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Analytic Methods for Diophantine Equations
and Diophantine Inequalities

Harold Davenport was one of the truly great mathematicians of the twen-
tieth century. Based on lectures he gave at the University of Michigan in
the early 1960s, this book is concerned with the use of analytic methods
in the study of integer solutions to Diophantine equations and Diophan-
tine inequalities. It provides an excellent introduction to a timeless area
of number theory that is still as widely researched today as it was when
the book originally appeared. The three main themes of the book are
Waring’s problem and the representation of integers by diagonal forms,
the solubility in integers of systems of forms in many variables, and the
solubility in integers of diagonal inequalities.

For the second edition of the book a comprehensive foreword has been
added in which three leading experts describe the modern context and
recent developments. A complete list of references has also been added.
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Foreword

Waring’s problem: Chapters 1–10

When Davenport produced these lecture notes there had been very little
progress on Waring’s problem since important work by Davenport and
Vinogradov something like a quarter of a century earlier, and the main
interest was to report on the more recent work on forms as described
in the later chapters. Indeed there was a generally held view, with
regard to Waring’s problem at least, that they had extracted everything
that could be obtained reasonably by the Hardy–Littlewood method
and that the method was largely played out. Moreover, the material on
Waring’s problem was not intended, in general, to be state of the art, but
rather simply an introduction to the Hardy–Littlewood method, with a
minimum of fuss by a masterly expositor, which could then be developed
as necessary for use in the study of the representation of zero by general
integral forms, especially cubic forms, in the later chapters. There is
no account of Davenport’s own fundamental work on Waring’s problem,
namely G(4) = 16 (Davenport [18]), G(5) ≤ 23, G(6) ≤ 36 (Davenport
[19]), nor of Vinogradov’s [94] G(k) ≤ 2k log k + o(k log k) for large k

or Davenport’s proof [17] that almost all natural numbers are the sum
of four positive cubes. Nor, on a more technical level, was any attempt
made to obtain more refined versions of Lemmas 4.2 and 9.2, estimates
for the generating function T (α) on the major arcs, such as those due to
Davenport and Heilbronn [25] or Hua [50], although such refinements
can be very helpful in applications.

In the last twenty years there has been a good deal of progress on War-
ing’s problem. Methods of great flexibility, inspired by some of the ideas
stemming from the researches of Hardy and Littlewood, Davenport, and
Vinogradov have been developed which have permitted the retention of

vii
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many of the wrinkles introduced in the earlier methods. The beginnings
of a glimmer of some of these seminal ideas can be seen in Lemmas 9.4
and 9.5.

The asymptotic formula for the number of representations of a large
natural number n as the sum of at most s kth powers established in
Theorem 4.1 when s ≥ 2k + 1 was state of the art for 3 ≤ k ≤ 10,
but for larger k methods due to Vinogradov were superior (see Theorem
5.4 of Vaughan [86]). The current state of play is that the asymptotic
formula is known to hold when s ≥ 2k (k = 3, 4, 5) (Vaughan [82, 84]),
s ≥ 7.2k−3 (k = 6, 7, 8) (Boklan [8], following Heath-Brown [43]), and
s ≥ s1(k) where s1(k) = k2

(
log k + log log k + O(1)

)
(k ≥ 9) (Ford

[32]). The discussion in the Note in Chapter 3 in the case k = 3 is still
relevant today. Although the asymptotic formula for sums of eight cubes
is now established the classical convexity bound was not improved in the
exponent when 2 < m < 4. The core of the argument of Vaughan [82]
is extremely delicate and leads only to∫

m

|T (α)|8dα � P 5(log P )−γ

for a positive constant γ and a suitable set of minor arcs m. However
Hooley [47] has shown under the (unproven) Riemann Hypothesis for a
certain Hasse–Weil L-function that∫

m

|T (α)|6dα � P 3+ε

and this in turn implies the asymptotic formula for sums of seven cubes.
Unfortunately it is not even known whether the L-function has an ana-
lytic continuation into the critical strip.

For G(k) the best results that we currently have are G(3) ≤ 7 (Linnik
[57, 59]), G(4) = 16 Davenport [18], G(5) ≤ 17, G(7) ≤ 33, (Vaughan
and Wooley [89]), G(6) ≤ 21 (Vaughan and Wooley [88]), G(8) ≤
42 (Vaughan and Wooley [87]), G(9) ≤ 50, G(10) ≤ 59, G(11) ≤ 67,
G(12) ≤ 76, G(13) ≤ 84, G(14) ≤ 92, G(15) ≤ 100, G(16) ≤ 109,
G(17) ≤ 117, G(18) ≤ 125, G(19) ≤ 134, G(20) ≤ 142 (Vaughan and
Wooley [90]), and G(k) ≤ s2(k) where s2(k) = k

(
log k+log log k+O(1)

)
(Wooley [98]) in general. Let G#(4) denote the smallest positive s such
that whenever 1 ≤ r ≤ s every sufficiently large n in the residue class
r modulo 16 is the sum of at most s fourth powers. Then, in fact,
Davenport showed that G#(4) ≤ 14 and we now can prove (Vaughan
[85]) that G#(4) ≤ 12. Linnik’s work on Waring’s problem for cubes
does not use the Hardy–Littlewood method, but instead is based on the



Foreword ix

theory of ternary quadratic forms. Watson [95] gave a similar but simpler
proof. However these proofs give relatively poor information about the
number of representations as a sum of seven cubes. As part of the
recent progress we now have proofs via the Hardy–Littlewood method
(e.g. Vaughan [85]) which give lower bounds of the expected correct
order of magnitude for the number of representations. Davenport gives
no indication of what he might have believed the correct value of G(k)
to be. The simplest guess is that

G(k) = max{k + 1,Γ(k)}
where Γ(k) is as defined in the paragraph just prior to Theorem 5.1.
This would imply that for k ≥ 3, G(k) = 4k when k = 2l and k + 1 ≤
G(k) ≤ 3

2k when k �= 2l.
With regard to Lemma 9.2 and the Note after the proof, we now

know that under the less stringent hypothesis (q, a) = 1, q|β| ≤ 1
2kP 1−k,

α = β + a/q we have the stronger estimate

T (α) = q−1Sa,qI(β) + O
(
q

1
2+ε

)
.

Moreover with only the hypothesis (q, a) = 1 we have

T (α) = q−1Sa,qI(β) + O
(
q

1
2+ε(1 + P k|β|) 1

2
)
.

See Theorem 4.1 of Vaughan [86]. The latter result enables a treatment
to be given for cubes in which all the arcs are major arcs.

For a modern introduction to the Hardy–Littlewood method and some
of the more recent developments as applied to Waring’s problem see
Vaughan [86], and for a comprehensive survey of Waring’s problem see
Vaughan and Wooley [91].

Chapter 7 is concerned with the solubility, given a sequence {cj} of
natural numbers, of the equation

c1x
k
1 + · · · + csx

k
s = N (1)

for large natural numbers N , and is really a warm-up for Chapters 8
and 10. For an infinite set of N there may not be solutions, however
large one takes s to be, but the obstruction is purely a local one. Any
of the various forms of the Hardy–Littlewood method which have been
developed for treating Waring’s problem are readily adjusted to this
slightly more general situation and, with the corresponding condition on
s, lead to an approximate formula for the number of solutions counted.
This will lead to a positive lower bound for the number of solutions
for any large N for which the singular series is bounded away from 0.
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Davenport gives a brief outline of the minor changes in the argument
which have to be made in adapting the method, and the remainder of the
chapter is devoted to showing that the above condition on the singular
series is essentially equivalent to the expected local solubility condition.

In Chapters 8 and 10, Davenport adapts the method to treat

c1x
k
1 + · · · + csx

k
s = 0 (2)

where now the cj can be integers, and not all the same sign when k is
even. Of course this has a solution, and so the main point of interest
is to establish the existence of integral solutions in which not all the xj

are 0. This can be considered to be the first special case of what was
the main concern of these notes, namely to investigate the non-trivial
representation of 0 by general forms and systems of forms. In Chapter 8
the simplest version of the Hardy–Littlewood method developed in the
previous chapters is suitably adapted. This requires quite a large value
of s to ensure a solution. In Chapter 10 this requirement is relaxed
somewhat by adapting the variant of Vinogradov’s argument used to
treat Waring’s problem in Chapter 9. Although the argument of Chapter
10 is relatively simple it is flawed from a philosophical point of view in
that as well as the local solubility of (2) there needs to be a discussion
of the local solubility of (1) with N non-zero, which, of course, really
should not be necessary. This could have been avoided, albeit with
some complications of detail. The question of the size of s to ensure a
non-trivial solution to (2) had some independent interest as Davenport
and Lewis [27] had shown that k2 + 1 variables suffice for the singular
series to be bounded away from 0, and when k + 1 is prime there are
equations in k2 variables with no non-trivial solution. Moreover they
had also shown, via the Hardy–Littlewood method, that (2) is soluble
when s ≥ k2 + 1 and either k ≤ 6 or k ≥ 18. Later in Vaughan [81]
(11 ≤ k ≤ 17), [83] (7 ≤ k ≤ 9) and [85] (k = 10) this gap was removed.
The methods of Vaughan and Wooley mentioned in connection with
Waring’s problem when adapted show that far fewer variables suffice for
a non-trivial solution to (2) provided that the corresponding singular
series is bounded away from 0, and this is essentially equivalent to a
local solubility condition.

In the later chapters the Hardy–Littlewood method is adapted in vari-
ous, sometimes quite sophisticated, ways. However, the only place where
any of the main results of the first 10 chapters is applied directly is the
use of Theorem 8.1 (or Theorem 10.1) in the proof of Birch’s theorem in
Chapter 11. Later Birch [7] gave a completely elementary proof, based
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partly on methods of Linnik [58], of a result similar to Theorem 8.1
which can be used in its place.

R. C. Vaughan
Pennsylvania State University

Forms in many variables: Chapters 11–19

Let F (x1, . . . , xn) be a form of degree d with integer coefficients. When
d ≥ 3, the question of whether the equation F (x1, . . . , xn) = 0 has
a non-trivial integer solution is extremely natural, extremely general,
and extremely hard. However for quadratic forms a complete answer
is given by the Hasse–Minkowski Theorem, which states that there is a
non-trivial solution if and only if there is such a solution in R and in
each p-adic field Qp. Such a result is known to be false for higher degree
forms, as Selmer’s example

3x3
1 + 4x3

2 + 5x3
3 = 0

shows. None the less the hope remains that if the number of variables
is not too small we should still have a ‘local-to-global’ principle, of the
type given by the Hasse–Minkowski Theorem.

It transpires that the p-adic condition holds automatically if the num-
ber of variables n is sufficiently large in terms of the degree. This
was shown by Brauer [9], whose argument constitutes the first general
method for such problems. The line of attack uses multiply nested in-
ductions, and in consequence the necessary number of variables is very
large. It was conjectured by Artin that d2 + 1 variables always suffice,
there being easy examples of forms in d2 variables with only trivial p-adic
solutions. However many counter-examples have subsequently been dis-
covered. The first of these, due to Terjanian [80], involves a quartic form
in 18 variables, with no non-trivial 2-adic solution. There are no known
counter-examples involving forms of prime degree, and in this case it
remains an open question whether or not Artin’s conjecture holds.

There are various alternatives to Brauer’s induction approach for the
p-adic problem. Davenport presents one of these for the case d = 3
in Chapter 18, establishing the best possible result, namely that p-adic
solutions always exist when n ≥ 10. For d ≥ 4 such approaches work
well only when p is large enough. Thus Leep and Yeomans [55] have
shown that p ≥ 47 suffices for d = 5. In the general case Ax and Kochen
[1] showed that d2 + 1 variables always suffice for the p-adic problem,
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when p is sufficiently large compared with d. The Ax–Kochen proof is
remarkable for its use of methods from mathematical logic. For small
primes other lines of argument seem to be needed, and Wooley [100]
has re-visited the Brauer induction approach to establish that d2d

+ 1
variables suffice for every field Qp. It remains a significant open problem
to get bounds of a reasonable size, below 1000 say, for the cases d = 4
and d = 5.

The problem for forms over Q, rather than Qp, is distinctly different.
For forms of even degree there is no value of n which will ensure the
existence of a non-trivial integer solution, as the example

xd
1 + · · · + xd

n = 0

shows. Thus the original Brauer induction argument cannot be applied
to Q, since it involves an induction over the degree. However Birch [5]
was able to adapt the induction approach so as to use forms of odd
degree only, and hence to show that for any odd integer d ≥ 1 there is a
corresponding n(d) such that F (x1, . . . , xn) = 0 always has a non-trivial
solution for n ≥ n(d). This work is described by Davenport in Chapter
11. A rather slicker account is now available in the book by Vaughan [86,
Chapter 9]. Although the values of n(d) produced by Birch’s work were
too large to write down, more reasonable estimates have been provided
by Wooley [99], by a careful adaptation of Birch’s approach.

Davenport’s own major contribution to the area was his attack on
cubic forms, via the circle method. The natural application of Weyl’s
method, as described in Chapter 13, leads to a system of Diophantine
inequalities involving bilinear forms. The key result in this context is
Lemma 13.2. By using techniques from the geometry of numbers, Dav-
enport was able to convert these inequalities into equations. In his first
two papers on the subject [20, 21] these equations were used to deduce
that F must represent a form of the type a1x

3
1 +F ′(x2, . . . , xm) for some

m < n. This process is somewhat wasteful, since n − m variables are
effectively discarded. By repeated applications of the above principle
Davenport was able to reduce consideration to diagonal forms. Daven-
port’s third paper [22] treats the bilinear equations in a more geometrical
way, which is presented in Chapter 14. This approach is much more ef-
ficient, since no variables are wasted. A straightforward application of
this third method shows that F = 0 has a non-trivial solution for any cu-
bic form in 17 or more variables, and this is the result given as Theorem
18.1. However in [22] a slight refinement is used to show that 16 vari-
ables suffice. It is perhaps worth emphasizing the slightly unusual logical
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structure of the proof. The main goal is to prove an asymptotic formula
for the number of solutions in a box of side P . Davenport achieves this,
providing that the number of solutions to the aforementioned bilinear
equations does not grow too rapidly. The arguments used to handle this
latter issue lead to two alternatives: either the number of solutions to
the bilinear equations is indeed suitably bounded, or the original cubic
form has a non-trivial integer zero for geometric reasons. In either case
the cubic form has a non-trivial integer zero. One consequence of all this
is that one does not obtain an asymptotic formula in every case. The
form

x3
1 + x2(x2

3 + · · · + x2
n)

vanishes whenever x1 = x2 = 0, so that there are � Pn−2 solutions in a
box of side P . This example shows that one cannot in general expect an
asymptotic formula of the type mentioned in connection with Theorem
17.1.

The 16 variable result is arguably one of Davenport’s finest achieve-
ments, and it remains an important challenge to show that 15 variables,
say, are in fact enough. Davenport’s approach has been vastly gener-
alized by Schmidt [77] so as to apply to general systems of forms of
arbitrary degree. For a single form F (x1, . . . , xn) the result may be ex-
pressed in terms of the invariant h(F ) defined as the smallest integer h

for which one can write

F (x) = G1(x)H1(x) + · · · + Gh(x)Hh(x)

with non-constant forms Gi,Hi having rational coefficients. An inspec-
tion of Davenport’s argument for cubic forms in 16 variables then estab-
lishes the standard Hardy–Littlewood asymptotic formula for any cubic
form with h(F ) ≥ 16. When h(F ) ≤ 15 and n ≥ 16 the form F still has
a non-trivial integer zero, since one can take the forms Hi(x) to be linear
and use a common zero of H1, . . . , Hh. In his generalization Schmidt was
able to obtain an explicit function n(d) such that the Hardy–Littlewood
formula holds for any form of degree d having h(F ) ≥ n(d). In order
to deal with forms for which h(F ) < n(d) one is led to an induction
argument involving systems of forms. Thus if one starts with a single
form of degree d = 5 one wants to know about zeros of systems of cubic
forms. In this connection Schmidt proved in a separate investigation [76]
that a system of r cubic forms with integer coefficients has a non-trivial
integer zero if there are at least (10r)5 variables.

Davenport’s result was generalized in another direction by Pleasants
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[67], who showed that the result remains true if the coefficients of the
form F , and the solutions (x1, . . . , xn), are allowed to lie in an algebraic
number field. In this wider setting 16 variables still suffice.

If one assumes the form F to be non-singular, which is the generic
case, one can show (Heath-Brown [42]) that 10 variables suffice. Here
the number 10 is best possible, since there exist forms in 9 variables
with no non-trivial p-adic zeros. However Hooley [45] has sharpened the
above result to establish the local-to-global principle for non-singular
cubic forms in n ≥ 9 variables. These works use the Hardy–Littlewood
method, but instead of employing Weyl’s inequality they depend on the
Poisson summation formula and estimates for ‘complete’ exponential
sums. Complete exponential sums involving a non-singular form can
be estimated very efficiently via Deligne’s Riemann Hypothesis for va-
rieties over finite fields, but the methods become less effective as the
dimension of the singular locus grows. Deligne’s bounds handle sums to
prime, or square-free, moduli, but sums to prime power moduli remain
a considerable problem. The treatment of these in [42] uses exactly the
same bilinear forms as were encountered by Davenport [22], but since F

is now non-singular the techniques of Birch [6] can be used to advantage.
Heath-Brown [42] establishes an asymptotic formula for the number of
solutions in a suitable region. However the argument in Hooley [45] has
a structure somewhat analogous to Davenport’s, in that one only gets
an asymptotic formula under a certain geometric condition. When the
condition fails there are integer points for other reasons. (This defect
was later circumvented by Hooley [46].) In its simplest guise the above
methods would handle non-singular cubic forms in 13 or more variables.
However this may be reduced to 10 through the use of Kloosterman’s
refinement of the circle method. In order to handle forms in nine vari-
ables Hooley adopts a distinctly more subtle analysis, designed to save
just a power of log P , when considering points in a box of side P .

The work of Birch [6], summarized in Chapter 19, is most easily de-
scribed by seeing how it applies to a single form F . When F is non-
singular Birch is able to establish an asymptotic formula as soon as
n > (d − 1)2d, providing that the singular series and integral are pos-
itive. For d = 3 this is weaker than the result of Hooley [45], but the
method works for arbitrary values of d. In fact subsequent investiga-
tions have failed to improve on Birch’s result for any value of d > 3.
Birch’s argument is based on Weyl’s inequality, and leads to a system
of multilinear equations analogous to the bilinear ones in Davenport’s
work. These are handled by a different technique from that used by
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Davenport, which is simpler and more obviously geometric, but which
requires information about the singularities of F .

D. R. Heath-Brown
Oxford University

Diophantine inequalities: Chapter 20

In the final chapter, Davenport provides an exposition of his ground-
breaking 1946 joint work with Heilbronn [26]. They demonstrated how
to adapt the Hardy–Littlewood method to yield results on Diophantine
inequalities. Since their publication, numerous results have been proved
with their technique, now commonly referred to as the Davenport–
Heilbronn method.

Suppose that s is an integer with s ≥ 5 and that λ1, . . . , λs are real
numbers, not all of the same sign, and not all in rational ratio. The
chapter consists of a proof that given any positive real number C, there
exists a non-trivial integer solution x = (x1, . . . , xs) of the Diophantine
inequality ∣∣λ1x

2
1 + · · · + λsx

2
s

∣∣ < C. (3)

As Davenport notes, the result has a straightforward extension to the
case in which the squares are replaced by kth powers and the number
of variables is at least 2k + 1. If k is odd, the sign condition is of course
unnecessary.

The proof is a clever adaptation of the Hardy–Littlewood method.
One estimates, for some large positive P , the number of solutions of
(3) where the integers xi satisfy |xi| ≤ P . Rather than integrating
over a unit interval as in the Hardy–Littlewood method, one integrates
over the real line against a suitable decaying kernel. Instead of multiple
major arcs, here the major contribution comes from an interval centred
around zero, while the most difficult region to bound consists of a subset
of numbers of intermediate size. The contribution to this latter region
is treated using the hypothesis that one of the ratios is irrational.

In the lecture notes, Davenport conjectures that (3) is non-trivially
soluble even for s ≥ 3, and in a separate comment notes that a natural
question is whether the result can be generalized to the case of indefinite
quadratic forms that are not necessarily diagonal and discusses some
work by Birch, Davenport and Ridout (see [29]). In fact, Margulis [60]
answered both questions positively, establishing the non-trivial solubility
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of

|Q(x1, . . . , xs)| < ε

for general indefinite quadratic forms Q(x), for any ε > 0, assuming
s ≥ 3 and that the coefficients of Q are not all in rational ratio. This
established the Oppenheim conjecture, as it implies that the values of
such a form at integral points are dense on the real line. We note that
Margulis’ proof uses techniques different from the Hardy–Littlewood
method.

Concerning forms of higher degree, Davenport mentions a result that
Pitman [66] gave on cubic forms, but remarks that proving similar results
for forms of higher odd degree seems to involve a ‘difficulty of principle’.
Schmidt, in a sequence of papers [73, 74, 75], provided the key result
needed to resolve this difficulty. His work builds on a combination of
the Davenport–Heilbronn method and a diagonalization procedure that
yields a proof that any system of general Diophantine inequalities of odd
degree and sufficiently many variables has a solution. More precisely,
he showed that given odd positive integers d1, . . . , dR, there exists a
constant C(d1, . . . , dR) depending only on d1, . . . , dR such that given
any real forms F1, . . . , FR in s variables, of respective degrees d1, . . . , dR,
where s ≥ C(d1, . . . , dR), and given ε > 0, there exists a non-trivial
integer vector x such that

|F1(x)| < ε, |F2(x)| < ε, . . . , |FR(x)| < ε.

There are numerous results which give lower bounds such as C(d1, . . . ,

dR) for particular types of forms, of which we mention only two. Brüdern
and Cook [11] produced such a result for systems of diagonal forms, un-
der certain conditions on the coefficients, and Nadesalingam and Pitman
[62] have given an explicit lower bound for systems of R diagonal cubic
forms.

One can also ask about inequalities involving general positive definite
forms with coefficients not all in rational ratio. We certainly do not
expect the values at integral points to be dense on the real line; thus
the relevant question, asked by Estermann, is whether the gaps between
these values tend to zero as the values tend to infinity, provided that the
number of variables is sufficiently large. For diagonal quadratic forms,
Davenport and Lewis [28] noted that this follows readily from a result
of Jarńık and Walfisz [51], if the number of variables s is at least 5.
In their paper, Davenport and Lewis gave a step toward answering the
gaps question for general positive definite quadratic forms Q(x) in s
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variables. Their methods essentially show, as Cook and Raghavan [15]
demonstrate, that for such forms, given s sufficiently large and given
ε > 0, then for any sufficiently large integral point x0, there are many
integral points x for which one has |Q(x)−Q(x0)| < ε, where the notion
of many can be defined precisely. In 1999, Bentkus and Götze [3] re-
solved the gaps question with powerful new techniques, which Götze [36]
consequently improved upon. These results together establish that for
s ≥ 5 and for any positive definite quadratic form Q in s variables, with
coefficients not all in rational ratio, the differences between successive
values of Q at integral points tend to zero as the values approach infin-
ity. Their methods have given rise to much new work on Diophantine
inequalities. Additionally, we note that some workers have considered
special types of inhomogeneous polynomials of higher degree, including
Brüdern [10], Bentkus and Götze [4] and Freeman [34].

Since Davenport and Heilbronn’s work, there have been many im-
provements of the lower bound on s required to guarantee non-trivial
solubility of diagonal Diophantine inequalities of degree k. For each pos-
itive integer k, let Gineq(k) denote the smallest positive integer s0 such
that for all s ≥ s0, and for all indefinite diagonal forms λ1x

k
1 + · · ·+λsx

k
s

with coefficients not all in rational ratio, and for all ε > 0, there is a
non-trivial integral solution of∣∣λ1x

k
1 + · · · + λsx

k
s

∣∣ < ε. (4)

As Davenport remarks, Davenport and Roth [30] provided an improve-
ment; they showed that there exists a constant C1 > 0 such that

Gineq(k) ≤ C1k log k.

In fact, the Davenport–Heilbronn method is sufficiently flexible so that
bounds for inequalities roughly parallel bounds given by work on
Waring’s problem. In particular, for large k, one has

Gineq(k) ≤ k(log k + log log k + 2 + o(1)). (5)

(See [101] for a statement of this result.) We note that in many cases,
for example the work of Baker, Brüdern and Wooley [2] for k = 3,
achieving the same bound as that for G(k) required extra effort. Recent
work of Wooley [101] shows that bounds for G(k) generally, with some
exceptions, apply as bounds for Gineq(k).

As Davenport notes, the proof in Chapter 20 only applies to a sequence
of large P , where the sequence depends on the rational approximation
properties of the ratios of the coefficients. In many applications of the
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Hardy–Littlewood method, one obtains an asymptotic formula for the
number of integral solutions for all positive P with not much more effort
than is required to establish solubility. For example, for indefinite di-
agonal forms with coefficients nonzero and not all in rational ratio, and
for positive P , and s sufficiently large in terms of k, we would expect
that the number N(P ) of integral solutions x of (4) with |xi| ≤ P for
1 ≤ i ≤ s satisfies

N(P ) = C(s, k, λ1, . . . , λs)εP s−k + o
(
P s−k

)
, (6)

where C(s, k, λ1, . . . , λs) is a positive constant depending only on s, k

and the coefficients λi. However, the proof of Davenport and Heilbronn
(with some minor technical modifications) allows one to give asymp-
totic formulae for diagonal Diophantine inequalities for essentially only
an infinite sequence of large P . In their paper, Bentkus and Götze [3]
establish the appropriate analogue of (6) for general positive definite
quadratic forms with coefficients not all in rational ratio, for all pos-
itive P ; although their proofs are not phrased in the language of the
Davenport–Heilbronn method, the ideas are similar. By adapting their
work, Freeman [33, 35] was able to prove the existence of an asymp-
totic formula such as (6) for indefinite diagonal forms of degree k for
all positive P . Wooley [101] has considerably simplified and improved
this work, using clever ideas to reduce the number of variables needed
to guarantee the existence of asymptotic formulae.

In particular, for the existence of asymptotic formulae for large k, one
can establish results similar to (5); if we define Gasymp(k) analogously
to Gineq(k), one has

Gasymp(k) ≤ k2 (log k + log log k + O(1)) .

Finally, we note that Eskin, Margulis and Mozes [31], using techniques
different from the Davenport–Heilbronn method, in fact earlier proved
the existence of asymptotic formulae of the expected kind for the case
of general indefinite quadratic forms in at least four variables with coef-
ficients not all in rational ratio, and signature not equal to (2, 2).

D. E. Freeman
Carleton University



Editorial preface

Like many mathematicians I first came into contact with number theory
through Davenport’s book The Higher Arithmetic [23]. It was difficult
not to be struck by his command of the subject and wonderful expos-
itory style. This basic textbook is now into its seventh edition, whilst
at a more advanced level, a third edition of Davenport’s Multiplicative
Number Theory [24] has recently appeared. It is fair to say therefore
that Davenport still holds considerable appeal to mathematicians world-
wide. On discovering that Davenport had also produced a rather less
well-known set of lecture notes treating an area of substantial current
interest, I was immediately compelled to try and get it back into print.
In doing so, I have tried to preserve in its original format as much of the
material as possible, and have merely removed errors that I encountered
along the way.

As the title indicates, this book is concerned with the use of analytic
methods in the study of integer solutions to certain polynomial equa-
tions and inequalities. It is based on lectures that Davenport gave at the
University of Michigan in the early 1960s. This analytic method is usu-
ally referred to as the ‘Hardy–Littlewood circle method’, and its power is
readily demonstrated by the diverse range of number theoretic problems
that can be tackled by it. The first half of the book is taken up with a
discussion of the method in its most classical setting: Waring’s problem
and the representation of integers by diagonal forms. In Chapters 11–19,
Davenport builds upon these foundations by showing how the method
can sometimes be adapted to handle integer solutions of general systems
of homogeneous polynomial equations. Finally, in Chapter 20 Daven-
port presents an account of work carried out by himself and Heilbronn
in the setting of Diophantine inequalities. Even more so than with his

xix
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other books, these lecture notes reflect Davenport’s extensive influence
in the subject area and his deep knowledge pertaining to it.

