
on [0,∞) and satisfying on R

0 < 1− |v(σ)|2 < min

�
3

2ω
(2ω − c2), C

�
2ω − c2e−

√
2ω−c2

−|σ|
�
.

Finally, we have a limit at infinity

v(σ) → exp(iθ±), σ → ±∞, with |θ+ − θ−| ≤ C
�
2ω − c2.

Here C denotes an absolute numerical constant.

It has been noticed in [17] that the Galilean invariance of Syst. (1.1) leads to
helix-shaped vortex filaments. In here, on one hand Eq. (1.5) is invariant under

Galilean transform, i.e. Φν(t,σ) = e−itν
2+iνσ Φ(t,σ−2tν) is also a solution ∀ν ∈ R.

On the other hand Xj(t) = eitω+i
2πj
N for j �= 0, so

Ψj,ν(t,σ) = eit(ω−ν
2)+iνσ+i

2πj
N Φ(t,σ − 2tν)

= eit(ω−ν
2)+iνσ+i

2πj
N v(σ + t(c− 2ν)).

Therefore, choosing ν =
√
ω, we obtain a stationary (θ+ − θ−)-twisted N -helix

filament configuration with some localized peturbation travelling in time on each
of its filaments.

Last but not least, in the last part of this paper we describe configurations of
nearly parallel filaments that lead to a collision in finite time. They are obtained
by the same kind of dilation-rotation perturbations as in Theorem 1.1.

Theorem 1.4. Let N ≥ 2 and (Xj)j be the stationnary configuration given by
a regular N−polygon with its center and circulations Γj = 1 for 1 ≤ j ≤ N ,
Γ0 = −(N − 1)/2. Then the initial condition

Ψj,0(σ) = Xj(0)

�
1−

e−
σ2

1−4i

√
1− 4i

�

yields a solution (Ψj)j for Syst. (1.1), with Ψj −Xj ∈ C
�
R, H1(R)

�
, that collide

at time t = 1 at σ = 0.

The remainder of this paper is organized as follows. In Section §2 we derive
Eq. (1.5). We then present some preliminary lemmas about its energy, which lead
to the proof of Theorem 1.1. Section §3 is devoted to the proof of Theorem 1.2.
Section §4 contains the construction of travelling waves for Theorem 1.3. Finally, in
Section §5 we construct the collision dynamics in Theorem 1.4. In all the following
the notation C denotes an absolute constant which can possibly change from a line
to another.
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2. Proof of Theorem 1.1

We first derive Eq. (1.5). Plugging the ansatz Ψj(t,σ) = Xj(t)Φ(t,σ) into Syst.
(1.1) with Γj = 1 for 1 ≤ j ≤ N we obtain

iXj∂tΦ+ i∂tXjΦ+Xj∂
2
σ
Φ+

Φ

|Φ|2

�

k �=j

Xj −Xk

|Xj −Xk|
2
= 0.

Next we use (1.2) to get

Xj(i∂tΦ+ ∂2
σ
Φ)− i∂tXj

Φ

|Φ|2
�
1− |Φ|2

�
= 0.

Now if we consider a configuration rotating with speed ω around its steady center
of inertia X0 = 0, for 1 ≤ j ≤ N we have Xj(t) = eitω+iθj , so that −i∂tXj = ωXj

and hence we obtain Eq. (1.5),

i∂tΦ+ ∂2
σ
Φj + ω

Φ

|Φ|2
�
1− |Φ|2

�
= 0.

Conversely, assume that Φ is a solution to Eq. (1.5) and set Ψj = XjΦ. Reversing
the previous arguments, we obtain

i∂tΨj + ∂2
σ
Ψj +

�

k �=j

Ψj −Ψk

|Ψj −Ψk|
2
= 0, 1 ≤ j ≤ N,

while, since Ψ0(t,σ) = 0 for all (t,σ),

i∂tΨ0 = ∂2
σ
Ψ0 = 0 and

N�

k=1

Ψ0 −Ψk

|Ψ0 −Ψk|
2
= −

Φ

|Φ|2

N�

k=1

Xk

|Xk|
2
= 0

and therefore (Ψj)j is a solution to Syst. (1.1).

2.1. Some preliminary lemmas.

Lemma 2.1. There exists an absolute constant η1 and a time t1 depending only
on η1 such that
i) If E(f) ≤ η1 then

�|f |2 − 1�L∞ ≤
1

4
.

ii) If �∂σf�L2 ≤ η1 then for all 0 ≤ t ≤ t1
1
√
2
�eit∂

2
σf − f�L∞ ≤ �eit∂

2
σf − f�H1 ≤

1

4
.

Proof. i) The function a(x) = x−1− lnx is positive and convex, and vanishes only
at x = 1, therefore we can adapt standard arguments already used in the context
of Ginzburg-Landau-type functionals (see e.g. [2]). More precisely, we assume by
contradiction that

��|f(σ0)|2 − 1
�� > 1/4 for some σ0 ∈ R. For example, |f(σ0)| >�

5/4. Next, since �∂σf�2L2 ≤ 2E(f) we have by Cauchy-Schwarz inequality

|f(σ)| ≥ |f(σ0)|−

����
�

σ

σ0

∂xf(x)dx

���� ≥
�

5

4
−

�
2E(f)|σ − σ0|.

