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Abstract. This is a survey article on moduli of affine schemes equipped with an
action of a reductive group. The emphasis is on examples and applications to the
classification of spherical varieties.
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1. Introduction

The Hilbert scheme is a fundamental object of projective algebraic geometry;
it parametrizes those closed subschemes of the projective space PN over a field k,
that have a prescribed Hilbert polynomial. Many moduli schemes (for example, the
moduli space of curves of a fixed genus) are derived from the Hilbert scheme by
taking locally closed subschemes and geometric invariant theory quotients.
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In recent years, several versions of the Hilbert scheme have been constructed
in the setting of algebraic group actions on affine varieties. One of them, the G-
Hilbert scheme G–Hilb(V), is associated to a linear action of a finite group G on a
finite-dimensional complex vector space V ; it classifies those G-stable subschemes
Z ⊂ V such that the representation of G in the coordinate ring O(Z) is the regular
representation. TheG-Hilbert scheme comes with amorphism to the quotient variety
V/G, that associates with Z the point Z/G. ThisHilbert-Chow morphism has an inverse
over the open subset of V/G consisting of orbits with trivial isotropy group, as every
such orbit Z is a point of G–Hilb(V). In favorable cases (e.g. in dimension 2), the
Hilbert-Chow morphism is a desingularization of V/G; this construction plays an
essential role in the McKay correspondence (see e.g. [27, 28, 17]).

Another avatar of theHilbert scheme is themultigraded Hilbert scheme introduced
by Haiman and Sturmfels in [26]; it parametrizes those homogeneous ideals I
of a polynomial ring k[t1, . . . , tN], graded by an abelian group Γ , such that each
homogeneous component of the quotient k[t1, . . . , tN]/I has a prescribed (finite)
dimension. In contrast to the construction (due to Grothendieck) of the Hilbert
scheme which relies on homological methods, that of Haiman and Sturmfels is based
on commutative algebra and algebraic combinatorics only; it is valid over any base
ring k. Examples of multigraded Hilbert schemes include the Grothendieck-Hilbert
scheme (as follows from a result of Gotzmann, see [24]) and the toric Hilbert scheme
(defined by Peeva and Sturmfels in [49]) where the homogeneous components of I
have codimension 0 or 1.

The invariant Hilbert scheme may be viewed as a common generalization of G-
Hilbert schemes and multigraded Hilbert schemes; given a complex reductive group
G and a finite-dimensional G-module V , it classifies those closed G-subschemes
Z ⊂ V such that the G-module O(Z) has prescribed (finite) multiplicities. If G
is diagonalizable with character group Λ, then Z corresponds to a homogeneous
ideal of the polynomial ring O(V) for the Λ-grading defined by the G-action; we
thus recover the multigraded Hilbert scheme. But actually, the construction of the
invariant Hilbert scheme in [3] relies on a reduction to the multigraded case via
highest weight theory.

The Hilbert scheme of PN is known to be projective and connected; invariant
Hilbert schemes are quasi-projective (in particular, of finite type) but possibly non-
projective. Also, they may be disconnected, already for certain toric Hilbert schemes
(see [53]). One may wonder how such moduli schemes can exist in the setting of
affine algebraic geometry, since for example any curve in the affine plane is a flat
limit of curves of higher degree. In fact, the condition for the considered subschemes
Z ⊂ X to have a coordinate ring with finite multiplicities is quite strong; for example,
it yields a proper morphism to a punctual Hilbert scheme, that associates with Z the
categorical quotient Z//G ⊂ X//G.
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In this article, we present the construction and fundamental properties of
the invariant Hilbert scheme, and survey some of its applications to varieties with
algebraic group actions. The prerequisites are (hopefully) quitemodest: basic notions
of algebraic geometry; the definitions and results that we need about actions and
representations of algebraic groups are reviewed at the beginning of Section 2. Then
we introduce flat families of closed G-stable subschemes of a fixed affine G-scheme
X, where G is a fixed reductive group, and define the Hilbert function which encodes
the G-module structure of coordinate rings. Given such a function h, our main result
asserts the existence of a universal family with base a quasi-projective scheme: the
invariant Hilbert scheme HilbGh (X).

Section 3 presents a number of basic properties of invariant Hilbert schemes.
We first reduce the construction of HilbGh (X) to the case (treated by Haiman and
Sturmfels) where G is diagonalizable and X is a G-module. For this, we slightly
generalize the approach of [3], where G was assumed to be connected. Then we
describe the Zariski tangent space at any closed point Z, with special attention to
the case where Z is a G-orbit closure in view of its many applications. Here also, we
adapt the results of [3]. More original are the next developments on the action of
the equivariant automorphism group and on a generalization of the Hilbert-Chow
morphism, which aim at filling some gaps in the literature.

In Section 4, we first give a brief overview of invariant Hilbert schemes for finite
groups and their applications to resolving quotient singularities; here the reader may
consult [5] for a detailed exposition. Then we survey very different applications of
invariant Hilbert schemes, namely, to the classification of spherical varieties. These
form a remarkable class of varieties equipped with an action of a connected reductive
group G, that includes toric varieties, flag varieties and symmetric homogeneous
spaces. A normal affine G-variety Z is spherical if and only if the G-module O(Z) is
multiplicity-free; then Z admits an equivariant degeneration to an affine spherical
variety Z0 with a simpler structure, e.g., the decomposition of O(Z0) into simple
G-modules is a grading of that algebra. Thus, Z0 is uniquely determined by the
highest weights of these simple modules, which form a finitely generated monoid Γ .
We show (after [3]) that the affine spherical G-varieties with weight monoid Γ are
parametrized by an affine scheme of finite type MΓ , a locally closed subscheme of
some invariant Hilbert scheme.

Each subsection ends with examples which illustrate its main notions and
results; some of these examples have independent interest and are developed along
the whole text. In particular, we present results of Jansou (see [29]) that completely
describe invariant Hilbert schemes associated with the “simplest” data: G is semi-
simple, X is a simple G-module, and the Hilbert function h is that of the cone of
highest weight vectors (the affine cone over the closed G-orbit Y in the projective
space P(X)). Quite remarkably, HilbGh (X) turns out to be either a (reduced) point or
an affine line A1; moreover, the latter case occurs precisely when Y can be embedded
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into another projective variety Ỹ as an ample divisor, where Ỹ is homogeneous under
a semi-simple group G̃ ⊃ G, and G acts transitively on the complement Ỹ \ Y. Then
the universal family is just the affine cone over Ỹ embedded via the sections of Y.

This relation between invariant Hilbert schemes and projective geometry has
been further developed in recent works on the classification of arbitrary spherical
G-varieties. In loose terms, one reduces to classifying wonderful G-varieties which are
smooth projective G-varieties having the simplest orbit structure; examples include
the just considered G-varieties Ỹ. Taking an appropriate affine multi-cone, one
associates to each wonderful variety a family of affine spherical varieties over an
affine spaceAr, which turns out to be the universal family. This approach is presented
in more details in the final Subsections 4.4 and 4.5.

Throughout this text, the emphasis is on geometric methods and very little
space is devoted to the combinatorial and Lie-theoretical aspects of the domain,
which are however quite important. The reader may consult [7, 22, 44, 53, 55] for
the combinatorics of toric Hilbert schemes, [51] for the classification of spherical
embeddings, [9] for that of wonderful varieties, and [39] for uniqueness properties
of spherical varieties. Also, we do not present the close relations between certain
invariant Hilbert schemes and moduli of polarized projective schemes with algebraic
group action; see [2] for the toric case (and, more generally, semiabelic varieties),
and [4] for the spherical case. These relations would deserve further investigation.

Also, it would be interesting to obtain a modular interpretation of the main
component of certain invariant Hilbert schemes, that contains the irreducible varieties.
For toric Hilbert schemes, such an interpretation is due to Olsson (see [46]) in terms
of logarithmic structures.

Finally, another interesting line of investigation concerns the moduli scheme
MΓ of affine spherical varieties with weight monoid Γ . In all known examples, the
irreducible components of MΓ are just affine spaces, and it is tempting to conjecture
that this always holds. A positive answer would yield insight into the classification
of spherical varieties and the multiplication in their coordinate rings.

Acknowledgements. I thank Stéphanie Cupit-Foutou, Bart Van Steirteghem, Ronan
Terpereau, and the referee for their careful reading and valuable comments.

2. Families of affine schemes with reductive group action

2.1. Algebraic group actions

In this subsection, we briefly review some basic notions about algebraic groups
and their actions; details and proofs of the stated results may be found e.g. in the
notes [20]. We begin by fixing notation and conventions.

Throughout this article, we consider algebraic varieties, algebraic groups, and
schemes over a fixed algebraically closed field k of characteristic zero. Unless explicitly
mentioned, schemes are assumed to be noetherian.
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A variety is a reduced separated scheme of finite type; thus, varieties need not
be irreducible. By a point of such a variety X, we mean a closed point, or equivalently
a k-rational point.

An algebraic group is a variety G equipped with morphisms µG : G×G→ G

(the multiplication), ιG : G → G (the inverse) and with a point eG (the neutral
element) that satisfy the axioms of a group; this translates into the commutativity of
certain diagrams.

Examples of algebraic groups include closed subgroups of the general linear
group GLn consisting of all n× n invertible matrices, where n is a positive integer;
such algebraic groups are called linear. We will only consider linear algebraic groups
in the sequel.

An (algebraic) action of an algebraic group G on a scheme X is a morphism

α : G× X −→ X, (g, x) 7−→ g · x

such that the composite morphism

X
eG×idX−−−−−→ G× X α−−−−→ X

is the identity (i.e., eG acts on X via the identity idX), and the square

(2.1)

G×G× X idG×α−−−−→ G× X

µG×idX
y α

y
G× X α−−−−→ X

commutes (the associativity property of an action).
A scheme equipped with aG-action is called aG-scheme. Given twoG-schemes

X, Y with action morphisms α, β, a morphism f : X→ Y is called equivariant (or a
G-morphism) if the square

G× X α−−−−→ X

idG×f
y f

y
G× Y β−−−−→ Y

commutes. If β is the trivial action, i.e., the projection G× Y → Y, then we say that f
is G-invariant.

An (algebraic, or rational) G-module is a vector space V over k, equipped with
a linear action ofGwhich is algebraic in the following sense: every v ∈ V is contained
in a G-stable finite-dimensional subspace Vv ⊂ V on which G acts algebraically. (We
do not assume that V itself is finite-dimensional). Equivalently, G acts on V via
a representation ρ : G → GL(V) which is a union of finite-dimensional algebraic
subrepresentations.

A G-stable subspaceW of a G-module V is called a G-submodule; V is simple
if it has no non-zero proper submodule. Note that simple modules are finite-
dimensional, and correspond to irreducible representations.
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A G-algebra is an algebra A over k, equipped with an action of G by algebra
automorphisms which also makes it a G-module.

Given a G-scheme X, the algebra O(X) of global sections of the structure sheaf
is equipped with a linear action of G via

(g · f)(x) = f(g−1 · x).

In fact, this action is algebraic and hence O(X) is a G-algebra. The assignment
X 7→ O(X) defines a bijective correspondence between affine G-schemes and G-
algebras.

Each G-algebra of finite type A is generated by a finite-dimensional G-sub-
module V . Hence A is a quotient of the symmetric algebra Sym(V) ∼= O(V∗) by a
G-stable ideal. It follows that every affine G-scheme of finite type is isomorphic to a closed
G-subscheme of a finite-dimensional G-module.

Examples 2.2. (i) Let G := GL1 be the multiplicative group, denoted by Gm. Then
O(G) ∼= k[t, t−1] and the G-modules are exactly the graded vector spaces

(2.3) V =
⊕
n∈Z

Vn

where Gm acts via t ·
∑
n vn =

∑
n t
nvn. In particular, the G-algebras are just the

Z-graded algebras.
(ii) More generally, consider a diagonalizable group G, i.e., a closed subgroup of a
torus (Gm)n. ThenG is uniquely determined by its character group X(G), the set of
homomorphisms χ : G→ Gm equipped with pointwise multiplication. Moreover,
the abelian group X(G) is finitely generated, and the assignment G 7→ X(G) defines
a bijective correspondence between diagonalizable groups and finitely generated
abelian groups. This correspondence is contravariant, and G-modules correspond to
X(G)-graded vector spaces.

Any character of Gm is of the form t 7→ tn for some integer n; this identifies
X(Gm) with Z.

2.2. Reductive groups

In this subsection, we present some basic results on reductive groups, their
representations and invariants; again, we refer to the notes [20] for details and proofs.

A linear algebraic group G is called reductive if every G-module is semi-simple,
i.e., isomorphic to a direct sum of simple G-modules. In view of the characteristic-0
assumption, this is equivalent to the condition that G has no non-trivial closed
normal subgroup isomorphic to the additive group of a finite-dimensional vector
space; this is the group-theoretical notion of reductivity.

Examples of reductive groups include finite groups, diagonalizable groups, and
the classical groups such as GLn and the special linear group SLn (consisting of n×n
matrices of determinant 1).
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Given a reductive group G, we denote by Irr(G) the set of isomorphism classes
of simple G-modules (or of irreducible G-representations). The class of the trivial
G-module k is denoted by 0.

For any G-module V , the map⊕
M∈Irr(G)

HomG(M,V)⊗kM −→ V ,
∑
M

fM ⊗ xM 7−→
∑
M

fM(xM)

is an isomorphism of G-modules, where HomG(M,V) denotes the vector space of
morphisms of G-modules fromM to V , and G acts on the left-hand side via

g ·
∑
M

fM ⊗ xM =
∑
M

fM ⊗ g · xM.

Thus, the dimension of HomG(M,V) is the multiplicity ofM in V (which may be
infinite). This yields the isotypical decomposition

(2.4) V ∼=
⊕

M∈Irr(G)

VM ⊗kM where VM := HomG(M,V).

In particular, V0 is the subspace of G-invariants in V , denoted by VG.
For a G-algebra A, the invariant subspace AG is a subalgebra. Moreover, each

AM is an AG-module called the module of covariants of type M. Denoting by
X = Spec(A) the associated G-scheme, we also have

AM ∼= MorG(X,M∗)

(the set of G-morphisms from X to the dual moduleM∗; note thatM∗ is simple).
Also, we have an isomorphism of AG-G-modules in an obvious sense

(2.5) A ∼=
⊕

M∈Irr(G)

AM ⊗kM.

Example 2.6. Let G be a diagonalizable group with character group Λ. Then G is
reductive and its simple modules are exactly the lines k where G acts via a character
λ ∈ Λ. The decompositions (2.4) and (2.5) give back the Λ-gradings of G-modules
and G-algebras.

Returning to an arbitrary reductive group G, the modules of covariants satisfy
an important finiteness property:

Lemma 2.7. Let A be a G-algebra, finitely generated over a subalgebra R ⊂ AG. Then
the algebra AG is also finitely generated over R. Moreover, the AG-module AM is finitely
generated for anyM ∈ Irr(G).

In the case where R = k, this statement is a version of the classical Hilbert-
Nagata theorem, see e.g. [20, Theorem 1.25 and Lemma 2.1]. The proof given there
adapts readily to our setting, which will be generalized to the setting of families in
Subsection 2.3.
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In particular, for an affine G-scheme of finite type X = Spec(A), the subalgebra
AG is finitely generated and hence corresponds to an affine scheme of finite type
X//G, equipped with a G-invariant morphism

π : X −→ X//G.

In fact, π is universal among all invariant morphisms with source X; thus, π is called
the categorical quotient. Also, given a closed G-subscheme Y ⊂ X, the restriction
π|Y is the categorical quotient of Y, and the image of π|Y is closed in X//G. As a
consequence, π is surjective and each fiber contains a unique closed G-orbit.

We now assumeG to be connected. Then the simpleG-modules may be explicitly
described via highest weight theory that we briefly review. Choose a Borel subgroup
B ⊂ G, i.e., a maximal connected solvable subgroup. Every simple G-module V
contains a unique line of eigenvectors of B, say kv; then v is called a highest weight
vector. The corresponding character λ : B → Gm, such that b · v = λ(b)v for all
b ∈ B, is called the highest weight of V ; it uniquely determines the G-module V up
to isomorphism. We thus write V = V(λ), v = vλ, and identify Irr(G) with a subset
of the character group Λ := X(B): the set Λ+ of dominant weights, which turns out
to be a finitely generated submonoid of the weight lattice Λ. Moreover, V(0) is the
trivial G-module k.