This edition of Davenport’s lecture notes has been considerably en-
riched by the provision of a foreword, the main purpose of which is to
place a modern perspective on the state of knowledge described in the
lecture notes. I am extremely grateful to Professor Freeman, Professor
Heath-Brown and Professor Vaughan for lending their authority to this
project. I also wish to thank Lillian Pierce and Luke Woodward for all
of their hard work in helping me transcribe Davenport’s original lec-
ture notes into LATEX. Finally it is a pleasure to express my gratitude
both to James Davenport at Bath University and to David Tranah at
Cambridge University Press for sharing my enthusiasm in bringing these
lecture notes to the attention of a wider mathematical audience.

T. D. Browning
Mathematical Institute

Oxford University
24–29 St. Giles’

Oxford
OX1 3LB

browning@maths.ox.ac.uk



1

Introduction

The analytic method of Hardy and Littlewood (sometimes called the
‘circle method’) was developed for the treatment of additive problems in
the theory of numbers. These are problems which concern the represen-
tation of a large number as a sum of numbers of some specified type.
The number of summands may be either fixed or unrestricted; in the
latter case we speak of partition problems. The most famous additive
problem is Waring’s problem, where the specified numbers are the kth
powers, so that the problem is that of representing a large number N as

N = xk
1 + xk

2 + · · · + xk
s , (1.1)

where s and k are given and x1, . . . , xs are positive integers. Almost
equally famous is Goldbach’s ternary problem, where the specified num-
bers are the primes, and the problem is that of representing a large
number N as

N = p1 + p2 + p3.

The great achievements of Hardy and Littlewood were followed later by
further remarkable progress made by Vinogradov, and it is not without
justice that our Russian colleagues now speak of the ‘Hardy–Littlewood–
Vinogradov method’.

It may be of interest to recall that the genesis of the Hardy–Littlewood
method is to be found in a paper of Hardy and Ramanujan [69] in 1917
on the asymptotic behaviour of p(n), the total number of partitions of
n. The function p(n) increases like eA

√
n, where A is a certain positive

constant; and Hardy and Ramanujan obtained for it an asymptotic se-
ries, which, if one stops at the smallest term, gives p(n) with an error
O(n−1/4). The underlying explanation for this high degree of accuracy,

1



2 Analytic Methods for Diophantine Equations and Inequalities

which Hardy describes as ‘uncanny’, was given by Rademacher [68] in
1937: there is a convergent series which represents p(n) exactly, and this
is initially almost the same as the asymptotic series. There is one other
group of problems in which the Hardy–Littlewood method leads to exact
formulae; these are problems concerning the representation of a number
as the sum of a given number of squares. It seems unlikely that there
are any such formulae for higher powers.

Waring’s problem is concerned with the particular Diophantine equa-
tion (1.1). There is no difficulty of principle in extending the Hardy–
Littlewood method to deal with more general equations of additive
type1, say

N = f(x1) + f(x2) + · · · + f(xs),

where f(x) is a polynomial taking integer values; in particular to the
equation

N = a1x
k
1 + a2x

k
2 + · · · + asx

k
s . (1.2)

It is only in recent years, however, that much progress has been made
in adapting the method to Diophantine equations of a general (that is,
non-additive) character. An account of these developments will be given
later in these lectures, but we shall be concerned at first mainly with
Waring’s problem and with additive equations of the type (1.2). All
work on general Diophantine equations depends heavily on either the
methods or the results of the work on additive equations.

Finally, we shall touch on the subject of Diophantine inequalities.
Here, too, some results of a general character are now known, but they
are less complete and less precise than those for equations.

1 See the monograph [63].
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Waring’s problem: history

In his Meditationes algebraicae (1770), Edward Waring made the state-
ment that every number is expressible as a sum of 4 squares, or 9 cubes,
or 19 biquadrates, ‘and so on’. By the last phrase, it is presumed that
he meant to assert that for every k ≥ 2 there is some s such that every
positive integer N is representable as

N = xk
1 + xk

2 + · · · + xk
s , (2.1)

for xi ≥ 0. This assertion was first proved by Hilbert in 1909. Hilbert’s
proof was a very great achievement, though some of the credit should
go also to Hurwitz, whose work provided the starting point. Hurwitz
had already proved that if the assertion is true for any exponent k, then
it is true for 2k. I shall not discuss Hilbert’s method of proof here; for
this one may consult papers by Stridsberg [79], Schmidt [72] or Rieger
[71]. It is usual to denote the least value of s, such that every N is
representable, by g(k). The exact value of g(k) is now known for all
values of k.

The work of Hardy and Littlewood appeared in several papers of the
series ‘On Partitio Numerorum’ (P.N.), the other papers of the series
being concerned mainly with Goldbach’s ternary problem. In P.N. I [37]
they obtained an asymptotic formula for r(N), the number of represen-
tations of N in the form (2.1) with xi ≥ 1, valid provided s ≥ s0(k),
a certain explicit function of k. The asymptotic formula was of the
following form:

r(N) = Ck,sN
s/k−1S(N) + O(Ns/k−1−δ), (2.2)

where δ > 0 and

Ck,s =
Γ(1 + 1/k)s

Γ(s/k)
> 0.

3



4 Analytic Methods for Diophantine Equations and Inequalities

In the above formula, S(N) is an infinite series of a purely arithmetical
nature, which Hardy and Littlewood called the singular series. They
proved further that

S(N) ≥ γ > 0, (2.3)

for some γ independent of N , provided that s ≥ s1(k). However they
did not at that stage give any explicit value for s1(k). Thus the formula
implies that

r(N) ∼ Ck,sN
s/k−1S(N) (2.4)

as N → ∞, provided s ≥ max(s0(k), s1(k)), and thereby provided an
independent proof of Hilbert’s theorem.

Hardy and Littlewood introduced the notation G(k) for the least value
of s such that every sufficient large N is representable in the form (2.1);
this function is really of more significance than g(k), since the latter is
affected by the difficulty of representing one or two particular numbers
N . In P.N. II [38] and P.N. IV [39], Hardy and Littlewood proved that
the asymptotic formula and the lower bound for S(N) both hold for
s ≥ (k − 2)2k−1 + 5, which implies that

G(k) ≤ (k − 2)2k−1 + 5.

In P.N. VI [40] they found a better upper bound for G(k), though not
for the validity of the asymptotic formula, and in particular they proved
that G(4) ≤ 19. The last paper of the series, P.N. VIII [41], was entirely
concerned with the singular series and with the congruence problem to
which it gives rise.

Hardy and Littlewood took as their starting point the generating func-
tion for r(N), that is, the power series

∞∑
N=0

r(N)zN =

( ∞∑
n=0

znk

)s

.

They expressed r(N) in terms of this function by means of Cauchy’s
formula for the coefficients of a power series, using a contour integral
taken along the circle |z| = ρ, where ρ is slightly less than 1. A help-
ful technical simplification was introduced by Vinogradov in 1928; this
consists of replacing the power series by a finite exponential sum, and
the effect is to eliminate a number of unimportant complications that
occurred in the original presentation of Hardy and Littlewood.
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Write e(t) = e2πit. We define T (α), for a real variable α, by

T (α) =
P∑

x=1

e(αxk), (2.5)

where P is a positive integer. Then

(T (α))s =
∑
m

r′(m)e(mα), (2.6)

where r′(m) denotes the number of representations of m as

xk
1 + · · · + xk

s , (1 ≤ xi ≤ P ).

If P ≥ [N1/k], where [λ] denotes the integer part of any real number λ,
then r′(N) is the total number of representations of N in the form (2.1)
with xi ≥ 1. Consequently r′(N) = r(N). If we multiply both sides of
(2.6) by e(−Nα) and integrate over the unit interval [0, 1] (or over any
interval of length 1), we get

r(N) =
∫ 1

0

(T (α))se(−Nα)dα. (2.7)

This is the starting point of our work on Waring’s problem. It corre-
sponds to the contour integral for r(N) used by Hardy and Littlewood,
with z replaced by e2πiα.

Our first aim will be to establish the validity of the asymptotic formula
(2.2) for r(N) as N → ∞, subject to the condition s ≥ 2k + 1. It
is possible to do this in a comparatively simple manner by using an
inequality found by Hua in 1938 (Lemma 3.2 below). It may be of
interest to observe that no improvement on the condition s ≥ 2k +1 has
yet been made for small values of k, as far as the asymptotic formula
itself is concerned. For large k it has been shown by Vinogradov that a
condition of the type s > Ck2 log k is sufficient.

If we prove that the asymptotic formula holds for a particular value
of s, say s = s1, it will follow that every large number is representable
as a sum of s1 kth powers, whence G(k) ≤ s1. But to prove this it is
not essential to prove the asymptotic formula for the total number of
representations; it would be enough to prove it for some special type
of representation as a sum of s1 kth powers. This makes it possible to
get better estimates for G(k) than one can get for the validity of the
asymptotic formula. In 1934 Vinogradov proved that G(k) < Ck log k

for large k, and we shall give a proof in Chapter 9. The best known
results for small k were found by Davenport in 1939–41 [19].
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A new ‘elementary’ proof of Hilbert’s theorem was given by Linnik
in 1943 [58], and was selected by Khintchine as one of his ‘three pearls’
[53]. The underlying ideas of this proof were undoubtedly suggested by
certain features of the Hardy–Littlewood method, and in particular by
Hua’s inequality.



3

Weyl’s inequality and Hua’s inequality

The most important single tool for the investigation of Waring’s prob-
lem, and indeed many other problems in the analytic theory of numbers,
is Weyl’s inequality. This was given, in a less explicit form, in Weyl’s
great memoir [96] of 1916 on the uniform distribution of sequences of
numbers to the modulus 1. The explicit form for a polynomial, in terms
of a rational approximation to the highest coefficient, was given by Hardy
and Littlewood in P.N. I [37].

Lemma 3.1. (Weyl’s Inequality) Let f(x) be a real polynomial of
degree k with highest coefficient α:

f(x) = αxk + α1x
k−1 + · · · + αk.

Suppose that α has a rational approximation a/q satisfying

(a, q) = 1, q > 0,

∣∣∣∣α − a

q

∣∣∣∣ ≤ 1
q2

.

Then, for any ε > 0,∣∣∣∣∣
P∑

x=1

e(f(x))

∣∣∣∣∣ � P 1+ε

(
P− 1

K + q−
1
K +

(
P k

q

)− 1
K

)
,

where K = 2k−1 and the implied constant1 depends only on k and ε.

Note. The inequality gives some improvement on the trivial upper
bound P provided that P δ ≤ q ≤ P k−δ for some fixed δ > 0. If
P ≤ q ≤ P k−1, we get the estimate P 1−1/K+ε, and it is under these

1 We use the Vinogradov symbol � to indicate an inequality with an unspecified
‘constant’ factor. In the present instance, the factor which arises is in reality
independent of k, but we do not need to know this.

7
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conditions that Weyl’s inequality is most commonly applied. It is obvi-
ously impossible to extract any better estimate than this from it. Note
that Weyl’s inequality fails to give any useful information if q is small,
and this is natural because if f(x) = αxk and α is very near to a rational
number with small denominator, the sum is genuinely of a size which
approaches P .

Proof. The basic operation in the proof is that of squaring the absolute
value of an exponential sum, and thereby relating the sum to an average
of similar sums with polynomials of degree one lower. Let

Sk(f) =
P2∑

x=P1+1

e(f(x)),

where 0 ≤ P2 − P1 ≤ P , and where the suffix k serves to indicate the
degree of f(x). Then

|Sk(f)|2 =
∑
x1

∑
x2

e(f(x2) − f(x1))

= P2 − P1 + 2	
∑

x1, x2
x2 > x1

e(f(x2) − f(x1)).

Put x2 = x1 + y. Then 1 ≤ y < P2 − P1, and

f(x2) − f(x1) = f(x1 + y) − f(x1) = ∆yf(x1),

with an obvious notation. Hence

|Sk(f)|2 = P2 − P1 + 2	
P∑

y=1

∑
x

e (∆yf(x)) ,

where the summation in x is over an interval depending on y but con-
tained in P1 < x ≤ P2. This interval may, for some values of y, be
empty.

In particular,

|Sk(f)|2 ≤ P + 2
P∑

y=1

|Sk−1(∆yf)|,

where the interval for Sk−1 is of the nature just described. By repeating
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the argument we get

|Sk−1(∆yf)|2 ≤ P + 2
P∑

z=1

|Sk−2 (∆y,zf) |,

where the interval of summation in Sk−2 depends on both y and z but
is contained in P1 < x ≤ P2. The use of Cauchy’s inequality enables us
to substitute for Sk−1 from the second inequality into the first:

|Sk(f)|4 � P 2 + P
P∑

y=1

|Sk−1(∆yf)|2

� P 3 + P

P∑
y=1

P∑
z=1

|Sk−2(∆y,zf)|.

The process can be continued, and the general inequality established
in this way is

|Sk(f)|2ν � P 2ν−1 + P 2ν−ν−1
P∑

y1=1

· · ·
P∑

yν=1

|Sk−ν(∆y1,...,yν
f)| . (3.1)

This is readily proved by induction on ν, using again Cauchy’s inequal-
ity together with the basic operation described above which expresses
|Sk−ν |2 in terms of Sk−ν−1. It is to be understood that the range of
summation for x in Sk−ν in (3.1) is an interval depending on y1, . . . , yν ,
but contained in P1 < x ≤ P2.

At this point we interpolate a remark which will be useful in the proof
of Lemma 3.2. This is that if, at the last stage of the proof of (3.1), we
apply the basic operation in its original form, we get

|Sk(f)|2ν � P 2ν−1 + P 2ν−ν−1
P∑

y1=1

· · ·
P∑

yν=1

	Sk−ν(∆y1,...,yν
f). (3.2)

Here again, the range for x in Sk−ν depends on y1, . . . , yν and may
sometimes be empty.

Returning to (3.1), we take ν = k − 1 and in the original Sk we take
P1 = 0, P2 = P . We observe that

∆y1,...,yk−1f(x) = k!αy1 · · · yk−1x + β,

say, where β is a collection of terms independent of x. Hence

∣∣S1(∆y1,...,yk−1f)
∣∣ =

∣∣∣∣∣∑
x

e(k!αy1 · · · yk−1x)

∣∣∣∣∣ .
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The sum on the right, taken over any interval of x of length at most P ,
is of the form∣∣∣∣∣

x2−1∑
x=x1

e(λx)

∣∣∣∣∣ ≤ 2
|1 − e(λ)| =

1
| sin πλ| �

1
‖λ‖ ,

where ‖λ‖ denotes the distance of λ from the nearest integer. This fails
if λ is an integer, and indeed gives a poor result if λ is very near to an
integer, but we can supplement it by the obvious upper bound P . Hence
(3.1) gives

|Sk(f)|K � PK−1 + PK−k
P∑

y1=1

· · ·
P∑

yk−1=1

min(P, ‖k!αy1 · · · yk−1‖−1).

We now appeal to a result in elementary number theory, which enables
us to collect together all the terms in the sum for which k!y1 · · · yk−1 has
a given value, say m. The number of such terms is � mε. To prove this,
it suffices to show that

d(m) � mε, (3.3)

for any integer m, where d(m) =
∑

d|m 1 is the usual divisor function.
Indeed there are at most d(m) possibilities for each of y1, . . . , yk−1. To
establish (3.3) we suppose that m = pλ1

1 pλ2
2 · · · , and note that

d(m)
mε

=
∏

i

λi + 1
pελi

i

≤
∏

pi≤21/ε

λi + 1
2ελi

≤ C(ε),

since 2−ελ(λ + 1) is bounded above for λ > 0.
Collecting terms as mentioned above, we get

|Sk(f)|K � PK−1 + PK−k+ε
k!P k−1∑
m=1

min(P, ‖αm‖−1).

It remains to estimate the last sum in terms of the rational approxi-
mation a/q to α which was mentioned in the enunciation. We divide
the sum over m into blocks of q consecutive terms (with perhaps one
incomplete block), the number of such blocks being

� P k−1

q
+ 1.

Consider the sum over any one block, which will be of the form
q−1∑
m=0

min(P, ‖α(m1 + m)‖−1),
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where m1 is the first number in the block. We have

α(m1 + m) = αm1 +
am

q
+ O

(
1
q

)
,

since |α − a/q| ≤ q−2 and 0 ≤ m < q. As m goes from 0 to q − 1, the
number am runs through the complete set of residues (mod q). Putting
am ≡ r (mod q), the sum is

q−1∑
r=0

min
(

P,
1

‖(r + b)/q + O(1/q)‖
)

,

where we have taken b to be the integer nearest to qαm1. There are O(1)
values of r in the sum for which the second expression in the minimum
is useless, namely those for which the absolutely least residue of r + b

(mod q) is small. For these, we must take P . For the other values of r,
if s denotes the absolutely least residue of r + b (mod q) we have∣∣∣∣

∣∣∣∣r + b

q
+ O

(
1
q

)∣∣∣∣
∣∣∣∣ � s

q
.

Hence the above sum is

� P +
q/2∑
s=1

q

s
� P + q log q.

Allowing for the number of blocks, we obtain

|Sk(f)|K � PK−1 + PK−k+ε

(
P k−1

q
+ 1

)
(P + q log q).

We can absorb the factor log q in P ε, since we can suppose q ≤ P k, as
otherwise the result of the lemma is trivial. Thus the right-hand side is

� PK+ε
(
P−1 + q−1 + P−kq

)
,

giving the result.

Note. If k is large, then Vinogradov has given a much better estimate,
in which (roughly speaking) 2k−1 is replaced by 4k2 log k [49, Chapter
6].

Corollary (to Lemma 3.1). Let

Sa,q =
q∑

z=1

e(azk/q),



12 Analytic Methods for Diophantine Equations and Inequalities

where a, q are relatively prime integers and q > 0. Then

Sa,q � q1−1/K+ε.

This is a special case of Lemma 3.1 with α = a/q and P = q. We
shall later (Lemma 6.4) prove the more precise estimate q1−1/k instead
of q1−1/K+ε, but the above suffices for the time being.

Lemma 3.2. (Hua’s Inequality [48]) If

T (α) =
P∑

x=1

e(αxk),

then ∫ 1

0

|T (α)|2k

dα � P 2k−k+ε

for any fixed ε > 0.

Proof. Write

Iν =
∫ 1

0

|T (α)|2ν

dα.

We prove, by induction on ν, that

Iv � P 2ν−ν+ε, for ν = 1, . . . , k, (3.4)

the case ν = k being the result asserted in the lemma.
For ν = 1, the estimate is immediate. We have

I1 =
∫ 1

0

∑
x1

e(αxk
1)

∑
x2

e(−αxk
2) dα = P,

since the integral over α is 1 if x1 = x2 and 0 otherwise.
Now suppose (3.4) holds for a particular integer ν ≤ k−1; we have to

deduce the corresponding result when ν is replaced by ν + 1. We recall
the inequality (3.2) of the preceding proof; with T (α) in place of Sk(f)
it states that

|T (α)|2ν � P 2ν−1 + P 2ν−ν−1	
P∑

y1=1

· · ·
P∑

yν=1

Sk−ν ,

where

Sk−ν =
∑

x

e(α∆y1,...,yν
(xk)).
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Note that the range of summation for x depends on the values of y1, . . . , yν ,
but is contained in [1, P ].

Multiply both sides of the inequality by |T (α)|2ν

and integrate from
0 to 1. We get

Iν+1 � P 2ν−1Iν + P 2ν−ν−1
∑

y1,...,yν

	
∫ 1

0

Sk−v|T |2ν

dα.

The last integral is∫ 1

0

∑
x

e
(
α∆y1,...,yν

(xk)
) ∑

u1, . . . , u2ν−1
v1, . . . , v2ν−1

e(αuk
1 + · · · )e(−αvk

1 − · · · ) dα,

where the ui and vi go from 1 to P . This integral equals the number of
solutions of

∆y1,...,yν
(xk) + uk

1 + · · · − vk
1 − · · · = 0. (3.5)

Summation over y1, . . . , yν gives the number of solutions in all the vari-
ables. Hence

Iν+1 � P 2ν−1Iν + P 2ν−ν−1N, (3.6)

where N denotes the number of solutions of (3.5) in all the variables,
these being now any integers in [1, P ].

It is important now to observe that since y1, . . . , yν and x are positive,
we have

∆y1,...,yν
(xk) > 0.

Also, this number is divisible by each of y1, . . . , yν . Thus, if we give
u1, . . . , u2ν−1 and v1, . . . , v2ν−1 any values, the number of possibilities
for each of y1, . . . , yν is � P ε by (3.3). Then there is at most one
possibility for x, since ∆y1,...,yν

(xk) is a strictly increasing function of x

(note that ν ≤ k − 1). The number of possibilities for the ui and vi is
� P 2ν

, whence it follows that

N � P 2ν+νε.

Substituting in (3.6) and using the inductive hypothesis, we obtain

Iν+1 � P 2ν−1P 2ν−ν+ε + P 2ν−ν−1P 2ν+νε � P 2ν+1−(ν+1)+νε.

This is (3.4) with ν + 1 for ν, except for the change in ε which is of no
significance.
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Note. It is of interest to examine the information given by Lemma 3.2
when k = 3. Let λ(m) denote the lower bound of the exponents λ for
which it is true that ∫ 1

0

|T (α)|2m dα � Pλ.

It follows from Cauchy’s inequality that

λ

(
m1 + m2

2

)
≤ 1

2
(λ(m1) + λ(m2)),

so that the graph of λ(m) as a function of m is convex. Lemma 3.2 tells
us that

λ(1) ≤ 1, λ(2) ≤ 2, λ(4) ≤ 5,

and it can be proved that actually there is equality in all these. Thus
the graph lies on or below the two line segments joining (1, 1), (2, 2),
(4, 5). It seems likely that the graph is strictly below the segment for
2 < m < 4, but this has never been proved. If it could be proved, one
could establish the asymptotic formula for eight cubes instead of for nine
cubes (9 = 2k + 1). It would be enough to prove, for example, that∫ 1

0

|T (α)|6 dα � P 7/2−δ

for some positive δ. This is equivalent to the assertion that the total
number of solutions of

x3
1 + x3

2 + x3
3 = y3

1 + y3
2 + y3

3 ,

with all the variables between 0 and P , is � P 7/2−δ.
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Waring’s problem: the asymptotic formula

We return to the starting point for our work on Waring’s problem,
namely (2.7) of Chapter 2:

r(N) =
∫ 1

0

(T (α))se(−Nα)dα, (4.1)

where T (α) is the exponential sum (2.5) from 1 to P and P ≥ [N1/k].
There is no point in taking P larger than necessary, so we take P =
[N1/k]. The main term in the asymptotic formula will prove to be of
order Ns/k−1, or P s−k, as indeed it must be if any simple asymptotic
formula is valid, for this is the only power of P which is consistent with
the fact that there are P s choices for x1, . . . , xs and the sums xk

1+· · ·+xk
s

represent numbers of order at most P k.
Thus we can neglect any set of values of α in the integral (4.1) which

can be shown to contribute to the integral an amount which is of strictly
lower order than P s−k. We are supposing s ≥ 2k + 1, and if we regard
the absolute value of the integrand as

|T (α)|s−2k |T (α)|2k

,

it will follow from Lemma 3.2 that we can neglect any set of α for which
|T (α)| � P 1−δ for some fixed δ > 0. To obtain such a set of α, we shall
use Lemma 3.1.

The general plan in work on Waring’s problem and similar problems
is to divide the values of α into two sets: the major arcs, which con-
tribute to the main term in the asymptotic formula, and the minor arcs,
the contribution of which is estimated on lines such as those described
above, and goes into the error term. The precise line of demarcation
between the two sets depends very much on what particular auxiliary
results are available, and may to some extent be a matter of personal

15
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choice. Generally speaking there are powerful (though somewhat com-
plicated) methods available for the treatment of the major arcs, and the
crux of the problem lies with the minor arcs. Having found, in any par-
ticular problem, a method which copes successfully with the minor arcs,
one usually finds it convenient to enlarge them as far as the method in
question will permit, in order to reduce the amount of work needed for
the major arcs (even though this work might be relatively straightfor-
ward). In the present treatment we can take the major arcs to be few
in number and short in length, compared with what is often the case in
other work on the subject.

Around every rational number a/q (in its lowest terms) we put an
interval

Ma,q : |α − a/q| < P−k+δ, (4.2)

and we do this for

1 ≤ q ≤ P δ, 1 ≤ a ≤ q, (a, q) = 1. (4.3)

These intervals do not overlap, since the distance between their centres
is at least P−2δ and this is much greater than their length. Moreover
these intervals are contained in 0 ≤ α ≤ 1 except for the right-hand half
of the interval round 1/1, and for convenience we imagine this interval
translated an amount 1 to the left, so that it comes to the right of α = 0.
The intervals Ma,q are the major arcs, and their complement relative to
[0, 1] constitutes the minor arcs, the totality of which we shall denote by
m. In these definitions, δ is some fixed small positive number. It may be
remarked that in many applications of the Hardy–Littlewood method,
the length of Ma,q in (4.2) would incorporate a factor q−1 as well as a
negative power of P , but here this factor is not needed and it is a slight
simplification to omit it.

Lemma 4.1. If s ≥ 2k + 1, we have∫
m

|T (α)|sdα � P s−k−δ′

where δ′ is a positive number depending on δ.

Proof. By a classical result of Dirichlet on Diophantine approximations,
every α has a rational approximation a/q satisfying

1 ≤ q ≤ P k−δ, |α − a/q| < q−1P−k+δ. (4.4)

Moreover, we have 1 ≤ a ≤ q whenever 0 < α < 1. Since the last



Waring’s problem: the asymptotic formula 17

inequality in (4.4) is stronger than that in (4.2), we should have α in
Ma,q if q ≤ P δ. Hence if α is in m, we must have

q > P δ.

Since |α− a/q| < q−2, we can apply Lemma 3.1 to the exponential sum
T (α), and since P k/q ≥ P δ we get

|T (α)| � P 1+ε−δ/K ,

where K = 2k−1. Combining this with Lemma 3.2, in the manner
indicated earlier, we infer that∫

m

|T (α)|sdα � P (s−2k)(1+ε−δ/K)

∫ 1

0

|T (α)|2k

dα

� P s−k−δ′

for some δ′ > 0 depending on δ. This proves Lemma 4.1.

It may be noted that instead of appealing to Dirichlet’s theorem we
could use a simple property of continued fractions: if we take a/q to be
the last convergent to α for which q ≤ P k−δ, we again get (4.4).

We now turn our attention to the major arcs Ma,q. Here α is very
near to a/q, with q relatively small. If the exponent of P in (4.2) had
been −k− δ instead of −k + δ, then T (α) would be practically constant
on Ma,q, for we should have∣∣∣∣αxk − a

q
xk

∣∣∣∣ < P−k−δP k = P−δ.

This, of course, is not the case, but nevertheless, the arc Ma,q is so
short that T (α) behaves relatively smoothly in that interval. Just how
it varies is seen in the following lemma.

Lemma 4.2. For α in Ma,q, putting α = β + a/q, we have

T (α) = q−1Sa,qI(β) + O(P 2δ), (4.5)

where

Sa,q =
q∑

z=1

e(azk/q), (4.6)

I(β) =
∫ P

0

e(βξk)dξ. (4.7)
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Proof. We collect together those values of x in the sum defining T (α)
which are in the same residue class (mod q), as is natural because αxk is
not far from being periodic in x with period q. This is most conveniently
done by putting x = qy + z where 1 ≤ z ≤ q; here y runs through an
interval, depending on z, corresponding to the interval 0 < x ≤ P . We
get

T (α) =
q∑

z=1

e(azk/q)
∑

y

e(β(qy + z)k).