It follows that |f | >
�
9/8 on I = [σ0 − 1/(500E(f)),σ0 + 1/(500E(f))]. Therefore

E(f) ≥
1

2
a

�
9

8

�
|I| =

1

500E(f)
a

�
9

8

�
,

a contradiction if E(f) ≤ η1 is sufficiently small.
ii) The property ii) is a known one used in the Gross-Pitaevskii study (see Lemma

3 in [12]) to which we recall the short proof: the Fourier transform of eit∂
2
σf − f
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can be written as e
−itξ2−1

ξ
ξf̂(ξ), so the L2 norm is bounded by C

√
t�∂σf�L2 and

the Ḣ1 norm is bounded by C�∂σf�L2 , i.e.

�eit∂
2
σf − f�H1 ≤ C(1 +

√
t)�∂σf�L2 ≤ C(1 +

√
t)η1.

We choose η1 small enough and t1 small with respect to η1 such that for 0 ≤ t ≤ t1,

�eit∂
2
σf − f�H1 ≤

1

4
,

and the conclusion of the Lemma follows. �

Since (x− 1)2/2 ≤ x− 1− lnx ≤ 10(x− 1)2 on [3/4, 5/4] we immediately obtain
a second lemma.

Lemma 2.2. If �|f |2 − 1�L∞ ≤ 1/4 then we can compare the energies:

EGP (f) ≡
1

2
�∂σf�

2
L2 +

ω

4
�|f |2 − 1�2

L2 ≤ E(f) ≤ 5 EGP (f).

So, if we consider an initial perturbation such that Φ0 − 1 is sufficiently small in
H1, we infer from Sobolev embedding that EGP (Φ0) < ∞ and that �|Φ0|

2−1�L∞ <
1/4. Hence Lemma 2.2 ensures that Φ0 belongs to the energy space associated to
Eq. (1.5).

We will also need the following transposition of a standard property of the Gross-
Pitaevskii energy (see [8, 12, 13]).

Lemma 2.3. Let f such that E(f) ≤ η1, with η1 defined in Lemma 2.1. Let
h ∈ H1(R) with �h�H1 ≤ 1/2. Then the energy E(f + h) is finite. More precisely
we have, for absolute numerical constants C,C �,

E(f + h) ≤ CEGP (f + h) ≤ C � (1 + E(f))
�
1 + �h�2

H1

�
.

Moreover,

�|f + h|− 1�L∞ ≤
2 +

√
2

4
< 1.

Proof. We first infer from Lemma 2.1 i) that �|f |−1�L∞ ≤ 1/4, and from Lemma 2.2
that EGP (f) < ∞. Next, applying Gagliardo-Nirenberg inequality we get �h�L∞ ≤
√
2�h�H1 ≤

√
2/2, so that �|f + h| − 1�L∞ ≤ (2 +

√
2)/4 < 1. By Lemma 2.2 it

follows that E(f + h) ≤ CEGP (f + h). Using that EGP (f) < ∞ and h ∈ H1 as well
as Sobolev inequalities we conclude that EGP (f+h) is finite, with the corresponding
estimate (see also, e.g., Lemma 2 in [12]). �

2.2. Proof of Theorem 1.1. First we will establish local well-posedness for Eq.
(1.5) by performing a fixed point argument for the operator

A(w)(t) = i

�
t

0
ei(t−τ)∂2

τ
eiτ∂

2
σΦ0 + w(τ)

|eiτ∂2
σΦ0 + w(τ)|2

�
1− |eiτ∂

2
σΦ0 + w(τ)|2

�
dτ

on the ball

BT =

�
w ∈ C

�
[0, T ], H1

�
, sup

0≤t≤T

�w(t)�H1 ≤
1

4

�
,

with T small to be chosen later. Then Φ(t) = eit∂
2
σΦ0 + w(t) will be a solution

for (1.5) on [0, T ] with initial data Φ0. Observe that the proof of Lemma 2.1 ii)

yields that t �→ (eit∂
2
σΦ0 −Φ0) ∈ C([0, T ], H1(R)). So the map Φ will belong to the

energy space if Φ0 belongs to the energy space (by Lemma 2.3 applied to f = Φ0

and h = eit∂
2
σΦ0−Φ0+w(t) for T ≤ t1 with t1 from Lemma 2.1), and it will belong

to 1 +H1(R) if Φ0 is in 1 +H1(R).
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The hypothesis of Theorem 1.1 is that we start with Φ0 verifying

E = E(Φ0) =
1

2
�∂σΦ0�

2
L2 +

ω

2

� �
− ln |Φ0|+ |Φ0|

2
− 1

�
≤ η1.

We first impose T ≤ t1, with t1 defined in Lemma 2.1. Let w ∈ BT , and set for
0 ≤ t ≤ T

Φ̃(t) = eit∂
2
σΦ0 + w(t) = Φ0 +

�
eit∂

2
σΦ0 − Φ0 + w(t)

�
.