In this setting, the modules of covariants admit an alternative description in
terms of highest weights. To state it, denote by U the unipotent part of B; this is a
closed connected normal subgroup of B, and a maximal unipotent subgroup of G.
Moreover, B is the semi-direct product UT where T ⊂ B is a maximal torus, and Λ is
identified with the character group X(T) via the restriction. Given a G-module V , the
subspace of U-invariants VU is a T -module and hence a direct sum of eigenspaces
VUλ where λ ∈ Λ. Moreover, the map

HomG
(
V(λ),V) −→ VUλ , f 7−→ f(vλ)

is an isomorphism for any λ ∈ Λ+, and VUλ = 0 for any λ /∈ Λ+. As a consequence,
given a G-algebra A, we have isomorphisms

AV(λ)
∼= AUλ

of modules of covariants over

AG = AB = AU0 .

The algebra of U-invariants also satisfies a useful finiteness property (see e.g.
[20, Theorem 2.7]):

Lemma 2.8. With the notation and assumptions of Lemma 2.7, the algebra AU is finitely
generated over R.

This in turn yields a categorical quotient

ψ : X −→ X//U
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for an affine G-scheme of finite type X, where X//U := SpecO(X)U is an affine
T -scheme of finite type. Moreover, for any closed G-subscheme Y ⊂ X, the restriction
ψ|Y is again the categorical quotient of Y (but ψ is generally not surjective).

Also, many properties of X may be read off X//U. For example, an affine G-
scheme X is of finite type (resp. reduced, irreducible, normal) if and only if so is X//U (see
[25, Chapter 18]).

Examples 2.9. (i) If G is a torus, then G = B = T and Λ+ = Λ; each V(λ) is just the
line k where T acts via t · z = λ(t)z.

(ii) Let G = SL2. We may take for B the subgroup of upper triangular matrices with
determinant 1. Then U is the subgroup of upper triangular matrices with diagonal
entries 1, isomorphic to the additive group Ga. Moreover, we may take for T the
subgroup of diagonal matrices with determinant 1, isomorphic to the multiplicative
group Gm. Thus, Λ ∼= Z.

In fact, the simple G-modules are exactly the spaces V(n) of homogeneous
polynomials of degree n in two variables x,y where G acts by linear change of
variables; here n ∈ N ∼= Λ+. A highest weight vector in V(n) is the monomial yn.
Moreover, V(n) is isomorphic to its dual module, and hence to the n-th symmetric
power Symn(k2) where k2 ∼= V(1)∗ ∼= V(1) denotes the standard G-module.

Since G acts transitively on V(1) \ {0}, the categorical quotient V(1)//G is just
a point. One easily shows that the quotient by U is the map

V(1) −→ A1, ax+ by 7−→ a.

Also, the categorical quotient of V(2) by G is given by the discriminant

∆ : V(2) −→ A1, ax2 + 2bxy+ cy2 7−→ ac− b2

and the categorical quotient by U is the map

V(2) −→ A2, ax2 + 2bxy+ cy2 7−→ (a,ac− b2).

For large n, no explicit description of the categorical quotients V(n)//G
and V(n)//U is known, although the corresponding algebras Sym

(
V(n)

)G
and

Sym
(
V(n)

)U
(the invariants and covariants of binary forms of degree n) have been

extensively studied since the mid-19th century.

2.3. Families

In this subsection, we fix a reductive group G and an affine G-scheme of finite
type, X = Spec(A). We now introduce our main objects of interest.

Definition 2.10. A family of closedG-subschemes of X over a scheme S is a closed
subscheme Z ⊂ X× S, stable by the action of G on X× S via g · (x, s) = (g · x, s).

The family Z is flat, if so is the morphism p : Z→ S induced by the projection
p2 : X× S→ S.
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Given a family Z as above, the morphism p is G-invariant; thus, for any k-
rational point s of S, the scheme-theoretic fiber Zs of p at s is a closed G-subscheme
ofX. More generally, an arbitrary point s ∈ S yields a closed subschemeZk(s̄) ⊂ Xk(s̄)
where k(s) denotes the residue field of s, and k(s̄) is an algebraic closure of that field.
The scheme Zk(s̄) is the geometric fiber of Z at s, also denoted by Zs̄; this is a closed
subscheme of Xs̄ equipped with an action of G (viewed as a constant group scheme)
or equivalently of Gs̄ (the group of k(s̄)-rational points of G).

Since X is affine, the data of the family Z is equivalent to that of the sheaf
p∗OZ as a quotient of (p2)∗OX×S = A⊗k OS, where both are viewed as sheaves of
OS-G-algebras. Moreover, asG acts trivially on S, we have a canonical decomposition

(2.11) p∗OZ
∼=

⊕
M∈Irr(G)

FM ⊗kM,

where each sheaf of covariants

(2.12) FM := HomG(M,p∗OZ) = (p∗OZ ⊗kM∗)G

is a sheaf of OS-modules, and (2.11) is an isomorphism of sheaves of OS-G-modules.
Also, p∗OZ is a sheaf of finitely generated OS-algebras, since X is of finite type.

In view of Lemma 2.7, it follows that

F0 = (p∗OZ)
G

is a sheaf of finitely generated OS-algebras as well; moreover, FM is a coherent sheaf
of F0-modules, for anyM ∈ Irr(G). By (2.11), the family Z is flat if and only if each
sheaf of covariants FM is flat.

Definition 2.13. With the preceding notation, the family Z is multiplicity-finite
if the sheaf of OS-modules FM is coherent for anyM ∈ Irr(G); equivalently, F0 is
coherent.

We say that Z is multiplicity-free if each FM is zero or invertible.

Since flatness is equivalent to local freeness for a finitely generated module
over a Noetherian ring, we see that a multiplicity-finite family is flat iff each sheaf of
covariants is locally free of finite rank. When the base S is connected, the ranks of these
sheaves are well-defined and yield a numerical invariant of the family: the Hilbert
function

h = hZ : Irr(G) −→ N, M 7−→ rkOS(FM).

This motivates the following:

Definition 2.14. Given a function h : Irr(G) → N, a flat family of closed sub-
schemes of X with Hilbert function h is a closed subscheme Z ⊂ X× S such that
each sheaf of covariants FM is locally free of rank h(M).

Remarks 2.15. (i) In the case where S = Spec(k), a family is just a closed G-
subscheme Z ⊂ X. Then Z is multiplicity-finite if and only if the quotient Z//G is
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finite; equivalently, Z contains only finitely many closed G-orbits. For example, any
G-orbit closure is multiplicity-finite.

Also, Z is multiplicity-free if and only if theG-module O(Z) has multiplicities 0
or 1. If Z is an irreducible variety, this is equivalent to the condition that Z contains
an open orbit of a Borel subgroup B ⊂ G (see e.g. [20, Lemma 2.12]).

In particular, when G is a torus, say T , an affine irreducible T -variety Z is
multiplicity-free if and only if it contains an open T -orbit. Then each non-zero
eigenspace O(Z)λ is a line, and the set of those λ such that O(Z)λ 6= 0 consists of
those linear combinations n1λ1 + · · · + nrλr, where n1, . . . ,nr are non-negative
integers, and λ1, . . . , λr are the weights of homogeneous generators of the algebra
O(Z). Thus, this set is a finitely generated submonoid of Λ that we denote by Λ+(Z)

and call the weight monoid of Z.
Each affine irreducible multiplicity-free T -variety Z is uniquely determined

by its weight monoid Γ : in fact, the Λ-graded algebra O(Z) is isomorphic to k[Γ ], the
algebra of the monoid Γ over k. Moreover, Z is normal if and only if Γ is saturated,
i.e., equals the intersection of the group that it generates in Λ, with the convex cone
that it generates in Λ ⊗Z R. Under that assumption, Z is called an (affine) toric
variety.

Returning to an affine irreducible G-variety Z, note that Z is multiplicity-free if
and only if so is Z//U. In that case, we have an isomorphism of G-modules

(2.16) O(Z) ∼=
⊕

λ∈Λ+(Z)

V(λ)

where Λ+(Z) := Λ+(Z//U) is again called the weight monoid of Z. In other words,
the Hilbert function of Z is given by

(2.17) h(λ) =

{
1 if λ ∈ Λ+(Z),

0 otherwise.

Also, Z is normal if and only if Λ+(Z) is saturated; then Z is called an (affine)
spherical G-variety. In contrast to the toric case, spherical varieties are not uniquely
determined by their weight monoid, see e.g. Example 2.19(ii).

(ii) A flat familyZ over a connected scheme S is multiplicity-finite (resp. is multiplicity-
free, or has a prescribed Hilbert function h) if and only if so does some geometric
fiber Zs̄. In particular, if some geometric fiber is a spherical variety, then the family
is multiplicity-free.

(iii) Any family of closed G-subschemes Z ⊂ X × S yields a family of closed T -
subschemes Z//U ⊂ X//U× S; moreover, the sheaves of covariants of Z and Z//U

are isomorphic. Thus, Z is flat (multiplicity-finite, multiplicity-free) if and only if so
is Z//U. Also, Z has Hilbert function h if and only if Z//U has Hilbert function h̄
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such that

(2.18) h̄(λ) =

{
h(λ) if λ ∈ Λ+,

0 otherwise.

Examples 2.19. (i) The surface Z of equation xy− z = 0 in A3 is stable under the
action of Gm via t · (x,y, z) = (tx, t−1y, z). The morphism z : Z→ A1 is a flat family
of closed Gm-subschemes of A2 (the affine plane with coordinates x,y). The fibers
over non-zero points of A1 are all isomorphic to Gm; they are exactly the orbits of
points of A2 minus the coordinate axes. In particular, the family has Hilbert function
the constant function 1. The fiber at 0 is the (reduced) union of the coordinate axes.

For the Gm-action on A3 via t · (x,y, z) = (t2x, t−1y, z), the surface W of
equation xy2 = z yields a family with the same fibers at non-zero points, but the
fiber at 0 is non-reduced.

More generally, consider a torus T acting linearly on the affine space V = AN

with pairwise distinct weights. Denote by λ1, . . . , λN the opposites of these weights,
i.e., the weights of the coordinate functions. Also, let v ∈ V be a general point in
the sense that all its coordinates are non-zero. Then the orbit closure

Z := T · v ⊂ V

is an irreducible multiplicity-free variety, and different choices of v yield isomorphic
T -varieties; moreover, all irreducible multiplicity-free T -varieties may be obtained in
this way. The weight monoid of Z is generated by λ1, . . . , λN.

We construct flat families over A1 with general fiber Z as follows. Let the torus
T × Gm act linearly on V × A1 = AN+1 such that the coordinate functions have
weights

(λ1,a1), . . . , (λN,aN), (0,1)

where a1, . . . ,aN are integers, viewed as characters of Gm. Then the orbit closure

Z := (T ×Gm) · (v,1) ⊂ V × A1

may be viewed as a T -variety. The projection p : Z→ A1 is T -invariant, and flat since
Z is an irreducible variety. Moreover, p is trivial over A1 \ {0}; specifically, the map

p−1(A1 \ {0}) −→ Z× (A1 \ {0}), (v, s) 7−→ (s−1v, s)

is a T -equivariant isomorphism of families over A1 \ {0}. In particular, the fibers of p
at non-zero points are all isomorphic to Z, and p is multiplicity-free with Hilbert
function being 1 on the monoid generated by λ1, . . . , λN, and 0 elsewhere. On the
other hand, the special fiber Z0 is non-empty if and only if p (viewed as a regular
function on Z) is not invertible; this translates into the condition that the convex
cone generated by (λ1,a1), . . . , (λN,aN) does not contain (0,−1).

One can show that the preceding construction yields all one-parameter families
with generic fiber a multiplicity-free T -variety. Also, one can show that the special
fiber is reducible unless the whole family is trivial; this contrasts with our next
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example, where all fibers are irreducible varieties and the special fiber is singular
while all others are smooth.

(ii) Let G = SL2 and ∆ : V(2)→ A1 the discriminant as in Example 2.9(ii). Then the
graph

Z = {(f, s) ∈ V(2)× A1 | ∆(f) = s}

is a flat family of G-stable closed subschemes of V(2). The fibers at non-zero closed
points are exactly the G-orbits of non-degenerate quadratic forms, while the fiber at
0 consists of two orbits: the squares of non-zero linear forms, and the origin. Since
Z ∼= V(2) as G-varieties, the Hilbert function of Z is given by

h2(n) =

{
1 if n is even,

0 if n is odd.

Thus, Z is multiplicity-free. Moreover, the family Z//U is trivial with fiber A1, as
follows from the description of V(2)//U in Example 2.9(ii). In particular, each fiber
Zs is a spherical variety.

Next, consider the quotient W of V(2) by the involution σ : f 7→ −f. Then W is
the affine G-variety associated with the subalgebra of O

(
V(2)

)
∼= Sym

(
V(2)

)
consist-

ing of even polynomial functions, i.e., the subalgebra generated by Sym2(V(2)) ∼=

V(4)⊕ V(0). In other words,

W ⊂ V(4)× A1

and the resulting projection q : W→ A1 may be identified with the σ-invariant map
V(2) → A1 given by the discriminant. It follows that q is a flat family of G-stable
closed subschemes of V(4), with Hilbert function given by

h4(n) =

{
1 if n is a multiple of 4,

0 otherwise.

In particular,W is multiplicity-free. Moreover, its fibers at non-zero closed points are
exactly the orbits G · f2 ⊂ V(4), where f is a non-degenerate quadratic form, while
the fiber at 0 consists of two orbits: the fourth powers of non-zero linear forms, and
the origin. The family W//U is again trivial with fiber A1, so that the fibers of W are
spherical varieties.

We will show that both families just constructed are universal (in the sense of
the next subsection), and that no family with similar properties exists in V(n) for
n 6= 2,4. For this, we will apply the various techniques that we successively introduce;
see Examples 2.23(ii), 3.12(ii), 3.18(ii) and 3.24(ii).

2.4. The universal family

In the setting of the previous subsection, there is a natural construction of
pull-back for families of G-stable subschemes of X: given such a family Z ⊂ X× S
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and a morphism of schemes f : S ′ → S, we can form the cartesian square

Z ′ −−−−→ X× S ′y idX×f
y

Z −−−−→ X× S
where the horizontal arrows are inclusions. This yields a family of closed G-sub-
schemes of X over S ′: the pull-back of Z under f, which may also be defined via the
cartesian square

Z ′ −−−−→ S ′y f

y
Z

p−−−−→ S.
Note that Z ′ is flat over S ′ whenever Z is flat over S; moreover, multiplicity-finiteness
and -freeness are preserved under pull-back, as well as the Hilbert function.

We may now state our main result, which asserts the existence of a universal
family:

Theorem 2.20. Given a reductive group G, an affine G-scheme of finite type X and
a function h : Irr(G) → N, there exists a family of closed G-subschemes with Hilbert
function h,

(2.21) UnivGh (X) ⊂ X×HilbGh (X),

such that any family Z ⊂ X× S of closed G-subschemes with Hilbert function h is obtained
from (2.21) by pull-back under a unique morphism f : S → HilbGh (X). Moreover, the
scheme HilbGh (X) is quasi-projective (in particular, of finite type).

The family (2.21) is of course uniquely determined up to a unique isomor-
phism by its universal property. The scheme HilbGh (X) is called the invariant Hilbert
scheme associated with the affine G-scheme X and the function h.

Theorem 2.20 may be reformulated as asserting that the Hilbert functor
HilbGh (X) that associates with any scheme S, the set of flat families Z ⊂ X × S with
Hilbert function h, is represented by the quasi-projective scheme HilbGh (X).

By taking S = Spec(R) where R is an arbitrary algebra, this yields an algebraic
description of the R-points of the invariant Hilbert scheme: these are those G-stable
ideals I ⊂ A⊗k R such that each R-module of covariants(

(R⊗k A)/I
)
M

= (R⊗k A)M/IM

is locally free of rank h(M).
In particular, the k-rational points of HilbGh (X) (which are the same as its closed

points, since this scheme is of finite type) are those G-stable ideals I of A = O(X)

such that each simpleG-moduleM has multiplicity h(M) in the quotientA/I. These
points may also be identified with the closed G-stable subschemes Z ⊂ X with
Hilbert function h.
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Remarks 2.22. (i) The case of the trivial group G is already quite substantial. There,
X is just an affine scheme of finite type, and a family with finite multiplicities is
exactly a closed subscheme Z ⊂ X × S such that the projection p : Z → S is finite.
Moreover, a Hilbert function is just a non-negative integer n. In that case, Hilbn(X)
is the punctual Hilbert scheme (also known as the Hilbert scheme of points) that
parametrizes the closed subschemes of length n of X. In fact, Hilbn(X) exists more
generally for any quasi-projective scheme X over a field of arbitrary characteristic.