Now we endeavour to replace the discrete variable y by a continuous
variable η, and replace the summation over y by an integration over
η. If this can be done, we can then make a change of variable from η

to ξ, where ξ = qη + z; the interval for ξ will be the original interval
0 ≤ ξ ≤ P , and we shall have replaced the summation over y by

q−1

∫ P

0

e(βξk)dξ = q−1I(β),

the factor q−1 coming from dη/dξ. Thus we shall get precisely the main
term in (4.5).

We have to estimate the difference between the sum over y and the
corresponding integral over η. For the present purpose a very crude
argument is good enough. If f(y) is any differentiable function, we have

|f(η) − f(y)| ≤ 1
2

max |f ′(η)| for |η − y| ≤ 1
2
.

Hence, on dividing any interval A < η < B into intervals of length 1
together with two possible broken intervals, we obtain∣∣∣∣∣∣

∫ B

A

f(η)dη −
∑

A<y<B

f(y)

∣∣∣∣∣∣ � (B − A)max |f ′(η)| + max |f(η)|.

In our case, f(η) = e(β(qη + z)k), whence

max |f ′(η)| � q|β|P k−1, max |f(η)| = 1.

Also B − A � P/q. Hence the error in replacing the sum over y by the
integral over η is

� Pq−1q|β|P k−1 + 1 � P δ,

since |β| < P−k+δ by (4.2). Multiplying by q, which is ≤ P δ, to allow
for the outside summation over z, we obtain the error term in (4.5).
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Later, in Lemma 9.1, we shall meet a more effective method for re-
placing a sum by the corresponding integral.

Lemma 4.3. If M denotes the totality of the major arcs Ma,q, then∫
M

(T (α))se(−Nα)dα = P s−kS(P δ, N)J(P δ) + O(P s−k−δ′
) (4.8)

for some δ′ > 0, where

S(P δ, N) =
∑

q≤P δ

q∑
a = 1

(a, q) = 1

(q−1Sa,q)se(−Na/q), (4.9)

J(P δ) =
∫
|γ|<P δ

(∫ 1

0

e(γξk)dξ

)s

e(−γ)dγ. (4.10)

Proof. We first raise to the power s the expression (4.5) for T (α), valid
on an individual major arc Ma,q. Since

|q−1Sa,qI(β)| ≤ P

trivially, we get

(T (α))s = (q−1Sa,q)s(I(β))s + O(P s−1+2δ). (4.11)

Multiplying by e(−Nα) and integrating over Ma,q, that is, over |β| <

P−k+δ, the main term in the last expression gives

(q−1Sa,q)se(−Na/q)
∫
|β|<P−k+δ

(I(β))se(−Nβ)dβ

The integral here is independent of q and a, and therefore summation
over q and a satisfying (4.3) gives

S(P δ, N)
∫
|β|<P−k+δ

(I(β))se(−Nβ)dβ.

In the integrand we can replace N by P k with a negligible error. Indeed
we have N − P k � P k−1, so that

|e(−βN) − e(−βP k)| � |β|P k−1 � P−1+δ,

and the error in the integral is � P−k+δP sP−1+δ. Since a crude esti-
mate for |S(P δ, N)| is P 2δ, this leads to a final error P s−k−1+4δ, which
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is negligible. The integral is now∫
|β|<P−k+δ

(∫ P

0

e(βξk)dξ

)s

e(−P kβ)dβ,

and on putting ξ = Pξ′ and β = P−kγ, this becomes

P s−kJ(P δ).

Thus we have obtained the main term in the result (4.8).
It remains to estimate the effect of the error term in (4.11). Integrated

over |β| < P−k+δ, it becomes � P s−k−1+3δ. Summed over a ≤ q and
over q ≤ P δ, it becomes P s−k−1+5δ, and since δ is small this is of the
form given in (4.8).

Definition. Let

S(N) =
∞∑

q=1

q∑
a = 1

(a, q) = 1

(q−1Sa,q)se(−Na/q). (4.12)

This is called the singular series for the problem of representing N

as a sum of s positive integral kth powers. If s ≥ 2k + 1, the series
is absolutely convergent, and uniformly with respect to N , for by the
Corollary to Lemma 3.1 we have (with K = 2k−1):

|(q−1Sa,q)se(−Na/q)| � q−s/K+ε � q−2−1/K+ε.

Later we shall prove that the same is true under the less restrictive
condition that s ≥ 2k + 1.

Theorem 4.1. If s ≥ 2k + 1, the number r(N) of representations of N

as a sum of s positive integral kth powers satisfies

r(N) = Ck,sN
s/k−1S(N) + O(Ns/k−1−δ′

) (4.13)

for some fixed δ′ > 0, where

Ck,s =
Γ(1 + 1/k)s

Γ(s/k)
> 0. (4.14)

Proof. By (4.1) and Lemmas 4.1 and 4.3,

r(N) =
{∫

M

+
∫

m

}
(T (α))se(−Nα)dα

= P s−kS(P δ, N)J(P δ) + O(P s−k−δ′
). (4.15)
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We first investigate the integral J(P δ), defined in (4.10). The inner
integral there can be expressed, by obvious changes of variable, in three
ways:∫ 1

0

e(γξk)dξ = k−1

∫ 1

0

ζ−1+1/ke(γζ)dζ = k−1γ−1/k

∫ γ

0

ζ−1+1/ke(ζ)dζ,

where in the last expression we have supposed for simplicity that γ is
positive. The integral in the last expression is a bounded function of
γ, by Dirichlet’s test for the convergence of an infinite integral together
with the fact that the integral is absolutely convergent at 0. Hence∣∣∣∣

∫ 1

0

e(γξk)dξ

∣∣∣∣ � |γ|−1/k.

This enables us to extend to infinity the integration over γ in (4.10); we
obtain

J(P δ) = J + O(P−(s/k−1)δ),

where

J =
∫ ∞

−∞

(
k−1

∫ 1

0

ζ−1+1/ke(γζ)dζ

)s

e(−γ)dγ. (4.16)

Plainly J depends only on k and s, and we shall prove in a moment
that J = Ck,s. We shall call J the singular integral for the problem of
representing N as a sum of s positive kth powers.

By the absolute convergence of the series S(N) and the result just
proved for J(P δ), we can replace S(P δ, N) in (4.15) by S(N) and we
can replace J(P δ) by J , with errors which are permissible. We can
also replace P by N1/k with permissible error, and this gives (4.13),
except for the proof that J = Ck,s. The exact value of J is perhaps
unimportant, but we need to know that J > 0.

To evaluate J we start from the fact that∫ λ

−λ

e(µγ)dγ =
sin 2πλµ

πµ
.

Hence

ksJ = lim
λ→∞

∫ 1

0

· · ·
∫ 1

0

(ζ1 · · · ζs)−1+1/k sin 2πλ(ζ1 + · · · + ζs − 1)
π(ζ1 + · · · + ζs − 1)

dζ1 · · · dζs

= lim
λ→∞

∫ s

0

φ(u)
sin 2πλ(u − 1)

π(u − 1)
du,
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where

φ(u) =
∫ 1

0

· · ·
∫ 1

0

{ζ1 · · · ζs−1(u − ζ1 − · · · − ζs−1)}−1+1/k
dζ1 · · · dζs−1,

and is taken over ζ1, . . . , ζs−1 for which u−1 < ζ1 + · · ·+ζs−1 < u. Here
we have made a change of variable from ζs to u, where ζ1 + · · ·+ ζs = u.

We now recall Fourier’s integral theorem for a finite interval, which
states1 that under certain conditions,

lim
λ→∞

∫ B

A

φ(u)
sin 2πλ(u − C)

π(u − C)
du = φ(C),

provided A < C < B. Assuming that this is applicable, we deduce that

ksJ = φ(1)

=
∫ 1

0

· · ·
∫ 1

0

{ζ1 · · · ζs−1(1 − ζ1 − · · · − ζs−1)}−1+1/k
dζ1 · · · dζs−1,

where the integral is taken over ζ1, . . . , ζs−1 for which 0 < ζ1 + · · · +
ζs−1 < 1. The last definite integral, over s − 1 variables, is an instance
of an integral evaluated by Dirichlet; it is indeed an immediate extension
of Euler’s integral

B(p, q) =
∫ 1

0

xp−1(1 − x)q−1dx =
Γ(p)Γ(q)
Γ(p + q)

.

We have2

φ(1) =
Γ(1/k)s

Γ(s/k)
,

whence

J =
(

1
k

)s Γ(1/k)s

Γ(s/k)
=

Γ(1 + 1/k)s

Γ(s/k)
.

A sufficient condition for the validity of Fourier’s integral theorem is
that φ(u) should be of bounded variation. To verify this, put ζj = utj .
Then φ(u) is equal to

us/k−1

∫ 1/u

0

· · ·
∫ 1/u

0

{t1 · · · ts−1(1 − t1 − · · · − ts−1)}−1+1/k
dt1 · · · dts−1,

where the integral is over t1, . . . , ts−1 for which 1 − 1/u < t1 + · · · +
ts−1 < 1. The region of integration contracts as u increases, and the

1 See [97, §9.43] for example.
2 See [97, §12.5].
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integrand does not involve u. Hence φ(u) is the product of u−1+s/k and
a positive monotonic decreasing function of u, and is therefore a function
of bounded variation. This completes the proof.

Note. In our treatment of the singular integral, we have followed a
paper of Landau [54]. For a slightly more general treatment, see a paper
of Kestelman [52]. There are various devices by which the use of Fourier’s
integral theorem can be avoided; for example one can replace I(β) by
the finite sum

k−1
∑

0<m<P k

m−1+1/ke(βm),

or one can evaluate J indirectly as in Vinogradov [93, Chapter 3]. But
on the whole the reference to Fourier’s integral theorem seems natural
and appropriate.

In the asymptotic formula (4.13) one can regard the first factor,
Ck,sN

s/k−1, as measuring the ‘density’ of the solutions of

xk
1 + · · · + xk

s = N, x1 > 0, . . . , xs > 0

in real numbers; it is the (s − 1)-dimensional content of this portion of
a hypersurface. Otherwise expressed, it is (with a negligible error) the
s-dimensional volume of the region

N − 1
2

< xk
1 + · · · + xk

s < N +
1
2
, x1 > 0, . . . , xs > 0.

The second factor, S(N), can be regarded as a compensating factor
to allow for the fact that kth powers of integers are not as uniformly
distributed as are kth powers of real numbers, in that they are con-
strained by congruence restrictions. (The relation between S(N) and
congruences will emerge in the next section.) Thus the conclusion we
draw from the asymptotic formula, expressed in somewhat vague terms,
is that asymptotically the representations of a large number as a sum
of s positive integral kth powers are actually dominated by these two
influences, provided s is greater than some function of k.
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Waring’s problem: the singular series

We now study the singular series:

S(N) =
∞∑

q=1

q∑
a = 1

(a, q) = 1

(
q−1Sa,q

)s
e(−aN/q). (5.1)

We shall find that the value of S(N) is closely related to the number of
solutions of the congruences

xk
1 + · · · + xk

s ≡ N (mod q)

for all positive integers q, and indeed S(N) = 0 if any such congru-
ence is insoluble. This might be expected from the appearance of the
asymptotic formula, since then r(N) = 0.

We write

S(N) =
∞∑

q=1

A(q), A(q) =
q∑

a = 1
(a, q) = 1

(
q−1Sa,q

)s
e(−aN/q). (5.2)

Lemma 5.1. If (q1, q2) = 1, then

A(q1q2) = A(q1)A(q2). (5.3)

Proof. Write

f(a, q) = (Sa,q)se(−aN/q).

We shall prove that if (a1, q1) = (a2, q2) = 1 and

a

q
≡ a1

q1
+

a2

q2
(mod 1), q = q1q2, (5.4)

24
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then

f(a, q) = f(a1, q1)f(a2, q2). (5.5)

This will suffice to give the result, for the relation (5.4) sets up a 1-to-1
correspondence between reduced residue classes a (mod q) and pairs of
reduced residue classes a1 (mod q1) and a2 (mod q2), whence

q∑
a = 1

(a, q) = 1

f(a, q) =




q1∑
a1 = 1

(a1, q1) = 1

f(a1, q1)







q2∑
a2 = 1

(a2, q2) = 1

f(a2, q2)


.

To prove (5.5), we use a somewhat similar argument, but with com-
plete sets of residues. Putting

z

q
≡ z1

q1
+

z2

q2
(mod 1),

we have

Sa,q =
q∑

z=1

e(azk/q) =
q1∑

z1=1

q2∑
z2=1

e

(
a

q
qk

(
z1

q1
+

z2

q2

)k
)

,

and since

a

q
qk

(
z1

q1
+

z2

q2

)k

≡ a1

q1
(q2z1)k +

a2

q2
(q1z2)k (mod 1),

we get

Sa,q =
q1∑

z1=1

e

(
a1

q1
(q2z1)k

) q2∑
z2=1

e

(
a2

q2
(q1z2)k

)
= Sa1,q1Sa2,q2 .

Since, in addition

e

(
−a

q
N

)
= e

(
−a1

q1
N

)
e

(
−a2

q2
N

)
,

we obtain (5.5).

Note. This result of this lemma is in no way dependent on the fact
that Sa,q is formed with the special polynomial zk. We could replace zk
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with any polynomial f(z) with integral coefficients, and indeed we could
replace Sa,q with a multiple exponential sum

∑
e

(
a

q
f(z1, . . . , zn)

)
,

where each of z1, . . . , zn runs through a complete set of residues (mod
q). The proof is just the same.

Lemma 5.2. If s ≥ 2k + 1, we have

S(N) =
∏
p

χ(p), (5.6)

where

χ(p) = 1 +
∞∑

ν=1

A(pν). (5.7)

Also

|χ(p) − 1| � p−1−δ (5.8)

for some fixed δ > 0.

Proof. It follows from Lemma 5.1 that if q = pν1
1 pν2

2 · · · then

A(q) = A (pν1
1 ) A (pν2

2 ) · · · .

Hence

S(N) =
∞∑

q=1

A(q) =
∏
p

{ ∞∑
ν=0

A(pν)

}
=

∏
p

χ(p),

and this is justified by the convergence of
∑ |A(q)|, which was proved

in the preceding chapter.
We already had the estimate

|A(q)| � q−1−1/K+ε � q−1−δ,

and this implies

|χ(p) − 1| �
∞∑

ν=1

p−ν(1+δ) � p−1−δ,

which is (5.8).
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Corollary. If s ≥ 2k + 1 there exists p0 = p0(k) such that

1
2
≤

∏
p>p0

χ(p) ≤ 3
2
.

This follows at once from (5.8), since we can take δ to depend on k

only. Again, we shall see that the result holds if s ≥ 2k + 1.
Definition. Let M(q) denote the number of solutions of the congruence

xk
1 + · · · + xk

s ≡ N (mod q),

with 0 < x1, . . . , xs ≤ q.

Lemma 5.3. We have

1 +
n∑

ν=1

A(pν) = M(pn)
/
pn(s−1), (5.9)

and consequently

χ(p) = lim
n→∞M(pn)

/
pn(s−1). (5.10)

Proof. We can express M(q) in terms of exponential sums by a proce-
dure which can be regarded as an arithmetical analogue of that used to
express r(N) as an integral in (2.7). We have

M(q) = q−1

q∑
t=1

q∑
x1=1

· · ·
q∑

xs=1

e

(
t

q

(
xk

1 + · · · + xk
s − N

))
,

since the sum over t gives q if the congruence is satisfied and 0 other-
wise. We collect together those values of t which have the same highest
common factor with q. If this highest common factor is denoted by q/q1,
the values of t in question are uq/q1, where 1 ≤ u ≤ q1 and (u, q1) = 1.
Hence

M(q) = q−1
∑
q1|q

q1∑
u = 1

(u, q1) = 1

q∑
x1=1

· · ·
q∑

xs=1

e

(
u

q1

(
xk

1 + · · · + xk
s − N

))
.

Now
q∑

x=1

e

(
u

q1
xk

)
=

q

q1

q1∑
x=1

e

(
u

q1
xk

)
=

q

q1
Su,q1 .



28 Analytic Methods for Diophantine Equations and Inequalities

Thus

M(q) = q−1
∑
q1|q

q1∑
u = 1

(u, q1) = 1

(
q

q1

)s

(Su,q1)
se

(
−uN

q1

)

= qs−1
∑
q1|q

A(q1).

This formula, when q = pn, becomes (5.9), and (5.10) follows from it.

Note. For each particular N , the series on the left of (5.9) termi-
nates, and therefore (5.10) is true without the limiting operation for all
sufficiently large n. However the point at which the series terminates
depends on N , as well as on k and p.

Definition. For each prime p, let pτ be the highest power of p dividing
k, and put k = pτk0. Define γ by

γ =
{

τ + 1 if p > 2,

τ + 2 if p = 2.
(5.11)

Of course, γ depends on both p and k.

Lemma 5.4. If the congruence yk ≡ m (mod pγ) is soluble where m �≡
0 (mod p), then the congruence xk ≡ m (mod pν) is soluble for every
ν > γ.

Proof. Suppose p > 2. The relatively prime residue classes (mod pν)
form a cyclic group of order φ(pν) = pν−1(p − 1), being represented by
the powers of a primitive root g to the modulus pν . If ν > γ, then g is
necessarily also a primitive root to the modulus pγ .

Write

m ≡ gµ, y ≡ gη, x ≡ gξ (mod pν).

Then the hypothesis that yk ≡ m (mod pγ) is equivalent to

kη ≡ µ (mod pγ−1(p − 1)).

Since k = pτk0 and τ = γ − 1, it follows that µ is divisible by pγ−1 and
also by (k0, p − 1). But now we can find ξ to satisfy

kξ ≡ µ (mod pν−1(p − 1)),
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since µ is divisible by the highest common factor of k and pν−1(p − 1).
The last congruence is equivalent to xk ≡ m (mod pν).

Suppose p = 2. First, if τ = 0, so that k is odd, there is no problem.
For as x runs through a reduced set of residues to the modulus 2ν then
so does xk, and the congruence xk ≡ m (mod 2ν) is soluble for any odd
m without any hypothesis.

Now suppose τ ≥ 1. Since k = 2τk0 is even, we have xk ≡ 1 (mod 4)
for all x. Those residue classes (mod 2ν) that are ≡ 1 (mod 4) constitute
a cyclic group of order 2ν−2, and it is well known that 5 is a generating
element, i.e. a primitive root. As before, write

m ≡ 5µ, y ≡ 5η, x ≡ 5ξ (mod 2ν).

Then the hypothesis is equivalent to

kη ≡ µ (mod 2γ−2).

Since k = 2τk0 and τ = γ − 2, it follows that µ is divisible by 2τ . Hence
there exists ξ such that

kξ ≡ µ (mod 2ν−2),

which implies that xk ≡ m (mod 2ν). This completes the proof of
Lemma 5.4.

Lemma 5.5. If the congruence

xk
1 + · · · + xk

s ≡ N (mod pγ)

has a solution with x1, . . . , xs not all divisible by p, then

χ(p) > 0.

Proof. Suppose ak
1 + · · · + ak

s ≡ N (mod pγ) and a1 �≡ 0 (mod p). We
can obtain many solutions of xk

1 + · · · + xk
s ≡ N (mod pν) for ν > γ by

the following construction. We choose x2, . . . , xs arbitrarily, subject to

xj ≡ aj (mod pγ), 0 < xj ≤ pν .

These choices are possible in p(ν−γ)(s−1) ways. Then choose x1 to satisfy

xk
1 ≡ N − xk

2 − · · · − xk
s (mod pν);

this is possible by Lemma 5.4 because the expression on the right is
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≡ ak
1 (mod pν) and a1 �≡ 0 (mod p). Thus, in the notation introduced

earlier, we have

M(pν) ≥ p(ν−γ)(s−1) = Cpp
ν(s−1),

where Cp = p−γ(s−1) > 0. By (5.10) of Lemma 5.3, this implies χ(p) > 0.

Lemma 5.6. If s ≥ 2k (k odd) or s ≥ 4k (k even), then χ(p) > 0 for
all primes p and all N .

Proof. By Lemma 5.5 it suffices to prove that the congruence

xk
1 + · · · + xk

s ≡ N (mod pγ) (5.12)

is soluble with x1, . . . , xs not all divisible by p. If N �≡ 0 (mod p), the
latter requirement is necessarily satisfied. If N ≡ 0 (mod p), it will
suffice to solve the congruence

xk
1 + · · · + xk

s−1 + 1k ≡ N (mod pγ).

Hence (replacing s−1 by s) we see that it suffices to prove the solubility
of (5.12) when N �≡ 0 (mod p) for s ≥ 2k − 1 (k odd) or s ≥ 4k − 1 (k
even).

Suppose p > 2. We consider all N satisfying

0 < N < pγ , N �≡ 0 (mod p),

their number being φ(pγ) = pγ−1(p−1). Let s(N) denote the least s for
which (5.12) is soluble. If N ≡ zkN ′ (mod pγ), then obviously s(N) =
s(N ′). Hence if we distribute the numbers N into classes according to the
value of s(N), the number in each class is at least equal to the number of
distinct values assumed by zk when z �≡ 0 (mod p). By putting z ≡ gζ

(mod pγ), where g is a primitive root (mod pγ), and a ≡ gα (mod pγ),
one easily sees that the congruence zk ≡ a (mod pγ) is soluble if and
only if α is divisible by pτδ where δ = (k, p − 1). Since τ = γ − 1,
the number of distinct values for α (mod pγ−1(p− 1)), which is also the
number of distinct values for a (mod pγ), is

pγ−1(p − 1)
pγ−1δ

=
p − 1

δ
= r,

say. Hence each class of values of N includes at least r elements.
Let us enumerate first all N for which s(N) = 1:

N
(1)
1 < N

(1)
2 < · · · < N (1)

r1
, where r1 ≥ r.
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Then we enumerate all N for which s(N) = 2:

N
(2)
1 < N

(2)
2 < · · · < N (2)

r2
, where r2 ≥ r,

and so on. Some of these sets may be empty, but we shall prove that
two consecutive sets cannot be empty.

Consider the least N ′ �≡ 0 (mod p) which is not in any of the first
j − 1 sets. Then either N ′ − 1 or N ′ − 2 is �≡ 0 (mod p), and being less
than N ′ it must be in one of the first j − 1 sets. Representing N ′ as

(N ′ − 1) + 1k or (N ′ − 2) + 1k + 1k,

we deduce that s(N ′) ≤ j + 1. Hence the sets for which s(N) = j,
s(N) = j + 1 cannot both be empty.

Suppose the last set in the enumeration is that for which s(N) = m.
Then at least 1

2 (m−1) of the first m−1 sets are not empty, and also the
mth set is not empty, making at least 1

2 (m + 1) non-empty sets. Since
each set contains at least r numbers, we have

1
2 (m + 1)r ≤ φ(pγ) = pγ−1(p − 1),

whence

(m + 1) ≤ 2pγ−1(p − 1)
r

= 2pγ−1δ

= 2pτ (k0, p − 1) ≤ 2k.

Hence m ≤ 2k− 1, whence s(N) ≤ 2k− 1 for all N . Thus for p > 2, the
congruence (5.12) is soluble for s ≥ 2k − 1.

Suppose p = 2. If τ = 0, that is if k is odd, the congruence (5.12) is
soluble for N �≡ 0 (mod p) when s = 1, as was remarked in the proof
of Lemma 5.4. This proves the conclusion of Lemma 5.6 since then the
only significant restriction on s comes from the primes p > 2.

Now suppose τ ≥ 1, so that k is even. We can suppose without loss of
generality that 0 < N < 2γ , since N is now odd. By taking all the xj in
(5.12) to be 0 or 1, we can certainly solve the congruence if s ≥ 2γ − 1.
Now

2γ − 1 = 2τ+2 − 1 ≤ 4k − 1.

Hence it suffices if s ≥ 4k − 1, and this proves the conclusion of Lemma
5.6 in the case when k is even.

Note. Although the final argument might, at first sight, seem to be a
crude one, we have in fact lost nothing if k = 2τ and τ ≥ 2. For then
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x2τ ≡ 1 (mod 2τ+2) if x is odd, and x2τ ≡ 0 (mod 2τ+2) if x is even, so
the values of xk are in this case simply 0 and 1.

Hardy and Littlewood defined Γ(k) to be the least value of s such
that the congruence (5.12) is soluble with x1, . . . , xs not all divisible by
p, for all p and all N . In this notation, Lemma 5.6 states that Γ(k) ≤ 2k

when k is odd and Γ(k) ≤ 4k when k is even. Hardy and Littlewood
made a very detailed study of Γ(k) in P.N.VIII [41].1 In particular they
determined all types of k for which Γ(k) > k. The first few values of
Γ(k) are

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Γ(k) 4 16 5 9 4 32 13 12 11 16 6 14 15 64

Theorem 5.1. If s ≥ 2k + 1 then

S(N) ≥ C1(k, s) > 0

for all N .

Proof. The result follows from Lemma 5.6 and the Corollary to Lemma
5.2, since 2k + 1 ≥ 2k (k odd) and 2k + 1 ≥ 4k (k even, k > 2).

Theorem 5.1 is a necessary supplement to Theorem 4.1, in that it
shows that the main term in the asymptotic formula is � Ns/k−1, and
that consequently, r(N) → ∞ as N → ∞.

In the present chapter I have followed for the most part Vinogradov’s
exposition [93, Chapter 2].2 This is somewhat simpler than the original
exposition of Hardy and Littlewood.

1 See also Chowla [14].
2 The case p = 2 of our Lemma 5.4 is inadvertently omitted by Vinogradov.
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The singular series continued

We now prove the result mentioned in connection with the Corollary to
Lemma 3.1, namely that

|Sa,q| � q1−1/k. (6.1)

This implies that

|A(q)| � q1−s/k,

from which it follows that the singular series is absolutely convergent if
s ≥ 2k + 1. Also (5.8) of Chapter 5 and the Corollary to Lemma 5.2,
both hold under the same condition.

Lemma 6.1. If a �≡ 0 (mod p) and δ = (k, p − 1) then

|Sa,p| ≤ (δ − 1)p1/2. (6.2)

Proof. Since xk ≡ m (mod p) has the same number of solutions as
xδ ≡ m (mod p), we have

Sa,p =
∑

x

e

(
a

p
xδ

)
.

Let χ be a primitive character (mod p) of order δ. Then the number of
solutions of xδ ≡ t (mod p) is

1 + χ(t) + · · · + χδ−1(t).

Hence

Sa.p =
∑

t

{
1 + χ(t) + · · · + χδ−1(t)

}
e

(
a

p
t

)
, (6.3)

33
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where here (and elsewhere in this proof) summations are over a complete
set of residues modulo p. The sum arising from the term 1 in the bracket
is 0, since a �≡ 0 (mod p).

If ψ is any non-principal character (mod p), the sum

T (ψ) =
∑

t

ψ(t)e
(

at

p

)
is called a Gauss sum, to commemorate the important part played by
such sums in Gauss’s work on cyclotomy. We can easily prove that
|T (ψ)| = p1/2, as follows. We have

|T (ψ)|2 =
∑

t

∑
u

ψ(t)ψ(u)e
(

a

p
(t − u)

)
.

Here we can omit u = 0, since ψ(0) = 0. Changing the variable from t

to v, where t ≡ vu (mod p), we obtain

|T (ψ)|2 =
∑

v

∑
u�=0

ψ(v)e
(

au

p
(v − 1)

)
.

The inner sum is p − 1 if v = 1 and is −ψ(v) otherwise. Hence

|T (ψ)|2 = pψ(1) −
∑

v

ψ(v) = p.

This is the result stated earlier. Using this in (6.3) for ψ = χ, . . . , χδ−1

we obtain (6.2).

Note. (6.2) remains valid if p = 2 (so that δ = 1), but is then trivial
since a = 1 and S1,2 = 1 + eiπ = 0.