By Lemma 2.1 ii) and by choice of BT , we have �Φ̃(t) − Φ0�H1 ≤ 1/2 on [0, T ].
Therefore, applying Lemma 2.3 to f = Φ0 and h = Φ̃(t) − Φ0 we obtain that
�|Φ̃(t)| − 1�L∞ ≤ (2 +

√
2)/4 on [0, T ]. In particular, since C−1 ≤ |Φ̃| ≤ C for

C > 0 we can estimate the action of the operator as follows

�A(w)(t)�H1 ≤ t sup
0≤τ≤t

�����
Φ̃(τ)

|Φ̃(τ)|2

�
1− |Φ̃(τ)|2

������
H1

≤ C t sup
0≤τ≤t

����1− |Φ̃(τ)|2
���
L2

+
���∂σΦ̃(τ)

���
L2

�

≤ C t sup
0≤τ≤t

�
EGP (Φ̃(τ)).

We use again Lemma 2.3 and the bound �Φ̃(τ)− Φ0�H1 ≤ 1/2 to obtain

sup
0≤t≤T

�A(w)(t)�H1 ≤ C T (1 + E).

Arguing similarly, we readily check that for w1, w2 ∈ BT

sup
0≤t≤T

�A(w1)(t)−A(w2)(t)�H1 ≤ C T (1 + E) sup
0≤t≤T

�w1(t)− w2(t)�H1 .

Hence imposing a second smallness condition on T with respect to E we obtain a
fixed point w for A in BT . Therefore local well-posedness holds for Eq. (1.5) on
[0, T ] with T depending only on E .

Next, since the energy of Eq. (1.5) is conserved

E(Φ(T )) = E(Φ(0)) = E ,

we re-iterate the local in time argument to get the global existence. Finally, Lemma
2.1 insures us that

sup
t∈R

�|Φ(t)|2 − 1�L∞ ≤
1

4
,

so the solution satisfies indeed
1

4
≤ |Φ(t,σ)| ≤

5

4
, t,σ ∈ R.

3. Proof of Theorem 1.2

3.1. Some useful quantities. From now on we will write Ψjk = Ψj −Ψk, Xjk =
Xj −Xk and ujk = uj − uk.

We first introduce some useful quantities. In the general case where N ≥ 1 and
Γj ∈ R, the dynamics of Syst. (1.1) preserves the following quantities.

The energy

1

2

�

j

Γ2
j

�
|∂σΨj(t,σ)|

2 dσ −
1

2

�

j �=k

ΓjΓk

�
ln |Ψjk(t,σ)|

2 dσ,

the angular momentum
�

j

Γj

�
|Ψj(t,σ)|

2 dσ,
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and
�

j �=k

ΓjΓk

�
|Ψjk(t,σ)|

2 dσ.

However the previous quantities are not well-defined in the framework of The-
orem 1.2, not even formally, since Ψj(t,σ) and Ψjk(t,σ) do not tend to zero at
infinity. As in [17], we modify them in order to get well-defined quantities, intro-
ducing

H =
1

2

�

j

Γ2
j

�
|∂σΨj(t,σ)|

2 dσ −
1

2

�

j �=k

ΓjΓk

�
ln

�
|Ψjk(t,σ)|2

|Xjk(t)|2

�
dσ

A =
�

j

Γj

� �
|Ψj(t,σ)|

2
− |Xj(t)|

2
�
dσ

T =
�

j �=k

ΓjΓk

� �
|Ψjk(t,σ)|

2
− |Xjk(t)|

2
�
dσ.

Note that, in view of the properties of the point vortex system (1.2) mentioned
in the introduction, the renormalized quantities H, A and T are still formally
preserved in time.

Finally, we also introduce the time-dependent quantity

I(t) =
1

2

�

j �=k

ΓjΓk

� �
|Ψjk(t)|2

|Xjk(t)|2
− 1

�
dσ,

and we consider the energy

E(t) = H+ I(t), (3.1)

which have been already introduced in (1.9) in the introduction.
As noticed in [17], a useful consequence of the convexity estimate (x − 1)2/2 ≤

x− 1− lnx ≤ 10(x− 1)2 on [3/4, 5/4] is the inequality

1

2

�

j

Γ2
j

�
|∂σΨj(t,σ)|

2 dσ +
1

4

�

j �=k

ΓjΓk

� �
|Ψjk(t,σ)|2

|Xjk(t)|2
− 1

�2

dσ ≤ E(t), (3.2)

which holds as long as the filaments satisfy 3/4 ≤ |Ψjk(t)|2/|Xjk(t)|2 ≤ 5/4.

3.2. The approach. In this subsection we briefly sketch how to combine elements
from [17] and from §2 to prove local existence and uniqueness of a solution to Syst.
(1.1) in the general case of N filaments, with N ≥ 2, and the way to extend this
solution as long as the energy E(t) remains sufficiently small. Here we take positive
circulations

Γj > 0, 1 ≤ j ≤ N.

Therefore there exists a unique global solution (Xj)j to Syst. (1.2). We denote by
d > 0 the minimal distance between the point vortices for all time. Here we shall
make the extra-assumption that

uj,0 = Ψj,0 −Xj,0 ∈ H1(R).