(ii) If G is the multiplicative group Gm, we know that X corresponds to a Z-graded
algebra of finite type A. For a Hilbert function h : Z → N, the scheme HilbGm

h (X)

parametrizes those graded ideals I ⊂ A such that the vector space (A/I)n has dimen-
sion h(n) for all n ∈ Z.

Of special interest is the case where X is the affine space AN on which Gm acts
via scalar multiplication, i.e., A is a polynomial ring inN indeterminates of weight 1.
Then a necessary condition for the existence of such ideals I is that h(n) = P(n) for all
n� 0, where P(t) is a (uniquely determined) polynomial: the Hilbert polynomial
of the graded algebraA/I. In that case, we also have theHilbert schemeHilbP(PN−1)

that parametrizes closed subschemes of the projective (N − 1)-space with Hilbert
polynomial P, or equivalently, graded ideals I ⊂ A such that dim(A/I)n = P(n) for
all n� 0. This yields a morphism

HilbGm
h (AN) −→ HilbP(PN−1)

which is in fact an isomorphism for an appropriate choice of the Hilbert function h,
associated to a given Hilbert polynomial P (see [26, Lemma 4.1]).

(iii) More generally, if G is diagonalizable with character group Λ, and X is a G-
module of finite dimension N, then A is a polynomial ring on homogeneous gener-
ators with weights λ1, . . . , λN ∈ Λ. Moreover, HilbGh (X) parametrizes those Λ-graded
ideals I ⊂ A such that each vector space (A/I)λ has a prescribed dimension h(λ).
In that case, HilbGh (X) is the multigraded Hilbert scheme of [26]. As shown there,
that scheme exists over any base ring, and no Noetherian assumption is needed in
the definition of the corresponding functor.

Examples 2.23. (i) Consider a torus T acting linearly on the affine space AN via
pairwise distinct weights and take for h the Hilbert function of a general T -orbit
closure. Denoting by λ1, . . . , λN the weights of the coordinate functions on AN and
by Γ the submonoid of Λ generated by these weights, we have

(2.24) h(λ) =

{
1 if λ ∈ Γ ,
0 otherwise.

The associated invariant Hilbert scheme HilbTh(AN) is called the toric Hilbert
scheme; it was constructed by Peeva and Stillman (see [49]) prior to themore general
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construction of multigraded Hilbert schemes. Since HilbTh(AN) only depends on T
and λ = (λ1, . . . , λN), we will denote it by HilbT (λ).

(ii) Let G = SL2 and take for X the simple G-module V(n). Then X contains a
distinguished closed G-stable subvariety Z, consisting of the n-th powers of linear
forms. In other words, Z is the affine cone over the image of the n-uple embedding of
P1 in Pn = P

(
V(n)

)
. Since that image is the unique closed G-orbit, Z is the smallest

non-zero closed G-stable subcone of V(n). Also, Z is a normal surface with singular
locus the origin if n > 2, while Z = V(1) if n = 1. Moreover, the Hilbert function of
Z is given by

(2.25) hn(m) =

{
1 ifm is a multiple of n,

0 otherwise.

As we will show, the corresponding invariant Hilbert scheme is the affine line if
n = 2 or 4; in both cases, the universal family is that constructed in Example 2.19.
For all other values of n, the invariant Hilbert scheme consists of the (reduced)
point Z.

(iii) More generally, letG be an arbitrary connected reductive group, V = V(λ) a non-
trivial simple G-module, and v = vλ a highest weight vector. Then the corresponding
point [v] of the projective space P(V) is the unique B-fixed point. Hence G · [v] is the
unique closed G-orbit in P(V), by Borel’s fixed point theorem. Thus,

Z := G · v = G · v ∪ {0}

is the smallest non-zero G-stable cone in V : the cone of highest weight vectors.
Moreover, we have an isomorphism of graded G-modules

(2.26) O(Z) ∼=

∞⊕
n=0

V(nλ)∗

where V(nλ)∗ has degree n. Thus, denoting by λ∗ the highest weight of the simple G-
module V(λ)∗, we see that the T -algebra O(Z)U is a polynomial ring in one variable
of weight λ∗. In particular, Z//U is normal, and hence Z is a spherical variety. Its
Hilbert function is given by

hλ(µ) =

{
1 if µ is a multiple of λ∗,

0 otherwise.

Again, it turns out that the corresponding invariant Hilbert scheme is the affine line
for certain dominant weights λ, and is trivial (i.e., consists of the reduced point Z)
for all other weights. This result is due to Jansou (see [29, Théorème 1.1]), who also
constructed the universal family in the non-trivial cases, as follows.

Assume that the G-module V(λ) ⊕ V(0) ∼= V(λ) × A1 carries a linear action
of a connected reductive group G̃ ⊃ G. Assume moreover that this G̃-module is
simple, say V(λ̃), and that the associated cone of highest vectors Z̃ ⊂ V(λ̃) satisfies
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Z = Z̃ ∩ V(λ) as schemes. Then the projection p : Z̃ → A1 is a flat family of G-
subschemes of V(λ) with fiber Z at 0, and hence has Hilbert function hλ. By [29,
Section 2.2], this is in fact the universal family; moreover, all non-trivial cases are
obtained from this construction.

One easily shows that the projectivization Ỹ := G̃ · [v], the closed G̃-orbit in
P
(
V(λ̃)

)
, consists of twoG-orbits: the closed orbit Y := G· [v], a hyperplane section of

Ỹ, and its (open affine) complement. Moreover, the projective data Y ⊂ Ỹ uniquely
determine the affine data Z ⊂ Z̃ ⊂ V(λ̃), since the space of global sections of the
ample divisor Y on Ỹ is V(λ̃)∗.

In fact, the non-trivial cases correspond bijectively to the smooth projective
varieties where a connected algebraic group acts with two orbits, the closed one
being an ample divisor (see [loc. cit., Section 2], based on Akhiezer’s classification
of certain varieties with two orbits in [1]).

Returning to the case where G = SL2, the universal family for n = 2 is obtained
by taking G̃ = SL2 × SL2 where SL2 is embedded as the diagonal. Moreover,

V(λ̃) = V(1,1) = V(1)⊗k V(1) ∼= V(2)⊕ V(0)

where the latter isomorphism is as SL2-modules; also, Y = P1 is the diagonal in
Ỹ = P1 × P1.

For n = 4, one replaces SL2 with its quotient PSL2 = PGL2 (that we will keep
denoting by G for simplicity), and takes G̃ = SL3 where G is embedded via its
representation in the 3-dimensional space V(2). Moreover, V(λ̃) is the symmetric
square of the standard representation k3 of G̃, so that

V(λ̃) ∼= Sym2(V(2)) ∼= V(4)⊕ V(0)

as G-modules. Here Y = P1 is embedded in Ỹ ∼= P2 as a conic.

(iv) As another generalization of (ii) above, take again G = SL2 and X = V(n).
Assume that n = 2m is even and consider the function h = h4 if m is even, and
h = h2 if m is odd. The invariant Hilbert scheme HilbGh (X) has been studied in
detail by Budmiger in his thesis [21]. A closed point of that scheme is the (closed)
orbit G · xmym, which in fact lies in an irreducible component whose underlying
reduced scheme is isomorphic to A1. But HilbGh (X) turns out to be non-reduced for
m = 6, and reducible form = 8; see [21, Section III.1].

3. Basic properties

3.1. Existence

In this subsection, we show how to deduce the existence of the invariant Hilbert
scheme (Theorem 2.20) from that of the multigraded Hilbert scheme, proved in [26].
We begin with three intermediate results which are of some independent interest.
The first one will allow us to enlarge the acting group G. To state it, we need some
preliminaries on induced schemes.
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Consider an inclusion of reductive groupsG ⊂ G̃; then the homogeneous space
G̃/G is an affine G̃-variety equipped with a base point, the image of eG̃. Let X be an
affine G-scheme of finite type. Then there exists an affine G̃-scheme of finite type X̃,
equipped with a G̃-morphism

f : X̃ −→ G̃/G

such that the fiber of f at the base point is isomorphic to X as a G-scheme. Moreover,
X̃ is the quotient of G̃× X by the action of G via

g · (g̃, x) := (g̃g−1,g · x)

and this identifies f with the morphism obtained from the projection G̃× X→ G̃.
(These assertions follow e.g. from descent theory; see [45, Proposition 7.1] for a
more general result).

The scheme X̃ satisfies the following property, analogous to Frobenius reciprocity
relating induction and restriction in representation theory: For any G̃-scheme Ỹ, we
have an isomorphism

MorG̃(X̃, Ỹ) ∼= MorG(X, Ỹ)

that assigns to any f : X̃→ Ỹ its restriction to X. The inverse isomorphism assigns
to any ϕ : X→ Ỹ the morphism G̃× X→ Ỹ, (g̃, x) 7→ ϕ(g̃ · x) which is G-invariant
and hence descends to a morphism X̃ → Ỹ. Thus, X̃ is called an induced scheme;
we denote it by G̃×G X.

Taking for Ỹ a G̃-module Ṽ , we obtain an isomorphism

(3.1) HomG̃
(
Ṽ ,O(X̃)

)
∼= HomG

(
Ṽ ,O(X)

)
.

Also, we have isomorphisms of G̃-modules

O(X̃) ∼= O(G̃× X)G ∼=
(
O(G̃)⊗k O(X)

)G ∼= IndG̃G
(
O(X)

)
where IndG̃G denotes the induction functor from G-modules to G̃-modules.

We may now state our first reduction result:

Lemma 3.2. Let G ⊂ G̃ be an inclusion of reductive groups, X an affine G-scheme of
finite type, and X̃ := G̃×G X. Let Z ⊂ X× S be a flat family of closed G-stable subschemes
with Hilbert function h. Then

Z̃ := G̃×G Z ⊂ X̃× S

is a flat family of closed G̃-stable subschemes, having a Hilbert function h̃ that depends only
on h. Moreover, if HilbG̃

h̃
(X̃) is represented by a scheme H, then HilbGh (X) is represented

by a union of connected components of H.

Proof. Consider a simple G̃-module M̃ and the associated sheaf of covariants

FM̃ = HomG̃(M̃, p̃∗OG̃×GZ)
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where p̃ : G̃×G Z→ S denotes the projection. By using (3.1), this yields

FM̃
∼= HomG(M̃,p∗OZ).

Thus, the sheaf of OS-modules FM̃ is locally free of rank∑
M∈Irr(G)

dimHomG(M, M̃) h(M) =: h̃(M̃).

It follows that G̃ ×G Z is flat with Hilbert function h̃ just defined. This shows
the first assertion, and defines a morphism of functors HilbGh (X) → HilbG̃

h̃
(X̃),

Z 7→ Z̃ := G̃×G Z.
Next, consider a family of closed G̃-stable subschemes Z̃ ⊂ X̃ × S. Then the

composite morphism

Z̃
q̃−−−−→ X̃

f−−−−→ G̃/G

is G̃-equivariant. It follows that Z̃ = G̃×GZ for someG-stable subschemeZ ⊂ X×S. If
Z̃ is flat over S, then by the preceding step, the sheaf ofOS-modules HomG(M̃,p∗OZ)

is locally free for any simple G̃-module M̃. But every simple G-module M is a
submodule of some simple G̃-module M̃ (indeed,M is a quotient of IndG̃G(M), and
hence a quotient of a simple G̃-submodule). It follows that the sheaf of OS-modules
HomG(M,p∗OZ) is a direct factor of HomG(M̃,p∗OZ) and hence is locally free of
finite rank. Thus, Z is flat and multiplicity-finite over S; hence Z has a Hilbert
function h ′ such that h̃ ′ = h̃, if S is connected. When h ′ = h, the assignments Z 7→ Z̃

and Z̃ 7→ Z are mutually inverse. Taking for S a connected component of H and for
Z̃ the pull-back of the universal family, we obtain the final assertion. �

By the preceding lemma, we may replace G with GLn; in particular, we may
assume that G is connected. Our second result, a variant of [3, Theorem 1.7], will
allow us to replace G with a torus. As in Subsection 2.2, we choose a Borel subgroup
B ⊂ G with unipotent part U, and a maximal torus T ⊂ B. We consider an affine
G-scheme X = Spec(A) and a function h : Λ+ → N; we extend h to a function
h̄ : Λ→ N with values 0 outside Λ+, as in (2.18).

Lemma 3.3. With the preceding notation, assume that HilbT
h̄
(X//U) is represented by a

scheme H. Then HilbGh (X) is represented by a closed subscheme of H.

Proof. We closely follow the argument of [3, Theorem 1.7]. Given a scheme S and
a flat family Z ⊂ X× S of closed G-stable subschemes with Hilbert function h, we
obtain a family Z//U ⊂ X//U × S of closed T -stable subschemes which is again
flat and has Hilbert function h̄, by Remark 2.15(iii). Observe that Z//U uniquely
determines Z: indeed, Z corresponds to a G-stable sheaf of ideals

I ⊂ A⊗k OS
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such that each quotient (A⊗k OS)Uλ /IUλ is locally free of rank h̄(λ). Moreover, Z//U
corresponds to the T -stable sheaf of ideals

IU ⊂ AU ⊗k OS

which generates I as a sheaf of OS-G-modules.
We now express the condition for a given T -stable sheaf of ideals

J ⊂ AU ⊗k OS

such that each quotient (A⊗k OS)Uλ /Jλ is locally free of rank h̄(λ), to equal IU for
some G-stable sheaf of ideals I as above. This is equivalent to the condition that the
OS-G-module

I := 〈G · J〉 ⊂ A⊗k OS
generated by J, is a sheaf of ideals, i.e., I is stable under multiplication by A. By
highest weight theory, this means that

(I ·A)U ⊂ J.

We will translate the latter condition into the vanishing of certain morphisms of
locally free sheaves over S, arising from the universal family of H via the classifying
morphism

f : S −→ H.

For this, consider three dominant weights λ, µ, ν and a copy of the simple G-module
V(ν) in V(λ)⊗k V(µ), with highest weight vector

v ∈
(
V(λ)⊗k V(µ)

)U
ν
.

We may write

v =
∑
i

ci(gi · vλ)⊗ (hi · vµ),

a finite sum where ci ∈ k and gi,hi ∈ G. This defines a morphism of sheaves of
OS-modules

AUλ ⊗k Jµ −→ AUν ⊗k OS, a⊗ b 7−→
∑
i

ci(gi · a)(hi · b).

Composing with the quotient by Jν yields a morphism of sheaves of OS-modules,

Fv : A
U
λ ⊗k Jµ −→ (AUν ⊗k OS)/Jν.

Our condition is the vanishing of these morphisms Fv for all triples (λ,µ,ν) and all
v as above. Now (AUν ⊗k OS)/Jν and Jµ are the pull-backs under f of the analogous
locally free sheaves onH. This shows that the Hilbert functorHilbGh (X) is represented
by the closed subscheme of H obtained as the intersection of the zero loci of the Fv.

�

Our final reduction step will allow us to enlarge X:
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Lemma 3.4. Let X be a closed G-subscheme of an affine G-scheme Y of finite type. If
HilbGh (Y) is represented by a schemeH, thenHilbGh (X) is represented by a closed subscheme
of H.

Proof. Let X = Spec(A) and Y = Spec(B), so that we have an exact sequence

0 −→ I −→ B −→ A −→ 0

where I is a G-stable ideal of B. For anyM ∈ Irr(G), this yields an exact sequence for
modules of covariants over BG:

0 −→ IM −→ BM −→ AM −→ 0.

Next, consider a scheme S and a flat family p : Z→ S of closed G-stable subschemes
of Y, with Hilbert function h. Then each associated sheaf of covariants FM is a
locally free quotient of BM ⊗k OS, of rank h(M); this defines a linear map qM :

BM → H0(S,FM). Moreover, Z is contained in X × S if and only if the image of
I ⊗k OS in p∗OZ is zero; equivalently, qM(IM) = 0 for allM ∈ Irr(G). Taking for
p the universal family of H, it follows that the invariant Hilbert functor HilbGh (X)
is represented by the closed subscheme of H, intersection of the zero loci of the
subspaces qM(IM) ⊂ Γ

(
HilbGh (Y),FM

)
for allM ∈ Irr(G). �

Summarizing, we may reduce to the case where G is a maximal torus of GLn by
combining Lemmas 3.2 and 3.3, and then to the case where X is a finite-dimensional
G-module by Lemma 3.4. Then the invariant Hilbert scheme is exactly the multi-
graded one, as noted in Remark 2.22(iii).