Lemma 6.2. Suppose a �≡ 0 (mod p) and p � k. Then, for 1 < ν ≤ k,

Sa,pν = pν−1, (6.4)

and for ν > k,

Sa,pν = pk−1Sa,pν−k . (6.5)

Proof. In the definition

Sa,pν =
pν−1∑
x=0

e

(
a

pν
xk

)
,

we put x = pν−1y + z where 0 ≤ y < p, 0 ≤ z < pν−1. Then

xk ≡ zk + kpν−1zk−1y (mod pν),
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since 2(ν − 1) ≥ ν. Hence

Sa,pν =
pν−1−1∑

z=0

p−1∑
y=0

e

(
azk

pν
+

akzk−1y

p

)
.

Since ak �≡ 0 (mod p), the inner sum is 0 unless z ≡ 0 (mod p) in which
case it is p. Hence, if z = pw

Sa,pν = p

pν−2−1∑
w=0

e

(
awk

pν−k

)
.

If ν ≤ k, all the terms in the last sum are 1, and we get Sa,pν = pν−1.
If ν > k, the general term is a periodic function of w with period pν−k,
whence

Sa,pν = ppk−2Sa,pν−k .

This proves the two results. (Note again that p may be 2.)

Lemma 6.3. The second result of Lemma 6.2 holds also when p | k.

Proof. Put k = pτk0, as earlier, and note that since ν > k we have

ν > pτk0 ≥ 2τ ≥ τ + 1,

whence ν ≥ τ + 2. Indeed, k ≥ τ + 2, since k ≥ 6 if τ = 1.
We modify the previous proof by putting

x = pν−τ−1y + z, 0 ≤ y < pτ+1, 0 ≤ z < pν−τ−1.

We shall prove that

xk ≡ zk + kpν−τ−1zk−1y (mod p). (6.6)

Assuming this, the proof can be completed as before. For then

Sa,pν =
pν−τ−1−1∑

z=0

pτ+1−1∑
y=0

e

(
azk

pν
− ak0z

k−1y

p

)
,

and again the inner sum is 0 unless z ≡ 0 (mod p), whence

Sa,pν = pτ+1

pν−τ−2−1∑
w=0

e

(
awk

pν−k

)
= pτ+1pk−τ−2Sa,pν−k .
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This proves (6.5). It remains to prove the congruence (6.6). It will
suffice to prove that

(z + pν−τ−1y)pτ ≡ zpτ

+ pν−1zpτ−1y (mod pν)

since the further operation of raising both sides to the power k0 presents
no difficulty. Putting ν − τ − 1 = λ, we have to prove that

(z + pλy)pτ ≡ zpτ

+ pλ+τzpτ−1y (mod pλ+τ+1). (6.7)

This is not quite as immediate as it might appear, because not all the
binomial coefficients in the expansion of (A + B)pτ

are divisible by pτ .
However, we can prove the result in stages (or in other words by induc-
tion on τ). We prove first that

(z + pλy)p ≡ zp + pλ+1zp−1y (mod pλ+2) (6.8)

provided λ ≥ 1 (if p > 2) or λ ≥ 2 (if p = 2). The only term which
needs examination in the binomial expansion is the last; for this we need
λp ≥ λ+2, and this is true if λ ≥ 1 when p > 2, or if λ ≥ 2 when p = 2.

Finally (6.7) follows by repetition from (6.8); at the next stage we
obtain

(z + pλy)p2
= (zp + pλ+1zp−1y1)p

≡ zp2
+ pλ+2zp2−1y1 (mod pλ+3)

≡ zp2
+ pλ+2zp2−1y (mod pλ+3),

where y1 ≡ y (mod p), and we have applied (6.8) with λ + 1 in place of
λ. The argument continues, and gives (6.7).

The conditions on λ are satisfied when λ = ν−τ −1. We have already
seen that ν− τ −1 ≥ 1, and if p = 2 we have ν ≥ k +1 ≥ τ +3, as noted
earlier. Thus the proof is complete.

Lemma 6.4. |Sa,q| � q1−1/k for (a, q) = 1.

Proof. Put T (a, q) = q−1+1/kSa,q. We have to prove that T (a, q) is
bounded independently of q. If q = pν1

1 pν2
2 · · · , then by the multiplicative

property of Sa,q in the proof of Lemma 5.1, we have

T (a, q) = T (a1, p
ν1
1 )T (a2, p

ν2
2 ) · · · ,

for suitable a1, a2, . . . , each of which is relatively prime to the corre-
sponding pν . By the second part of Lemma 6.2 and Lemma 6.3, we
have

T (a, pν) = T (a, pν−k)
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for ν > k, so we can suppose all vi are ≤ k.
By Lemma 6.1,

T (a, p) ≤ kp1/2p−(1−1/k) ≤ kp−1/6

and by the first part of Lemma 6.2,

T (a, pν) = pν−1p−ν(1−1/k) ≤ 1 for 1 < ν ≤ k.

Hence T (a, pν) ≤ 1 except possibly if ν = 1 and p ≤ k6. Hence

T (a, q) ≤
∏

p≤k6

(kp−1/6),

and the number on the right is independent of q.

Theorem 6.1. The singular series S(N) and the product
∏

p χ(p) are
absolutely convergent if s ≥ 2k + 1 and

S(N) ≥ C1(k, s) > 0

if s ≥ 2k + 1 (k odd) or s ≥ 4k (k even).

Proof. The absolute convergence follows as before, using Lemma 6.4
in place of the Corollary to Lemma 3.1, and the final assertion follows
from Lemma 5.6 and the Corollary to Lemma 5.2.

Theorem 6.1 shows that there would be no difficulty in improving on
the condition s ≥ 2k + 1 for the validity of the asymptotic formula, as
far as the singular series alone is concerned (except when k = 4). The
crux of the difficulty is with the minor arcs, and not with the singular
series.
Note. Hardy and Littlewood proved that the singular series, in the form∑∞

q=1 A(q), is absolutely convergent for s ≥ 4, and the same applies to
the product form. The essential idea is to make sure of the cancellation
which occurs in the summation over a in

q∑
a = 1

(a, q) = 1

(q−1Sa,q)se

(−Na

q

)
.

The absolute convergence is, however, no longer uniform in N . If the
absolute value of q−1Sa,q is taken, the condition s ≥ 2k + 1 of Theorem
6.1 is best possible.
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It is an interesting question how the sum S(N) of the singular series
fluctuates with N . Each factor χ(p) depends mainly on the residue class
(mod pγ) to which N belongs. The factors which fluctuate most as N

varies are those for which p divides k, but those for which p − 1 has a
large factor in common with k may also fluctuate appreciably.

In their early papers, Hardy and Littlewood worked mainly with the
definition of S(N) in terms of the exponential sums Sa,q, rather than
with the expression in terms of congruences (mod pν). In P.N. II [38]
they had to prove that S(N) has a positive lower bound in the case
k = 4, s = 21. The factors χ(p) which fluctuate most as N varies are
in this case χ(2) and χ(5); the product of all the others does not differ
appreciably from 1. They found that χ(5) varies between about 0.7 and
1.3. But χ(2) varies by a factor of about 200. Hardy and Littlewood
showed that (in the particular case mentioned)

χ(2) = 1 − 1.3307 cos
(2N − 5)π

16
+ 0.415 cos

(6N + 1)π
16

−0.3793 cos
(2N + 3)π

8
+ ε(N),

where |ε(N)| < 0.002. It can be verified that χ(2) becomes very small
(but still positive) when N ≡ 2 or 3 (mod 16). It is relatively large
when N ≡ 10 or 11 (mod 16). These results correspond to the fact that
x4 ≡ 0 or 1 (mod 16), and that consequently the choices for x1, . . . , x21

in x4
1 + · · ·+x4

21 ≡ N (mod 16) are much more restricted in the one case
than in the other.
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The equation c1x
k
1 + · · · + csx

k
s = N

We next consider the problem of representing a large positive integer
N in the form c1x

k
1 + · · · + csx

k
s , where c1, . . . , cs are given positive

integers and x1, . . . , xs are arbitrary positive integers. It is not true,
without some further supposition, that every large N is representable if
s ≥ s0(k) for some s0(k). For suppose that c1, . . . , cs−1 are all divisible
by some prime p and that cs is not. Then an integer N , not divisible
by p, can certainly not be representable if it does not have the same kth
power character as cs to the modulus p.

We can obviously suppose, in treating the equation in the title, that
c1, . . . , cs do not all have a common factor. We shall find it necessary to
postulate, in order to ensure solubility, that the congruence

c1x
k
1 + · · · + csx

k
s ≡ N (mod pν)

is soluble for each prime p and all sufficiently large ν, with not all the
terms c1x

k
1 , · · · , csx

k
s divisible by p (or to make some other supposition

from which this can be deduced).
Only slight changes are needed in the preceding work to adapt it to

this more general equation. We define Pj = [(N/cj)1/k] to be the integer
part of (N/cj)1/k, and we define

Tj(α) =
Pj∑

x=1

e(αcjx
k). (7.1)

Weyl’s inequality (Lemma 3.1) applies to the sum Tj(α); if α = a/q + β

and |β| < q−2 then cjα = cja/q+cjβ, and |cjβ| � q−2. This is sufficient
for the proof of Lemma 3.1, since all we used about β was that |β| � q−2.

39
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Hua’s inequality (Lemma 3.2) remains valid for any one sum, since

∫ 1

0

|Tj(α)|2k

dα =
∫ 1

0

∣∣∣∣∣∣
Pj∑

x=1

e(αcjx
k)

∣∣∣∣∣∣
2k

dα

=
1
cj

∫ cj

0

∣∣∣∣∣∣
Pj∑

x=1

e(αxk)

∣∣∣∣∣∣
2k

dα

=
∫ 1

0

∣∣∣∣∣∣
Pj∑

x=1

e(αxk)

∣∣∣∣∣∣
2k

dα (by periodicity)

� P 2k−k+ε
j .

This inequality also extends to any product of 2k sums, by Hölder’s
inequality; we obtain∫ 1

0

|T1(α) · · ·T2k(α)| dα � (P1 · · ·P2k)1−k/2k+ε
. (7.2)

We define major and minor arcs as before. Lemma 4.1 now states that
if s ≥ 2k + 1, then∫

m

|T1(α) · · ·Ts(α)| dα � P s−k−δ′
,

the proof being as before, using (7.2). Lemma 4.2 is unchanged, except
that I(β) is replaced by

Ij(β) =
∫ Pj

0

e(βcjξ
k) dξ.

It simplifies the later calculations slightly, however, if the upper limit is
replaced by Pc

−1/k
j , where P = N1/k; the difference is negligible.

The proofs of Lemma 4.3 and Theorem 4.1 apply to the present
problem with only slight changes. One difference is that the change
of variable which is made in Ij(β) in order to express it in terms of∫ 1

0

e(γξk) dξ produces a factor |cj |−1/k. Another difference is that the

singular series is of a slightly more general form; it is now given by

S(N) =
∞∑

q=1

q∑
a = 1

(a, q) = 1

q−sSc1a,q · · ·Scsa,qe(−Na/q). (7.3)
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To establish the absolute convergence of this series for s ≥ 2k + 1 using
the Corollary to Lemma 3.1, or for s ≥ 2k + 1 using Lemma 6.4, we
need to extend an estimate for Sa,q when (a, q) = 1 so that it applies to
Sca,q, where c is any fixed positive integer. This is an easy matter, for
if ca/q = a′/q′ then

Sca,q =
q

q′
Sa′,q′ ,

and q/q′, being a divisor of c, is bounded.
In this way we can prove the following more general form of Theorem

4.1:

Theorem 7.1. Let c1, . . . , cs be fixed positive integers. Then if s ≥
2k + 1, the number r(N) of representations of N as

N = c1x
k
1 + · · · + csx

k
s , (x1, . . . , xs > 0),

satisfies

r(N) =
Ck,s

(c1c2 · · · cs)1/k
Ns/k−1S(N) + O(Ns/k−1−δ) (7.4)

for some fixed δ > 0, where Ck,s is as in Theorem 4.1, and S(N) is
defined by (7.3). The series (7.3) is absolutely convergent for s ≥ 2k+1.

Lemmas 5.1, 5.2, 5.3 on the factorization of the singular series and on
the relation between the singular series and M(pν), still apply. Thus in
order that S(N) may have a positive lower bound independent of N , it
suffices if, for each p, the number M(pν) of solutions of

c1x
k
1 + · · · + csx

k
s ≡ N (mod pν)

satisfies

M(pν) ≥ Cpp
ν(s−1)

for all sufficiently large ν.
Defining γ as before, and using Lemma 5.4, we find, as in Lemma 5.5,

that a sufficient condition for this is that the congruence

c1x
k
1 + · · · + csx

k
s ≡ N (mod pν) (7.5)

shall have a solution with not all of c1x
k
1 , . . . , csx

k
s divisible by p. Hence:

Theorem 7.2. Let γ be defined by (5.11). Suppose that s ≥ 2k + 1,
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and suppose that for each1 prime p the congruence (7.5) has a solution
in which not all of c1x

k
1 , . . . , csx

k
s are divisible by p. Then for all N

satisfying this hypothesis, we have

S(N) ≥ C(k, s) > 0.

By Theorems 7.1 and 7.2, if s ≥ 2k + 1 then r(N) → ∞ as N →
∞, provided N is restricted to numbers which satisfy the congruence
condition of Theorem 7.2. Since the congruence condition is needed
only for p ≤ p0, and since γ is independent of N , the numbers N which
satisfy the congruence condition will certainly include all numbers in
some arithmetic progression.

If we make the hypothesis that the coefficients c1, . . . , cs are relatively
prime in pairs, we can show that the congruence condition is satisfied
for all N provided s exceeds some specific function of k. We prove:

Theorem 7.3. Suppose that (ci, cj) = 1 for 1 ≤ i < j ≤ s, and suppose
that s ≥ k(2k − 1) + 2 (k odd) or s ≥ 2k(4k − 1) + 2 (k even). Then

S(N) ≥ C(k, s) > 0.

Proof. We have to prove that, under the conditions stated, the con-
gruence (7.5) has a solution with not all of c1x

k
1 , . . . , csx

k
s divisible by p.

Since at most one of c1, . . . , cs can be divisible by p, it will be enough
to solve

c1x
k
1 + · · · + csx

k
s ≡ N (mod pγ) (7.6)

with not all of x1, . . . , xs−1 divisible by p, on the supposition that none
of c1, . . . , cs−1 is divisible by p.

Suppose p > 2. We saw in the proof of Lemma 5.6 that the number of
distinct values assumed by zk to the modulus pγ , when z �≡ 0 (mod p),
is (p− 1)/δ, where δ = (k0, p− 1). Hence the number of different classes
of kth power residues and non-residues (mod pγ) is

φ(pγ)
(p − 1)/δ

=
pγ−1(p − 1)δ

p − 1
= pγ−1δ.

(These classes are the cosets of the subgroup of kth powers in the whole
group of the relatively prime residue classes.)

1 It suffices, of course, to suppose this for p ≤ p0(k, s); see the Corollary to Lemma
5.2.
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If we divide the coefficients c1, . . . , cs−1 into sets according to the class
of kth power residues or non-residues to which a coefficient belongs, there
will be one class containing at least (s − 1)/pγ−1δ coefficients. Let t be
the least integer ≥ (s−1)/pγ−1δ. We can take the coefficients in question
to be the first t coefficients, and then c2 ≡ dk

2c1, . . . , ct ≡ dk
t c1 (mod

pγ), where the di are not divisible by p. Putting the variables xt+1, . . .

in (7.6) equal to 0, and cancelling c1, we see that it suffices to solve

xk
1 + (d2x2)k + · · · + (dtxt)k ≡ N ′ (mod pγ)

with not all the variables divisible by p. This is in effect the same as
the congruence considered in Lemma 5.6 in connection with Waring’s
problem. We proved there that the result holds provided t ≥ 2k. Hence
it suffices if

s − 1
pγ−1δ

> 2k − 1.

Since γ − 1 = τ and pτδ ≤ pτk0 = k, it suffices if s − 1 > k(2k − 1).
Suppose p = 2. First, if τ = 0 (so that k is odd), the congruence

(7.6) is soluble even if it has only one term provided N is odd, since xk

assumes all values (mod pγ). Hence it is soluble with two terms whether
N is odd or even, so it suffices if s − 1 ≥ 2. Thus the conclusion of the
theorem holds if k is odd.

Now suppose τ ≥ 1, so that k is even. Since each coefficient ci is
odd (for i ≤ s − 1), it can assume 2γ−1 possible values to the modulus
2γ . Hence there is some set of t mutually congruent coefficients, where
t ≥ (s − 1)/2γ−1. Putting the variables corresponding to the other
coefficients equal to 0, we see that it suffices to solve

xk
1 + · · · + xk

t ≡ N ′ (mod 2γ)

with not all the variables even. As in the proof of Lemma 5.6, it suffices
if t ≥ 4k. Hence it suffices if

s − 1
2γ−1

> 4k − 1.

Since k ≥ 2τ and γ = τ + 2, we have 2γ−1 ≤ 2k. Hence it suffices if
s− 1 > 2k(4k− 1). This proves Theorem 7.3 in the case when k is even.

It follows from Theorems 7.1 and 7.3 that we can name a number
s1(k) such that if s ≥ s1(k) then r(N) → ∞ as N → ∞; always on
the assumption that the coefficients cj are relatively prime in pairs.
The numbers given in Theorem 7.3 are by no means best possible; we



44 Analytic Methods for Diophantine Equations and Inequalities

have merely given those which turn up naturally from the simple line
of argument used in the proof. In principle, one can relax the condition
that the coefficients are relatively prime in pairs; what is essential for
the truth of the result just stated is that, for any prime p, a certain
number of the coefficients are not divisible by p.
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The equation c1x
k
1 + · · · + csx

k
s = 0

We now study the solutions of the above equation in integers, positive
or negative, where c1, . . . , cs are fixed integers, none of them 0. If k is
even, we must obviously suppose that not all the coefficients are of the
same sign. If k is odd, we can ensure this by changing xi into −xi if
necessary. Hence, with a slight change of notation, we can write the
equation as

c1x
k
1 + · · · + crx

k
r − cr+1x

k
r+1 − · · · − csx

k
s = 0, (8.1)

where c1, . . . , cs are now positive integers and 1 ≤ r ≤ s − 1. We study
the solutions of (8.1) in positive integers.

The first difference, in comparison with the equation treated in Chap-
ter 7, is that there is no large number N which imposes restrictions on
the sizes of the unknowns. We must therefore ourselves prescribe ranges
for the variables, and the obvious way to do this is to choose a large
number P , define Pj = [P/c

1/k
j ] for 1 ≤ j ≤ s, and consider the number

of solutions of (8.1) subject to

1 ≤ xj ≤ Pj , (1 ≤ j ≤ s). (8.2)

We define the exponential sums Tj(α) as before, in (7.1). Then the
number N (P ) of solutions of (8.1), subject to (8.2), is given by

N (P ) =
∫ 1

0

T1(α) · · ·Tr(α)Tr+1(−α) · · ·Ts(−α)dα.

We follow again the treatment of Waring’s problem, with the same
slight changes as in the preceding section. The only further changes
arise from the absence of N in the singular series and in the singular
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integral. In (4.10), we have to replace J(P δ) by

(c1 · · · cs)−1/k

∫
|γ|<P δ


 s∏

j=1

∫ 1

0

e(±γξk
j )dξj


 dγ,

where the sign is + for j ≤ r and − for j > r. As in (4.16) we are led
to the evaluation of the integral

J =
∫ ∞

−∞
k−s


 s∏

j=1

∫ 1

0

ζ
−1+1/k
j e(±γζj)dζj


 dγ.

As in the proof of Theorem 4.1, we make a change of variable from ζs

to u, where

ζ1 + · · · + ζr − ζr+1 − · · · − ζs = u,

and we find that

J = k−s

∫ 1

0

· · ·
∫ 1

0

{ζ1 · · · ζs(ζ1 ± · · · ± ζs−1)}−1+1/k
dζ1 · · · dζs−1,

where 0 < ζ1 ± · · · ± ζs−1 < 1. All we need to know is that J > 0, and
this is the case because there is some open set contained in 0 < ζj < 1
throughout which

0 < ζ1 ± · · · ± ζs−1 < 1.

Thus the asymptotic formula for N (P ), proved for s ≥ 2k + 1, takes
the form

N (P ) =
C ′

k,s

(c1 · · · cs)1/k
P s−kS + O(P s−k−δ), (8.3)

where

C ′
k,s = k−s

∫ 1

0

· · ·
∫ 1

0

{η1 · · · ηs(η1 + · · · − ηs−1)}−1+1/k
dη1 · · · dηs−1,

(8.4)
and

S =
∞∑

q=1

q∑
a = 1

(a, q) = 1

q−sSc1a,q · · ·S−csa,q. (8.5)

We observe that the value of S is now a number depending only on
the coefficients c1, . . . ,−cs and on k. As before, the series defining S is
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absolutely convergent for s ≥ 2k + 1, and factorizes as
∏

χ(p). Again
there exists p0 such that ∏

p>p0

χ(p) ≥ 1
2
.

To ensure that S > 0 (there is now no need to write S ≥ C1(k, s) > 0,
since there is no parameter N), it will suffice to prove that χp > 0 for
each individual p. As before, it suffices if

M(pν) ≥ Cpp
ν(s−1) (8.6)

for all sufficiently large ν, where M(pν) denotes the total number of
solutions of the congruence

c1x
k
1 + · · · − csx

k
s ≡ 0 (mod pν), 0 ≤ x < pν . (8.7)

Our object now is to obtain some explicit function s1(k) of k, such
that (8.6) holds for each p if s ≥ s1(k). Then the asymptotic formula
(8.3) will be significant, in the sense that the main term will be � P s−k,
and will imply that N (P ) → ∞ as P → ∞. In proving this result, the
signs of the coefficients in (8.7) play no part, and therefore we revert to
the original notation, in which there were no negative signs prefixed to
the coefficients.

The first step is to derive a congruence in a smaller number of un-
knowns in which none of the coefficients are divisible by p, which is such
that if (8.6) holds for the new congruence then it holds for the original
congruence. We write

cj = djp
hjk+lj , (1 ≤ j ≤ s),

where

p � dj , 0 ≤ lj < k.

Then (8.7) becomes
s∑

j=1

djp
lj
(
phj xj

)k ≡ 0 (mod pν).

Let h = max hj . We restrict ourselves to solutions of the form

xj = ph−hj yj .

Thus, for large ν, we can cancel phk from the congruence, and it becomes
s∑

j=1

djp
lj yk

j ≡ 0 (mod pν−hk), (8.8)
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subject to

0 ≤ y < pν−h+hj .

If we denote by M ′(pν−hk) the number of solutions of (8.8) subject to

0 ≤ y < pν−hk

then (since h − hj < hk) we have

M(pν) ≥ M ′(pν−hk).

Hence it suffices to prove the analogue of (8.6) for M ′(pν).
Let l = max lj . In the new congruence (8.8), but to the modulus pν ,

we group together the terms according to the value of lj . There are k

groups, and one at least of these must contain v terms, where v ≥ s/k.
We put yj = py′

j in the other terms, and after dividing out a factor pl

we obtain a congruence of the form

d1y
k
1 + · · · + dvyk

v + p(dv+1y
k
v+1 + · · · ) + · · · ≡ 0 (mod pν−l). (8.9)

Again we can replace ν − l on the right by ν, since this merely changes
Cp in a result of the type (8.6). In the last congruence, we have

d1d2 · · · dv �≡ 0 (mod p).

Define γ as usual (see (5.11)). By the argument used in the proof of
Lemma 5.5, the desired result (8.6) will hold for the congruence (8.9),
provided the congruence

d1y
k
1 + · · · + dvyk

v ≡ 0 (mod pγ) (8.10)

has a solution in which y1, . . . , yv are not all divisible by p.
Suppose p > 2. We argue as in the proof of Theorem 7.2, dividing

the terms in (8.10) into groups according to the class of the kth power
residues or non-residues to which the coefficient dj belongs. It suffices if

v

pγ−1δ
> 2k − 1,

and since pγ−1δ = pτδ ≤ k, it suffices if

v > k(2k − 1).

Hence it suffices if

s > k2(2k − 1).

Suppose p = 2. Once again there is no problem if τ = 0, so that k is
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odd. If τ > 0, we could argue as in the proof of Theorem 7.2, but there
is a more effective argument which is quite simple. We shall prove that

d1y
k
1 + · · · + dvyk

v ≡ 0 (mod 2γ)

has a solution with y1, . . . , yv not all even provided v ≥ 2γ . We find
these solutions by taking yj = 0 or 1 (this being no loss of generality
when k is a power of 2, as remarked in connection with Lemma 5.6).

First, if γ = 1, we can solve

d1t1 + d2t2 ≡ 0 (mod 2)

by taking t1 = t2 = 1 (since d1, d2 are odd). Next, we can solve

d1t1 + d2t2 + d3t3 + d4t4 ≡ 0 (mod 4)

by taking either t1 = t2 = 1, t3 = t4 = 0 (if d1 + d2 ≡ 0 (mod 4)) or
t1 = t2 = 0, t3 = t4 = 1 (if d3+d4 ≡ 0 (mod 4)) or t1 = t2 = t3 = t4 = 1.
The process continues, and the proof is easily completed by induction
on γ.

The condition v ≥ 2γ is satisfied if v ≥ 4k, and therefore is satisfied if
s > k(4k− 1). Since this number is less than k2(2k− 1), it has no effect
in the result.

Collecting our results, we have proved:

Theorem 8.1. Let c1, . . . , cs be given integers, none of them 0, and not
all of the same sign if k is even. Then provided s ≥ 2k + 1, and

s ≥ k2(2k − 1) + 1, (8.11)

the equation

c1x
k
1 + · · · + csx

k
s = 0

has infinitely many solutions in integers x1, . . . xs, none of them 0.

The condition in (8.11), which came from our investigation of the
singular series, is not best possible. In [27] Davenport and Lewis show
that to ensure S > 0, it suffices if

s ≥ k2 + 1.

This condition is best possible if k + 1 is a prime p. For then xk ≡ 1
(mod p) if x �≡ 0(mod p), and it is easily deduced that the congruence

pk| ((xk
1 + · · · + xk

k) + p(xk
k+1 + · · · + xk

2k) + · · · + pk−1

×(xk
k2−k+1 + · · · + xk

k2)
)
,
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in k2 variables, is insoluble unless all the variables are divisible by p.
However, for most values of k a smaller value than k2 + 1 will suffice.

In the preceding treatment of the equation

c1x
k
1 + · · · + csx

k
s = 0

we have obtained an asymptotic formula for the number of integer so-
lutions in the s-dimensional box 0 < xj ≤ Pj as P → ∞. But this
box is not related in any unique way to the equation, and the interest
of the result lies mainly in the fact that it establishes the existence of
an infinity of solutions. To prove this, however, it is not essential to
obtain an asymptotic formula for all solutions in such a box; it would
be enough to consider some special subset. Thus we can use methods
similar to those developed for the estimation of G(k) in Waring’s prob-
lem. In Chapter 9 we shall study Vinogradov’s method, which is very
effective for large k, and in the subsequent chapter we shall adapt this
method to the equation which we have been studying.

It should not be overlooked, however, that the method which we have
been using is particularly appropriate to the study of the distribution of
the solutions of the equation. Suppose λ1, . . . , λs are any real numbers,
none of them 0, which satisfy the equation

c1λ
k
1 + · · · + csλ

k
s = 0.