We look for a solution u = (uj)j ∈ C([0, T ], H1(R))N to the system





i∂tuj + Γj∂
2
σ
uj +

�

k �=j

Γk

�
Xjk + ujk

|Xjk + ujk|
2
−

Xjk

|Xjk|
2

�
= 0

uj(0) = uj,0, 1 ≤ j ≤ N.

(3.3)
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By similar arguments as in Section §2, our purpose is to find a fixed point in the
Banach space

BT =

�
w = (w1, . . . , wN ) ∈ C

�
[0, T ], H1

�N
, sup

0≤t≤T

�w(t)�H1 ≤
d

4

�

for the operator A(w) = (Aj(w))j defined by

Aj(w)(t) = i

�
t

0

�

k �=j

Γk

�
Xjk(τ) + eiτΓj∂

2
σuj,0 + wj(τ)− eiτΓk∂

2
σuk,0 − wk(τ)

|Xjk(τ) + eiτΓj∂
2
σuj,0 + wj(τ)− eiτΓk∂

2
σuk,0 − wk(τ)|2

−
Xjk(τ)

|Xjk(τ)|2

�
dτ,

and for T sufficiently small with respect to η2,
�

j
�uj,0�H1 , (Γj)j and d.

Then as in Section §2 the solution will be given by

uj(t) = eitΓj∂
2
σuj,0 + wj(t).

By transposing the arguments of Section §2 we obtain the following local well-
posedness result.

Lemma 3.1. Let (uj,0)j ∈ H1(R)N be such that E0 < 10η2, with E0 defined in
Theorem 1.2 and η2 = η2(d) a small constant depending only on d. There exists
T > 0, depending only on η2,

�
j
�uj,0�H1 , (Γj)j and d, and there exists a unique

solution (uj)j ∈ C([0, T ], H1(R))N to Syst. (3.3) satisfying

sup
0≤t≤T

�uj(t)�H1 ≤ �uj,0�H1 +
d

4
, 1 ≤ j ≤ N.

Moreover we can choose T such that

T
�
1 + η2 +

�

j

�uj,0�H1

�
≥ C(d, (Γj)j)

for some constant C(d, (Γj)j) depending only on d and (Γj)j.

Remark 5. As a byproduct of Lemma 3.1 we realize that the solution (uj)j to
(3.3) exists as long as the energy E(t) remains bounded by 10η2. Indeed note that
the norm

�
j
�uj(t)�H1 can grow exponentially, but it cannot blow up as long as

the energy is sufficiently small.

Proof. Let 0 < Γ ≤ 1 such that 0 < Γ ≤ minj Γj . Since all the (Γj)�s are positive,
we have

max
j �=k

E

�
Ψjk,0

Xjk,0

�
≤

1

Γ2
E0,

where we recall that E is defined by (1.6) (taking ω = 1).
In particular, if η2 is such that 10η2/Γ2 ≤ η1, with η1 defined in Lemma 2.1,

then 3/4 ≤ |Ψjk,0|/|Xjk,0| ≤ 5/4 for all j �= k. Then we have for w ∈ BT

|Xjk(τ) + eiτΓj∂
2
σuj,0 + wj(τ)− eiτΓk∂

2
σuk,0 − wk(τ)|

=|Ψjk,0 + (Xjk(τ)−Xjk,0) + (eiτΓj∂
2
σuj,0 − uj,0)− (eiτΓk∂

2
σuk,0 − uk,0) + wjk(τ)|

≥|Ψjk,0|− |Xjk(τ)−Xjk,0|−
√
2�(eiτΓj∂

2
σuj,0 − uj,0)− (eiτΓk∂

2
σuk,0 − uk,0) + wjk(τ)�H1

≥
3d

4
−

2(
�

j
Γj)

d
T − C(1 + T )η2 −

√
2d

4
≥

d

4

provided that η2 is small with respect to d, and that T is small in terms of
η2, d, (Γj)j . In the last inequality we have used the proof of Lemma 2.1 ii) to-

gether with the mean-value theorem for Xjk. Now, since Xjk(τ) + eiτΓj∂
2
σuj,0 +
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wj(τ) − eiτΓk∂
2
σuk,0 − wk(τ) is bounded from below, direct estimates show that A

is a contraction on BT as long as

T (1 + η2 +
�

j

�uj,0�H1) ≤ C(d, (Γj)j)

and the conclusion of Lemma 3.1 follows.
�

3.3. The proof of Theorem 1.2. We present now the proof of Theorem 1.2. By
Remark 5, there exists a unique solution as long as E(t) remains sufficiently small.
In the cases considered in [17] where the |Xjk(t)| are all the same and constant
equal to d, I(t) = T /(2d2) so E(t) is conserved. Also under the hypothesis of
Theorem 1.1, we have

I(t) =
1

2

�

j �=k

ΓjΓk

� �
|Ψjk(t)|2

|Xjk|
2

− 1

�
dσ =

1

2

�

j �=k

ΓjΓk

� �
|Φ(t,σ)|2 − 1

�
dσ = ωA,

so, although |Xjk| are not all equal, I(t) and E(t) are still formally preserved. In
fact, under the assumptions of Theorem 1.1 we have E(t) = NE(Φ(t)) so we retrieve
the fact that it is constant. Under the general hypothesis of Theorem 1.2 E(t) is
no longer constant, but it will still be a useful quantity for which we can achieve
some control.