Remarks 3.5. (i) The proof of Lemma 3.3 actually shows that the invariant Hilbert
functor HilbGh (X) is a closed subfunctor of HilbTh(X//U). Likewise, in the setting
of Lemma 3.2 (resp. of Lemma 3.4), HilbGh (X) is a closed subfunctor of HilbG̃

h̃
(X̃)

(resp. of HilbGh (Y)).

(ii) The arguments of this subsection establish the existence of the invariant Hilbert
scheme over any field of characteristic 0. Indeed, highest weight theory holds for
GLn in that setting, whereas it fails for non-split reductive groups.

3.2. Zariski tangent space

In this subsection, we consider a reductive group G, an affine G-scheme of
finite type X = Spec(A), and a function h : Irr(G)→ N. We study the Zariski tangent
space TZHilbGh (X) to the invariant Hilbert scheme at an arbitrary closed point Z,
i.e., at a closed G-stable subscheme of X with Hilbert function h. As a first step, we
obtain:

Proposition 3.6. With the preceding notation, we have

(3.7) TZHilbGh (X) = HomGA(I,A/I) = HomGO(Z)

(
I/I2,O(Z)

)
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where I ⊂ A denotes the ideal of Z, and HomGA stands for the space of A-linear, G-
equivariant maps.

Indeed, HomA(I,A/I) parametrizes the first-order deformations of Z in X,
i.e., those closed subschemes

Z ⊂ X× Spec k[ε]

(where ε2 = 0) that are flat over Spec k[ε] and satisfy Zs = Z where s denotes the
closed point of Spec k[ε]; see e.g. [54, Section 3.2]). The subspace HomGA(I,A/I)
parametrizes the G-stable deformations.

Example 3.8. Let G = SL2 and X := rV(2) (the direct sum of r copies of V(2)),
where r is a positive integer. We consider the invariant Hilbert scheme HilbGh (X),
where h = h2 is as defined in (2.25), and show that the Zariski tangent space at any
closed point Z has dimension r.

Indeed, the r projections p1, . . . ,pr : Z → V(2) are all proportional, since
h2(2) = 1. Thus, we may assume that Z is contained in the first copy of V(2), for an
appropriate choice of projections. Then the condition that h2(0) = 1 implies that
Z is contained in the scheme-theoretic fiber of the discriminant ∆ at some scalar t.
Since that fiber has also Hilbert function h2, we see that equality holds: the ideal of
Z satisfies

I =
(
∆(p1) − t,p2, · · · ,pr

)
.

In particular, Z is a complete intersection in X, and the O(Z)-G-module I/I2 is freely
generated by the images of ∆(p1) − t,p2, . . . ,pr. This yields an isomorphism of
O(Z)-G-modules

I/I2 ∼= O(Z)⊗k
(
V(0)⊕ (r− 1)V(2)

)
.

As a consequence,

HomGO(Z)

(
I/I2,O(Z)

)
∼= HomG

(
V(0)⊕ (r− 1)V(2),O(Z)

)
has dimension h2(0) + (r − 1)h2(2) = r. Together with (3.7), this implies the
statement.

In fact, HilbGh (X) is a smooth irreducible variety of dimension r, as we will see
in Example 3.18(iv). Specifically, HilbGh (X) is the total space of the line bundle of
degree −2 on Pr−1, see Example 3.24(iv).

The isomorphism (3.7) is the starting point of a local analysis of the invariant
Hilbert scheme, in relation to deformation theory (for the latter, see [54]). We will
present a basic and very useful result in that direction; it relies on the following:

Lemma 3.9. Let M be a coherent sheaf on an affine scheme Z, and M = H0(Z,M)

the associated finitely generated module over R := O(Z). Let Z0 ⊂ Z be a dense open
subscheme and denote by ι : Z0 → Z the inclusion map. Then the pull-back

ι∗ : HomR(M,R) = HomZ(M,OZ) −→ HomZ0(M|Z0 ,OZ0)
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is injective.
If Z is a normal irreducible variety and the complement Z \ Z0 has codimension > 2

in Z, then ι∗ is an isomorphism.

Proof. Choose a presentation of the R-moduleM,

Rm
A−−−−→ Rn −−−−→ M −−−−→ 0,

where A is a matrix with entries in R. This yields an exact sequence of R-modules

0 −−−−→ HomR(M,R) −−−−→ Rn
B−−−−→ Rm

where B denotes the transpose of A. In other words, HomR(M,R) consists of those
(f1, . . . , fn) ∈ Rn that are killed by B. This implies both assertions, since ι∗ : R =

O(Z)→ O(Z0) is injective, and is an isomorphism under the additional assumptions.
�

We may now obtain a more concrete description of the Zariski tangent space at
a G-orbit closure:

Proposition 3.10. Let G be a reductive group, V a finite-dimensional G-module, and v a
point of V. Denote by Z ⊂ V the closure of the orbit G · v and by h the Hilbert function of
O(Z). Let Gv ⊂ G be the isotropy group of v, and g the Lie algebra of G. Then

(3.11) TZHilbGh (V) ↪→
(
V/g · v

)Gv
where Gv acts on V/g · v via its linear action on V which stabilizes the subspace g · v =
Tv(G · v).

Moreover, equality holds in (3.11) if Z is normal and the boundary Z \ G · v has
codimension > 2 in Z.

Proof. We apply Proposition 3.6 and Lemma 3.9 by takingM = I/I2 and Z0 = G · v.
This yields an injection of TZHilbGh (V) into

W := HomGZ0

(
(I/I2)|Z0 ,OZ0

)
,

where I denotes the ideal sheaf of Z in V . Moreover, TZHilbGh (V) = W under the
additional assumptions. Since Z0 is a smooth subvariety of the smooth irreducible
variety V , the conormal sheaf (I/I2)|Z0 is locally free. Denoting the dual (normal)
sheaf by NZ0/V , we have

W = H0(Z0,NZ0/V )
G.

But NZ0/V is the sheaf of local sections of the normal bundle, and the total space
of that bundle is the G-variety G ×Gv NZ0/V ,v equipped with the projection to
G/Gv = G · v. Moreover, we have isomorphisms of Gv-modules

NZ0/V ,v
∼= Tv(V)/Tv(G · v) ∼= V/g · v.

It follows that

H0(Z0,NZ0/V )
G ∼=

(
O(G/Gv)⊗k NZ0/V ,v

)G ∼= HomG(G/Gv,NZ0/V ,v) ∼= NGv
Z0/V ,v.
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This implies our assertions. �

We refer to [3, Section 1.4] for further developments along these lines, includ-
ing a relation to (non-embedded) first-order deformations, and to [48, Section 3]
for generalizations where the boundary may have irreducible components of codi-
mension 1. The obstruction space for G-invariant deformations is considered in [23,
Section 3.5].

Examples 3.12. (i) Let λ = (λ1, . . . , λN) be a list of pairwise distinct weights of
a torus T , and HilbT (λ) the associated toric Hilbert scheme as in Example 2.23(i).
Let Z = T · v where v is a general point of V = AN (i.e., all of its coordinates are
non-zero). Then the stabilizer Tv is the kernel of the homomorphism

(3.13) λ : T −→ (Gm)N, t 7−→
(
λ1(t), . . . , λN(t)

)
and hence acts trivially on V . Thus, the preceding proposition just yields an inclusion

ι : TZHilbT (λ) ↪→ V/t · v

where t denotes the Lie algebra of T .
In fact, ι is an isomorphism. Indeed, moving v among the general points defines a

family p : Z→ (Gm)N of T -orbit closures in V , and hence a morphism f : (Gm)N →
HilbT (λ). Moreover, the differential of f at v composed with ι yields the quotient
map V → V/t · v; hence ι is surjective. (See Example 3.18(i) for another version of
this argument, based on the natural action of (Gm)N on HilbT (λ).)

(ii) As in Example 2.23(ii), let G = SL2, X = V(n) and Z the variety of n-th
powers of linear maps. Then Z = G · v = G · v ∪ {0}, where v := yn is a highest
weight vector; moreover, Z is a normal surface. Thus, we may apply the preceding
proposition to determine TZHilbGh

(
V(n)

)
, where h = hn is the function (2.25).

The stabilizer Gyn is the semi-direct product of the additive group U (acting
via x 7→ x+ ty, y 7→ y) with the group µn of n-th roots of unity acting via x 7→ ζx,
y 7→ ζ−1y. Also, g · v is spanned by the monomials yn and xyn−1, and V/g · v has
basis the images of the remaining monomials xn, xn−1y, . . . , x2yn−2. It follows that
(V/g · v)U is spanned by the image of x2yn−2; the latter is fixed by µn if and only if
n = 2 or n = 4. We thus obtain:

TZHilbGh (V) =

{
k if n = 2 or 4,

0 otherwise.

(iii) More generally, let G be an arbitrary connected reductive group, V = V(λ) a
simple G-module of dimension > 2, v = vλ a highest weight vector, and Z = G · v as
in Example 2.23(iii). Then the stabilizer of the highest weight line [v] is a parabolic
subgroup P ⊃ B, and the character λ of B extends to P; moreover, Gv is the kernel
of that extended character. Also, Z is normal and its boundary (the origin) has
codimension > 2. Thus, Proposition 3.10 still applies to this situation. Combined
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with arguments of combinatorial representation theory, it yields that TZHilbGh (V) = 0
unless λ belongs to an explicit (and rather small) list of dominant weights; in that
case, TZHilbGh (V) = k (see [29, Section 1.3]).

3.3. Action of equivariant automorphism groups

As in the previous subsection, we fix an affine G-scheme of finite type X and
a function h : Irr(G)→ N. We obtain a natural equivariance property of the corre-
sponding invariant Hilbert scheme.

Proposition 3.14. Let H be an algebraic group, and β : H × X → X an action by
G-automorphisms. Then β induces an H-action on HilbGh (X) that stabilizes the universal
family UnivGh (X) ⊂ X×HilbGh (X).

Proof. Given a flat family of G-stable subschemes Z ⊂ X× S with Hilbert function
h, we construct a flat family of G-stable subschemes

W ⊂ H× X× S

with the same Hilbert function, whereG acts onH×X×S via g ·(h, x, s) = (h,g ·x, s).
For this, form the cartesian square

(3.15)

W −−−−→ H× X× Sy β×idS
y

Z −−−−→ X× S.
Then W is a closed subscheme of H× X× S, stable under the given G-action since β
is G-equivariant. Moreover, the map

H× X −→ H× X, (h, x) 7−→ (h,h · x)

is an isomorphism; thus, the square

(3.16)

H× X× S −−−−→ H× S

β×idS
y y

X× S −−−−→ S

(where the non-labeled arrows are the projections) is cartesian. By composing (3.15)
and (3.16), we obtain a cartesian square

W −−−−→ H× Sy y
Z −−−−→ S

i.e., an isomorphism
W ∼= (H× S)×S Z ∼= H× Z

where the morphism H× Z→W is given by (h, z) 7→ β(h−1, z). It follows that W is
flat over H× S with Hilbert function h.
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Applying this construction to Z = UnivGh (X) and S = HilbGh (X) yields a flat
family W with Hilbert function h and base H×HilbGh (X), and hence a morphism
of schemes

ϕ : H×HilbGh (X) −→ HilbGh (X)

such that W is the pull-back of the universal family. Since the composite morphism

X
eH×idX−−−−−→ H× X β−−−−→ X

is the identity, it follows that the same holds for the composite

HilbGh (X)
eH×idHilbG

h
(X)

−−−−−−−−−→ H×HilbGh (X)
ϕ−−−−→ HilbGh (X).

Likewise, ϕ satisfies the associativity property (2.1). Thus, ϕ is an H-action on
HilbGh (X).

To show that the induced H-action on X × HilbGh (X) stabilizes the closed
subscheme UnivGh (X), note that W ⊂ H × X × HilbGh (X) is the closed subscheme
defined by

(
(β(h−1, x), s

)
∈ UnivGh (X) with an obvious notation (as follows from

the cartesian square (3.15)). ButW is also defined by
(
x,ϕ(h, s)

)
∈ UnivGh (X) (since

it is the pull-back of UnivGh (X)). This yields the desired statement. �

In the case where X is a finite-dimensional G-module, say V , a natural choice
for H is the automorphism group of the G-module V , i.e., the centralizer of G in
GL(V); we denote that group by GL(V)G. To describe it, consider the isotypical
decomposition

(3.17) V ∼= m1V(λ1)⊕ · · · ⊕mrV(λr),

where λ1, . . . , λr are pairwise distinct dominant weights, and the multiplicities
m1, . . . ,mr are positive integers. By Schur’s lemma, GL(V)G preserves each iso-
typical componentmiV(λi) ∼= kmi ⊗k V(λi) and acts there via a homomorphism to
GLmi . It follows that

H ∼= GLm1 × · · · ×GLmr .

In particular, the center of GL(V)G is a torus (Gm)r acting on V via

(t1, . . . , tr) · (v1, . . . , vr) = (t1v1, . . . , trvr) where vi ∈ miV(λi).

Examples 3.18. (i) For a torus T acting linearly on V = AN via pairwise distinct
weights λ1, . . . , λN, the group GL(V)T is just the diagonal torus (Gm)N. In particular,
this yields an action of (Gm)N on the toric Hilbert scheme HilbT (λ) where λ =

(λ1, . . . , λN). The stabilizer of a general orbit closure Z = T · v is the image of the
homomorphism λ : T → (Gm)N (3.13) with kernel Tv. Thus, the orbit (Gm)N · Z is
a smooth subvariety of HilbT (λ), of dimension

N− dim λ(T) = N− dim(T) + dim(Tv) = dim(V/t · v).

Since dim TZHilbT (λ) 6 dim(V/t · v) by Example 3.12(i), it follows that equality
holds. We conclude that the orbit (Gm)N · Z is open in HilbT (λ).
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As a consequence, the closure of that orbit is an irreducible component of
the toric Hilbert scheme, equipped with its reduced subscheme structure: the main
component, also called the coherent component. Its points are the general T -orbit
closures and their flat limits as closed subschemes of AN. The normalization of
the main component is a quasi-projective toric variety under the quotient torus
(Gm)N/λ(T).

In particular, the main component is a point if and only if the homomorphism
λ is surjective, i.e., the weights λ1, . . . , λN are linearly independent. In that case, one
easily sees that the whole toric Hilbert scheme is a (reduced) point.

(ii) The automorphism group of the simple SL2-module V(n) is just Gm acting by
scalar multiplication. For the induced action on the invariant Hilbert scheme, a
closed point is fixed if and only if its ideal is homogeneous. If the Hilbert function
is the function hn defined in (2.25), then there is a unique such ideal I: that of the
variety of n-th powers. Indeed, we have an isomorphism of SL2-modules

O
(
V(n)

)
/I ∼= Sym

(
V(n)

)
/I ∼=

∞⊕
m=0

V(mn).

Moreover, the gradedG-algebra Sym
(
V(n)

)
/I is generated by (the image of) V(n), its

component of degree 1. By an easy induction onm, it follows that the component of
an arbitrary degreem of that algebra is isomorphic to V(mn). But the G-submodule
V(mn) ⊂ Symm

(
V(n)

)
has a unique G-stable complement: the sum of all other

simple submodules. This determines each homogeneous component of the graded
ideal I.

(iii) The preceding argument adapts to show that the cone of highest weight vectors
is the unique fixed point for the Gm-action on HilbGhλ

(
V(λ)

)
, with the notation of

Example 2.23(iii).

(iv) As in Example 3.8, let G = SL2, V = rV(2) and h = h2. Then H = GL(V)G is
the general linear group GLr acting on V ∼= kr ⊗k V(2) via its standard action on kr.
For the induced action of H on HilbGh (V), the closed points form two orbitsΩ1,Ω0,
with representatives Z1, Z0 defined by ∆(p1) = 1 (∆(p1) = 0) and p2 = . . . = pr = 0.
One easily checks that the isotropy group HZ0 is the parabolic subgroup of GLr that
stabilizes the first coordinate line ke1; as a consequence, Ω0

∼= Pr−1. Also, HZ1 is
the stabilizer of ±e1, and hence Ω1

∼= (Ar \ {0})/± 1 where GLr acts linearly on Ar.
Since the family Z of Example 2.19(ii) has general fibers in Ω1 and special fiber in
Ω0, we see that Ω0 is contained in the closure of Ω1. As a consequence, HilbGh (V)
is irreducible of dimension r. Since its Zariski tangent space has dimension r at each
closed point, it follows that HilbGh (V) is a smooth variety.