Then the method of the present section enables one to find an asymptotic
formula, as P → ∞, for the integral solutions of our equation in the box

1 − δ <
xj

λjP
< 1 + δ,

for any small fixed positive number δ. Expressed geometrically, the
result means that the ‘rays’ from the origin to the integer points on the
cone

c1x
k
1 + · · · + csx

k
s = 0

are everywhere dense on this cone, if the cone is considered as a real
locus in s-dimensional space. Thus, although the method which is now
to be expounded is more effective in establishing an infinity of solutions,
it does not entirely supersede the previous method.
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Waring’s problem: the number G(k)

The number G(k) was defined (by Hardy and Littlewood) to be the
least value of s with the property that every sufficiently large integer N

is representable as a sum of s positive integral kth powers. We already
know, from Theorems 4.1 and 5.1, that G(k) ≤ 2k + 1. In the opposite
direction, it is easily deduced from considerations of density that G(k) ≥
k + 1; in fact the number of sets of integers x1, . . . , xk satisfying

xk
1 + · · · + xk

k ≤ X, 0 < x1 ≤ x2 ≤ · · · ≤ xk

is easily seen to be asymptotic to γX as X → ∞, where γ < 1 (by
comparison with a multiple integral), and consequently there are many
numbers not representable by k kth powers. A better lower bound is
often deducible from congruence conditions; we have G(k) ≥ Γ(k), where
Γ(k) is the number defined in Chapter 4.

There are better upper bounds available for G(k) when k is large. In
1934 Vinogradov proved that G(k) < (6 + δ)k log k for k > k0(δ), where
δ is any small positive number [92]. We shall now give an exposition of
the proof.1 The numerical coefficient 6 was subsequently improved to 3
by Vinogradov in 1947 [93], but the proof is somewhat more difficult.

It will be recalled that in Chapter 4 we divided the range of integration
for α into major arcs and minor arcs, the major arcs comprising those
α that admit a rational approximation a/q with

q ≤ P δ, |α − a/q| < P−k+δ.

Compared with what is usually needed in work on Waring’s problem,
these major arcs were exceptionally few in number and short in length.
It was possible to make the choice because of the very effective esti-
mate of Hua (Lemma 3.2), which ‘saves’ almost P k in the estimation of
1 We base this mainly on Heilbronn’s account [44].
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dα. In the present treatment we cannot include as much of
the integral of α in the minor arcs. We therefore need a more effective
method of approximation to T (α) on the major arcs than the very crude
one used in the proof of Lemma 4.2. The question is essentially one of
replacing a sum by an integral, and we shall use the following lemma of
van der Corput, which is of independent interest.

Lemma 9.1. (van der Corput) Suppose f(x) is a real function which
is twice differentiable for A ≤ x ≤ B. Suppose further that, in this
interval,

0 ≤ f ′(x) ≤ 1
2 , f ′′(x) ≥ 0.

Then ∑
A≤n≤B

e(f(n)) =
∫ B

A

e(f(x)) dx + O(1).

Proof. It will suffice to prove the result when A, B are integers with
A < B, and when the end terms n = A, n = B in the sum are counted
with factors 1

2 . By replacing f(x) with f(x) + c, which is equivalent to
multiplying both the sum and the integral by e2πic, we can ensure that
the difference between the sum and the integral is real, and this allows
us to replace e(f(x)) by cos(2πf(x)) on both sides.

Let Ψ(x) = x− [x]− 1
2 . Then, for any integer m and any differentiable

F (x), we hae∫ m+1

m

Ψ(x)F ′(x) dx = 1
2 {F (m + 1) + F (m)} −

∫ m+1

m

F (x) dx.

Summing this for m = A,A + 1, . . . , B − 1, we obtain
B∑

n=A

′
F (n) =

∫ B

A

F (x) dx +
∫ B

A

Ψ(x)F ′(x) dx,

where the accent means that the end terms are counted with factors 1
2 .

Thus the question is reduced to proving that

I =
∫ B

A

Ψ(x) (cos(2πf(x)))′ dx

is bounded in absolute value.
We recall that, for any x which is not an integer,

Ψ(x) = −
∞∑

ν=1

sin 2πνx

πν
.
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Hence

I = −
∞∑

ν=1

1
νπ

∫ B

A

(sin 2πνx) (cos(2πf(x)))′ dx

= 2
∞∑

ν=1

1
ν

∫ B

A

(sin 2πνx) (sin(2πf(x))) f ′(x) dx

=
∞∑

ν=1

1
ν

∫ B

A

f ′(x) {cos (2π (νx − f(x))) − cos (2π (νx + f(x)))} dx.

The interchange of summation and integration on the first line is easily
justified by appealing to the bounded convergence of the series for Ψ(x).
We shall prove that∣∣∣∣∣

∫ B

A

f ′(x) cos (2π (νx ± f(x))) dx

∣∣∣∣∣ <
1

π(2ν − 1)

and this will imply

|I| <
1
π

∞∑
ν=1

1
ν(2ν − 1)

<
2
π

,

giving the desired result.
We write the integral as

1
2π

∫ B

A

f ′(x)
ν ± f ′(x)

φ′(x) dx,

where

φ(x) = sin(2π(νx ± f(x))),

and appeal to the mean value theorem. The second factor, φ′(x), has
the property that its integral between any two limits has absolute value
at most 2. The first factor is monotonic (for each positive integer ν), its
derivative being

νf ′′(x)
(ν ± f ′(x))2

≥ 0.

The maximum of the first factor is at most 1/(2ν − 1). Hence∣∣∣∣∣ 1
2π

∫ B

A

f ′(x)
ν ± f ′(x)

φ′(x) dx

∣∣∣∣∣ ≤ 1
π(2ν − 1)

,

as asserted above. Thus the proof of Lemma 9.1 is complete.
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We define the major arcs Ma,q for the purpose of the present chapter,
to consist of the intervals

(a, q) = 1, 1 ≤ a ≤ q, q ≤ P 1/2, |qα − a| <
1

2kP k−1
. (9.1)

As in Chapter 2, we define

T (α) =
P∑

x=1

e(αxk).

The more precise result, which takes the place of Lemma 4.2, is as fol-
lows.

Lemma 9.2. For α in Ma,q, we have

T (α) = q−1Sa,qI(β) + O(q), (9.2)

with the notation of Chapter 4.

Proof. Putting x = qy + z, as in the proof of Lemma 4.2, we obtain

T (α) =
q∑

z=1

e(azk/q)
∑

y

e
(
β(qy + z)k

)
,

the summation for y being over 0 < qy + z ≤ P . If

f(y) = β(qy + z)k,

then (for β > 0),

f ′(y) = kβq(qy + z)k−1 < k(2kP k−1)−1P k−1 = 1
2 ,

by (9.1). Also f ′′(y) ≥ 0. Hence Lemma 9.1 is applicable, and is equally
applicable if β < 0 to the complex conjugate sum. Hence we can replace
the inner sum over y by∫

e
(
β(qη + z)k

)
dη + O(1),

and this leads to (9.2).

Note. It will be seen that the condition q ≤ P 1/2 in (9.1) has not
been used in the proof, though of course the result loses its value if q is
allowed to be almost as large as P .
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There is a still more effective method of approximating to T (α). If it
is assumed that q ≤ P 1−δ and |qα − a| < P−k+1−δ, then1

T (α) = q−1Sa,qI(β) + O
(
q

3
4+ε

)
.

It is remarkable that the exponent in the error term here should be
independent of k.

Lemma 9.3. Suppose s ≥ 4k. Then, for

1
5P k ≤ M ≤ P k, (9.3)

we have ∫
M

T (α)se(−Mα) dα � P s−k, (9.4)

where M denotes the totality of the major arcs Ma,q.

Note. The reason why we want the result for a range of values of
M , instead of a single number, will appear later; it will spare us from
having to approximate to a somewhat complicated exponential sum on
the major arcs.

Proof. For α on a particular interval Ma,q, we have (9.2), and the first
step is to raise the approximation to the power s. We have

q−1|Sa,q| � q−1/k

by Lemma 6.4; also

I(β) � min(P, |β|−1/k).

The first estimate, P , is trivial, and the second comes from writing I(β)
as

1
k
|β|−1/k

∫ P k|β|

0

e(±η)η−1+1/k dη

and observing that the last integral is bounded. Hence the main term
in (9.2) has absolute value

� q−1/k min
(
P, |β|−1/k

)
.

The error term q does not exceed this, since

q1+1/k < P and q1+1/k < |β|−1/k

1 See [18, Lemmas 8 and 9].
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by (9.1). Hence

T (α)s = (q−1Sa,qI(β))s

+O

{
q q−(s−1)/k

(
min

(
P, |β|−1/k

))s−1
}

.

The error term here, when integrated with respect to β (the range of β

is immaterial — one can take (−∞,∞)) becomes

� q1−(s−1)/kP s−1−k.

When this is summed over a (at most q values) and over q ≤ P 1/2, it
gives a final error term

� P s−1−k
∑

q

q2−(s−1)/k � P s−k−1,

since the series is convergent (s − 1 > 3k).
The contribution of the main term to the integral in (9.4) is∑

q

∑
a

(q−1Sa,q)se(−Ma/q)
∫

Is(β)e(−Mβ) dβ,

where the conditions of summation and integration are determined by
(9.1). We can extend the integration over β to (−∞,∞), since by the
estimate for |I(β)| the resulting error is

�
∑

q

qq−s/k

∫ ∞

(2kq)−1P 1−k

β−s/k dβ

�
∑

q

q1−s/kqs/k−1P (k−1)(s/k−1)

�P s−k−s/k+3/2 � P s−k−1.

By a simple change of variable,

I(β) = Pk−1

∫ 1

0

e(βP kη)η−1+1/k dη = Pk−1I1(βP k),

say. Putting β = P−kγ, we obtain∫ ∞

−∞
Is(β)e(−Mβ) dβ = P s−kk−s

∫ ∞

−∞
Is
1(γ)e(−θγ) dγ,

where θ = M/P k, so that 1
5 ≤ θ ≤ 1. As in the proof of Theorem 4.1, it

follows from Fourier’s integral theorem that the integral∫ ∞

−∞
Is
1(γ)e(−θγ) dγ
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is equal to∫ 1

0

· · ·
∫ 1

0

{ζ1 · · · ζs−1(θ − ζ1 − · · · − ζs−1)}−1+1/k dζ1 · · · dζs−1,

where the integral is taken over ζ1, . . . , ζs−1 for which ζ1+ · · ·+ζs−1 < θ.
Hence ∫ ∞

−∞
Is
1(γ)e(−θγ) dγ = θs/k−1 Γ(1/k)s

Γ(s/k)
,

and since θ ≥ 1/5, we obtain, on substitution,∫ ∞

−∞
Is(β)e(−Mβ) � P s−k.

It suffices now to obtain a positive lower bound for

∑
q≤P 1/2

q∑
a = 1

(a, q) = 1

(q−1Sa,q)se(−Ma/q).

This series can be continued to infinity with an error which is bounded by
a negative power of P ; this follows from Lemma 6.4 since s ≥ 4k > 2k+1.
It then becomes S(M), and this has a positive lower bound independent
of M by Theorem 6.1. Thus Lemma 9.3 is proved.

We now come to the main idea of the proof. This is: to consider the
representations of a large number N in the form

N = xk
1 + · · · + xk

4k + u1 + u2 + ykv, (9.5)

where

(i) 1 ≤ xj ≤ P ;
(ii) u1 and u2 run through all the different numbers less than 1

4P k

that are representable as sums of � positive integral kth powers;
(iii) 1 ≤ y ≤ P 1/2k;
(iv) v runs through the different numbers less than 1

4P k−1/2 that are
representable as sums of � positive integral kth powers.

Thus we shall be representing N as a sum of 4k + 3� positive integral
kth powers. In order to prove that a representation exists, we shall have
to choose � in terms of k later. We shall choose

P = [N1/k] + 1;

this will ensure that
1
5P k < N − u1 − u2 − ykv < P k. (9.6)
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It is vital to have a lower bound for the number of u1, u2, v, and such
a lower bound is provided by the following lemma.

Lemma 9.4. (Hardy and Littlewood) Let U(X) denote the number
of different numbers up to X that are representable as sums of � positive
integral kth powers. Then, provided X > X0(k, �), we have

U(X) � X1−λ�

, λ = 1 − 1
k . (9.7)

Proof. The result holds when � = 1, since then the number is [X1/k],
and the number on the right of (9.7) is X1/k. The general result is
proved by induction on �. Consider numbers of the form xk + z, where(

1
4X

)1/k
< x <

(
1
2X

)1/k

and

0 < z < 1
2X1−1/k,

and z is expressible as a sum of �−1 positive integral kth powers. These
numbers are all distinct, for if

xk
1 + z1 = xk

2 + z2, x1 > x2,

we get

xk
1 − xk

2 > kxk−1
2 > k( 1

4X)1−1/k > 1
2X1−1/k,

whereas

z2 − z1 < z2 < 1
2X1−1/k,

a contradiction. The number of possibilities for x is � X1/k, and the
number for z is U−1

(
1
2X1−1/k

)
, so we have

U(X) � X1/kU−1

(
1
2X1−1/k

)
.

If the analogue of (9.7) with � − 1 in place of � holds, we get

U(X) � X1/kX(1−1/k)(1−λ�−1) = X1−λ�

,

so (9.7) itself holds. This proves the result.

Note. Nothing substantially better than (9.7) is known for general k,
and any real improvement would be of interest. Better results are known
for small k (see the paper of Davenport [19]).
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Corollary. Let

R(α) =
∑

u< 1
4 P k

e(αu) (9.8)

where u runs through different numbers that are sums of � kth powers.
Then ∫ 1

0

|R(α)|2 dα = R(0) � P−k(1−λ�)R2(0). (9.9)

Proof. The first result is immediate, being valid for any exponential
sum

∑
e(αu) in which u runs through a set of different integers. The

second result follows from the fact that

R(0) = U

(
1
4P k

) � P k(1−λ�).

Note. It is convenient to use R(0) as a means of indicating the number
of terms in the exponential sum R(α), in order to avoid introducing new
symbols. The trivial estimate for the integral in (9.9) would be R2(0),
and it will be seen that in comparison with this we have saved an amount
k(1 − λ) in the exponent of P . We shall ultimately choose � so that
λ (that is, (1 − 1/k)) is about 1/Ck2, so that the saving will be about
k − 1/Ck. It will be necessary to save a further amount, more than
1/Ck, when α is in the minor arcs m, and this will be attained by an
estimate for the exponential sum corresponding to the last term ykv in
(9.5). The estimate depends on the following very general lemma, the
principle of which plays a large part in most of Vinogradov’s work.

Lemma 9.5. (Vinogradov) Let x run through a set of X0 distinct
integers contained in an interval of length X, and let y run through a
set of Y0 distinct integers contained in an interval of length Y . Suppose
α = a/q + O(q−2), where (a, q) = 1, q > 1. Then∣∣∣∣∣∑

x

∑
y

e(αxy)

∣∣∣∣∣
2

� X0Y0
log q

q
(q + X)(q + Y ). (9.10)

Proof. Denoting the sum by S, we have

|S|2 ≤
(∑

x

1

)
∑

x

∣∣∣∣∣∑
y

e(αxy)

∣∣∣∣∣
2
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≤ X0

x1+X∑
x=x1

∑
y

∑
y′

e(αx(y − y′)),

where now x runs through all integers of the interval containing the orig-
inal set, whereas y, y′ are still restricted. Carrying out the summation
over x, we obtain

|S|2 � X0

∑
y

∑
y′

min(X, ‖α(y − y′)‖−1).

Now |y − y′| ≤ Y , and each value of y − y′ arises from at most Y0 pairs
y, y′. Hence

|S|2 � X0Y0

∑
t

|t| ≤ Y

min(X, ‖αt‖−1).

The rest of the argument is essentially the same as that in the proof
of Lemma 3.1. The sum over t is divided into blocks of q consecutive
terms, the number of blocks being � Y/q + 1. The sum of the terms in
any one block is of the form

t1+q∑
t=t1+1

min

(
X,

∥∥∥∥at

q
+ τ + O

(
1
q

)∥∥∥∥−1
)

� X +
∑

1≤u≤ 1
2 q

q

u
� X + q log q.

Hence

|S|2 � X0Y0 (Y/q + 1) (X + q log q) ,

and this implies (9.10).

Corollary. Let

S(α) =
∑

y

∑
v

e(αykv), (9.11)

where the conditions of summation are those in (iii) and (iv) earlier.
Then, if α = a/q + O(q−2), and

P 1/2 < q ≤ 2kP k−1,

we have

|S(α)| � S(0)P− 1
4k + 1

2 (k− 1
2 )λ�

. (9.12)
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Proof. The sum is an instance of that of the lemma, with

X = 1
4P k− 1

2 , X0 = U

(
1
4P k− 1

2

)
,

Y = P 1/2, Y0 = P
1
2k .

Hence

|S(α)|2 � X0P
1
2k

log q

q

(
q + 1

4P k− 1
2

)(
q + P 1/2

)
� X0P

1
2k (log P )P k− 1

2 .

Since

S(0) � P
1
2k X0,

we obtain ∣∣∣∣S(α)
S(0)

∣∣∣∣2 � P− 1
2k +(k− 1

2 )+εX−1
0 ,

and since

X0 � P (k− 1
2 )(1−λ�)

by Lemma 9.4, we obtain (9.12).

Note. It will be seen that (9.12) represents a saving over the trivial
estimate of almost 1/4k in the exponent of P , provided λ is small.

Lemma 9.6. Let m denote the minor arcs, that is, the complement of
the intervals Ma,q in (9.1). Then provided � ≥ 2k log 3k, we have∫

m

|T (α)|4k|R(α)|2|S(α)| dα � P 3kR2(0)S(0)P−δ

for some fixed δ > 0.

Proof. For every α there exist a, q such that

(a, q) = 1, 1 ≤ q ≤ 2kP k−1,

∣∣∣∣α − a

q

∣∣∣∣ <
1

2kqP k−1
,

and if α is not in any Ma,q, we must have q > P 1/2. Note that
|α − a/q| < 1/(2kqP k−1). By the Corollary to Lemma 9.5,

|S(α)| � S(0)P− 1
4k + 1

2 (k− 1
2 )λ�

.
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By the Corollary to Lemma 9.4,∫ 1

0

|R(α)|2 dα � R2(0)P−k+kλ�

.

Using the trivial estimate |T (α)| ≤ P , we see that the integral in the
enunciation is

� P 3kR2(0)S(0)P− 1
4k + 3

2 kλ�

.

If � ≥ 2k log 3k, then

log λ = � log
(

1 − 1
k

)
< − �

k
< −2 log 3k,

whence λ < (3k)−2 and
3
2
kλ <

1
6k

.

Hence the result.

Theorem 9.1. G(k) < 4k + 6k log 3k + 3.

Proof. Let r1(N) denote the number of representation of N in the
special form (9.5), subject to the conditions given there. Then

r1(N) =
∫ 1

0

T 4k(α)R2(α)S(α)e(−Nα) dα.

By Lemma 3.1, the contribution of the minor arcs m to the integral is
of lower order than P 3kR2(0)S(0), provided � ≥ 2k log 3k.

We write the contribution of the major arcs as∑
u1

∑
u2

∑
y

∑
v

∫
M

T 4k(α)e
(
α(−N + u1 + u2 + ykv)

)
dα.

The number of terms in the outside sum is R2(0)S(0), and for any choice
of these we have

1
5P k < N − u1 − u2 − ykv < P k,

as noted earlier. Thus, by Lemma 9.3, the integral over M is � P 3k,
since now s = 4k. Hence r1(N) � P 3kR2(0)S(0), so that r1(N) → ∞
as N → ∞. It follows that

G(k) ≤ 4k + 3� ≤ 4k + 3(2k log 3k + 1),

giving the result.
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The equation c1x
k
1 + · · · + csx

k
s = 0 again

We return to this equation, and adapt to it the method of the last section,
so as to establish its solubility under a less restrictive condition than that
of Theorem 8.1. As in Chapter 8 we shall suppose that c1, . . . , cs are
fixed integers, none of them 0, and not all of the same sign if k is even.

Let s0 = s0(k) be an integer which has the property that the singular
series for any equation

c1x
k
1 + · · · + cs0x

k
s0

= 0

is positive. By the work of Chapter 8, we can take

s0 = k2(2k − 1) + 1, (10.1)

and as remarked there it is in fact possible to take s0 = k2 + 1, though
we have not proved this.

As in the preceding chapter, it will be necessary to have some knowl-
edge about the singular series S(M) of the related equation

c1x
k
1 + · · · + cs0x

k
s0

= M. (10.2)

This factorizes as
∏

p χ(p), and we know that

∏
p>p0

χ(p) ≥ 1
2

for some p0 depending on k and s but not on M ; this holds if s0 is
merely ≥ 2k+1. Thus to ensure that S(M) has a positive lower bound,
independent of M , for some class of integers M , it will suffice if χ(p) has
such a lower bound, for each p ≤ p0.

In the work of Chapter 8, we applied (for each p) a preliminary trans-
formation to the additive form, depending on the powers of p dividing

63
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the coefficients cj . After this we obtained a form

d1y
k
1 + · · · + dvyk

v

with coefficients not divisible by p, and it was sufficient if the congruence

d1y
k
1 + · · · + dvyk

v ≡ 0 (mod pγ)

had a solution with y1, . . . , yv not all divisible by p. We showed that
this condition was satisfied if s ≥ s0, with s0 in (10.1).

It follows that for each p there is some γ1(p) (depending also on the
coefficients cj) such that χ(p) has a positive lower bound if1

M ≡ 0 (mod pγ1(p)),

for this will ensure that the final congruence which has to be solved is
the same as it would be for M = 0. Let

L =
∏

p≤p0

pγ1(p).

Then if M ≡ 0 (mod L) there is a positive lower bound for χ(p), and
hence also for S(M), independent of the particular M .

Returning to the equation of the title, we take s = s0 + 3�, with � as
in Chapter 9, and divide the coefficients into sets:

c1, . . . , cs0 ; d1, . . . , d; d′1, . . . , d
′
; e1, . . . , e;

subject to the condition that c1, . . . , cs0 are not all of the same sign. We
shall establish the solubility of the equation

c1x
k
1 + · · · + cs0x

k
s0

+ Lk(u1 + u2 + ykv) = 0, (10.3)

subject to

(i) 0 < xj ≤ P/|cj |1/k;
(ii) u1 is an integer < 1

4 (P/L)k, which is representable as d1z
k
1 + · · ·+

dz
k
 , and similarly for u2 with accented coefficients;

(iii) 1 < y < (P/L)1/2k;
(iv) v is an integer < 1

4 (P/L)k−1/2 which is representable as e1t
k
1 +

· · · + et
k
 .

This will prove the solubility of the original equation when s = s0 + 3�,
and a fortiori when s ≥ s0 + 3�.

The definition of major and minor arcs is the same as in Chapter 9,
except that we replace 2kqP k−1 by 2kqcP k−1, where c = max |cj |; this

1 We can take γ1(p) = γ if p does not divide any of the cj .
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is to ensure that the conditions of van der Corput’s lemma are satisfied
in the proof of the analogue of Lemma 9.2. In place of Lemma 9.3 we
obtain that ∫

M

T1(α) · · ·Ts0(α)e(−Mα)dα � P s0−k (10.4)

provided 0 < M ≤ P k and M ≡ 0 (mod L). The proof of this differs
only in respect of the singular integral, which transforms into a multiple
of ∫ 1

0

· · ·
∫ 1

0

{ζ1 · · · ζs0−1 (±ζ1 ± · · · ± ζs0−1 − θ)}1−1/k
dζ1 · · · dζs0−1,

integrated over the range 0 < ±ζ1 ± · · · ± ζs0−1 − θ < 1, where the signs
are those of c1, . . . , cs0−1 and we have assumed that cs0 is negative. We
can suppose that two at least of the signs ± are +. Then, for 0 ≤ θ ≤ 1,
the region of integration contains some small cube of size independent
of θ, and it follows that the above integral has a positive lower bound.

We have already seen that the singular series occurring in the analogue
of Lemma 9.3 has a positive lower bound for M ≡ 0 (mod L), and hence
we obtain (10.4).

Lemma 9.4 still applies, with slight changes, to give lower bounds for
the number of integers of the form u or v. We consider the numbers u

representable as

d1z
k
1 + z,

where z is representable as d2z
k
2 + · · · + dz

k
 , and, if the variables z1

and z are restricted to suitable ranges, the numbers are all distinct. The
ranges depend of course on d1, . . . , d. We get the same lower bound for
U(X) as before, apart from a constant depending on d1, . . . , d.

We now need two exponential sums R1(α), R2(α) corresponding to
the two different sets of numbers u1, u2; but since∫ 1

0

|R1(α)R2(α)|dα ≤
{∫ 1

0

|R1(α)|2dα

∫ 1

0

|R2(α)|2dα

}1/2

,

we get the same saving as in the Corollary to Lemma 9.4.
The Corollary to Lemma 9.5 is essentially unchanged, and the proof

is completed as before. Thus we obtain the following result.

Theorem 10.1. Let c1, . . . , cs be integers, none of them 0 and not all
of the same sign if k is even. Then, if

s ≥ s0 + 3(2k log 3k + 1), (10.5)
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where s0 has the value given in (10.1), the equation

c1x
k
1 + · · · + csx

k
s = 0

has infinitely many solutions in integers x1, . . . , xs, none of them 0.
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General homogeneous equations: Birch’s
theorem

We now pass to homogeneous equations in general, that is, equations
which are not necessarily of the additive type considered so far. Let
f(x1, . . . , xn) be a homogeneous polynomial, which we call a form, of
degree k with integral coefficients. We are interested in the solubility of

f(x1, . . . , xn) = 0

in integers x1, . . . , xn (not all 0). Owing to the homogeneity, we can
allow the coefficients and variables to be rational instead of integral
without changing the question. An obvious necessary condition is that
the equation must be soluble in real numbers, not all 0.

When k = 2, so that f is a quadratic form, the general form can be
expressed as an additive form by the process of ‘completing the square’.
It is known from the classical theory of quadratic forms that the the con-
gruence conditions which are obviously necessary for solubility, namely
the conditions that f ≡ 0 (mod pν) shall be soluble for every prime
power pν with not all the variables divisible by p, together with the
condition that the form f shall be indefinite, are also sufficient. The
congruence conditions are significant only for a finite set of primes p,
the set depending on the coefficients, and it is necessary that the con-
gruences shall have a solution with x1, . . . , xn not all divisible by p; here
also ν is determined by the coefficients. These congruence conditions are
always satisfied if n ≥ 5, accordingly we have the well known theorem of
Meyer (1883) that an indefinite quadratic form in five or more variables
always represents zero non-trivially.

For k > 2, the general form is of far greater generality than the addi-
tive form. For instance, if k = 3, there are 1

6n(n+1)(n+2) independent
coefficients in the general form, and since a linear transformation on n

67
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variables has only n2 coefficients, it is plain that little simplification is
possible.

An important question in connection with general forms is that of
degeneration. A form in n variables is said to degenerate if there is a non-
singular linear transformation from x1, . . . , xn to y1, . . . , yn such that the
transformed form is one in y1, . . . , yn−1 only; that is, the coefficients of
all terms containing yn vanish. Degeneration is an absolute property,
in the sense that if a form does not degenerate by substitutions with
coefficients in a particular field (e.g. the rational field), this will remain
true if the field is extended. For in the above notation, we must have
∂f/∂yn = 0 identically, and if Cj is the coefficient of yn in xj , this is
equivalent to

C1
∂f

∂x1
+ · · · + Cn

∂f

∂xn
= 0

identically. This identity represents a finite number of linear relations
in the coefficients C1, . . . , Cn, and if these can be satisfied at all, they
can be satisfied in the original field.

However, from the point of view of the present problem – that of
representing zero – we can always suppose f non-degenerate; for if f

degenerates as above, there is a solution with x1, . . . , xn not all 0 corre-
sponding to the solution y1 = · · · = yn−1 = 0, yn = 1.