We recall that E0 ≤ η2. From now on we consider T > 0 and the unique solution
to Syst. (3.3) on [0, T ], with E(t) < 10Ẽ0 ≤ 10η2, given by Lemma 3.1. We take T
maximal in the sense that E(T ) = 10Ẽ0 (but T is not necessarily the largest time
of existence). We thus have 3/4 < |Ψjk(t,σ)| < 5/2 on [0, T ]× R for all j �= k.

Proposition 3.2. We have for t ∈ [0, T ]

E(t) = H+
1

2
T −A+

�(u1 + u3)(t)�2 + �(u2 + u4)(t)�2

2
.

Proof. Since (X1, X2, X3, X4) is a square of radius 1 we have

|Xjk(t)|
2 = 2 if |j − k| = 1, |Xjk(t)|

2 = 4 if |j − k| = 2.

It follows that

�

j �=k

�
|Ψjk|

2

|Xjk|
2
− 1

�
=

�

j �=k

|Ψjk|
2 − |Xjk|

2

|Xjk|
2

=
1

2

�

j �=k

�
|Ψjk|

2
− |Xjk|

2
�
+ 2

�
1

4
−

1

2

��
|Ψ13|

2
− |X13|

2 + |Ψ24|
2
− |X24|

2
�
.

On the other hand, we compute

|Ψ13|
2 + |Ψ24|

2
− |X13|

2
− |X24|

2

= 2
4�

j=1

|Ψj |
2
− |Ψ1 +Ψ3|

2
− |Ψ2 +Ψ4|

2
− 8

= 2
4�

j=1

�
|Ψj |

2
− |Xj |

2
�
−

�
|Ψ1 +Ψ3|

2 + |Ψ2 +Ψ4|
2
�
,

so integrating with respect to σ and using that Ψ1 +Ψ3 = u1 + u3 and Ψ2 +Ψ4 =
u2 + u4 we are led to the conclusion. �
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Corollary 3.3. In the case of the parallelogram �(u1+u3)(0)�2L2 = �(u2+u4)(0)�2L2 =
0, so it follows that �(u1 + u3)(t)�2L2 = �(u2 + u4)(t)�2L2 = 0 for all times, using
the fact that if (Ψ1,Ψ2,Ψ3,Ψ4) is a solution of (1.1) then (−Ψ3,−Ψ4,−Ψ1,−Ψ2)
is also a solution. Then I is conserved in time and global existence follows.

Remark 6. One can do similar computations in others particular cases, for in-
stance for ends and the middle of the segment,

E(t) = −H+ I −
3

2
A+

3

4

�
�u1(t)�

2
L2 + �(u2 + u3)(t)�

2
L2

�
,

or for hexagone,

E(t) = −H+ I −
7

2
A+

2

3

2�

j=1

�(uj + uj+2 + uj+4)(t)�
2
L2 +

3

4

3�

j=1

�(uj + uj+3)(t)�
2
L2 .

But these quantities have no reason to be conserved, unless the perturbations have
the same shape as the shape of (Xj), which enters the framework of the first part of
this article. Moreover, when trying to control the growth of �u1(t)�L2 for instance
in the first example, the time of control is not satisfactory due to the presence of
linear terms in the equation of u1, that cannot be resorbed.

In order to control the evolution of the energy we have to control the quantity
�(u1 + u3)(t)�2L2 + �(u2 + u4)(t)�2L2 . We are led to introduce the new unknowns

v = u1 + u3, w = u2 + u4.

Proposition 3.4. We have for t ∈ [0, T ], with v = u1 + u3 and w = u2 + u4,

�v(t)�L2 + �w(t)�L2 ≤ �v(0)�L2 + �w(0)�L2

+Ct sup
s∈[0,T ]

max
j �=k

�ujk(s)�
1/2
L2 E(s)1/4

�
�v(s)�L2 + �w(s)�L2 + E(s)1/2

�
.

Proof. In view of Syst. (1.1) and Syst. (1.2), we have

i∂tv + ∂2
σ
v = −

�

k �=1,3

��
Ψ1k

|Ψ1k|
2
−

X1k

|X1k|
2

�
+

�
Ψ3k

|Ψ3k|
2
−

X3k

|X3k|
2

��

= −

�

k �=1,3

�
X1k

�
1

|Ψ1k|
2
−

1

|X1k|
2

�
+X3k

�
1

|Ψ3k|
2
−

1

|X3k|
2

��

−

�

k �=1,3

�
u1k

�
1

|Ψ1k|
2
−

1

|X1k|
2

�
+ u3k

�
1

|Ψ3k|
2
−

1

|X3k|
2

��

−

�

k �=1,3

�
u1k

|X1k|
2
+

u3k

|X3k|
2

�
.