3.4. The quotient-scheme map

We keep the notation of the previous subsection, and consider a family of
G-stable closed subschemes Z ⊂ X× S over some scheme S. Recall that the sheaf of
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OS-algebras F0 = (p∗OZ)
G is a quotient of AG ⊗k OS where A = O(X). This defines

a family of closed subschemes

Z//G ⊂ X//G× S

where we recall that X//G = Spec(AG). If Z is flat over S with Hilbert function h,
then F0 is locally free over S, of rank

n := h(0).

Thus, Z//G defines a morphism to the punctual Hilbert scheme of the quotient,

f : S −→ Hilbn(X//G).

Applying this construction to the universal family yields a morphism

(3.19) γ : HilbGh (X) −→ Hilbn(X//G)

that we call the quotient-scheme map.

Proposition 3.20. With the preceding notation, the morphism (3.19) is projective. In
particular, if the scheme X//G is finite, or equivalently, if X contains only finitely many
closed G-orbits, then HilbGh (X) is projective.

Proof. Since HilbGh (X) is quasi-projective, it suffices to show that γ is proper. For
this, we use the valuative criterion of properness for schemes of finite type: let R
be a discrete valuation ring containing k and denote by K the fraction field of R.
Let ZK ∈ HilbGh (X)(K) and assume that γ(ZK) ∈ Hilbn(X//G)(K) admits a lift to
Hilbn(X//G)(R). Then we have to show that ZK admits a lift to HilbGh (X)(R).

In other words, we have a family

ZK ⊂ X× Spec(K)

of closed G-stable subschemes with Hilbert function h, such that the family

ZK//G ⊂ X//G× Spec(K)

extends to a family in X//G× Spec(R). These data correspond to a G-stable ideal

IK ⊂ A⊗k K

such that IGK ⊂ AG ⊗k K equals J⊗R K, where

J ⊂ AG ⊗k R

is an ideal such that the R-module (AG ⊗k R)/J is free of rank h(0). Then

J ⊂ (AG ⊗k R) ∩ (J⊗R K),

where the intersection is considered in A⊗R K. Moreover, the quotient R-module
(AG ⊗k R) ∩ (J⊗R K)/J is torsion; on the other hand, this quotient is contained in
the free R-module (AG ⊗k R)/J. Thus,

J = (AG ⊗k R) ∩ (J⊗R K) = (AG ⊗k R) ∩ IK.
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We now consider

I := (A⊗k R) ∩ IK.

Clearly, I is an ideal of A⊗k R satisfying IG = J and I⊗RK = IK. Thus, the R-module(
(A⊗k R)/I

)G
= (AG ⊗k R)/IG

is free of rank n. Moreover, each module of covariants
(
(A ⊗k R)/I

)
M

is finitely

generated over
(
(A⊗kR)/I

)G
, and torsion-free by construction. Hence the R-module(

(A ⊗k R)/I
)
M

is free; tensoring with K, we see that its rank is h(M). Thus, I
corresponds to an R-point of HilbGh (X), which is the desired lift. �

Remarks 3.21. (i) The morphism (3.19) is analogous to the Hilbert-Chow mor-
phism, or cycle map, that associates with any closed subscheme Z of the projective
space PN, the support of Z (with multiplicities) viewed as a point of the Chow variety
of PN.

The cycle map may be refined in the setting of punctual Hilbert schemes: given
a quasi-projective scheme X and a positive integer n, there is a natural morphism

(3.22) ϕn : Hilbn(X) −→ X(n)

whereX(n) denotes then-th symmetric product ofX, i.e., the quotient of the product
X× · · · × X (n factors) by the action of the symmetric group Sn that permutes the
factors; this is a quasi-projective scheme with closed points the effective 0-cycles
of degree n on X. Moreover, ϕn induces the cycle map on closed points, and is a
projective morphism (for these results, see [5, Theorem 2.16]).

In the setting of Proposition 3.20, let

(3.23) δ : HilbGh (X) −→ (X//G)(n)

denote the composite of (3.19) with (3.22). Then δ is a projective morphism, and
(X//G)(n) is affine. As a consequence, the invariant Hilbert scheme is projective over an
affine scheme.

(ii) The quotient-scheme map satisfies a natural equivariance property: with the
notation and assumptions of Proposition 3.14, the H-action on X induces an action
on X//G so that the quotient morphism π is equivariant. This yields in turn an H-
action on the punctual Hilbert scheme Hilbn(X//G); moreover, the morphism (3.19)
is equivariant (as may be checked along the lines of that proposition).

Also, H acts on the symmetric product (X//G)(n) and the morphism (3.23) is
H-equivariant.

(iii) In the case where X is a finite-dimensional G-module V , and H = (Gm)r is
the center of GL(V)G, the closed H-fixed points of HilbGh (X) may be identified with
those G-stable ideals I ⊂ O(V) that are homogeneous with respect to the isotypical
decomposition (3.17). Moreover, the closure of each H-orbit in HilbGh (V) contains a
fixed point: indeed, the closure of each H-orbit in V contains the origin, and hence
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the same holds for the induced action of H on the symmetric product (V//G)(n)

(where the origin is the image of (0, . . . ,0)). Together with the properness of the
morphism δ and Borel’s fixed point theorem, this implies the assertion.

Examples 3.24. (i) For the toric Hilbert scheme HilbT (λ1, . . . , λN) = HilbT (λ) of
Example 2.23(i), the quotient-scheme map may be refined as follows. Given λ in
the monoid Γ generated by λ1, . . . , λN, consider the graded subalgebra

O(AN)(λ) :=
∞⊕
m=0

O(AN)mλ ⊂ O(AN)

with degree-0 component O(AN)0 = O(AN//T). Replacing λ with a positive integer
multiple, we may assume that the algebra O(AN)(λ) is finite over its subalgebra
generated by its components of degrees 0 and 1. Then

AN//λT := Proj
(
O(AN)(λ)

)
is a projective variety over AN//λT , and the twisting sheaf O(1) is an ample invertible
sheaf on AN//λT , generated by its subspace O(AN)λ of global sections. Moreover,
one can define a morphism

γλ : HilbT (λ) −→ AN//λT

which lifts the quotient-scheme morphism γ. The collection of these morphisms
forms a finite inverse system; its inverse limit is called the toric Chow quotient and
denoted by AN//CT . This construction yields the toric Chow morphism

HilbT (λ) −→ AN//CT

which induces an isomorphism on the associated reduced schemes, under some
additional assumptions (see [26, Section 5]).

(ii) With the notation of Example 2.23(ii), we may now show that HilbSL2
hn

(
V(n)

)
is

either an affine line if n = 2 or 4, or a reduced point for all other values of n.
Indeed, for the natural action of Gm, each orbit closure contains the unique

fixed point Z. If n 6= 2 and n 6= 4, then it follows that HilbSL2
hn

(
V(n)

)
is just Z, since

its Zariski tangent space at that point is trivial.
On the other hand, we have constructed a family Z ⊂ V(2) × A1 (Example

2.19) and hence a morphism

f : A1 → HilbSL2
h2

(
V(2)

)
.

Moreover, f is injective (on closed points), since the fibers of Z are pairwise distinct
subschemes of V(2). Also, Z is stable under the action of Gm on V(2) × A1 via
t · (x,y) = (tx, t2y) and hence f isGm-equivariant for the action on A1 via t ·y = t2y.
In particular, HilbSL2

h2

(
V(2)

)
has dimension > 1 at Z. Since its Zariski tangent space

has dimension 1, it follows that HilbSL2
h2

(
V(2)

)
is smooth and 1-dimensional at Z.

Using the Gm-action, it follows in turn that f is an isomorphism; hence the natural
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map Z → UnivSL2h2

(
V(2)

)
is an isomorphism as well. The quotient-scheme map is

also an isomorphism in that case.
Likewise, the family W of Example 2.19(ii) yields isomorphisms

A1 −→ HilbSL2
h4

(
V(4)

)
, W −→ UnivSL2h4

(
V(4)

)
.

Moreover, the quotient-scheme map is a closed immersion

A1 ↪→ V(4)//SL2 ∼= A2.

(iii) The preceding argument adapts to show that HilbGhλ
(
V(λ)

)
is either an affine

line or a reduced point, with the notation of Example 2.23(iii). The quotient-scheme
map is again a closed immersion.

(iv) With the notation of Example 3.8, we describe the quotient-scheme map γ; it
takes values in V//G since h(0) = 1. Observe that the image ofG in GL

(
V(2)

)
∼= GL3

is the special orthogonal group associated with the non-degenerate quadratic form
∆ (the discriminant). By classical invariant theory, it follows that the algebra of
invariants of rV(2) is generated by the maps

(A1, . . . ,Ar) 7−→ ∆(Ai), δ(Ai,Aj), det(Ai,Aj,Ak),

where δ denotes the bilinear form associated with ∆. But det(Ai,Aj,Ak) vanishes
identically on the image of γ, which may thus be identified with the variety of
symmetric r× rmatrices of rank 6 1. In other words, γ

(
HilbGh (V)

)
is the affine cone

over Pr−1 embedded via OPr−1(2). Moreover, γ is a GLr-equivariant desingularization
of that cone, with exceptional locus the homogeneous divisor Ω0. This easily yields
an isomorphism of GLr-varieties

HilbGh (V) ∼= OPr−1(−2)

where OPr−1(−2) denotes the total space of the line bundle of degree −2 over Pr−1,
i.e., the blow-up at the origin of the image of γ.

We now apply the construction of the quotient-scheme map to obtain a “flat-
tening” of the categorical quotient π : X → X//G, where X is an irreducible variety.
Then X//G is an irreducible variety as well, and there exists a largest open subset
Y0 ⊂ Y := X//G such that the pull-back

π0 : X0 := π−1(Y0) −→ Y0

is flat. It follows that the (scheme-theoretic) fibers of π at all closed points of its flat
locus Y0 have the same Hilbert function, say h = hX. Since F//G is a (reduced) point
for each such fiber F, we have h(0) = 1. Thus, the invariant-scheme map associated
with this special Hilbert function h is just a morphism

γ : HilbGh (X) −→ X//G.
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Proposition 3.25. With the preceding notation and assumptions, the diagram

(3.26)

UnivGh (X)
q−−−−→ X

p

y π

y
HilbGh (X)

γ−−−−→ X//G

commutes, where the morphisms fromUnivGh (X) are the projections. Moreover, the pull-back
of γ to the flat locus of π is an isomorphism.

Proof. Set for simplicity Z := UnivGh (X) and S := HilbGh (X). Then the natural map
OS → (p∗OZ)

G is an isomorphism, by the definition of the Hilbert scheme and the
assumption that h(0) = 1. Thus, p factors as the quotient morphism Z → Z//G

followed by an isomorphism Z//G→ S. In view of the definition of γ, this yields
the first assertion.

For the second assertion, let S0 := γ−1
0 (Y0) and Z0 := p−1(S0). By the preceding

step, we have a closed immersion ι : Z0 ⊂ X0 ×Y0 S0 of G-schemes. But both are flat
over S0 with the same Hilbert function h. Thus, the associated sheaves of covariants
FM (for Z0) and GM (for X0 ×Y0 S0) are locally free sheaves of OS-modules of the
same rank, and come with a surjective morphism ι∗M : GM → FM. It follows that ι∗M
is an isomorphism, and in turn that so is ι. �

This construction is of special interest in the case where G is a finite group, see
[5, Section 4] and also Subsection 4.1. It also deserves further study in the setting of
connected algebraic groups.

Example 3.27. Let G be a semi-simple algebraic group acting on its Lie algebra g via
the adjoint representation. By a classical result of Kostant, the categorical quotient
g//G is an affine space of dimension equal to the rank r of G (the dimension of
a maximal torus T ⊂ G). Moreover, the quotient morphism π is flat; its fibers are
exactly the orbit closures of regular elements of g (i.e., those with centralizer of
minimal dimension r), and the corresponding Hilbert function h = hg is given by

(3.28) h(λ) = dimV(λ)T .

Thus, the invariant-scheme map yields an isomorphism HilbGh (g) ∼= g//G.
If G = SL2, then g ∼= V(2) and we get back that HilbSL2

h2

(
V(2)

)
∼= A1. More

generally, when applied to G = SLn, we recover a result of Jansou and Ressayre, see
[30, Theorem 2.5]. They also show that HilbSLn

h (sln) is an affine space whenever h
is the Hilbert function of an arbitrary orbit closure, and they explicitly describe the
universal family in these cases; see [loc. cit., Theorem 3.6].
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4. Some further developments and applications

4.1. Resolution of certain quotient singularities

In this subsection, we assume that the group G is finite. We discuss a direct
construction of the invariant Hilbert scheme in that setting, as well as some appli-
cations; the reader may consult the notes [5] for further background, details, and
developments.

Recall that Irr(G) denotes the set of isomorphism classes of simple G-modules.
Since this set is finite, functions h : Irr(G)→ N may be identified with isomorphism
classes of arbitrary finite-dimensional modules, by assigning to h the G-module⊕
M∈Irr(G) h(M)M. For example, the function M 7→ dim(M) corresponds to the

regular representation, i.e., O(G) where G acts via left multiplication.
Given such a function h and a G-scheme X, we may consider the invariant

Hilbert functor HilbGh (X) as in Subsection 2.3: it associates with any scheme S the
set of closed G-stable subschemes Z ⊂ X× S such that the projection p : Z→ S is
flat and the module of covariants HomG(M,p∗OZ) is locally free of rank h(M) for
anyM ∈ Irr(G).

For such a family, the sheaf p∗OZ is locally free of rank

n = n(h) :=
∑

M∈Irr(G)

h(M)dim(M),

in view of the isotypical decomposition (2.11). In other words, Z is finite and flat
over S of constant degreem, the dimension of the representation associated with
h. If X is quasi-projective, then the punctual Hilbert scheme Hilbn(X) exists and is
equipped with an action of G (see Proposition 3.14). Thus, we have a morphism
f : S→ Hilbn(X) which is readily seen to be G-invariant. In other words, f factors
through a morphism to the fixed point subscheme Hilbn(X)G ⊂ Hilbn(X), i.e.,
the largest closed G-stable subscheme on which G acts trivially. Moreover, the
pull-back of the universal family Univn(X) to HilbGn (X) is a finite flat family of G-
stable subschemes of X, and has a well-defined Hilbert function on each connected
component (see Remark 2.15(iii)).

This easily implies the following version of Theorem 2.20 for finite groups:

Proposition 4.1. With the preceding notation and assumptions, the Hilbert functor
HilbGh (X) is represented by a union of connected components of the fixed point subscheme
Hilbn(X)G.

Also, the quotient π : X → X/G exists, where the underlying topological
space to X/G is just the orbit space, and the structure sheaf OX/G equals (π∗OX)G.
Moreover, the set-theoretical fibers of π are exactly the G-orbits. As in Subsection
3.4, this yields a quotient-scheme map in this setting,

γ : HilbGh (X) −→ Hilbn(X/G).
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(In fact, the assignment Z 7→ Z//G yields a morphism from HilbGn (X) to the disjoint
union of the punctual Hilbert schemes Hilbm(X/G) form 6 n).

We now assume that X is an irreducible variety on which G acts faithfully. Then X
contains G-regular points, i.e., points with trivial isotropy groups, and they form
an open G-stable subset Xreg ⊂ X. Moreover, the (scheme-theoretic) fiber of π at a
given x ∈ X(k) equals the orbit G · x if and only if x is G-regular. In other words,
the regular locus Xreg/G is the largest open subset of X/G over which π induces a
Galois covering with group G; it is contained in the flat locus. Thus, the Hilbert
function hX associated with the general fibers of π (as in Subsection 3.4) is just
that of the regular representation. The corresponding invariant Hilbert scheme is
called the G-Hilbert scheme and denoted by G–Hilb(X). It is a union of connected
components of Hilbn(X)G, where n is the order of G, and comes with a projective
morphism

(4.2) γ : G−−Hilb(X) −→ X/G

which induces an isomorphism above the regular locus Xreg/G. Moreover, γ fits into
a commutative square

G−−Univ(X)
q−−−−→ X

p

y π

y
G−−Hilb(X)

γ−−−−→ X/G

by Proposition 3.25. In other words, G–Univ(X) is a closed G-stable subscheme of
the fibered product X×X/G G−−Hilb(X).