The first substantial progress towards solving general homogeneous
equations was made by R. Brauer [9]. He showed that, for equations with
the coefficients and variables in any field, the solubility of a homogeneous
equation of degree k, or of a system of homogeneous equations of degree
≤ k, can be deduced from the solubility of every additive equation of
degree ≤ k. But the number of variables in the original equation has to
be taken to be enormously large in order to get a reasonable number of
variables in the final equations. In itself, the theorem cannot be applied
with success in the rational field, because among the additive equations
there will be some of even degree, and these will certainly not be soluble
if the coefficients are all of the same sign. Brauer’s theorem applies,
however, in the p-adic number field, and establishes the existence of a
function n1(k, h) such that any system of h homogeneous equations of
degrees ≤ k in n variables, with p-adic coefficients, is soluble in p-adic
numbers if n ≥ n1(k, h).

The simplest problem in this field is that of a single cubic equation.
Professor Lewis [56] was the first to prove that there exists an absolute
constant n0 such that any cubic equation f = 0 in n variables, with
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rational coefficients, is soluble in rational numbers if n ≥ n0. He deduced
this from Brauer’s result by supplementing the latter by arguments based
on algebraic number theory.

Shortly afterwards, Birch [5] proved a more general theorem, namely
that any system of homogeneous equations, each of odd degree, is soluble
provided n exceeds a certain function of the degrees. This theorem forms
the subject of the present chapter.

Before proving Birch’s theorem in all its generality, I propose to ex-
plain the method in relation to the simplest case: that of a single cubic
equation. It will be found that we need only to solve certain systems
of linear equations in order to deduce the solubility of the general cubic
equation from that of additive cubic equations. The solubility of the
latter is assured by Theorem 8.1, provided the number of variables is at
least k2(2k − 1) + 1 = 46. (Actually 8 variables would suffice, but this
needs special arguments.) As with Brauer’s method, of which Birch’s is
an ingenious modification, there is a considerable wastage of variables
in getting from the general form to the additive form.

Letf(x1, . . . , xn) be a cubic form. We say that f represents g(y1, . . . ,

ym), where m ≤ n, if there exist n linear forms in y1, . . . , ym, with rank
m such that when x1, . . . , xn are replaced by these linear forms, we get

f(x1, . . . , xn) = g(y1, . . . , ym)

identically in y1, . . . , ym. The essential idea of the proof is to show that
f represents a form of the type

a0t
3
0 + g1(t1, . . . , tm). (11.1)

provided n exceeds a certain number depending only on m.
Write

f(x) = f(x1, . . . , xn) =
∑

i

∑
j

∑
k

cijkxixjxk,

where the sums go from 1 to n and where cijk is a symmetrical function
of the three subscripts. Define the trilinear function T (x |y | z) of three
points x, y, z, by

T (x |y | z) =
∑

i

∑
j

∑
k

cijkxiyjzk.

We choose any m linearly independent points y(1), . . . ,y(m), with inte-
gral (or rational) coordinates, and consider the equations

T (y |y(p) |y(q)) = 0, 1 ≤ p ≤ q ≤ m
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in an unknown point y. These are 1
2m(m + 1) linear equations in the n

coordinates of y, so if n > 1
2m(m + 1) there is a point y other than the

origin which satisfies them. Calling such a point y(0), we have

T (y(0) |y(p) |y(q)) = 0

for 1 ≤ p ≤ q ≤ m.

If the points y(0), y(1), . . . , y(m) were linearly dependent, then (since
the last m are linearly independent) we should have

y(0) = c1y(1) + · · · + cmy(m)

with rational numbers c1, . . . , cm. But then

T (y(0) |y(0) |y(0)) =
m∑

p=1

m∑
q=1

cpcqT (y(0) |y(p) |y(q)) = 0,

whence f(y(0)) = 0, giving the desired solution.
So we can suppose that the m + 1 points are linearly independent.

The transformation

xj = t0y
(0)
j + t1y

(1)
j + · · · + tmy

(m)
j , (1 ≤ j ≤ n)

has rank m+1, and expresses f as a form in t0, t1, . . . , tm. The coefficient
of t0tptq in this form is T (y(0) |y(p) |y(q)), and so is 0 for 1 ≤ p ≤ q ≤ m.
Hence the new form is of the shape

a0t
3
0 + t20(b1t1 + · · · + bmtm) + g1(t1, . . . , tm),

there being no terms of degree 1 in t0. If b1, . . . , bm are all 0, we have a
form of the desired type (11.1). If not, say bm �= 0, we put

tm = − 1
bm

(b1t1 + · · · + bm−1tm−1)

and obtain a form of the type (11.1) but with m−1 instead of m. Hence
f represents a form of the type (11.1) provided only that n > 1

2m(m+1).
We can suppose in (11.1) that a0 �= 0, for if a0 = 0 there is a solution in
x1, . . . , xn corresponding to t0 = 1, t1 = · · · = tm = 0.

We see that we can have m as large as we please by taking n sufficiently
large. Also we can repeat the process on the new form g(t1, . . . , tm),
which can be assumed not to represent zero. It follows that there is a
function n0(s) such that, if n ≥ n0(s), the form f represents a form of
the type

b1u
3
1 + · · · + bsu

3
s.
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By Theorem 8.1, the corresponding homogeneous equation has a non-
trivial solution if s ≥ s0 (= 46, say), and hence the original equation is
soluble if n ≥ n0(s0).

We now prove Birch’s general theorem:

Theorem 11.1. Let h, m be positive integers, and let r1, . . . , rh be any
odd positive integers. Then there exists a number

Ψ(r1, . . . , rh;m)

with the following property. Let fr1(x), . . . , frh
(x) be forms of degrees

r1, . . . , rh respectively in x = (x1, . . . , xn), with rational coefficients.
Then, provided n ≥ Ψ(r1, . . . , rh;m), there is an m-dimensional rational
vector space, all points in which satisfy

fr1(x) = 0, . . . , frh
(x) = 0.

Note that we assert more than the existence of an infinity of solutions;
this is for convenience in the inductive proof.

Lemma 11.1. There exists a number Φ(r,m), defined for positive in-
tegers m, r with r odd, such that if s ≥ Φ(r,m), any equation of the
form

c1x
r
1 + · · · + csx

r
s = 0, (cj rational)

is satisfied by all points of some rational linear space of dimension m.

Proof. The result is a simple deduction from Theorem 8.1 or Theorem
10.1. By either of these theorems there exists t = t(r) such that the
equation

c1y
r
1 + · · · + cty

r
t = 0

has a non-zero integral solution. Note that since r is odd, there is no
condition on the signs of the coefficients; also if any of them is 0 there
is an obvious solution. Similarly for the equation

ct+1y
r
t+1 + · · · + c2ty

r
2t = 0,

and so on. Hence, if s ≥ mt, the point

(u1y1, . . . , u1yt, u2yt+1, . . . , u2y2t, . . . , umymt, 0, . . . , 0)

formed out of these solutions, satisfies the equation for all values of
u1, . . . , um. As these vary, the point describes an m-dimensional linear
space. Hence the result, with Ψ(r,m) = mt.
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Proof of Theorem 11.1. Let R = max rj , so that R is an odd positive
integer. The result certainly holds when R = 1, and we prove it by
induction on R (limited to odd values). We shall first prove that if the
result holds for systems of equations with max rj ≤ R− 2, then it holds
for a single equation of degree R. Once this has been proved, it will be
easy to extend the result to a system of equations of degree ≤ R, and
thereby complete the inductive proof.

For a form f(x1, . . . , xn) of degree R, we define a multilinear function
of R points x(1), . . . ,x(R) by

f(x1, . . . , xn) =
∑

ci1,...,iR
xi1 . . . xiR

,

M(x(1) | · · · |x(R)) =
∑

ci1,...,iR
x

(1)
i1

. . . x
(R)
iR

.

We begin by selecting h linearly independent points y(1), . . . ,y(h). Let
Y be the h-dimensional linear space generated by them. Consider the
equations

M(y | · · · |y︸ ︷︷ ︸
ρ

|y(p1) | · · · |y(pR−ρ)) = 0,

where ρ takes all odd values from 1 to R − 2, and p1, . . . , pR−ρ take all
values from 1 to h. The total number of equations is less than RhR.
Each of them is of odd degree ≤ R − 2 in y. Hence, by the inductive
hypothesis (for m = 1) these equations have a non-zero solution in y
provided n ≥ n0(R, h). Denote such a solution by y(0). We now have

M(y(0) | · · · |y(0)︸ ︷︷ ︸
ρ

| y | · · · |y︸ ︷︷ ︸
R−ρ

) = 0

for all y in Y and all odd ρ ≤ R − 2.
An arbitrary point y in Y is of the form

u1y(1) + · · · + uhy(h).

Now consider the equations

M(y(0) | · · · |y(0)︸ ︷︷ ︸
R−σ

| y | · · · |y︸ ︷︷ ︸
σ

) = 0,

where σ takes all odd values from 1 to R − 2, and y is any point in
Y. These are equations of odd degree ≤ R − 2 in u1, . . . , uh, and their
number is < R. By the inductive hypothesis again, given any �, these
equations will be satisfied at all points of some rational linear subspace of
Y of dimension �+1, provided h ≥ h0(R, �). Denote this linear subspace
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by Y1. We can suppose, without loss of generality, that Y1 is generated
by y(1), . . . ,y(+1). We now have

M(y(0) | · · · |y(0)︸ ︷︷ ︸
τ

| y | · · · |y︸ ︷︷ ︸
R−τ

) = 0

for all τ = 1, . . . , R− 1 and for all y in the (�+1)-dimensional space Y1.
To ensure this we need only suppose that n ≥ n0(R, h0(R, �)) = n1(R, �).

If y(0) is in the subspace Y1, generated by y(1), . . . ,y(+1), we can
obtain an �-dimensional subspace Y2 of Y1 which does not contain y(0)

by omitting one of the generating points y(1), . . . ,y(+1), say the last.
Now the points y(0),y(1), . . . ,y() are linearly independent. The linear
transformation

xj = t0y
(0)
j + · · · + ty

()
j , (1 ≤ j ≤ n)

has rank � + 1 and gives f(x) = g(t0, . . . , t), say. The coefficient of
tτ0tp1 · · · tpR−τ

in g (where each pj goes from 1 to �) is

M(y(0) | · · · |y(0) |y(p1) | · · · |y(pR−τ )) = 0,

and this holds for τ = 1, . . . , R−1 and any choice of p1, . . . , pR−τ . Hence

g(t0, . . . , t) = a0t
R
0 + g1(t1, . . . , t).

Hence f represents a form of the above type, for any �, provided
n ≥ n1(R, �). Repetition of the argument proves that f represents a
form of the type

a0t
R
0 + b0u

R
0 + · · ·︸ ︷︷ ︸

s

provided n ≥ n2(R, s). By Lemma 11.1, the solutions of the homo-
geneous equation obtained by equating the latter form to 0 include a
linear space of dimension m provided s ≥ Φ(r,m). Hence the solutions
of the original equation include a linear space of dimension m provided
n ≥ n2(R,Φ(R,m)). This proves the desired result for a single equation
of degree R.

Now suppose there are h equations fr1 = 0, . . . , frh
= 0, where each

rj ≤ R. We prove the result by induction on h, the case h = 1 being
what we have just proved. Given m1 there exists a rational linear space
of dimension m1 on which frh

= 0, provided n ≥ Ψ(rh;m1), by the case
h = 1 of the theorem. We can represent the points of this linear space
as

v1x(1) + · · · + vm1x
(m1).
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For these points, the forms fr1 , . . . , frh−1 become forms in v1, . . . , vm1 .
By the case h−1, there is a linear space of dimension m on which they all
vanish, provided m1 ≥ Ψ(r1, . . . , rh−1;m). Hence all the forms vanish
on this space, and the case h of the theorem holds, with

Ψ(r1, . . . , rh;m) = Ψ(rh; Ψ(r1, . . . , rh−1;m)).

This completes the proof.

Corollary. Theorem 11.1 continues to hold if the forms have coeffi-
cients in an algebraic number field K and x1, . . . , xn have values in K,
but with Ψ depending now on K.

When we express each coefficient and each variable linearly in terms
of a basis of K (say {1, θ, . . . , θν−1}, where ν is the degree of K and θ

a generating element), each equation is equivalent to ν equations of the
same degree with rational coefficients and variables.

Our next aim will be to prove a more precise result concerning the
number of variables which will suffice to make one homogeneous cubic
equation soluble. In the course of the work we shall need some results
from the geometry of numbers, and so we begin with an account of
certain aspects of this subject.
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The geometry of numbers

We now prove some of the basic results of the geometry of numbers,
limiting ourselves to those which help one to handle linear inequalities.
A fuller exposition (such as that given by Cassels [12]) would be both
more general and more precise: more general in that ordinary distances
are replaced by distances in a metric, and more precise in that attention
is paid to constants depending on n (the number of dimensions). Such
constants are of no importance for the purpose we have in mind.

A lattice Λ, in n-dimensional space, is the set of all (real) points

x = (x1, . . . , xn)

given by n linear forms in n variables u1, . . . , un which take integral
values:

x1 = λ11u1 + · · · + λ1nun,

...

xn = λn1u1 + · · · + λnnun,

or x = Λu in matrix notation. The coefficients λij are real numbers with
det λij �= 0. A linear integral substitution of determinant 1 (unimodular
substitution) applied to the variables u1, . . . , un does not change the
lattice. The points of the lattice can also be represented by

x = u1x(1) + · · · + unx(n),

where x(j) = (λ1j , . . . , λnj) for j = 1, . . . , n. The points x(1), . . . ,x(n)

constitute a basis for the lattice, and the change of variable just men-
tioned corresponds to a change of basis.

We define the determinant d(Λ) of Λ by

d(Λ) = |det λij |;

75
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this is a positive number, unaffected by unimodular changes of variable.
The density of the lattice (in an obvious sense) is 1/d(Λ). The deter-
minant of the coordinates of any set of n lattice points is an integral
multiple of d(Λ). We shall usually suppose d(Λ) = 1 for convenience.

An affine transformation of space is a (homogeneous) linear transfor-
mation, with real coefficients and determinant �= 0, from x1, . . . , xn to
y1, . . . , yn. This maps the lattice Λ in x-space into a lattice M in y-space,
and if the affine transformation has determinant 1 then d(Λ) = d(M).

Lemma 12.1. Any ellipsoid with centre at the origin O and volume >

2n contains a point, other than O, of every lattice of determinant 1.

Proof. It suffices to prove the result for a sphere, since an ellipsoid
can be transformed into a sphere by an affine transformation of space
of determinant 1. Let ρ be the radius of the sphere. Since d(Λ) = 1,
the number of points of Λ in a cube of large side X is asymptotic to
Xn as X → ∞. If we place a sphere of radius 1

2ρ (and therefore of
volume V > 1) with its centre at each of these lattice points, their total
volume is asymptotically V Xn. They are all contained in a cube of side
X +ρ. For large X we have V Xn > (X +ρ)n, so two of the spheres must
overlap. Thus there are two distinct points of Λ with distance apart less
than ρ, and so there is a point of Λ, other than O, within a distance ρ

of O.

Note. This result, with the ellipsoid replaced by any convex body
which has central symmetry about O, is Minkowski’s first fundamental
theorem. The proof is essentially the same.

The successive minima of a lattice Λ are defined as follows. Let R1 be
the least distance of any point of Λ, other than O, from O, and let x(1)

be a point of Λ at this distance. Denoting by |x| the distance of a point
x from O, we have |x(1)| = R1. Let R2 be the least distance from O of
any point which is not on the line 〈O,x(1)〉, and let x(2) be such a point
with |x(2)| = R2. Let R3 be the least distance from O of any point of Λ

which is not in the plane 〈O,x(1),x(2)〉, and so on. We obtain numbers
R1, . . . , Rn and linearly independent points x(1), . . . ,x(n), such that

0 < R1 ≤ R2 ≤ · · · ≤ Rn, |x(ν)| = Rν .

The points x(1), . . . ,x(n) can possibly be chosen in more than one way,
but it is easily seen that this does not affect the uniqueness of the num-
bers R1, . . . , Rn. These numbers are the successive minima of Λ, and
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x(1), . . . ,x(n) is a set of minimal points of Λ. These points do not nec-
essarily constitute a basis, though this happens to be the case when
n = 2.

Lemma 12.2. If d(Λ) = 1, we have

1 ≤ R1R2 · · ·Rn ≤ 2n/Jn, (12.1)

where Jn denotes the volume of a sphere of radius 1 in n dimensions.

Proof. We can rotate the n-dimensional space about O until

x(1) = (x(1)
1 , 0, 0, . . . , 0),

x(2) = (x(2)
1 , x

(2)
2 , 0, . . . , 0),

...

x(n) = (x(n)
1 , x

(n)
2 , x

(n)
3 , . . . , x(n)

n ).

Since the determinant of these n points is an integral multiple of d(Λ) = 1
and they are linearly independent, we have

|x(1)
1 x

(2)
2 · · ·x(n)

n | ≥ 1.

Since Rν = |x(ν)| ≥ |x(ν)
ν |, we obtain R1R2 · · ·Rn ≥ 1.

To obtain an upper bound for R1R2 · · ·Rn, we consider the ellipsoid

x2
1

R2
1

+ · · · + x2
n

R2
n

< 1.

This contains no point of Λ other than O. For suppose a point x of Λ is
linearly dependent on x(1), . . . ,x(ν) but not on x(1), . . . ,x(ν−1), where
1 ≤ ν ≤ n. Then |x| ≥ Rν by the definition of Rν . Also xν+1 =
0, . . . , xn = 0; whence

x2
1

R2
1

+ · · · + x2
n

R2
n

≥ x2
1 + · · · + x2

ν

R2
ν

≥ 1.

Thus x is not in the ellipsoid. It follows from Lemma 12.1 that the
volume of the ellipsoid is ≤ 2n. This volume is (R1R2 · · ·Rn)Jn, and
the desired inequality follows.

Note. Lemma 12.2, and the definitions concerning successive minima,
again extend to an arbitrary convex body with center O. In this more
general form, Lemma 12.2 is Minkowski’s second fundamental theorem;
but its proof is then considerably more difficult. Note that Lemma 12.2
implies JnRn

1 ≤ 2n, which is the result of Lemma 12.1.



78 Analytic Methods for Diophantine Equations and Inequalities

We introduce temporarily the notation A � B to mean both A � B

and A � B; in other words, to indicate that A/B is bounded both above
and below by numbers depending only on n.

Lemma 12.3. After an appropriate rotation of space, any lattice of
determinant 1 has a basis X(1), . . . ,X(n) of the form

X(1) = (X(1)
1 , 0, 0, . . . , 0), X(2) = (X(2)

1 ,X
(2)
2 , 0, . . . , 0), . . .

where

|X(ν)| � Rν and |X(ν)
ν | � Rν , (12.2)

for ν = 1, . . . , n.

Proof. We obtain the basis points by a process of adaptation from the
minimal points x(1), . . . ,x(n)

n in the proof of Lemma 12.2. We take X(1)

to be x(1). We take X(2) to be a point of Λ in the plane 〈O,x(1),x(2)〉
which, together with X(1), generates integrally all points of Λ in that
plane; the existence of such a point is geometrically intuitive. It is
arbitrary to the extent of any added multiple of x(1). Since x(1),x(2)

generate rationally (though perhaps not integrally) all points of Λ in the
plane 〈O,x(1),x(2)〉, we have

NX(2) = u1x(1) + u2x(2)

for certain integers N > 0, u1, u2. Since x(2) is an integral linear com-
bination of X(2) and X(1) = x(1), we must have u2 = 1. By adding to
X(2) a suitable integral multiple of x(1), we can suppose that |u1| ≤ 1

2N .
Then

|X(2)| ≤
∣∣∣u1

N

∣∣∣ |x(1)| + 1
N

|x(2)| ≤ 1
2
R1 + R2 ≤ 3

2
R2.

Next we take X(3) to be a point of Λ in the space 〈O,x(1),x(2),x(3)〉
which, together with X(1), X(2), generates integrally all points of Λ in
that space; the choice of X(3) is arbitrary to the extent of added multiples
of X(1),X(2), and a fortiori of added multiples of x(1),x(2). For the same
reason as before, we have

NX(3) = u1x(1) + u2x(2) + u3x(3)

for certain integers N > 0, u1, u2, u3. This time we cannot conclude that
u3 = 1, but we can conclude that u3 divides N , for x(3) is expressible as

x(3) = v1X(1) + v2X(2) + v3X(3),
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and we must have N = u3v3. As before, we can ensure that |u1| ≤ 1
2N

and |u2| ≤ 1
2N . Hence

|X(3)| ≤ 1
2
|x(1)| + 1

2
|x(2)| + |x(3)| ≤ 1

2
R1 +

1
2
R2 + R3 ≤ 2R3.

Continuing in this way, we get an integral basis for Λ satisfying

|X(ν)| ≤ ν + 1
2

Rν � Rν , (1 ≤ ν ≤ n).

Since X(ν) is a linear combination of x(1), . . . ,x(ν), its last n − ν coor-
dinates are 0. We have

|X(ν)
ν | ≤ |X(ν)| � Rν ,

so we have both the upper bounds in (12.2). The lower bounds follow
from a comparison of determinants, together with (12.1). Since d(Λ) = 1,
we have

|X(1)
1 · · ·X(n)

n | = 1,

whence

R1 · · ·Rν−1|X(ν)
ν |Rν+1 · · ·Rn � 1,

and the right-hand half of (12.1) gives

|X(ν)
ν | � Rν .

Hence, a fortiori, |X(ν)| � Rν . Alternatively, the last inequality would
follow from the definition of the numbers R1, . . . , Rn.

Note. The integral basis found in Lemma 12.3 can be further ‘nor-
malized’, if desired. By adding suitable multiples of X(1), . . . ,X(ν−1) to
X(ν) we can ensure that

|X(ν)
µ | ≤ 1

2
|X(µ)

µ |
for all µ, ν with µ < ν.

Lemma 12.4. Suppose d(Λ) = 1. Let N(R) denote the number of x of
Λ (including the origin) with |x| ≤ R. Then N(R) = 1 if R < R1, and
if Rν ≤ R < Rν+1 then

N(R) � Rν

R1R2 · · ·Rν
.

Note. If ν = n then Rn+1 is to be omitted from the condition Rν ≤
R < Rν+1.
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Proof. The first result stated is obvious; the only point of Λ with
|x| < R1 is the origin. To obtain the lower bound for N(R) in the
general case, we consider all points of the form

x = u1X(1) + · · · + uνX(ν),

where u1, . . . , uν take all integral values satisfying

|uj | ≤ 1
ν

R

|X(j)| , (1 ≤ j ≤ ν).

All these points have |x| ≤ R. The number of choices for u1, . . . , uν

(since zero values are allowed) is

�
ν∏

j=1

R

|X(j)| �
Rν

R1R2 · · ·Rν
,

by Lemma 12.3.
For the upper bound, we note first that all points x of Λ with |x| ≤ R

must be linearly dependent on X(1), . . .X(ν), since R < Rν+1. Hence
they are representable as

x = v1X(1) + · · · + vνX(ν)

with integers v1, . . . , vν . For this point, we have

xν = vνX(ν)
ν ,

xν−1 = vνX
(ν)
ν−1 + vν−1X

(ν−1)
ν−1 ,

and so on. Since each coordinate of x has absolute value ≤ R, the
number of possibilities for vν is � R/|X(ν)

ν |, and when vν is chosen, the
number of possibilities for vν−1 is � R/|X(ν−1)

ν−1 |, and so on. (Note that
all these numbers are � 1, otherwise the argument would be fallacious.)
Hence, using Lemma 12.3 again, we conclude that the number of points
x is

� Rν

|X(1)
1 | · · · |X(ν)

ν |
� Rν

R1R2 · · ·Rν
.

Note. The general meaning of Lemma 12.4 is that, for the purpose of
counting the lattice points in a sphere (or other convex body of fixed
shape), every lattice behaves like the rectangular lattice generated by

(R1, 0, 0, . . . , 0), (0, R2, 0, . . . , 0), . . . , (0, 0, 0, . . . , Rn),

up to a constant depending only on n. Thus for many purposes we
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can adequately describe a lattice by means of the n positive numbers
R1, . . . , Rn.

A lattice Λ in x space and a lattice M in y space will be said to be
adjoint, or polar if their bases can be chosen so that

ΛT M = I,

where T denotes the transpose of a matrix. If the lattices are given by
x = Λu and y = Mv respectively, where u and v are integral vectors
the condition means that

x1y1 + · · · + xnyn = u1v1 + · · · + unvn (12.3)

identically. Note that d(Λ)d(M) = 1. The relation between Λ and M

is symmetrical. But the relation is not invariant under arbitrary linear
transformations of the x space and the y space; if x = Ax′ and y = By′,
the relation will only be preserved if AT B = I.

Lemma 12.5. (Mahler) If Λ,M are adjoint lattices of determinant 1,
with successive minima R1, . . . , Rn and S1, . . . Sn, respectively, then

R1 � 1
Sn

, R2 � 1
Sn−1

, . . . , Rn � 1
S1

.

Proof. Let x(1), . . . ,x(n) be the minimal points for Λ (not necessarily
a basis) and let y(1), . . . ,y(n) be minimal points for M. The identity
(12.3) implies that for any points x,y of Λ,M either x is perpendicular1

to y or

|x1y1 + · · · + xnyn| ≥ 1,

whence |x||y| ≥ 1. The y that are perpendicular to every x(1), . . . ,x(ν)

form an (n−ν)-dimensional linear space. It cannot contain more than
n − ν linearly independent points of y space, and so cannot contain all
of y(1), . . . ,y(n−ν+1). Hence there exist r ≤ ν and s ≤ n − ν + 1 such
that |x(r)||y(s)| ≥ 1. Now |x(r)| ≤ Rν and |y(s)| ≤ Sn−ν+1. It follows
that

RνSn−ν+1 ≥ 1, (1 ≤ ν ≤ n). (12.4)

An inequality in the opposite direction follows by comparing products.

1 We mean, of course, that the vector from O to x is perpendicular to that from O
to y.
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Since

R1 · · ·RnS1 · · ·Sn ≤
(

2n

Jn

)2

by Lemma 12.2, it follows from (12.4) that

RµSn−µ+1 �
(

2n

Jn

)2

, (1 ≤ µ ≤ n).

This proves Lemma 12.5.

Note. The condition d(Λ) = 1 in Lemma 12.5 is unnecessary, but
involves no loss of generality. When Lemma 12.5 is extended to the
successive minima relative to any convex body (with central symmetry
about the origin), it is necessary to use a body in x space and a body in
y space which are polar to one another with respect to the unit sphere.

There is a particular type of lattice in 2n-dimensional space which is
essentially self-adjoint. Let Λ denote the 2n-dimensional lattice given by

ax1 = u1,

...

axn = un,

a−1xn+1 = γ11u1 + · · · + γ1nun + un+1,

...

a−1x2n = γn1u1 + · · · + γnnun + u2n,

where a �= 0 and the numbers γij are real. This has a matrix of the form

Λ =
(

a−1In 0
aγ aIn

)
.

The adjoint lattice has the matrix

M = (ΛT )−1 =
(

aIn −aγT

0 a−1In

)
.

If γT = γ, that is if

γij = γji for all i, j, (12.5)

then the lattice M can be transformed into the lattice Λ by (i) changing
the signs of vn+1, . . . , v2n, (ii) changing the signs of yn+1, . . . , y2n, (iii)
interchanging v1, . . . , vn and vn+1, . . . , v2n, (iv) interchanging y1, . . . , yn

and yn+1, . . . , y2n.
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Hence, subject to (12.5), the successive minima of M are the same as
those of Λ. By the last lemma, it follows that

R1R2n � 1, . . . , RnRn+1 � 1.

In particular, we have

Rn � 1 � Rn+1.

We can now prove the main result needed for the later work on cubic
forms.