We infer that

i∂tv + ∂2
σ
v = Lv(u) +Rv(u),

where Lv denotes the linear part,

Lv(u) = 2
�

k �=1,3

�
X1k

�e (u1kX1k)

|X1k|
4

+X3k
�e (u3kX3k)

|X3k|
4

�
−

�

k �=1,3

�
u1k

|X1k|
2
+

u3k

|X3k|
2

�
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and where the remainder Rv is quadratic in u,

Rv(u)

=
�

k �=1,3

�
X1k

|X1k|
4
|u1k|

2 +
X3k

|X3k|
4
|u3k|

2

�

−

�

k �=1,3

�
X1k

�
|X1k|

2 − |Ψ1k|
2

|X1k|
2

��
1

|Ψ1k|
2
−

1

|X1k|
2

�
+X3k

�
|X3k|

2 − |Ψ3k|
2

|X3k|
2

��
1

|Ψ3k|
2
−

1

|X3k|
2

��

−

�

k �=1,3

�
u1k

�
1

|Ψ1k|
2
−

1

|X1k|
2

�
+ u3k

�
1

|Ψ3k|
2
−

1

|X3k|
2

��

= R
1
v
(u) +R

2
v
(u) +R

3
v
(u).

We claim that Lv(u) = 0. Indeed, using that |X1k|
2 = |X3k|

2 = 2 for k �= 1, 3,

Lv(u) =
1

2

�

k �=1,3

(X1k �e (u1kX1k) +X3k �e (u3kX3k))−
1

2

�

k �=1,3

(v − 2uk)

=
1

2

�

k �=1,3

(X1k �e (u1kX1k) +X3k �e (u3kX3k))− v + w.

Now we compute, using that X12 = −X34 and X23 = X14,
�

k �=1,3

(X1k �e (u1kX1k) +X3k �e (u3kX3k))

= X12 �e (u12X12) +X32 �e (u32X32) +X14 �e (u14X14) +X34 �e (u34X34)

= X12 �e (u12X12) +X12 �e (u34X12) +X32 �e (u32X32) + +X32 �e (u14X32)

= X12 �e ((u12 + u34)X12) +X32 �e ((u32 + u14)X32).

We observe that

u12 + u34 = u32 + u14 = u1 + u3 − (u2 + u4) = v − w.

Therefore, inserting that iX12 = X23 and that |X12|
2 = 2 in the previous formula

we find
�

k �=1,3

�
X1k �e (u1kX1k) +X3k �e (u3kX3k)

�

= X12 �e ((v − w)X12)− iX12 �m((v − w)X12)

= 2(v − w),

and finally Lv(u) = 0.

We next estimate the remainder terms. Since 3/4 < |Ψjk| < 5/2 we have��|Xjk|
2 − |Ψjk|

2
�� ≤ C|ujk| on [0, T ] and therefore

��R2
v
(u) +R

3
v
(u)

�� ≤ Cmax
j �=k

|ujk|

����
|Ψjk|

2

|Xjk|
2
− 1

���� . (3.4)

Expanding the first term R1
v
(u) and using the symmetries of (X1, X2, X3, X4),

we then have

R
1
v
(u) =

1

4

�

k �=1,3

�
X1k|u1k|

2 +X3k|u3k|
2
�

=
1

4

�
X12

�
|u12|

2
− |u34|

2
�
+X14

�
|u14|

2
− |u32|

2
��

=
1

2
{X12 �e (u12 − u34 (v − w)) +X14 �e (u14 − u32 (v − w))} ,



16

so that ��R1
v
(u)

�� ≤ Cmax
j,k

|ujk||v − w|. (3.5)

We perform similar computations for w and from (3.4)-(3.5) we infer the estimate

�v(t)�L2 + �w(t)�L2 ≤ �v(0)�L2 + �w(0)�L2 +

�
t

0
(�Rv(u)(s)�L2 + �Rw(u)(s)�L2) ds

≤ �v(0)�L2 + �w(0)�L2

+ t sup
s∈[0,t]

max
j �=k

�ujk(s)�L∞

�����
|Ψjk(s)|2

|Xjk(s)|2
− 1

����
L2

+ �v(s)�L2 + �w(s)�L2

�
.

Finally we apply Gagliardo-Nirenberg inequality and (3.2) to obtain the conclusion.
�

Proposition 3.5. We have for t ∈ [0, T ]
�

j �=k

�ujk(t)�L2 ≤ C
�

j �=k

�ujk(0)�L2 + C t sup
s∈[0,t]

E(s)1/2.

Proof. By (3.3),

i∂tujk + ∂2
σ
ujk

= −

�

l �=j

ujl

|Ψjl|
2
+
�

l �=k

ukl

|Ψkl|
2
−

�

l �=j

Xjl

�
1

|Ψjl|
2
−

1

|Xjl|
2

�
+
�

l �=k

Xkl

�
1

|Ψkl|
2
−

1

|Xkl|
2

�
.