We denote by G–HX the closure of γ−1(Xreg/G) in G–Hilb(X), equipped with
the reduced subscheme structure.. This is an irreducible component of G–Hilb(X):
themain component, also called the orbit component. The points ofG–HX are the
regular G-orbits and their flat limits as closed subschemes of X; also, the quotient-
scheme map restricts to a projective birationalmorphism G–HX → X/G.

Examples 4.3. (i) If X and X/G are smooth, then the quotient-scheme map (4.2) is an
isomorphism. (Indeed, π is flat in that case, and the assertion follows from Proposition
3.25).

In particular, if V is a finite-dimensional vector space and G ⊂ GL(V) a finite
subgroup generated by pseudo-reflections, then O(V)G is a polynomial algebra by
a theorem of Chevalley and Shepherd-Todd. Thus, (4.2) is an isomorphism under
that assumption.

(ii) If X is a smooth surface, then every punctual Hilbert scheme Hilbn(X) is smooth.
Since smoothness is preserved by taking fixed points under finite (or, more generally,
reductive) group actions, it follows that HilbGh (X) is smooth for any function h. Thus,
the quotient-scheme map γ : G−−HX → X/G is a resolution of singularities.

In particular, if G is a finite subgroup of GL2 which is not generated by pseudo-
reflections, then the quotientA2/G is a normal surface with singular locus (the image
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of) the origin, and γ : G − −HA2 → A2/G is a canonical desingularization. If in
additionG ⊂ SL2, thenG contains no pseudo-reflection, and the resulting singularity
is a rational double point. In that case, γ yields the minimal desingularization (this
result is due to Ito and Nakamura, see [27, 28]; a self-contained proof is provided in
[5, Section 5]).

(iii) The preceding argument does not extend to smooth varieties X of dimension> 3,
since Hilbn(X) is generally singular in that setting. Yet it was shown by Bridgeland,
King and Reid via homological methods that G–Hilb(X) is irreducible and has trivial
canonical sheaf, if dim(X) 6 3 and the canonical sheaf of X is equivariant trivial (see [17,
Theorem 1.2]). As a consequence, if G ⊂ SLn with n 6 3, then γ : G−Hilb(An)→
An/G is a crepant resolution; in particular, G−Hilb(An) is irreducible. This result
fails in dimension 4 as the G-Hilbert scheme may be reducible; this is the case for
the binary tetrahedral group G ⊂ SL2 acting on k4 via the direct sum of two copies
of its natural representation, see [35].

4.2. The horospherical family

In this subsection, G denotes a connected reductive group. We present a classical
algebraic construction that associates with each affineG-scheme Z, a “simpler” affine
G-scheme Z0 called its horospherical degeneration (see [52] or [25, §15]). Then we
interpret this construction in terms of families, after [3].

We freely use the notation and conventions from highest weight theory (Sub-
section 2.2) and denote by α1, . . . ,αr the simple roots of (G, T) associated with the
Borel subgroup B (i.e., the corresponding positive roots are those of (B, T)).

Given a G-algebra A, recall the isotypical decomposition

(4.4) A =
⊕
λ∈Λ+

A(λ) where A(λ)
∼= AUλ ⊗k V(λ).

Also recall that when G is a torus, A(λ) is just the weight space Aλ and (4.4) is a
grading of A, i.e., Aλ · Aµ ⊂ Aλ+µ for all λ, µ. For an arbitrary group G, (4.4) is
no longer a grading, but gives rise to a filtration of A. To see this, we study the
multiplicative properties of the isotypical decomposition.

Given λ,µ ∈ Λ+, there is an isomorphism of G-modules

(4.5) V(λ)⊗k V(µ) ∼=
⊕
ν∈Λ+

cνλ,µV(ν)

where the cνλ,µ’s are non-negative integers, called the Littlewood-Richardson coeffi-
cients. Moreover, if cνλ,µ 6= 0 then ν 6 λ + µ where 6 is the partial ordering on Λ
defined by:

µ 6 λ⇔ λ− µ =

r∑
i=1

niαi for some non-negative integers n1, . . . ,nr.



98 Invariant Hilbert schemes

Finally, cλ+µλ,µ = 1, i.e., the simple module with the largest weight λ+ µ occurs in the
tensor product V(λ)⊗k V(µ) with multiplicity 1. This special component is called
the Cartan component of V(λ)⊗k V(µ).

We set

A(6λ) :=
⊕

µ∈Λ+,µ6λ

A(µ).

In view of (4.5), we have

(4.6) A(6λ) ·A(6µ) ⊂ A(6λ+µ)

for all dominant weights λ,µ. In other words, the G-submodules A(6λ) form an
increasing filtration of the G-algebra A, indexed by the partially ordered group Λ.
The associated graded algebra gr(A) is a G-algebra, isomorphic to A as a G-module
but where the product of any two isotypical components A(λ) and A(µ) is obtained
from their product in A by projecting on the Cartan component A(λ+µ). Thus, the
product of any two simple submodules of gr(A) is either their Cartan product, or
zero. Also, note that gr(A)U ∼= AU as T -algebras, since AU(λ) = A

U
λ for all λ.

Now consider the Rees algebra associated to this filtration:

(4.7) R(A) :=
⊕
µ∈Λ

A(6µ) e
µ =

⊕
λ∈Λ+,µ∈Λ,λ6µ

A(λ) e
µ

where eµ denotes the character µ viewed as a regular function on T (so that eµeν =

eµ+ν for all µ and ν). Thus, R(A) is a subspace of

A⊗k O(T) =
⊕

λ∈Λ,µ∈Λ
A(λ) e

µ.

In fact, A⊗k O(T) is a G× T -algebra, and R(A) is a G× T -subalgebra by the multi-
plicative property (4.6). Also, note that R(A) contains variables

(4.8) t1 := eα1 , . . . , tr := eαr

associated with the simple roots; the monomials in these variables are just the eµ−λ

where λ 6 µ. By (4.7), we have

R(A) ∼=
⊕
λ∈Λ+

A(λ) e
λ ⊗k k[t1, . . . , tr] ∼= A[t1, . . . , tr]

as G–k[t1, . . . , tr]-modules. In particular, R(A) is a free module over the polynomial
ring k[t1, . . . , tr] ⊂ O(T). Moreover, we have an isomorphism of T–k[t1, . . . , tr]-
algebras

R(A)U ∼= AU[t1, . . . , tr]

that maps each f ∈ R(A)Uλ to feλ. Also, the ideal (t1, . . . , tr) ⊂ R(A) is G-stable,
and the quotient by that ideal is just the G-module A where the product of any two
components A(λ), A(µ) is the same as in gr(A). In other words,

R(A)/(t1, . . . , tr) ∼= gr(A).
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On the other hand, when inverting t1, . . . , tr, we obtain

R(A)[t−1
1 , . . . , t−1

r ] ∼=
⊕

A(λ) e
µ

where the sum is over those λ ∈ Λ+ and µ ∈ Λ such that λ− µ = n1α1 + · · ·+ nrαr
for some integers n1, . . .nr (of arbitrary signs). In other words, λ− µ is in the root
lattice, i.e., the sublattice of the weight lattice Λ generated by the roots. The torus
associated with the root lattice is the adjoint torus Tad, isomorphic to (Gm)r via the
homomorphism

α : T −→ (Gm)r, t 7−→
(
α1(t), . . . ,αr(t)

)
.

Moreover, the kernel of α is the center of G, that we denote by Z(G). This identifies
Tad with T/Z(G), a maximal torus of the adjoint group G/Z(G) (whence the name).
Now Z(G) acts on A ⊗k O(T) via its action on A as a subgroup of G (then each
isotypical component A(λ) is an eigenspace of weight λ|Z(G)) and its action on O(T)

as a subgroup of T (then each eµ is an eigenspace of weight −µ). Moreover, the
invariant ring satisfies

(4.9)
(
A⊗k O(T)

)Z(G) ∼= R(A)[t−1
1 , . . . , t−1

r ]

as G× T -algebras over O(T)Z(G) ∼= k[t1, t−1
1 , . . . , tr, t−1

r ].
Translating these algebraic constructions into geometric terms yields the fol-

lowing statement:

Proposition 4.10. Let Z = Spec(A) be an affine G-scheme and p : Z → Ar the
morphism associated with the inclusion k[t1, . . . , tr] ⊂ R(A), where R(A) denotes the Rees
algebra (4.7), and t1, . . . , tr the variables (4.8).

Then p is a flat family of affine G-schemes, and the induced family of T -schemes
Z//U→ Ar is trivial with fiber Z//U. The fiber of p at 0 is Spec

(
gr(A)

)
.

Moreover, the pull-back of p to Tad ⊂ Ar is isomorphic to the projection Z×Z(G) T →
T/Z(G) = Tad. In particular, all fibers of p at general points of Ar are isomorphic to Z.

This special fiber Z0 is an affineG-scheme such that the isotypical decomposition
of O(Z0) is a grading; such schemes are called horospherical, and

Z0 := Spec
(
gr(A)

)
is called the horospherical degeneration of the affine G-scheme Z. We say that
p : Z→ Ar is the horospherical family (this terminology originates in hyperbolic
geometry; note that horospherical varieties need not be spherical).

For example, the cone of highest weight vectors Z = G · vλ = G · vλ ∪ {0} is a
horospherical G-variety, in view of the isomorphism (2.26). In that case, the fixed
point subscheme ZU is the highest weight line kvλ = V(λ)U, and thus Z = G · ZU.
In fact, the latter property characterizes horospherical G-schemes:

Proposition 4.11. An affine G-scheme Z is horospherical if and only if Z = G · ZU (as
schemes).



100 Invariant Hilbert schemes

Proof. First, note that the closed subscheme ZU ⊂ Z is stable under the Borel sub-
group B; it follows that G · ZU is closed in Z for an arbitrary G-scheme Z. Indeed,
the morphism

(4.12) ϕ : G× ZU −→ Z, (g, z) 7−→ g · z

factors as the morphism

ψ : G× ZU −→ G/B× Z, (g, z) 7−→ (gB,g · z)

followed by the projection G/B× Z→ Z. The latter morphism is proper, since G/B
is complete; moreover, ψ is easily seen to be a closed immersion.

Also, note that the ideal of G · ZU in A = O(Z) is the intersection of the G-
translates of the ideal I of ZU. Thus, Z = G ·ZU if and only if I contains no non-zero
simple G-submodule of A. Moreover, the ideal I is generated by the g · f− f where
g ∈ U and f ∈ A.

We now assume that Z is horospherical. Consider a simple G-submodule
V(λ) ⊂ A. Then V(λ) admits a unique lowest weight (with respect to the partial
ordering 6), equal to −λ∗, and the corresponding eigenspace is a line. Moreover,
the span of the g · v − v, where g ∈ U and v ∈ V(λ), is just the sum of all other
T -eigenspaces; we denote that span by V(λ)+. Since the product V(λ) · V(µ), where
V(µ) is some other simple submodule ofA, is either 0 or the Cartan product V(λ+µ),
we see that

V(λ)+ · V(µ) ⊂ V(λ+ µ)+.
Thus, the sum of the V(λ)+ over all simple submodules is an ideal of A, and hence
equals I. In particular, I contains no non-zero simple G-submodule of A.

Conversely, assume that Z = G · ZU, i.e., the morphism (4.12) is surjective.
Note that ϕ is invariant under the action of U via u · (g, z) = (gu−1, z), and also
equivariant for the action of G on G× ZU via left multiplication on G, and for the
given action on Z. Thus, ϕ yields an inclusion of G-algebras

O(Z) ↪→ O(G)U ⊗k O(ZU)

where G acts on the right-hand side through its action on O(G)U via left multiplica-
tion. But O(G)U is also a T -algebra via right multiplication; this action commutes
with that of G, and we have an isomorphism of G× T -modules

O(G)U ∼=
⊕
λ∈Λ+

V(λ)∗

where G acts naturally on each V(λ)∗, and T acts via its character λ (see e.g. [20,
Section 2.1]). In particular, the isotypical decomposition of O(G)U is a grading; thus,
the same holds for O(G)U ⊗k O(ZU) and for O(Z). �

Next, we relate the preceding constructions to the invariant Hilbert scheme of a
finite-dimensional G-module V . Here it should be noted that the full horospherical
family of a closed G-subscheme Z ⊂ V need not be a family of closed G-subschemes



Michel Brion 101

of V × Ar (see e.g. Example 4.13). Yet the pull-back of the horospherical family to Tad
may be identified with a family of closed G-subschemes of V × Tad as follows.

By 4.9, we have an isomorphism of G× T -algebras

O(V × T)Z(G) ∼= R
(
O(V)

)
[t−1
1 , . . . , t−1

r ]

overO(Tad) ∼= k[t±11 , . . . , t±1r ]. Also, each isotypical component V(λ) = mλV(λ) yields
a subspace

mλV(λ)
∗ eλ

∗ ⊂ O(V × T)Z(G),

stable under the action of G × T . Moreover, all these subspaces generate a G × T -
subalgebra ofO(V×T)Z(G), equivariantly isomorphic toO(V)where V is aG-module
via the given action, and T acts linearly on V so that each V(λ) is an eigenspace of
weight −λ∗. Finally, we have an isomorphism

O(V × T)Z(G) ∼= O(V)⊗k O(Tad)

of G× T -algebras over O(Tad), which translates into an isomorphism

p−1(Tad) ∼= V × Tad
of families of G-schemes over Tad. (In geometric terms, we have trivialized the
homogeneous vector bundle V ×Z(G) T → T/Z(G) by extending the Z(G)-action on
V to a T -action commuting with that of G).

This construction extends readily to the setting of families, i.e., given a family
of closed G-subschemes Z ⊂ V × S, we obtain a family of closed G-subschemes
W ⊂ V × Tad × S. By arguing as in the proof of Proposition 3.14, this defines an
action of Tad on the invariant Hilbert scheme HilbGh (V).

In fact, this action arises from the linear T -action on V for which each V(λ) has weight
−λ∗: since λ+ λ∗ is in the root lattice for any λ ∈ Λ, the induced action of the center
Z(G) ⊂ T coincides with its action as a subgroup of G, so that Z(G) acts trivially on
HilbGh (V).

Example 4.13. Let G = SL2 and Z = G · xy ⊂ V(2). Then Z = (∆ = 1) is a closed
G-subvariety of V(2) with Hilbert function h2. One checks that the G-submodules
O(Z)62n are just the restrictions to Z of the spaces of polynomial functions on V(2)
with degree 6 n. Moreover, Z0 = G · y2 and the horospherical family is that of
Example 2.19(ii).

Likewise, if Z = G · x2y2 ⊂ V(4) then Z0 = G · y4 and the horospherical family
is again that of Example 2.19(ii).

Also, V(1) is its own horospherical degeneration, but the horospherical degen-
eration of V(2) is the singular hypersurface {(z, t) ∈ V(2)⊕ V(0) | ∆(z) = 0}.

4.3. Moduli of multiplicity-free varieties with prescribed weight monoid

In this subsection, we still consider a connected reductive group G, and fix
a finitely generated submonoid Γ ⊂ Λ+. We will construct a moduli space for
irreducible multiplicity-free G-varieties Z with weight monoid Γ or equivalently,
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with Hilbert function h = hΓ (2.24). Recall that Z//U is an irreducible multiplicity-
free T -variety with weight monoid Γ , and hence is isomorphic to Y := Spec

(
k[Γ ]

)
.

We begin by constructing a special such varietyZ0. Choose generators λ1, . . . , λN
of the monoid Γ . Consider the G-module

V := V(λ1)
∗ ⊕ · · · ⊕ V(λN)∗,

the sum of highest weight vectors

v := vλ∗1 + · · ·+ vλ∗N ,

and define

Z0 := G · v ⊂ V .

Since v is fixed byU, the irreducible variety Z0 is horospherical in view of Proposition
4.11. The Λ-graded algebra O(Z0) is generated by V(λ1), . . . ,V(λN); thus, Λ+(Z0) =

Γ . This yields a special algebra structure on the G-module

V(Γ) :=
⊕
λ∈Γ

V(λ)

such that the subalgebra V(Γ)U is isomorphic to O(Y) = k[Γ ].
Each irreducible multiplicity-free variety Z with weight monoid Γ satisfies

O(Z) ∼= V(Γ) as G-modules and O(Z)U ∼= V(Γ)U as T -algebras. This motivates the
following:

Definition 4.14. A family of algebra structures of type Γ over a scheme S consists
of the structure of an OS-G-algebra on V(Γ)⊗k OS that extends the given T -algebra
structure on V(Γ)U ∼= k[Γ ].