Lemma 12.6. Let L1, . . . , Ln be linear forms:

Li = γi1u1 + · · · + γinun, (1 ≤ i ≤ n),

satisfying the symmetry condition γij = γji. Let a > 1 be real , and
let N(Z) denote the number of sets of integers u1, . . . , u2n (including 0)
satisfying{ |u1| < aZ, . . . , |un| < aZ,

|L1 − un+1| < a−1Z, . . . , |Ln − u2n| < a−1Z.
(12.6)

Then, if 0 < Z1 ≤ Z2 ≤ 1, we have

N(Z2)
N(Z1)

�
(

Z2

Z1

)n

. (12.7)

Proof. The inequalities are equivalent to

|x1| < Z, . . . , |xn| < Z, |xn+1| < Z, . . . , |x2n| < Z

for the general point (x1, . . . , x2n) of the 2n-dimensional lattice Λ defined
above. Hence the inequalities imply that |x| <

√
2nZ. On the other

hand, the inequalities are implied by |x| < Z. Hence if N0(Z) denotes
the number of points of Λ (including the origin) with |x| < Z, we have

N0(Z) ≤ N(Z) ≤ N0(
√

2nZ).

Thus, if 0 < Z1 ≤ Z2 < 1,

N(Z2)
N(Z1)

≤ N0(
√

2nZ2)
N0(Z1)

.

If we prove the result corresponding to (12.7), namely

N0(Z2)
N0(Z1)

�
(

Z2

Z1

)n

, (12.8)
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under the weaker condition Z2 � 1 instead of Z2 ≤ 1, we can apply it
with Z2 replaced by

√
2nZ2 and so deduce (12.7).

Let R1, . . . , R2n denote the successive minima of Λ. We have seen that

Rn � 1 � Rn+1.

Define ν and µ by

Rν ≤ Z1 < Rν+1, Rµ ≤ Z2 < Rµ+1,

so that ν ≤ µ. By Lemma 12.4,

N0(Z1) � Zν
1

R1 · · ·Rν
and N0(Z2) � Zµ

2

R1 · · ·Rµ
,

whence
N0(Z2)
N0(Z1)

� Zµ
2

Zν
1 Rν+1 · · ·Rµ

.

If µ ≤ n, the result (12.8) follows, since the right-hand side is

≤ Zµ
2

Zµ
1

≤
(

Z2

Z1

)n

.

If µ > n and ν ≤ n, we write the expression as

Zn
2

Zν
1 Rν+1 · · ·Rn

Zν−n
2

Rn+1 · · ·Rµ
,

and since Z2 � 1 and Rn+1 � 1 the result again follows. Finally, the
possibility ν > n can only arise if Z1 � 1, in which case

N0(Z2)
N0(Z1)

� Zµ
2

Zν
1

� 1 �
(

Z2

Z1

)n

.

This proves Lemma 12.6.

Note. The significance of Lemma 12.6 is that the number of solutions
of the inequalities (12.6) does not diminish too rapidly as Z diminishes.
The result is of interest only if aZ is large, for if aZ < 1 the inequalities
imply u1 = · · · = u2n = 0, and N(Z) = 1.

It appears that without the symmetry condition on the coefficients γij

in the linear forms L1, . . . , Ln, one could assert only a weaker result in
which the exponent n would be replaced by 2n − 1.
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Cubic forms

We now set out to prove that a homogeneous cubic equation

C(x1, . . . , xn) = 0, (13.1)

with integral coefficients, is always soluble in integers x1, . . . , xn (not all
0) if n ≥ 17. The first such result, with the condition n ≥ 32, was proved
in 1957 [21], and the improved result was found early in 1962 [20]. In
1963 I proved that the condition n ≥ 16 suffices [22], but this requires a
more detailed argument of a somewhat special nature, beyond what is
needed for 17.

It was pointed out by Mordell [61] in 1937 that there exist cubic
forms in nine variables which do not represent zero, and consequently
the condition n ≥ 10 is essential if (13.1) is to be always soluble. The
example of Mordell is based on the properties of a norm form of a cubic
field. If p is a prime which does not factorize in the field, then the norm
form N(x, y, z) is never divisible by p except when x, y, z are all divisible
by p. It follows easily that the equation

N(x1, x2, x3) + pN(x4, x5, x6) + p2N(x7, x8, x9) = 0

has no solution in integers x1, . . . , x9 except the trivial solution. Indeed,
we could assert further that the corresponding congruence to the modu-
lus p3 has no solution except with all the variables 0 (mod p). A simple
example would be provided by taking p = 7 and

N(x, y, z) = x3 + 2y3 + 4z3 − 6xyz,

this being the norm form of the field generated by 3
√

2. A similar con-
struction to that above gives examples of homogeneous equations of
degree k in k2 variables which are insoluble.

The proof of the theorem on cubic equations falls into several chapters,
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each of which is largely self-contained. We begin by considering the
exponential sum associated with a cubic form. Write

C(x) = C(x1, . . . , xn) =
∑

i

∑
j

∑
k

cijkxixjxk,

where the summations go from 1 to n. The coefficients cijk are integers,
and we can suppose that cijk is a symmetrical function of i, j, k. Let P

be a large positive integer. Let B be a fixed box in n dimensional space,
namely the cartesian product of n intervals

x′
j < xj ≤ x′′

j , (1 ≤ j ≤ n).

We shall suppose, merely for convenience, that x′′
j − x′

j < 1. Let

S(α) =
∑
PB

e (αC(x1, . . . , xn)) ,

where the summation is over all integer points in the box PB, given by

Px′
j < xj ≤ Px′′

j , (1 ≤ j ≤ n).

Let N (P ) denote the number of integer points x in PB which satisfy
(13.1). Then

N (P ) =
∫ 1

0

S(α) dα. (13.2)

Our aim (in principle) is to prove that, with a suitable choice of the box
B, there is an asymptotic formula for N (P ) as P → ∞, in which the
main term is of order Pn−3. Actually this is not always true. What we
shall arrive at is the apparently paradoxical result that the asymptotic
formula holds on the hypothesis that (13.1) is insoluble (so that N (P ) =
0)! This will suffice for our purpose, because it will prove that (13.1) is
soluble.

The trivial estimate for |S(α)| is Pn. We begin by investigating what
happens if, for some particular α,

|S(α)| ≥ Pn−K , (13.3)

where K is some positive number. Ultimately our aim, as in earlier
chapters, is to be able to remove from the set of α any subset which
contributes an amount of lower order than Pn−3 to the integral.

The first step is to prove a generalization of Weyl’s inequality. We
define, for any two points x, y, a set of n bilinear forms:

Bj(x |y) =
∑

i

∑
k

cijkxiyk, (1 ≤ j ≤ n).
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Lemma 13.1. The hypothesis (13.3) implies that

∑
|x|<P

∑
|y|<P

n∏
j=1

min
(
P, ‖6αBj(x |y)‖−1

) � P 3n−4K .

Proof. We have

|S(α)|2 =
∑

z∈PB

∑
z′∈PB

e (αC(z′) − αC(z))

=
∑

z∈PB

∑
y+z∈PB

e (αC(y + z) − αC(z)) .

For any z, the box PB − z is contained in |y| < P . Hence

|S(α)|2 ≤
∑

|y|<P

∣∣∣∣∣∣
∑

z∈R(y)

e (αC(y + z) − αC(z))

∣∣∣∣∣∣ ,
where R(y) denotes the common part of the boxes PB and PB − y.
By Cauchy’s inequality,

|S(α)|4 � Pn
∑

|y|<P

∣∣∣∣∣∣
∑

z∈R(y)

e (αC(y + z) − αC(z))

∣∣∣∣∣∣
2

.

We now repeat the argument on the inner sum. Its square does not
exceed

∑
|x|<P

∣∣∣∣∣∣
∑

z∈S(x,y)

e (αC(z + x + y) − αC(z + x) − αC(z + y) + αC(z))

∣∣∣∣∣∣ ,
where S(x,y) is a box for z, depending on x and y, with edges less than
P in length. We have

α(C(z + x + y) − C(z + x) − C(z + y) + C(z))

= 6α
∑
i,j,k

cijkxiykzj + φ = 6α
∑

j

zjBj(x |y) + φ,

where φ does not involve z. By a now familiar estimate,∣∣∣∣∣∣
∑

z∈S(x,y)

e


6α

∑
j

Bj(x |y)zj



∣∣∣∣∣∣ �

n∏
j=1

min
(
P, ‖6αBj(x |y)‖−1

)
.

Substitution in the previous inequalities, together with (13.3), yields the
result.
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Note. It is a useful precaution, when estimating an exponential sum,
to see what the trivial estimate yields, in order to judge how much (if
anything) has been lost for ever. In the present case, taking P for the
minimum throughout the product, the trivial estimate for |S(α)|4 would
be P 4n, which is satisfactory.

Lemma 13.2. The hypothesis (13.3) implies that the number of pairs
x, y of integer points that satisfy1

|x| < P, |y| < P, ‖6αBj(x |y)‖ < P−1, (1 ≤ j ≤ n), (13.4)

is

� P 2n−4K(log P )−n.

Proof. Let Y (x) denote the number of points y satisfying (13.4) for
given x. Then, for any integers r1, . . . , rn with 0 ≤ rj < P , there
cannot be more than Y (x) integer points y, with each coordinate in
some prescribed interval of length P , which satisfy

rj

P
≤ {6αBj(x |y)} <

rj + 1
P

, (1 ≤ j ≤ n),

where {θ} denotes the fractional part of any real number θ. For if y′ were
one such point, and y were any such point, we should have |y−y′| < P

and

‖6αBj(x |y − y′)‖ < P−1, (1 ≤ j ≤ n).

Thus there cannot be more than Y (x) possibilities for y. (Note that
y = 0 is permitted in (13.4).)

Dividing the cube |y| < P into 2n cubes of side P , we obtain

∑
|y|<P

n∏
j=1

min(P, ‖6αBj(x |y)‖−1)

� Y (x)
P−1∑
r1=0

· · ·
P−1∑
rn=0

min
(

P,
P

rj
,

P

rj − 1

)
� Y (x)(P log P )n.

1 Here we put |x| = max(|x1|, . . . , |xn|) for any point x. This is a different notation
from that of Chapter 12 where |x| denotes the distance of the point x from the
origin. For our purposes, however, the difference is unimportant.
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Substitution in the result of Lemma 13.1 gives

(P log P )n
∑

|x|<P

Y (x) � P 3n−4K .

Since
∑

Y (x) is the number of pairs x, y satisfying (13.4), the result
follows.

Note. Since the trivial estimate for the number of pairs x, y satisfying
(13.4) is P 2n, we have abandoned a factor (log P )n. But this is not
important.

Lemma 13.3. Let θ be independent of P and satisfy 0 < θ < 1. The
hypothesis (13.3) implies that the number of pairs x, y of integer points
satisfying

|x| < P θ, |y| < P θ, ‖6αBj(x |y)‖ < P−3+2θ (13.5)

is

� P 2nθ−4K(log P )−n.

Proof. We shall get the result by two applications of Lemma 12.6. First
we look upon x as fixed in (13.4), and consider the number of integer
points y. The inequalities for y are{ |y1| < P, . . . , |yn| < P,

|L1(y) − un+1| < P−1, . . . , |Ln(y) − u2n| < P−1,
(13.6)

where Lj(y) = 6αBj(x |y), and where un+j is the integer nearest to
Lj(y). The forms Lj(y) satisfy the symmetry condition of the preced-
ing chapter, since the coefficient of yk in Lj is 6α

∑
i cijkxi, and this

is unaltered by interchanging j and k. We apply Lemma 12.6 with
y1, . . . , yn for u1, . . . , un and with

a = P, Z2 = 1, Z1 = P−1+θ.

When Z2 = 1, the inequalities of Lemma 12.6 are the inequalities (13.6)
above. Suppose these have N(x) solutions in y. The inequalities of
Lemma 12.6 with Z = Z1 become

|y1| < P θ, . . . , |yn| < P θ,

|L1(y) − un+1| < P−2+θ, . . . , |Ln(y) − u2n| < P−2+θ.

Hence the number of solutions of these in y is

� N(x)P−n(1−θ).
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Hence the number of pairs x, y which satisfy

|x| < P, |y| < P θ, ‖6αBj(x |y)‖ < P−2+θ (13.7)

is

� P−n(1−θ)
∑

|x|<P

N(x) � Pn+nθ−4K(log P )−n,

by Lemma 13.2.
Now we go through a similar argument, but with y fixed and x vari-

able. For each y, the conditions (13.7) on x are

|x1| < P, . . . , |xn| < P,

|M1(x) − un+1| < P−2+θ, . . . , |Mn(x) − u2n| < P−2+θ,

where Mj(x) = Bj(y |x) and un+j is now the integer nearest to Mj(x).
These are the inequalities of Lemma 12.6 with

a = P
3
2− 1

2 θ, Z = Z2 = P− 1
2+ 1

2 θ.

We take Z1 = P− 3
2+ 3

2 θ. Then the lemma tells us that the number of
solutions of

|x1| < P θ, . . . , |xn| < P θ,

|M1(x) − un+1| < P−3+2θ, . . . , |Mn(x) − u2n| < P−3+2θ,

is � P−n(1−θ)N1(y), where N1(y) denotes the number of solutions of
(13.7) in x for given y. Hence the number of pairs of integer points
satisfying (13.5) is

� P−n+nθ
∑

|y|<P θ

N1(y) � P−n+nθPn+nθ−4K(log P )−n,

whence the result.

Lemma 13.4. Let θ be independent of P and satisfy 0 < θ < 1. Let ε

be any small fixed positive number. Then either

(A) there are more than Pnθ+ε pairs x, y of integer points satisfying

|x| < P θ, |y| < P θ, Bj(x |y) = 0, (1 ≤ j ≤ n), (13.8)

or

(B) for every α the hypothesis

|S(α)| ≥ Pn− 1
4 nθ+ε (13.9)
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implies that α has a rational approximation a/q such that

(a, q) = 1, 1 ≤ q � P 2θ, |qα − a| < P−3+2θ. (13.10)

Proof. We take K = 1
4nθ − ε in (13.3), so that this becomes the same

as (13.9). By Lemma 13.3, there are

� P 2nθ−4K(log P )−n � Pnθ+ε

pairs x, y of integer points satisfying (13.5). If, for all points, Bj(x |y) =
0 for all j, we have alternative (A) active. If not, then for some pair x,
y in (13.5) and some j, we have Bj(x |y) �= 0 and

‖6αBj(x |y)‖ < P−3+2θ.

Take q = 6|Bj(x |y)| and take a to be the nearest integer to αq. Then

|qα − a| < P−3+2θ.

Also

q � |Bj(x |y)| �
∑
i,k

|cijk||xi||yk|

� |x||y| � P 2θ.

We do not necessarily have (a, q) = 1, but this can be ensured by re-
moving any common factor from q and a. Thus we obtain alternative
(B).

Note. It will be seen that alternative A does not involve α. Nor does
it involve θ essentially, for if we put R = P θ, the assertion is that the
number of pairs x, y satisfying

|x| < R, |y| < R, Bj(x |y) = 0, (1 ≤ j ≤ n), (13.11)

is greater than Rn+ε′
for some fixed ε′ > 0. Thus alternative A relates

to an intrinsic property of the cubic form. Note that we could exclude
x = 0 and y = 0 from (13.11) if we wished, since the number of such
pairs is � Rn.

Alternative B gives us a situation which is similar in principle to that
with which we have become familiar in earlier chapters. It will enable
us, in Chapter 15, to estimate satisfactorily the contribution made to∫ 1

0
S(α) dα by a large set of α and leave us with a relatively small

number of short intervals in which we can approximate to S(α).
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Cubic forms: bilinear equations

We now investigate alternative A of Lemma 13.4, namely that for some
arbitrarily large R there exist more than Rn+ε pairs x,y of integer points
satisfying 0 < |x| < R, 0 < |y| < R and

Bj(x |y) = 0, (1 ≤ j ≤ n). (14.1)

We have excluded x = 0 and y = 0, in accordance with the remark
just made. In this chapter, which is self-contained, we shall prove that
this implies the existence of an integer point z �= 0 for which C(z) = 0.
Actually a slightly weaker hypothesis would suffice, namely that there
are more than ARn pairs x,y, where A is greater than some function of
n. But the use of ε simplifies the exposition.

For any particular x, the equations (14.1) are n linear equations in
y = (y1, . . . , yn), and their determinant is

H(x) = det

(
n∑

i=1

cijkxi

)
, (1 ≤ j, k ≤ n). (14.2)

This is the Hessian of the cubic form C(x). It is a form of degree n in x;
or one should rather say of apparent degree n, since it may identically
vanish. We must first prove that this cannot happen if C(x) does not
represent zero.

Lemma 14.1. If C(x) �= 0 for all integral x �= 0, then H(x) does not
vanish identically.

Proof. Suppose H(x) = 0 identically. Let n− r (r ≥ 1) be the identical
rank of H(x); that is, suppose all subdeterminants of the matrix in (14.2)
of order n − r + 1 vanish identically in x but some subdeterminant of
order n − r does not. Suppose, for convenience of exposition, that the
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last determinant, say ∆, is in the top left-hand corner. Then the first
n − r of the equations (14.1) imply all the others, since the later rows
of the matrix are linearly dependent on the first n − r rows. Let ∆j

denote the determinant obtained from ∆ by replacing the jth column
by the (n− r+1)th column. Then a particular solution of the equations
Bj(x |y) = 0 is given by

y1 = ∆1, . . . , yn−r = ∆n−r, yn−r+1 = −∆, yn−r+2 = · · · = 0.

(This follows from Cramer’s rule: we solve the first n−r equations, with
yn−r+1 = 1, yn−r+2 = 0, . . ., and multiply throughout by −∆.)

In this solution, y1, . . . , yn are forms in x1, . . . , xn with integral coef-
ficients, which do not all vanish identically, since ∆ does not. We have

Bj(x |y) =
∑
i,k

cijkxiyk = 0

identically in x1, . . . , xn. We now regard x1, . . . , xn as continuous vari-
ables, and differentiate this identity with respect to any xν , getting∑

k

cνjkyk +
∑
i,k

cijkxi
∂yk

∂xν
= 0

for all j and ν. Multiply by yj and sum over j, and note that∑
i

∑
j

cijkxiyj = 0

for all k. We get ∑
j,k

cνjkyjyk = 0

for all ν. This implies, in particular, that C(y) = 0. If we now take x
to be any integer point for which y �= 0 (as is possible because y is not
identically 0) we get a contradiction to the hypothesis. This proves the
lemma.

The last lemma shows that the points x, for which there is a non-zero
solution of the linear equations Bj(x |y) = 0 in y, satisfy the non-
identical equation H(x) = 0. Thus the number of such integral points
with 0 < |x| < R is � Rn−1. We next extend this result by proving that,
for r = 1, . . . , n − 1, the number of integral points x with 0 < |x| < R

for which the equations have r linearly independent solutions in y is
� Rn−r. The result already proved is the case r = 1.
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It is convenient to deal first with a question of elementary algebraic
geometry.

Lemma 14.2. Let

f1(x), . . . , fN (x)

be forms with integral coefficients in x1, . . . ,xn and suppose that N and
the (common) degree of f1, . . . , fN are bounded in terms of n. Suppose
that for some arbitrarily large R, there is a set X of integer points x
satisfying

0 < |x| < R, f1(x) = 0, . . . , fN (x) = 0,

and suppose that there are more than Rn−r+ε points in X . Then, for
some one of the points x of X , there exist numbers Tiρ, Dρν , such that

∂fi

∂xν
=

r−1∑
ρ=1

TiρDρν ,

for i = 1, . . . , N and ν = 1, . . . , n, at that point.

Note. The equations for ∂fi/∂xν are equivalent to the assertion that
the rank of the matrix ∂fi/∂xν for i = 1, . . . , N and ν = 1, . . . , n, is
≤ r − 1. This follows from elementary matrix theory.

Proof. The equations f1(x) = 0, . . . , fN (x) = 0 define an algebraic
variety in n-dimensional space (or (n−1)-dimensional projective space).
Such a variety is expressible as a union of absolutely irreducible varieties,
and the number of these, under the present hypotheses, is bounded in
terms of n. Hence there is one of these absolutely irreducible varieties,
say V, which contains more than Rn−r+ 1

2 ε points of X .
Associated with the absolutely irreducible variety V, considered as

a set of points in complex space, is its dimension s. We need only the
following property of s: the irreducible variety V can be decomposed into
a bounded number of parts, such that, on each part, s of x1, . . . , xn are
independent variables and the other n−s are single valued differentiable
functions of them.

It follows that V contains � Rs integer points x satisfying |x| < R,
since there are � Rs possibilities for each of the s coordinates. Com-
parison with the earlier statement about the number of points of X on
V shows that

s ≥ n − r + 1.
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Now consider the neighbourhood of any one point of X on V. We
can suppose that here xs+1, . . . , xn are single valued and differentiable
functions of x1, . . . , xs. Let f(x1, . . . , xn) be any differentiable function
which vanishes everywhere on V. Then, differentiating the identity f = 0
with respect to xν , for ν = 1, . . . , s, we get

f (ν) + f (s+1) ∂xs+1

∂xν
+ · · · + f (n) ∂xn

∂xν
= 0,

where f (j) = ∂f/∂xj when x1, . . . , xn are independent variables. Thus
for ν = 1, . . . , s we have

f (ν) =
n−s∑
ρ=1

f (s+ρ)

(
−∂xs+ρ

∂xν

)

=
n−s∑
ρ=1

f (s+ρ)Dρ,ν ,

say. If we define Dρ,ν for ν > s by

Dρ,ν =
{

1 if s + ρ = ν,
0 otherwise,

the same relations holds for ν = s + 1, . . . , n. Hence

f (ν)(x) =
n−s∑
ρ=1

Tρ(f)Dρ,ν

for ν = 1, . . . , n, where Tρ(f) = f (s+ρ). Note that the numbers Dρ,ν are
independent of f , and the numbers Tρ(f) are independent of ν. This
proves the relations in the enunciation, since n − s ≤ r − 1, and they
hold at any point on V, and in particular at any of the points of X on
V.

Lemma 14.3. Suppose C(x) �= 0 for all integral x �= 0. Then the
number of integer points x with 0 < |x| < R for which the bilinear
equations Bj(x |y) = 0 have exactly r linearly independent solutions in
y is less than Rn−r+ε.

Proof. The points in question are those for which the rank of the matrix
(
∑

i cijkxi) is exactly r. It will suffice to consider the set X of integer
points for which some particular subdeterminant of order n − r is �= 0
and all subdeterminants of order n − r + 1 are 0, and to prove that
the number of points in X is less than Rn−r+ε. Suppose the number of
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points in X is ≥ Rn−r+ε. Then we have the situation of Lemma 14.2,
where f1(x), . . . , fN (x) are all the subdeterminants of order n − r + 1.

For any points x of X we can construct r linearly independent solu-
tions y(1), . . . ,y(r) of the bilinear equations, as in the proof of Lemma
14.1, by taking the coordinates of these points to be certain subdetermi-
nants of order n− r. (In that proof, we needed only one solution, which
we got by taking yn−r+1 = −∆, yn−r+2 = · · · = 0; but the extension to
r solutions is immediate.)

Now consider the values of Bj(x |y(p)) when x is an arbitrary point
(real or complex) and y(p) is as above. This value will be a certain sub-
determinant of order n−r+1 of the matrix mentioned at the beginning.
(Sometimes it will be a subdeterminant of order n − r + 1 with two
identical rows, but that is immaterial.) Hence for any point x we have
the identities ∑

i,k

cijkxiy
(p)
k = ∆j,p(x),

where ∆j,p(x) is some subdeterminant of order n− r + 1. Of course, all
the ∆j,p vanish if x is in X .

In the above identities, x1, . . . , xn are independent variables. Differ-
entiation with respect to xν gives

∑
k

cνjky
(p)
k +

∑
i,k

cijkxi
∂y

(p)
k

∂xν
= ∆(ν)

j,p (x),

where the superscript (ν) on the right denotes a partial derivative. Mul-
tiply by y

(q)
j (1 ≤ q ≤ r) and sum over j. We get

∑
j,k

cνjky
(p)
k y

(q)
j +

∑
k

∆k,q
∂y

(p)
k

∂xν
=

∑
j

y
(q)
j ∆(ν)

j,p (x).

Now consider any point Y in the linear space of r dimensions gener-
ated by y(1), . . . ,y(r), say

Y =
r∑

p=1

Kpy(p).

For this point, we have

∑
j,k

cνjkYjYk +
r∑

p=1

r∑
q=1

KpKq

∑
k

∆k,q
∂y

(p)
k

∂xν
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=
r∑

p=1

r∑
q=1

KpKq

∑
j

y
(q)
j ∆(ν)

j,p

=
r∑

p=1

∑
j

Aj,p∆
(ν)
j,p ,

say. This holds for ν = 1, . . . , n.
Take the point x to be one of the points found in Lemma 14.2. For

this point, which is fixed from now onwards, we have ∆k,q = 0 for all k

and q, and

∆(ν)
j,p =

r−1∑
ρ=1

Tj,p,ρDρ,ν .

Hence ∑
j,k

cνjkYjYk =
r∑

p=1

∑
j

Aj,p

r−1∑
ρ=1

Tj,p,ρDρ,ν .

Finally, multiply by Yν =
∑r

σ=1 Kσy
(σ)
ν and sum over ν. We get

C(Y) =
r∑

p=1

∑
j

Aj,p

r∑
σ=1

r−1∑
ρ=1

Kσy(σ)
ν Tj,p,ρDρ,ν .

Now choose the numbers K1, . . . ,Kr to satisfy
r∑

σ=1

Kσ

∑
ν

y(σ)
ν Dρ,ν = 0, (1 ≤ ρ ≤ r − 1).

These are r − 1 linear equations in r unknowns, and so have a solution
with K1, . . . ,Kr not all 0. Also, since the numbers Dρ,ν can be supposed
rational, we can take K1, . . . ,Kr to be integers. Hence Y is an integer
point not 0, because y(1), . . . ,y(r) are linearly independent since the
point x is in X . We get C(Y) = 0, contrary to hypothesis, and this
proves the result.

Note that in the above proof, the choice of K1, . . . ,Kr did not in-
volve the numbers Aj,p. Had it done so, the reasoning would have been
fallacious, since these themselves depend on K1, . . . ,Kr.

Lemma 14.4. Alternative A of Lemma 13.4 implies that C(x) repre-
sents 0.

Proof. If C(x) does not represent zero then Lemma 14.1 and Lemma 14.3
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imply that there are � Rn−r+ε points x such that there are exactly r

linearly independent solutions of the bilinear equations in y. Hence
there are � Rn+ε pairs x,y with 0 < |x| < R, 0 < |y| < R which
satisfy the bilinear equations. But this contradicts alternative A, since
we can take the present ε to be (say) half of the ε in alternative A.
(Actually the present proof shows that the number of pairs x,y is � Rn,
as remarked earlier.)
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Cubic forms: minor arcs and major arcs

From now onwards we can suppose that alternative B of Lemma 13.4
holds. Thus, for any α, either

|S(α)| < Pn− 1
4 nθ+ε (15.1)

or α lies in the set, which we shall call ξ(θ), of real numbers which have
a rational approximation a/q satisfying

(a, q) = 1, 1 ≤ q � P 2θ, |qα − a| � P−3+2θ. (15.2)

We shall find that, provided n ≥ 17, this result enables us to estimate
satisfactorily the contribution made to the integral for N (P )by all α

outside ξ(θ0), where θ0 can be taken to be any fixed positive number,
independent of P . Obviously it pays to take θ0 small.

With this in mind, we define the major arcs M to consist of the set
ξ(θ0), that is, the set of intervals (15.2) with θ replaced by θ0, and we
define the minor arcs m to consist of the complement of this set with
respect to the interval 0 < α < 1.

Lemma 15.1. Provided n ≥ 17, we have∫
m

|S(α)| dα � Pn−3−δ (δ > 0).

Proof. We choose a set of numbers

θ0 < θ1 < · · · < θh = 3
4 + δ.

Every real α lies in the set ξ(θh), because we can always find a, q such
that

q ≤ P 3/2, |qα − a| < P−3/2,
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and this implies that α is in ξ(3
4 + δ). The minor arcs consist of the

complement of ξ(θ0), and we can regard this as the union of

ξ(θh) − ξ(θh−1), ξ(θh−1) − ξ(θh−2), · · · , ξ(θ1) − ξ(θ0),

where the difference is meant in the sense of set theory.
In the set ξ(θg)− ξ(θg−1), the inequality (15.1) applies with θ = θg−1,

so that

|S(α)| � Pn− 1
4 nθg−1+ε.