We multiply the equation by ujk, take the imaginary part and perform the sum
over j and k, cancelling the first two terms in the right-hand side. Indeed,

�

j,k

�

l �=j

�m (ujkujl)

|Ψjl|
2

=
�

j,k

�

l �=j

�m ((ujl + ulk)ujl)

|Ψjl|
2

=
�

j,k

�

l �=j

�m (ulkujl)

|Ψjl|
2

= −

�

j,k

�

l �=j

�m (ujkujl)

|Ψjl|
2

,

by exchanging j and l in the last equality. Therefore the latter sum vanishes. By
the same arguments we also have

�

j,k

�

l �=k

�m (ujkukl)

|Ψkl|
2

= 0.

It follows that

d

dt

�

j �=k

�ujk�
2
L2 ≤ C

�

j �=k

�

l �=j

�
|ujk||Xjl|

1

|Ψjl|
2

����
|Ψjl|

2

|Xjl|
2
− 1

���� dσ

≤ C
��

j �=k

�ujk�
2
L2

�1/2
max
j �=k

����
|Ψjk|

2

|Xjk|
2
− 1

����
L2

,

and we finally obtain by (3.2)
������
d

dt

��

j,k

�ujk(t)�
2
L2

�1/2
������
≤ CE(t)1/2.

The conclusion follows.
�
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We are now able to control the evolution of E(t) and to complete the proof of
Theorem 1.2. First we recall that by Proposition 3.2,

1

2

�
�v(t)�2

L2 + �w(t)�2
L2

�
− Ẽ0 ≤ E(t) ≤ Ẽ0 +

1

2

�
�v(t)�2

L2 + �w(t)�2
L2

�

so in particular

E(t) + �v(t)�2
L2 + �w(t)�2

L2 ≤ CẼ0 on [0, T ].

.
Next, in view of Proposition 3.4 we have

E(t) ≤ Ẽ0 + (�v(t)�L2 + �w(t)�L2)2 ≤ Ẽ0 + 2(�v(0)�L2 + �w(0)�L2)2

+ Ct2 sup
s∈[0,t]

max
j,k

�ujk(s)�L2E(s)1/2
�
E(s)1/2 + �v(s)�L2 + �w(s)�L2

�2

≤ 9Ẽ0 + Ct2 sup
s∈[0,t]

max
j,k

�ujk(s)�L2 Ẽ0
3/2

and finally by Proposition 3.5

E(t) ≤ 9Ẽ0 + Ct2 max
j,k

�ujk,0�L2 Ẽ0
3/2

+ Ct3Ẽ0
2
.

Setting t = T in the above inequality and recalling that E(T ) = 10Ẽ0, we infer that

1 ≤ Ct2 max
j,k

�ujk,0�L2 Ẽ0
1/2

+ Ct3Ẽ0.

We conclude that T is larger than

Cmin





1

Ẽ0
1/4

maxj,k �ujk,0�
1/2
L2

,
1

Ẽ0
1/3




 ,

as we wanted. This concludes the proof of Theorem 1.2.

4. Proof of Theorem 1.3

Before proving Theorem 1.3 we start with some preliminary computations. We
mainly follow the Appendix of [14]. Assume that v is a C∞ small energy solution
to Eq. (1.10) such that v� vanishes at infinity. We set

η = 1− |v|2,

then η vanishes at infinity. We decompose v into its real and imaginary parts,
v = v1 + iv2. Eq. (1.10) gives then the system






−cv�2 + v��1 + ω
v1

v21 + v22
− ωv1 = 0,

cv�1 + v��2 + ω
v2

v21 + v22
− ωv2 = 0.

By substracting the first equation multiplied by v2 from the second one multiplied
by v1

(v1v
�
2 − v�1v2 −

c

2
η)� = 0,

so since v has finite energy we can integrate from infinity and get

v1v
�
2 − v�1v2 =

c

2
η. (4.1)

Next we add the first equation multiplied by v�1 to the second one multiplied by v�2,

(v�21 + v�22 + ω ln(v21 + v22)− ω(v21 + v22))
� = 0,

so
|v�|2 = −ω ln(1− η)− ωη. (4.2)
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Finally, in view of (4.1) and (4.2) we can compute

η�� = −2|v�|2 − 2(v1v
��
1 + v2v

��
2 )

= −2|v�|2 − 2v1(cv
�
2 − ω

v1
v21 + v22

+ ωv1)− 2v2(−cv�1 − ω
v2

v21 + v22
+ ωv2)

= −2|v�|2 − 2c(v1v
�
2 − v�1v2) + 2ω − 2ω(v21 + v22)

= 2ω ln(1− η) + 4ωη − c2η.

So we find

η�� − 2ω ln(1− η) + (c2 − 4ω)η = 0. (4.3)

Multiplying by η� and integrating we obtain

(η�)2 + (c2 − 4ω)η2 − 4ω
�
(η − 1) ln(1− η)− η

�
= 0,

which is satisfied if η verifies

η� = α
�
− (c2 − 4ω)η2 + 4ω

�
(η − 1) ln(1− η)− η

��1/2
, α = α(σ) = ±1. (4.4)

We now turn to the proof of Theorem 1.3. From now on we look for solutions
such that η is sufficiently small on the whole of R and for which the right hand side
in (4.4) makes sense. We introduce

a(η) = −(c2 − 4ω)η2 + 4ω
�
(η − 1) ln(1− η)− η

�
.