In other words, a family of algebra structures of type Γ over S is a multipli-
cation law m on V(Γ) ⊗k OS which makes it an OS-G-algebra and restricts to the
multiplication of the OS-T -algebra V(Γ)U ⊗k OS. We may write

(4.15) m =
∑

λ,µ,ν∈Γ
mνλ,µ

where each component

mνλ,µ :
(
V(λ)⊗k OS

)
⊗OS

(
V(µ)⊗k OS

)
−→ V(ν)⊗k OS

is an OS-G-morphism. Moreover, the commutativity ofm and its compatibility with
the multiplication on V(Γ)U⊗kOS translate into linear relations between themνλ,µ’s,
while the associativity translates into quadratic relations. Also, eachmνλ,µ may be
viewed as a linear map

HomG
(
V(λ)⊗k V(µ),V(ν)

)
−→ H0(S,OS)

or equivalently, as a morphism of schemes

S −→ HomG
(
V(ν),V(λ)⊗k V(µ)

)
,
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and the polynomial relations between the mνλ,µ’s are equivalent to polynomial
relations between these morphisms. It follows that the functorMΓ that associates with
any scheme S, the set of families of algebra structures of type Γ over S, is represented by an
affine scheme MΓ , a closed subscheme of an infinite-dimensional affine space. Also,
note thatmνλ,µ = 0 unless ν 6 λ+ µ.

In fact, the scheme MΓ is of finite type; yet one does not know how to obtain this
directly from the preceding algebraic description. This finiteness property will rather
be derived from a relation of MΓ to the invariant Hilbert scheme HilbGh (V) that we
now present.

Given a family of algebra structures of type Γ over S, the inclusion ofG-modules
V∗ ⊂ V(Γ) yields a homomorphism of OS-G-algebras

ϕ : Sym(V∗)⊗k OS −→ V(Γ)⊗k OS.

Moreover, the OS-T -algebra V(Γ)U ⊗k OS is generated by the images of the highest
weight lines V(λ1)U, . . . ,V(λN)U ⊂ (V∗)U. In particular, the restriction

Sym
(
(V∗)U

)
⊗k OS −→ V(Γ)U ⊗k OS

is surjective; thus,ϕ is surjective as well. This defines a family of closedG-subschemes
Z ⊂ V × S with Hilbert function h, such that the sheaf of OS-algebras (p∗OZ)

U is
generated by the preceding highest weight lines. Choosing highest weight vectors
vλ1 , . . . , vλN , we obtain a surjective homomorphism of OS-T -algebras OS[t1, . . . , tN]
→ (p∗OZ)

U that maps each ti to vλi . Equivalently, we obtain a closed immersion
Z//U ↪→ AN×S of families of closed T -subschemes with Hilbert function h, where T
acts linearly onAN with weights−λ1, . . . ,−λN. This is also equivalent to amorphism

f : S→ HilbT (λ)

where the target is the toric Hilbert scheme of Example 2.23(i). Now the condition
that our family of algebra structures extends the given algebra structure on V(Γ)U

means that fmaps S to the closed point Z0//U, viewed as a general T -orbit closure
in AN.

Conversely, given a family of closed G-subschemes Z ⊂ V × S with Hilbert
function h such that (p∗OZ)

U is generated by vλ1 , . . . , vλN and the resulting mor-
phism fmaps S to the point Z0//U, we obtain an isomorphism of OS-G-modules
OS ⊗k V(Γ) ∼= p∗OZ which restricts to an isomorphism of OS-T -algebras OS ⊗k
V(Γ)U ∼= (p∗OZ)

U. This translates into a family of algebra structures of type Γ over S.
Summarizing, we have the following link between algebra structures and in-

variant Hilbert schemes:

Theorem 4.16. With the preceding notation and assumptions, there exists an open sub-
scheme

HilbGh (V)0 ⊂ HilbGh (V)
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that parametrizes those families Z such that the OS-algebra (p∗OZ)
U is generated by the

image of (V∗)U under ϕ. Moreover, there exists a morphism

f : HilbGh (V)0 −→ HilbT (λ)

that sends Z to Z//U. The fiber of f at the closed point Z0//U ∈ HilbT (λ) represents the
functorMΓ .

We denote the fiber of f at Z0//U by MΓ and call it the moduli scheme of
multiplicity-free varieties with weightmonoid Γ . Since it represents the functorMΓ ,
the scheme MΓ is independent of the choices of generators of Γ and of highest weight
vectors. It comes with a special point Z0, the common horospherical degeneration
to all of its closed points.

We may also consider the preimage in HilbGh (V)0 of the open (Gm)N-orbit
HilbTλ ⊂ HilbT (λ) that consists of general T -orbit closures. This preimage is an
open subscheme of HilbGh (V)0, that we denote by HilbGλ . Its closed points are
exactly the irreducible multiplicity-free varieties Z ⊂ V having weight monoid Γ
and such that the projections Z→ V(λ1)

∗, . . . ,V(λN)∗ are all non-zero; equivalently,
the horospherical degeneration Z0 is contained in V . Such varieties Z are called
non-degenerate.

Next, we relate these constructions to the action of the adjoint torus Tad on
HilbGh (V), defined in the previous subsection. The torus (Gm)N acts on HilbGh (V) as
the equivariant automorphism group of the G-module V . This action stabilizes the
open subschemes HilbGh (V)0 and HilbGλ ; moreover, f is equivariant for the natural
action of (Gm)N on the toric Hilbert scheme. Also, note that the (Gm)N-orbit HilbTλ
is isomorphic to (Gm)N/λ(T) where λ denotes the homomorphism (3.13). This
yields an action of T on MΓ and one checks that the center Z(G) acts trivially. Thus,
Tad acts on MΓ and each (Gm)N-orbit in HilbGλ intersects MΓ along a unique Tad-orbit.

Given a family Z of non-degenerate subvarieties of V , one shows that the
associated horospherical family X is a family of non-degenerate subvarieties of V as
well. It follows that the Tad-action on MΓ extends to an Ar-action such that the origin of
Ar acts via the constant map to Z0. In particular, Z0 is the unique Tad-fixed point and
is contained in each Tad-orbit closure; thus, the scheme MΓ is connected.

The Tad-action on MΓ may also be seen in terms of multiplication laws (4.15):
by [3, Proposition 2.11], each non-zero component mνλ,µ is a Tad-eigenvector of weight
λ+ µ− ν (note that λ+ µ− ν lies in the root lattice, and hence is indeed a character
of Tad).

As a consequence, given an irreducible multiplicity-free variety Z with weight
monoid Γ , the Tad-orbit closure of Z (viewed as a closed point of MΓ ) has for weight
monoid the submonoid ΣZ ⊂ Λ generated by the weights λ+ µ− ν where V(ν) is
contained in the product V(λ) · V(µ) ⊂ O(Z). In particular, the monoid ΣZ is finitely
generated. Again, it is not known how to obtain this result directly from the algebraic
definition of the root monoid ΣZ.
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In view of a deep theorem of Knop (see [33, Theorem 1.3]), the saturation
of the monoid ΣZ is free, i.e., generated (as a monoid) by linearly independent
elements. Equivalently, the normalization of each Tad-orbit closure in MΓ is equivariantly
isomorphic to an affine space on which Tad acts linearly.

We also mention a simple relation between the Zariski tangent space to MΓ
at a closed point Z and the space T1(Z) parametrizing first-order deformations of
Z: namely, the normal space to the orbit Tad · Z in MΓ is isomorphic to the G-invariant
subspace T1(Z)G (see [3, Proposition 1.13]). In particular,

TZ0MΓ = T1(Z0)
G

as Z0 is fixed by Tad.
In fact, many results of this subsection hold in the more general setting where

the algebra k[Γ ] is replaced with an arbitrary T -algebra of finite type; see [3]. The
multiplicity-free case presents remarkable special features; namely, finiteness proper-
ties that will be surveyed in the next subsection.

Example 4.17. If the monoid Γ is free, then of course we choose λ1, . . . , λN to be
its minimal generators. Since they are linearly independent, HilbT (λ) is a (reduced)
point and hence

HilbGh (V)0 = HilbGλ = MΓ .

Also, since the homomorphism λ is surjective, each (Gm)N-orbit in HilbGλ is a unique
Tad-orbit. The pull-back π : UnivΓ → MΓ of the universal family of HilbGh (V) may
be viewed as the universal family of non-degenerate spherical subvarieties of V .

4.4. Finiteness properties of spherical varieties

In this subsection, we survey finiteness and uniqueness results relative to the
structure and classification of spherical varieties. We still denote by G a connected
reductive group; we fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B.

Recall that a (possibly non-affine) G-variety X is spherical, if X is normal and
contains an open B-orbit; in particular, X contains an open G-orbit X0. Choosing a
base point x ∈ X0 and denoting by H its isotropy group, we may identify X0 with the
homogeneous space G/H. We say that H is a spherical subgroup of G, and the pair
(X, x) is an equivariant embedding of G/H; the complement X \ X0 is called the
boundary. Morphisms of embeddings are defined as those equivariant morphisms
that preserve base points. If the variety X is complete, then X is called an equivariant
completion (or equivariant compactification) of G/H.

One can show that any spherical G-variety contains only finitely many B-orbits; as
a consequence, any equivariant embedding of a spherical G-homogeneous space contains
only finitely many G-orbits. Conversely, if a G-homogeneous space X0 satisfies the
property that all of its equivariant embeddings contain finitely many orbits, then X0

is spherical.
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Spherical homogeneous spaces admit a further remarkable characterization,
in terms of the existence of equivariant completions with nice geometric proper-
ties. Specifically, consider an embedding X of a homogeneous space X0 = G/H.
Assume that X is smooth and X \ X0 is a union of smooth prime divisors that in-
tersect transversally; in other words, the boundary is a divisor with simple normal
crossings. Then we may consider the associated sheaf of logarithmic vector fields,
consisting of those derivations of OX that preserve the ideal sheaf of D := X \ X0.
This subsheaf, denoted by TX(−logD), is a locally free subsheaf of the tangent sheaf
TX of all derivations of OX; both sheaves coincide along X0. The logarithmic tan-
gent bundle is the vector bundle on X associated with TX(−logD). The G-action
on (X,D) yields an action of the Lie algebra g by derivations that preserve D, i.e., a
homomorphism of Lie algebras

g −→ H0(X, TX(−logD)
)
.

We say that the pair (X,D) is log homogeneous under G if g generates the sheaf
of logarithmic vector fields. Now any complete log homogeneous G-variety is spherical;
moreover, any spherical G-homogeneous space admits a log homogeneous equivariant
completion (as follows from [6, Sections 2.2, 2.5]; see [19] for further developments
on log homogeneous varieties and their relation to spherical varieties). We will need
a stronger version of part of this result:

Lemma 4.18. Let X be a smooth spherical G-variety with boundary a divisorD with simple
normal crossings and denote by SX the subsheaf of TX(−logD) generated by g. If SX is
locally free, then SX = TX(−logD). In particular, X is log homogeneous.

Proof. Clearly, SX and TX(−logD) coincide along the open G-orbit. Since these
sheaves are locally free, the support of the quotient TX(−logD)/SX has pure codi-
mension 1 in X. But this support isG-stable, and contains noG-orbit of codimension
1 by [6, Section 2]. Thus, this support is empty; this yields our assertion. �

Log homogeneous pairs satisfy an important rigidity property, namely,

(4.19) H1(X, TX(−logD)
)
= 0

whenever X is complete (as follows from a vanishing theorem due to Knop, see [32,
Theorem 4.1]). This is the main ingredient for proving the following finiteness result
([3, Theorem 3.1]):

Theorem 4.20. For any G-variety X, only finitely many conjugacy classes of spherical
subgroups of G occur as isotropy groups of points of X.

In other words, any G-variety contains only finitely many isomorphism classes of
spherical G-orbits.

For the proof, one reduces by general arguments of algebraic transformation
groups to the case where X is irreducible and admits a geometric quotient

p : X −→ S
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where the fibers of p are exactly theG-orbits. Arguing by induction on the dimension,
we may replace S with an open subset; thus, we may further assume that X and the
morphism p are smooth. Then the sphericalG-orbits form an open subset of X, since
the same holds for the B-orbits of dimension dim(X) − dim(S). So we may assume
that all fibers are spherical. Now, by general arguments of algebraic transformation
groups again, there exists an equivariant fiberwise completion of X, i.e., a G-variety
X̄ equipped with a proper G-invariant morphism

p : X̄ −→ S

such that X̄ contains X as a G-stable open subset, and p̄ extends p. We may further
perform equivariant blow-ups and hence assume that X̄ is smooth, the boundary X̄\X
is a divisor with simple normal crossings, and the subsheaf SX̄ ⊂ TX̄ generated by g is
locally free. By Lemma 4.18, it follows that X̄ is a family of log homogeneous varieties
(possibly after shrinking S again). Now the desired statement is a consequence of
rigidity (4.19) together with arguments of deformation theory; see [3, pp. 113–115]
for details.

As a direct consequence of Theorem 4.20, any finite-dimensional G-module V
contains only finitely many closures of sphericalG-orbits, up to the action ofGL(V)G (see [3,
p. 116]). In view of the results of Subsection 4.3, it follows that every moduli scheme
MΓ contains only finitely many Tad-orbits. In particular, up to equivariant isomorphism,
there are only finitely many affine spherical varieties having a prescribed weight monoid.

This suggests that spherical varieties may be classified by combinatorial invari-
ants. Before presenting a number of results in this direction, we associate three such
invariants to a spherical homogeneous space X0 = G/H.

The first invariant is the set of weights of B-eigenvectors in the field of rational
functions k(X0) = k(G)

H; this is a subgroup of Λ, denoted by Λ(X0) and called the
weight lattice of X0. The rank of this lattice is called the rank of X0 and denoted by
rk(X0). Note that any B-eigenfunction is determined by its weight up to a non-zero
scalar, since k(X0)

B = k as X0 contains an open B-orbit.
The second invariant is the set V(X0) of those discrete valuations of the field

k(X0), with values in the field Q of rational numbers, that are invariant under the
naturalG-action. One can show that any such valuation is uniquely determined by its
restriction to B-eigenvectors; moreover, this identifies V(X0) to a convex polyhedral
cone in the Q-vector space Hom

(
Λ(X0),Q

)
. Thus, V(X0) is called the valuation

cone.
The third invariant is the set D(X0) of B-stable prime divisors in X0, called

colors; these are exactly the irreducible components of the complement of the
open B-orbit. Any D ∈ D(X0) defines a discrete valuation of k(X0), and hence (by
restriction to B-eigenvectors) a pointϕD ∈ Hom

(
Λ(X0),Q

)
. Moreover, the stabilizer

of D in G is a parabolic subgroup GD containing B, and hence corresponds to a set
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of simple roots. Thus, D(X0) may be viewed as an abstract finite set equipped with
maps D 7→ ϕD to Hom

(
Λ(X0),Q

)
and D 7→ GD to subsets of simple roots.

The invariantsΛ(X0), V(X0),D(X0) are the main ingredients of a classification of
all equivariant embeddings of X0, due to Luna and Vust (see [51] for an overview, and
[31] for an exposition; the original article [43] addresses embeddings of arbitrary
homogeneous spaces, see also [56]). This classification is formulated in terms
of colored fans, combinatorial objects that generalize the fans of toric geometry.
Indeed, toric varieties are exactly the equivariant embeddings of a torus T viewed as
a homogeneous space under itself. In that case, Λ(T) is just the character lattice, and
the set D(T) is empty; one shows that V(T) is the whole space Hom

(
Λ(T),Q

)
.

Another important result, due to Losev (see [36, Theorem 1]), asserts that any
spherical homogeneous space is uniquely determined by its weight lattice, valuation cone
and colors, up to equivariant isomorphism. The proof combines many methods, partial
classifications, and earlier results, including the Luna-Vust classification and the
finiteness theorem 4.20.

Returning to an affine spherical variety Z, one can show that the valuation cone
of the openG-orbitZ0 is dual (in the sense of convex geometry) to the cone generated
by the root monoid ΣZ. Also, recall that the saturation of ΣZ is a free monoid; its
generators are called the spherical roots of Z. By another uniqueness result of Losev
(see [37, Theorem 1.2]), any affine sphericalG-variety is uniquely determined by its weight
monoid and spherical roots, up to equivariant isomorphism. Moreover, any smooth affine
spherical G-variety is uniquely determined by its weight monoid, again up to equivariant
isomorphism ([37, Theorem 1.3]).

Note that all smooth affine spherical varieties are classified in [34]; yet one
does not know how to deduce the preceding uniqueness result (a former conjecture
of Knop) from that classification.