For 0 < η < 1, we perform a Taylor expansion for a,

a(η) = (2ω − c2)η2 − 2ω
η3

3
− 4ω

�

k≥4

ηk

k(k − 1)

therefore

b(η) ≡
a(η)

η2
= 2ω − c2 − 2ω

η

3
+ r(η)

with r(η) = o(η) ≤ 0 such that r�(η) = O(η). Let us set

σ0 =
2ω − c2

2ω
3

> 0,

then b(σ0) ≤ 0. Since on the other hand b(0) > 0, there exists σ1 ∈ (0,σ0] such
that b(σ1) = 0. Moreover, since for η ∈ [0,σ0] we have b�(η) = −

2ω
3 + r�(η) ≤

−
2ω
3 + C(2ω − c2) < 0 for 2ω − c2 sufficiently small, we infer that b is strictly

decreasing on [0,σ0] and therefore σ1 is the unique zero of a on ]0,σ0].
Next, we fix a small parameter ε > 0 and we consider the ODE

�
y�
ε
(σ) = −

�
a(yε(σ)),

yε(0) = σ1 − ε.

Since
√
a is Lipschitz on [0, x1 − ε/2) we can find a unique maximal solution on

some interval I containing the origin. We claim that sup I = +∞. We show first
that 0 < yε < σ1 − ε on I ∩ [0,∞). Indeed, yε is strictly decreasing on I ∩ [0,∞).
Assume by contradiction that there exists σ such that yε(σ) = 0 and yε > 0 on
[0,σ). We recall that b(y) ∼ 2ω − c2 when y → 0. Therefore

y�
ε
(σ) ≥ −2

�
2ω − c2yε(σ) for σ ∈ [σ − δ,σ]

with δ small. Integrating the differential inequality above yields

yε(σ) ≥ yε(σ − δ) exp(−2
�
2ω − c2(σ − σ + δ)) on [σ − δ,σ],
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which contradicts the fact that yε(σ) = 0. Next, since y �→
�
a(y) is Lipschitz and

bounded on [0,σ1 − ε] the maximal solution yε exists on [0,∞) which proves the
claim.

We next let ε → 0. Noting that yε and y�
ε
are uniformly bounded on [0,∞) we

can pass to the limit to find a solution4 y to the ODE
�
y� = −

�
a(y), σ ≥ 0

y(0) = σ1.

We finally set

η(σ) = y(σ) for σ ∈ [0,+∞) and η(−σ) = η(σ) = y(σ) for σ ∈ (−∞, 0].

Thanks to η(0) = σ1 and a(σ1) = 0 we check that η ∈ C∞(R) is a solution of the
ODE (4.3). Moreover, by the same kind of arguments as before we have η → 0,
hence η�(σ) ∼ −

√
2ω − c2η(σ) as σ → ∞, which yields the exponential decay

η(σ) ≤ Cδη(0) exp(−(
√
2ω − c2 − δ)|σ|) for all 0 < δ <

√
2ω − c2.

We complete the proof of Theorem 1.3 by looking for a solution of the form

v =
�
1− η exp(iθ). (4.5)

Then according to (4.1) we must have

(1− η)θ� =
cη

2
(4.6)

(note that in particular θ is an increasing function on R). Therefore for θ(σ) =
θ0 +

�
σ

0
cη

2(1−η) dτ where θ0 ∈ R, then

|θ(+∞)− θ(−∞)| ≤
Cη(0)

√
2ω − c2

≤ C
�
2ω − c2.

Also, the map defined by (4.5) is a solution to (1.10). It only remains to show that
v has finite energy. This clearly holds in view of the exponential decay of η, of η�

(by (4.4)) and of θ� (by (4.6)) at infinity. Moreover in view of (4.6) we obtain

E(v) ≤ C�η�2
H1 ≤ C(2ω − c2)3/2

and the conclusion of Theorem 1.3 follows.

5. Proof of Theorem 1.4

Under the hypothesis of Theorem 1.4, the angular speed of the configuration
(Xj)j is ω = 0 so if we set

Ψj(t,σ) = Xj(t)Φ(t,σ)

a solution of Syst. (1.1), we have shown in Section §2 that Φ has to solve the linear
Schrödinger equation,

i∂tΦ+ ∂2
σ
Φ = 0.

Since the linear evolution of a Gaussian G0(σ) = e−σ
2
is

eit∂
2
σG0(t,σ) =

e−
σ2

1+4it

√
1 + 4it

,

it follows that the linear evolution of

Φ0(σ) = 1−
e−

σ2

1−4i

√
1− 4i

4We do not claim that such a solution is unique or maximal.
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is precisely

Φ(t,σ) = 1−
e−

σ2

1−4i(1−t)

�
1− 4i(1− t)

.

We notice that Φ(t,σ)
|σ|→∞
−→ 1 for t ∈ [0, 1], and for t ∈ [0, 1[

|Φ(t,σ)| > 1−
1�

1 + 16(1− t)2
> 0.

On the other hand we have

Φ(1,σ) = 1− e−σ
2

,

so σ = 0 is a vanishing point at t = 1 and Theorem 1.4 follows.
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