Example 4.21. The spherical subgroups of G = SL2 are exactly the closed subgroups
of positive dimension. Here is the list of these subgroups up to conjugation in G:

(i) H = B (the Borel subgroup of upper triangular matrices of determinant 1). Then
G/H ∼= P1 has rank 0 and a unique color, the B-fixed point∞.

(ii)H = Uµn whereU denotes the unipotent part of B, and µn the group of diagonal
matrices with eigenvalues ζ, ζ−1 where ζn = 1; here n is a positive integer. Then
H ⊂ B and via the resulting map G/H → G/B, we see that G/H is the total space
of the line bundle OP1(n) minus the zero section. Moreover, G/H has rank 1 and a
unique color, the fiber at∞ of the projection to P1. We haveΛ(G/H) = nZ ⊂ Z = Λ,
and the valuation cone is the whole space Hom

(
Λ(G/H),Q

)
∼= Q.

A smooth equivariant completion of G/H is P
(
OP1 ⊕ OP1(n)

)
, the rational

ruled surface of index n. By contracting the unique curve of negative self-intersection,
i.e., the section of self-intersection −n, we obtain another equivariant completion
which is singular if n 6= 1, and isomorphic to P

(
V(1)⊕ V(0)

)
∼= P2 if n = 1.
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(iii) H = T (the torus of diagonal matrices of determinant 1). Then G/H ∼= G · xy ⊂
V(2) is the affine quadric (∆ = 1); it has rank 1 and weight lattice 2Z. Note that H
is the intersection of B with the opposite Borel subgroup B− (of lower triangular
matrices). Thus, G/H admits P1 × P1 as an equivariant completion via the natural
morphism G/H → G/B× G/B−; this is in fact the unique non-trivial equivariant
embedding. Also,G/H has two colorsD+,D− (the fibers at∞ of the twomorphisms
to P1). The valuation cone is the negative half-line in Hom

(
Λ(G/H),Q

)
∼= Q, and

D+,D− are mapped to the same point of the positive half-line.

(iv) H = NG(T) (the normalizer of T in G). Then G/H ∼= G · [xy] ⊂ P
(
V(2)

)
is the

open affine subset (∆ = 0) in the projective plane P
(
V(2)

)
, which is the unique

non-trivial embedding. Moreover, G/H has rank 1 and weight lattice 4Z. There is a
unique color D, with closure the projective line P

(
yV(1)

)
⊂ P

(
V(2)

)
. The valuation

cone is again the negative half-line in Hom
(
Λ(G/H),Q

)
∼= Q, and D is mapped to a

point of the positive half-line.

4.5. Towards a classification of wonderful varieties

In this subsection, we introduce the class of wonderful varieties, which play an
essential role in the structure of spherical varieties. Then we present a number of
recent works that classify wonderful varieties (possibly with additional assumptions)
via Lie-theoretical or geometric methods.

Definition 4.22. A variety X is called wonderful if it satisfies the following proper-
ties:

(1) X is smooth and projective.
(2) X is equipped with an action of a connected reductive group G having an

open orbit X0.
(3) The boundary D := X \ X0 is a divisor with simple normal crossings, and its

irreducible components D1, . . . ,Dr meet.
(4) The G-orbit closures are exactly the partial intersections of D1, . . . ,Dr.

Then D1, . . . ,Dr are called the boundary components; their number r is the rank
of X. By (4), X has a unique closed orbit

Y := D1 ∩ · · · ∩Dr.

The wonderful G-varieties of rank 0 are just the complete G-homogeneous
varieties, i.e., the homogeneous spaces G/P where P ⊂ G is a parabolic subgroup
containing B. Those of rank 1 are exactly the smooth equivariant completions of a
homogeneous space by a homogeneous divisor; they have been classified by Akhiezer
(see [1]) and they turn out to be spherical. The latter property extends to all ranks:
in fact, the wonderful varieties are exactly the complete log homogeneous varieties having a
unique closed orbit, as follows from [40] combined with [6, Propositions 2.2.1 and
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2.5]. Moreover, the rank of a wonderful variety coincides with the rank of its open
G-orbit.

The combinatorial invariants Λ(X0), V(X0), D(X0) associated with the open
G-orbit of a wonderful variety X admit simple geometric interpretations. To state
them, let X1 denote the complement in X of the union of the closures of the colors.
Then X1 is an open B-stable subset of X. One shows that X1 is isomorphic to an
affine space and meets each G-orbit in X along its open B-orbit; it easily follows that
the closure in X of each color D ∈ D(X0) is a base-point-free divisor, and these divisors
form a basis of the Picard group of X. In particular, we have equalities in Pic(X):

(4.23) Di =
∑
D∈D

cD,iD (i = 1, . . . , r)

where the cD,i are uniquely determined integers. Also, X1 ∩ Y is the open Bruhat cell
in Y, and hence equals B · y for a unique T -fixed point y ∈ Y. Thus, T acts in the
normal space Ty(X)/Ty(Y) of dimension r = rk(X); one shows that the corresponding
weights σ1, . . . ,σr (called the spherical roots of the wonderful variety X) are linearly
independent. Now the spherical roots form a basis of Λ(X0), and generate the dual cone to
V(X0). The dual basis of Hom

(
Λ(X0),Q

)
consists of the opposites of the valuations

v1, . . . , vr associated with the boundary divisors. Moreover, (4.23) implies that the
map ϕ : D→ Hom

(
Λ(X0),Q

)
is given by

ϕ(vD) =

r∑
i=1

cD,i vi (D ∈ D).

To each spherical homogeneous space X0 = G/H, one associates a wonderful
variety as follows. Denote by NG(H) the normaliser of H in G, so that the quotient
group NG(H)/H is isomorphic to the equivariant automorphism group AutG(X0).
Since X0 is spherical, the algebraic group NG(H)/H is diagonalizable; moreover,
NG(H) equals the normalizer of the Lie algebra h. Thus, the homogeneous space
G/NG(H) is the G-orbit of h viewed as a point of the Grassmannian variety Gr(g)
of subspaces of g (or alternatively, of the scheme of Lie subalgebras of g). The orbit
closure

X := G · h ⊂ Gr(g)

is a projective equivariant completion of G/NG(H), called the Demazure embedding
of that homogeneous space. In fact, the variety X is wonderful by a result of Losev
(see [38]) based on earlier results of several mathematicians, including Demazure
and Knop (see [33, Corollary 7.2]). Moreover, by embedding theory of spherical
homogeneous spaces, the log homogeneous embeddings of G/H are exactly those smooth
equivariant embeddings that admit a morphism to X; then the logarithmic tangent bundle
is the pull-back of the tautological quotient bundle on Gr(g). Also, by embedding theory
again, a complete log homogeneous variety X ′ is wonderful if and only if the morphism
X ′ → X is finite.
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It follows that every spherical homogeneous space G/H such that H = NG(H)

admits a wonderful equivariant completion; in the converse direction, ifG/H admits
such a completion X, then X is unique, and the quotient NG(H)/H is finite. In
particular, the center of G acts on X via a finite quotient; thus, one can assume that
G is semi-simple when considering wonderful G-varieties.

Since the G-variety Gr(g) contains only finitely many isomorphism classes
of spherical G-orbits, and any G-homogeneous space admits only finitely many
finite equivariant coverings, we see that the number of isomorphism classes of wonderful
G-varieties is finite (for a given group G). Also, note that the wonderful varieties are
exactly those log homogeneous varieties that are log Fano, i.e., the determinant of
the logarithmic tangent sheaf is ample.

To classify wonderfulG-varieties, it suffices to characterize those triples (Λ,V,D)

that occur as combinatorial invariants of their open G-orbits, in view of Losev’s
uniqueness result. In fact, part of the information contained in such triples is more
conveniently encoded by abstract combinatorial objects called spherical systems.
These were introduced by Luna, who obtained a complete classification of wonderful
G-varieties for those groups G of type A, in terms of spherical systems only. For an
arbitrary group G, Luna also showed how to reduce the classification of spherical
G-homogeneous spaces to that of wonderful G-varieties, and he conjectured that
wonderful varieties are classified by spherical systems (see [41]).

Luna’s Lie theoretic methods were further developed by Bravi and Pezzini to
classify wonderful varieties in classical types B,C,D (see [13, 14, 15, 16]); the case
of exceptional types E was treated by Bravi in [8]. Thus, Luna’s conjecture has been
checked in almost all cases. The exceptional type F4 is considered by Bravi and Luna
in [12]; they listed the 266 spherical systems in that case, and they constructed many
examples of associated wonderful varieties.

Luna’s conjecture has also been confirmed for those wonderful G-varieties that
arise as orbit closures in projectivizations of simple G-modules, via a classification
due to Bravi and Cupit-Foutou (see [11]). These wonderful varieties are called strict;
they are characterized by the property that the isotropy group of each point equals
its normalizer, as shown by Pezzini (see [50, Theorem 2]). In [10], Bravi and Cupit-
Foutou applied that classification to explicitly describe certain moduli schemes of
spherical varieties with a prescribed weight monoid; we now survey their results.

We say that a submonoid Γ ⊂ Λ+ is G-saturated, if

Γ = Λ+ ∩ ZΓ

where ZΓ denotes the subgroup of Λ generated by Γ . Then Γ is finitely generated,
and saturated in the sense arising from toric geometry. By [47], the G-saturated
submonoids of Λ+ are exactly the weight monoids of those affine horospherical
G-varieties Z0 such that Z0 is normal and contains an open G-orbit with boundary
of codimension > 2.
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Next, fix a G-saturated submonoid Γ ⊂ Λ+ that is freely generated, with basis
λ1, . . . , λN. Consider the associated moduli scheme MΓ equipped with the action of
the adjoint torus Tad (Subsection 4.3). Then MΓ is an open subscheme of HilbGh (V)
by Example 4.17, where V = V(λ1)

∗ ⊕ · · · ⊕ V(λN)∗ and h = hΓ .
By the results of [10, Section 2.3], MΓ is isomorphic to a Tad-module with lin-

early independent weights, say σ1, . . . ,σr. Moreover, the union of all non-degenerate
G-subvarieties

Z ⊂ V(λ1)∗ ⊕ · · · ⊕ V(λN)∗

with weight monoid Γ is the affine multi-cone over a wonderful G-variety

X ⊂ P
(
V(λ1)

∗)× · · · × P
(
V(λN)

∗)
which is strict and has spherical roots σ1, . . . ,σr. The closures of the colors of X are
exactly the pull-backs of the B-stable hyperplanes in P

(
V(λi)

∗) (defined by the
highest weight vectors of V(λi)) under the projections X→ P

(
V(λi)

∗).
To prove these results, one first studies the tangent space to MΓ at the horospher-

ical degeneration Z0, based on 3.10. This Tad-module turns out to bemultiplicity-free
with weights σ1, . . . ,σr among an explicit list of spherical roots. Then one shows
that the data of λ1, . . . , λN and σ1, . . . ,σr define a spherical system; finally, by the
classification of strict wonderful varieties, this spherical system corresponds to a
unique such variety X.

Yet severalG-saturatedmonoidsmay well yield the same strict wonderful variety,
for instance in the case where Γ has basis a dominant weight λ (any such monoid is
G-saturated); see the final example below.

Another natural example of a G-saturated monoid is the whole monoid Λ+

of dominant weights. The affine spherical varieties Z having that weight monoid
are called amodel G-variety, as every simple G-module occurs exactly once in O(Z);
then the horospherical degeneration of Z is Z0 = G//U. The strict wonderful varieties
associated with model varieties have been described in detail by Luna (see [42]).

More recently, Cupit-Foutou generalizes the approach of [10] in view of a
geometric classification of wonderful varieties and of a proof of Luna’s conjecture in
full generality (see [23]). For this, she associates with any wonderful variety of rank
r a family of (affine) spherical varieties over the affine space Ar, having a prescribed
free monoid. Then she shows that this family is the universal family.

The first step is based on the construction of the total coordinate ring (also
called the Cox ring) of a wonderful variety X. Recall that the set D of (closures of)
colors freely generates the Picard group of X, and consider the ZD-graded ring

R(X) :=
⊕

(nD)∈ZD

H0(X,OX(∑
D∈D

nDD)
)

relative to the multiplication of sections. We may assume that G is semi-simple and
simply connected; then each space H0

(
X,OX(

∑
D∈D nDD)

)
has a unique structure

of a G-module, and the total coordinate ring R(X) is a ZD-graded G-algebra. It
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is also a finitely generated unique factorization domain. Moreover, the invariant
subring R(X)U is freely generated by the canonical sections sD of the colors and
by those s1, . . . , sr of the boundary divisors; each si is homogeneous of weight
(cD,i)D∈D. Each sD is a B-eigenvector of weight (say) ωD, and hence generates a
simple submodule

VD ∼= V(ωD) ⊂ H0(X,OX(D)
)
.

As a consequence, the graded ring R(X) is generated by s1, . . . , sr and by the VD
where D ∈ D. Moreover, s1, . . . , sr form a regular sequence in R(X) (see [18, Section
3.1]).

In geometric terms, the affine variety X̃ := Spec
(
R(X)

)
is equipped with an

action of the connected reductive group G̃ := G× (Gm)D and with a flat, G-invariant
morphism

(4.24) π = (s1, . . . , sr) : X̃ −→ Ar

which is also (Gm)D-equivariant for the linear action of that torus onAr with weights∑
D∈D cD,iεD where i = 1, . . . , r and εD : (Gm)D → Gm denotes the coefficient on

D. Moreover, the G̃-variety X̃ is spherical and equipped with a closed immersion into
the G̃-module

(
Ar×

∏
D∈D VD

)∗
that identifies π with the projection to (Ar)∗ ∼= Ar.

Here (Gm)D acts on
∏
D∈D V

∗
D via multiplication by −εD on V∗D.

It follows that πmay be viewed as a family of non-degenerate spherical G× C-
subvarieties of

V :=
⊕
D∈D

V∗D

where C denotes the neutral component of the kernel of the homomorphism

(Gm)D −→ (Gm)r, (tD)D∈D 7−→
( ∏
D∈D

t
cD,i
D

)
i=1,...,r.

Thus, C is a torus, and G×C a connected reductive group with maximal torus T ×C
and adjoint torus Tad. The weight monoid Γ is freely generated by the restrictions to
T × C of the weights (ωD, εD) of T × (Gm)D, where D ∈ D.

Now the main results of [23] assert that the moduli scheme MΓ is isomorphic
to Ar, and X̃ to the universal family. Moreover, X is the quotient by (Gm)D of the
union of non-degenerate orbits (an open subset of X̃, stable under G̃). In particular,
the wonderful G-variety X is uniquely determined by the monoid Γ .

As in [10], the first step in the proof is the determination of TZ0(MΓ ). Then a
new ingredient is the vanishing of T2(X0)

G, an obstruction space for the functor of
invariant infinitesimal deformations of X0. This yields the smoothness of MΓ at Z0,
which implies easily the desired isomorphism MΓ ∼= Ar.

Example 4.25. Let G = SL2 as in Example 4.21. Then the wonderful G-varieties X
are those of the following list, up to G-isomorphism:
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(i) P1 = G/B. Then X is strict of rank 0: it has no spherical root. Moreover, R(X) =
Sym

(
V(1)

)
, G̃ ∼= Gm × G, and X̃ = V(1) where Gm acts via scalar multiplication;

the map (4.24) is constant.

(ii) P1×P1, of rank 1 with open orbitG/T and closed orbit Y = G/B embedded as the
diagonal. Then X is not strict, of rank 1, and its spherical root is the simple root α; we
have Y = D+ +D− in Pic(X). Moreover, R(X) ∼= Sym

(
V(1)⊕V(1)

)
, G̃ = G× (Gm)2,

and X̃ = V(1)⊕ V(1) where (Gm)2 acts via componentwise multiplication, and G
acts diagonally. The map (4.24) is the determinant. The torus C is one-dimensional,
and the monoid Γ has basis (1,1) and (1,−1).

(iii) P2 = P
(
V(2)

)
, of rank 1 with open orbit G/NG(T) and closed orbit Y = G/B

embedded as the conic (∆ = 0). Here X is strict, of rank 1, and its spherical root
is 2α; we have Y = 2D in Pic(X). Moreover, R(X) = Sym

(
V(2)

)
, G̃ ∼= G×Gm, and

X̃ = V(2)whereGm acts via scalar multiplication. Themap (4.24) is the discriminant
∆. The torus C is trivial, and Γ is generated by 2. We have MΓ = HilbGh2

(
V(2)

)
∼= A1.

Note that the monoid generated by 4 yields the same wonderful variety.
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