The measure of this set does not exceed the measure of ξ(θg), which is

�
∑

q≤P 2θg

q∑
a=1

q−1P−3+2θg

� P−3+4θg .

Hence the contribution of this set to the integral of |S(α)| is

� Pn− 1
4 nθg−1−3+4θg+ε.

This is � Pn−3−δ, since n ≥ 17, provided

θg−1 >
16
17

θg +
4
17

(δ + ε).

We can choose θ1, . . . , θh so near together that this is the case. Hence
the result.

Now we have to deal with the major arcs Ma,q, given by (15.2) with
θ = θ0. We put 2θ0 = ∆, so that (15.2) becomes

(a, q) = 1, 1 ≤ q � P∆, |qα − a| ≤ P−3+∆.

It will be convenient to enlarge the major arcs slightly; we replace
them by the intervals M′

a,q in which the last inequality is divided by q

on the left but not on the right:

(a, q) = 1, 1 ≤ q � P∆, |α − a/q| ≤ P−3+∆. (15.3)

This is plainly permissible, for the contribution made by the additional
set is a part of the contribution made by the minor arcs to

∫ |S(α)| dα,
and is therefore covered by the estimate of Lemma 15.1.

The object of this enlargement is to make the length of the intervals
independent of q, as in Chapter 4. It is only possible to do this when
q is bounded by a small power of P , as here; but when it is possible,
it leads to a slight simplification, in that the separation of the singular
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series from the singular integral takes place at an earlier point in the
proof than it would do otherwise.

We define

Sa,q =
∑

z (mod q)

e

(
a

q
C(z)

)
,

I(β) =
∫

PB

e (βC(ξ)) dξ,

where PB is the box used in the earlier definition of S(α) in Chapter
13.

Lemma 15.2. For α in an interval M′
a,q we have, on putting α =

β + a/q,

S(α) = q−nSa,qI(β) + O(Pn−1+2∆).

Proof. The crude argument used in the proof of Lemma 4.2 suffices,
the reason being that here (as there) q is very small compared with
P . We must now work in n dimensions instead of in one dimension,
however, and this means replacing a sum by an integral. We must make
an allowance for the discrepancy between the number of integer points
in a large box and the volume of the box.

Putting x = qy + z, where 0 ≤ zj < q, we have to estimate the
difference between∑

y

e (βC(qy + z)) and
∫

e (βC(qη + z)) dη

where the conditions of summation on y are such as will make 0 <

qyj + zj < P , and similarly for η. Thus the edges of the box for y are
� P/q, and the allowance mentioned above is (P/q)n−1. We have also
to allow for the variation of the integrand in a box of edge-length 1. We
have ∣∣∣∣ ∂

∂ηj
βC(qη + z)

∣∣∣∣ � |β|qP 2 � qP−1+∆.

The resulting error is obtained by multiplying by the volume of the
region of integration, which is � (P/q)n.

It follows that the difference between the sum and the integral is

� (P/q)n−1 + qP−1+∆Pnq−n � Pn−1+∆q1−n.

(If n were equal to 1, this would be P∆, corresponding to P δ in the
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proof of Lemma 4.2.) Summing over the qn values of z, the final error
term is

� Pn−1+∆q � Pn−1+2∆.

Lemma 15.3. For a fixed cubic form C(x) which does not represent
zero, we have

|Sa,q| � q
7
8 n+ε.

Proof. We can apply alternative B of Lemma 13.4 to the sum S(α) with
α = a/q and with P = q, and the box B as the box 0 ≤ xj < 1, so that
the box of summation becomes 0 ≤ xj < q. Take θ = 1

2 −ε. Then either

|S(α)| < qn− 1
4 nθ+ε � q

7
8 n+ε,

or α has a rational approximation a′/q′ satisfying

1 ≤ q′ � P 1−2ε, |q′α − a′| < P−2.

But the latter is impossible when α = a/q, for it would give then q′ < q

and

|q′(a/q) − a′| < q−2,

whereas it is obvious that |q′(a/q) − a′| ≥ 1/q. Hence the estimate for
S(α) = Sa,q holds.

Lemma 15.4. If M′ denotes the totality of the enlarged major arcs
M′

a,q then ∫
M′

S(α) dα = Pn−3S(P∆)J(P∆) + O(Pn−3−δ)

for some δ > 0, where

S(P∆) =
∑

q�P∆

q∑
a = 1

(a, q) = 1

q−nSa,q,

J(P∆) =
∫
|γ|<P∆

(∫
B

e(γC(ξ)) dξ

)
dγ.
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Proof. The error term in Lemma 15.2, when integrated over |β| <

P−3+∆ and summed over a and then over q gives a final error term

�
∑

q�P∆

∑
a

P−3+∆Pn−1+2∆ � Pn−4+5∆.

This is � Pn−3−δ provided ∆ is sufficiently small.
The main term in Lemma 15.2 gives

∑
q�P∆

q∑
a = 1

(a, q) = 1

q−nSa,q

∫
|β|<P−3+∆

I(β) dβ.

The summation and integration are independent, and the summation
gives S(P∆). The integral becomes

P−3

∫
|γ|<P∆

I(P−3γ) dγ,

and this is Pn−3J(P∆), since

I(P−3γ) =
∫

PB

e
(
P−3γC(ξ)

)
dξ

= Pn

∫
B

e (γC(ξ)) dξ.

Hence the result.
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Cubic forms: the singular integral

The singular integral is the integral occurring in Lemma 15.4, namely

J(µ) =
∫ µ

−µ

(∫
B

e(γC(ξ))dξ

)
dγ, (16.1)

where we have written µ for P∆. It depends upon the box B which was
used in the definition of the exponential sum S(α) in Chapter 13, and
our object in the present chapter is to prove that we can choose B in
such a way as to ensure that

J(µ) → J0 > 0, as µ → ∞. (16.2)

We shall choose the box B so that it has for its centre a real solution
ξ∗1 , . . . , ξ∗n of the equation

C(ξ∗1 , . . . , ξ∗n) = 0. (16.3)

This is a natural way to proceed, for our object is to obtain an asymptotic
formula for N (P ) which will show that N (P ) → ∞; assuming that
alternative A is excluded. If there were no real solution of C(ξ) = 0 in
B, there would be none in PB, and a fortiori N (P ) would be 0.

We shall, in fact, take ξ∗1 , . . . , ξ∗n to be rather more than an arbitrary
real solution of C(ξ) = 0; we shall take it to be a non-singular solution1,
in which none of ξ∗1 , . . . , ξ∗n is 0. This is a convenient choice to ensure
the truth of (16.2), and may even be essential.

The existence of such a solution is easily proved. For any real ξ2, . . . , ξn

we can find a real ξ1 to satisfy C(ξ1, . . . , ξn) = 0, and it suffices to ensure
that

ξ1 �= 0 and ∂C/∂ξ1 �= 0.

1 That is, one for which the partial derivatives of C are not all 0.
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For any ξ2, . . . , ξn, the equation for ξ1 is of the form

c111ξ
3
1 + Fξ2

1 + Gξ1 + H = 0,

where F,G,H are forms in ξ2, . . . , ξn of degrees 1, 2, 3 respectively. Pro-
vided H �= 0 (and we note that H cannot vanish identically) we shall
have ξ1 �= 0. Let D(ξ2, . . . , ξn) be the discriminant of the cubic equa-
tion in ξ1. Then, provided D �= 0, we shall have ∂C/∂ξ1 �= 0. We can
suppose that D does not vanish identically, for then the double root for
ξ1 is determined rationally by ξ2, . . . , ξn and we get rational solutions of
C(ξ) = 0.

Thus we can find the desired non-singular real solution ξ∗1 , . . . , ξ∗n of
(16.3). We take B to be a small cube around this point, say

|ξj − ξ∗j | < ρ, (1 ≤ j ≤ n). (16.4)

Lemma 16.1. If ρ is chosen sufficiently small, (16.2) holds.

Proof. We have

J(µ) =
∫ µ

−µ

(∫
B

e(γC(ξ)dξ

)
dγ

=
∫
B

sin 2πµC(ξ)
πC(ξ)

dξ

=
∫ ρ

−ρ

· · ·
∫ ρ

−ρ

sin 2πµC(ξ∗ + η)
πC(ξ∗ + η)

dη, (16.5)

where ξ = ξ∗ + η.
For any η, we have

C(ξ∗ + η) = c1η1 + · · · + cnηn + P2(η) + P3(η), (16.6)

where P2(η), P3(η) are forms of degrees 2, 3 in η. We have

c1 =
∂C

∂ξ1
(ξ∗1 , . . . , ξ∗n) �= 0.

Without loss of generality we can suppose c1 = 1.
For |η| < ρ, we have

|C(ξ∗ + η)| < σ,

where σ = σ(ρ) is small with ρ. Put C(ξ∗ + η) = ζ. Then, if ρ is
sufficiently small, we can invert the relation (16.6) and express η1 in
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terms of η2, . . . , ηn by means of a power series. This will be one of the
form

η1 = ζ − c2η2 − · · · − cnηn + P (ζ, η2, . . . , ηn),

where P is a multiple power series beginning with terms of degree 2 at
least. Hence

∂η1

∂ζ
= 1 + P1(ζ, η2, . . . , ηn),

and by taking ρ sufficiently small we can ensure that |P1| < 1/2 for

|η2| < ρ, . . . , |ηn| < ρ, |ζ| < σ.

Making a change of variable from η1 to ζ in (16.5), we obtain

J(µ) =
∫ σ

−σ

sin 2πµζ

πζ
V (ζ)dζ, (16.7)

where

V (ζ) =
∫
B′

{1 + P1(ζ, η2, . . . , ηn)} dη2 · · · dηn,

in which B′ denotes the part of the (n−1)-dimensional cube

|η2| < ρ, . . . , |ηn| < ρ

in which |η1| < ρ, that is, in which

|ζ − c2η2 − · · · − cnηn + P (ζ, η2, . . . , ηn)| < ρ.

It is clear that V (ζ) is a continuous function of ζ for |ζ| sufficiently
small. It is also easily seen that V (ζ) is a function of bounded variation,
since it has left and right derivatives at every value of ζ, and these are
bounded. Hence, by Fourier’s integral theorem applied to (16.7), we
have

lim
µ→∞V (µ) = V (0).

Now V (0) is a positive number, for the cube B′ contains any sufficiently
small (n−1)-dimensional cube centred at the origin, and in such a cube
we have 1 + P1 > 1/2. This proves the result.
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Cubic forms: the singular series

Putting together the results of Lemmas 15.1, 15.4 and 16.1, we have now
proved that if n ≥ 17, and if alternative A of Lemma 13.4 is excluded,
and if the box B is suitably chosen, then the number N (P ) of integer
points with C(x) = 0 in the box PB satisfies

N (P ) = Pn−3S(P∆) {J0 + o(1)} + O(Pn−3−δ),

where δ > 0. The series for S(P∆) in Lemma 15.4 converges absolutely
if continued to infinity, provided n ≥ 17 and alternative A is excluded,
since then

q−n |Sa,q| � q−
1
8 n+ε−2−δ

by Lemma 15.3. By the work of Chapter 14, the alternative A implies
that C(x) = 0 has a non-trivial integral solution. Thus we have proved:

Theorem 17.1. If n ≥ 17 and S > 0, then the equation C(x) = 0 has
a non-trivial integral solution.

For if there is no non-trivial solution we get

N (P ) ∼ Pn−3SJ0 as P → ∞,

whence N (P ) → ∞, giving a contradiction.
Here, of course, S denotes the singular series continued to infinity, i.e.

S =
∞∑

q=1

q∑
a = 1

(a, q) = 1

q−nSa,q.

It remains to prove that S > 0 for every cubic form in 17 or more
variables. The proof of Lemma 5.1 applies to exponential sums in general
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(as remarked at the time), and shows that if

A(q) =
q∑

a = 1
(a, q) = 1

q−nSa,q

then A(q) is a multiplicative function of q (for relatively prime values of
q). Provided n ≥ 17 and C(x) does not represent zero, we have

|A(q)| � q1− 1
8 n+ε � q−1−δ

by Lemma 15.3. Hence S =
∑

q A(q) is absolutely convergent, and it
follows that

S =
∏
p

χ(p),

where

χ(p) = 1 +
∞∑

ν=1

A(pν).

We also have (under the above conditions)

|χ(p) − 1| � p−1−δ,

so there exists p0 such that ∏
p>p0

χ(p) ≥ 1
2
,

as in the Corollary to Lemma 5.2. The argument of Lemma 5.3 shows
that

χ(p) = lim
ν→∞

M(pν)
pν(n−1)

,

where M(pν) denotes the number of solutions of

C(x1, . . . , xn) ≡ 0 (mod pν), 0 ≤ xj < pν .

Hence, in order to prove that S > 0 (under the present conditions) it
will suffice to prove that, for each prime p, we have

M(pν) ≥ Cpp
ν(n−1), Cp > 0, (17.1)

for all sufficiently large ν.
When we were dealing with forms of additive type, we found that the

existence of just one solution of the congruence

a1x
k
1 + · · · + anxk

n ≡ 0 (mod pγ1),
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with not all of x1, . . . , xn divisible by p, implied the truth of (17.1) for
all sufficiently large ν, provided γ1 was a suitable exponent depending
on p and k and on the powers of p dividing the various coefficients aj .
For a general form, the position is not quite so simple. It appears that
one needs more than just a solution (mod pγ1); one needs a solution for
which the partial derivatives ∂C/∂x1, . . . , ∂C/∂xn are not all divisible
by too high a power of p. For an additive form, there is an obvious limit
to the power of p, since the derivative with respect to xj is ajkxk−1

j , and
there is some j for which xj is not divisible by p.
Definition. Let p be a prime and � a positive integer. We say C(x)
has the property A(p) if there is a solution of

C(x1, . . . , xn) ≡ 0 (mod p2−1) (17.2)

with

∂C/∂xi ≡ 0 (mod p−1) for all i (17.3)

and

∂C/∂xi �≡ 0 (mod p) for some i. (17.4)

Lemma 17.1. Suppose C(x) has the property A(p). Then

M
(
p2−1+ν

) ≥ p(n−1)ν ,

and consequently χ(p) > 0.

Proof. We prove by induction on ν that the congruence

C(x1, . . . , xn) ≡ 0 (mod p2−1+ν) (17.5)

has at least p(n−1)ν solutions satisfying (17.3) and (17.4), these solutions
being mutually incongruent to the modulus p+ν (and therefore a fortiori
to the modulus p2−1+ν). This will imply the result. When ν = 0 the
assertion is simply that of the hypothesis.

For any integers x1, . . . , xn, u1, . . . , un we have

C(x + p+νu) ≡ C(x) + p+ν(u1∂C/∂x1 + · · · ) (mod p2+2ν).

We assume that the result just stated holds for a particular ν, and we
take x1, . . . , xn to be any one of the p(n−1)ν solutions of (17.5) which
satisfy (17.3) and (17.4), these solutions being mutually incongruent to
the modulus p+ν . We can put

C(x) = ap2−1+ν , ∂C/∂xi = Dip
−1,
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where a,D1, . . . , Dn are integers and Di �≡ 0 (mod p) for some i. The
congruence

C(x + p+νu) ≡ 0 (mod p2+ν)

holds if

a + D1u1 + · · · + Dnun ≡ 0 (mod p).

This has pn−1 solutions in u, mutually incongruent (mod p).
Thus corresponding to each x we get pn−1 values of y = x + p+νu.

These satisfy

C(y) ≡ 0 (mod p2+ν), y ≡ x (mod p+ν).

From the latter it follows that each y satisfies (17.3) and (17.4). We
obtain altogether p(n−1)(ν+1) values for y and they are mutually incon-
gruent to the modulus p+ν+1. Hence the assertion holds for ν + 1 in
place of ν, and this proves the result.

The proof that for each p there is some � such that C(x) has the
property A(p) forms the subject of the next chapter.
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Cubic forms: the p-adic problem

The assertion that for any p there exists some � such that C(x) has the
property A (

p
)

is equivalent to the assertion that the equation C(x) = 0
has a non-singular solution in the p-adic number field. We shall prove
that this is true for n ≥ 10. Several mathematicians have proved inde-
pendently that the equation C(x) = 0 always has a non-trivial p-adic
solution provided n ≥ 10, and any one of their proofs would serve our
purpose, because (as Professor Lewis pointed out to me) it is possible to
deduce a non-singular solution from any non-trivial solution. However,
I prefer to follow my own proof, as this was designed to lead directly to
the property A (

p
)
.

Let N = 1
2n (n + 1). Let C denote the matrix of n rows and N columns

whose general element is cijk, where i indicates the row and the pair j, k

(with j ≤ k) indicates the column, on the understanding that these pairs
are arranged in some fixed order. Let ∆ denote a typical determinant
of order n formed from any n columns of C, the number of possible
determinants being

(
N
n

)
. We can assume (multiplying C(x) by a factor

of 6 if necessary) that the cijk are integral, hence that the various ∆ are
integral.

Definition. Let h(C) denote the highest common factor of all the
determinants ∆, if they are not all 0, and in the latter case let h(C) = 0.

Lemma 18.1. Let

x′
i =

n∑
r=1

qirxr, (1 ≤ i ≤ n),

be a linear transformation with integral coefficients qir of determinant

111
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q �= 0, and let

C (x1, . . . , xn) = C ′ (x′
1, . . . , x

′
n)

identically. Then h(C) is divisible by qh(C ′).

Proof. The coefficients in the two forms C and C ′ are related by

crst =
n∑

i=1

n∑
j=1

n∑
k=1

qirqjsqktc
′
ijk.

In defining the matrix C above, we chose a one-to-one correspondence
between pairs j, k with 1 ≤ j ≤ k ≤ n and integers 1 ≤ µ ≤ N . Thus
the general element of C′ is c′ijk = c′iµ, say, where i = 1, 2, . . . , n and
µ = 1, 2, . . . , N . Similarly, representing the pair s, t with s ≤ t by ν, the
general element of C is crst = crν . Put

uµν =
{

qjsqkt, j = k,

qjsqkt + qksqjt, j < k,

where µ denotes the pair j, k and ν the pair s, t. Then the relation
between the two sets of coefficients can be written

crv =
n∑

i=1

qir

N∑
µ=1

c′iµuµν ,

where r = 1, 2, . . . , n and ν = 1, 2, . . . , N . In matrix notation this is

C = QTC′U ,

where Q = (qir) is an n× n matrix and U = (uµν) is an N ×N matrix,
and T denotes the transpose.

Let ∆ be the determinant formed from the columns ν1, . . . , νn of C,
or symbolically:

∆ = (det C)1,...,n
ν1,...,νn

.

Since the matrix Q has determinant q, it follows that

±∆ = q (det C′U)1,...,n
ν1,...,νn

.

By a well known result we have

(det C′U)1,...,n
ν1,...,νn

=
∑

ρ1,...,ρn

(det C′)1,...,n
ρ1,...,ρn

(detU)ρ1,...,ρn

ν1,...,νn
,

where the summation is over all
(
N
n

)
selections of ρ1, . . . , ρn from 1, . . . , N

without regard to order.
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In each term of the sum, the first factor is one of the determinants
∆′ of order n that can be formed from C′, and the second factor is an
integer. Hence the sum is divisible by h(C ′) and it follows that ∆ is
divisible by qh(C ′). This proves the result.

Corollary. h(C) is an arithmetic invariant of C. That is, it has the
same value for any two equivalent forms.

Proof. If C and C ′ are equivalent forms the lemma applies with q = 1,
and shows that h(C) is divisible by h(C ′). Similarly h(C ′) is divisible
by h(C), whence the result.

Lemma 18.2. If C(x) is non-degenerate then h(C) �= 0.

Proof. If h(C) = 0 then all the determinants of order n formed from C
vanish, that is the n rows of C are linearly dependent. Thus there exist
p1, . . . , pn, not all 0, such that

n∑
i=1

picijk = 0

for all j, k; and we can take p1, . . . , pn to be integers with highest common
factor 1. Since

1
3

∂C

∂xi
=

∑
j

∑
k

cijkxjxk,

we have

p1
∂C

∂x1
+ · · · + pn

∂C

∂xn
= 0

identically in x1, . . . , xn. It is well known that there exists an n × n

matrix of integers pir, of determinant ±1, such that pin = pi for i =
1, 2, . . . , n. Putting

xi =
n∑

r=1

piryr,

we have
∂C

∂yn
= 0

identically, and consequently C(x) is equivalent to a form in y1, . . . , yn−1

and is degenerate.
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The converse of this last lemma is also true, for the above argument
is reversible, but it will not be needed.

Lemma 18.3. If n ≥ 4 and C(x) does not have the property A(p), then
C(x) is equivalent to a form of the type

C ′(x1, x2, x3) + pC ′′(x1, . . . , xn). (18.1)

Proof. By a theorem of Chevalley1 there is a solution of C(x) ≡
0 (mod p) other than x = 0, since the number of variables exceeds
the degree of the congruence. As C(x) does not have the property A(p),
we must have

∂C

∂xi
≡ 0 (mod p)

for all i. After a suitable integral unimodular transformation, we can
take the solution in question to be

x1 = 1, x2 = x3 = · · · = xn = 0.

Then C(x) has the form

apx3
1 + px2

1(b2x2 + · · · + bnxn) + x1B(x2, . . . , xn) + Cn−1(x2, . . . , xn),

where B and Cn−1 are quadratic and cubic forms respectively. Indeed
the coefficients of x2

1xj are all divisible by p because they are the values
of

∂C

∂x2
, . . . ,

∂C

∂xn

at the solution.
If some of the coefficients of B are not divisible by p, we can choose

x2, . . . , xn so that

B(x2, . . . , xn) �≡ 0 (mod p),

by taking values of the type 1, 0, . . . , 0 or of the type 1, 1, 0, . . . , 0. We
can then choose x1 so that

x1B(x2, . . . , xn) + Cn−1(x2, . . . , xn) ≡ 0 (mod p)

and this gives a solution of C(x) ≡ 0 (mod p) with ∂C/∂x1 �≡ 0 (mod p),
contrary to the hypothesis.

1 See [23], for example.
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We can therefore assume that all the coefficients of B are divisible by
p. Thus C(x) is equivalent to

px1Qn(x1, x2, . . . , xn) + Cn−1(x2, . . . , xn),

where Qn is a quadratic form.
If n ≥ 5, we can put x1 = 0 and apply the argument to Cn−1(x2, . . . , xn)

since this form also cannot have the property A(p). Thus Cn−1 is equiv-
alent to

px2Qn−1(x2, . . . , xn) + Cn−2(x3, . . . , xn).

This process continues until we reach C3(xn−2, xn−1, xn), to which Cheval-
ley’s theorem does not apply. Hence C(x) is equivalent to a form of the
type

p(x1Qn + · · · + xn−3Q4) + C3(xn−2, xn−1, xn).

Reversing the order of writing the variables, we obtain a form of the
type (18.1).

Lemma 18.4. If, in the result of Lemma 18.3, the form

C ′′(0, 0, 0, x4, . . . , xn)

in x4, . . . , xn has the property A(pλ), then C(x) has the property A(p)
for some � ≤ λ + 1.

Proof. In the proof of Lemma 17.1 we saw that if a form C∗ had
property A(pλ) then for every ν ≥ 0 the congruences

C∗(x) ≡ 0 (mod p2λ−1+ν) (18.2)
∂C∗

∂xi
≡ 0 (mod pλ−1), (18.3)

were soluble for all i, and in addition, for some j,

∂C∗

∂xj
�≡ 0 (mod pλ). (18.4)

For brevity, we express (18.3) and (18.4) by

pλ−1‖
(

∂C∗

∂x1
, . . . ,

∂C∗

∂xn

)
.

The hypothesis that C ′′(0, 0, 0, x4, . . . , xn) has property A(pλ) implies
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(taking ν = 1) the existence of integers x4, . . . , xn such that

C ′′(0, 0, 0, x4, . . . , xn) ≡ 0 (mod p2λ), pλ‖
(

∂C ′′

∂x4
, . . . ,

∂C ′′

∂xn

)
.

Hence

C(0, 0, 0, x4, . . . , xn) ≡ 0 (mod p2λ+1), pλ‖
(

∂C

∂x4
, . . . ,

∂C

∂xn

)
.

If, for these values of x1, x2, . . . , xn, we define � by

p−1‖
(

∂C

∂x1
, . . . ,

∂C

∂xn

)
,

then � ≤ λ + 1 and C(x) has property A(p).

Lemma 18.5. If n ≥ 10 and C(x) does not have any of the properties
A(p), A(p2), A(p3), then it is equivalent to a form of the type

C∗(x1, x2, . . . , x9, px10, . . . , pxn). (18.5)

Proof. In the expression (18.1) for a form equivalent to C, which we
denote again by C, we put xi = pyi for i = 1, 2, 3. This gives

C(py1, py2, py3, x4, . . . , xn)

≡ p3C ′(y1, y2, y3) + pC ′′(py1, py2, py3, x4, . . . , xn).

Ignoring multiples of p3, we have

C(py1, py2, py3, x4, . . . , xn)

≡ p2C1,2(y1, y2, y3|x4, . . . , xn) + pC ′′(0, 0, 0, x4, . . . , xn) (mod p3),

(18.6)

where C1,2 denotes a form which is of first degree in y1, y2, y3 and of
second degree in x4, . . . , xn.

By Lemma 18.4, the form C ′′(0, 0, 0, x4, . . . , xn) does not have either
property A(p) or A(p2). We apply Lemma 18.3 to this form and put
xi = pyi for i = 4, 5, 6 in the result. Neglecting multiples of p2, we
obtain

C ′′(0, 0, 0, py4, py5, py6, x7, . . . , xn)

≡ pC(3)(0, . . . , 0, x7, . . . , xn) (mod p2). (18.7)

Further, by Lemma 18.4, the form C(3)(0, . . . , 0, x7, . . . , xn) in x7, . . . , xn

does not have the property A(p).
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Putting xi = pyi for i = 4, 5, 6 in (18.6), and using (18.7), we obtain
a result which can be written

C(py1, . . . , py6, x7, . . . , xn)

≡ p2(y1Q1 + y2Q2 + y3Q3) + p2C(3)(0, . . . , 0, x7, . . . , xn) (mod p3),

(18.8)

where Q1, Q2, Q3 are quadratic forms in x7, . . . , xn. It should be noted
that y4, y5, y6 do not appear on the right of (18.8).

Suppose one of the quadratic forms, say Q1, is not identically ≡
0 (mod p). Then there exists x7, . . . , xn for which Q1 �≡ 0 (mod p),
and we can choose y1, y2, y3 so that

y1Q1 + y2Q2 + y3Q3 + C(3)(0, . . . , 0, x7, . . . , xn) ≡ 0 (mod p).

This gives

C(py1, . . . , py6, x7, . . . , xn) ≡ 0 (mod p3),

the values of y4, y5, y6 being arbitrary. Also

∂C

∂y1
(py1, . . . , py6, x7, . . . , xn) ≡ p2Q1 �≡ 0 (mod p3).

Taking xi = pyi for i = 1, . . . , 6 and noting that ∂/∂x1 = p−1∂/∂y1,we
have values of x1, . . . , xn for which C ≡ 0 (mod p3) and ∂C/∂x1 �≡
0 (mod p2). This contradicts the hypothesis that C does not have either
of the properties A(p) or A(p2).

Thus Q1, Q2, Q3 are all identically ≡ 0 (mod p) and (18.8) becomes

C(py1, . . . , py6, x7, . . . , xn) ≡ p2C(3)(0, . . . , 0, x7, . . . , xn) (mod p3).

Finally, we apply Lemma 18.3 to the form C(3)(0, . . . , 0, x7, . . . , xn)
which (as already noted) does not have the property A(p). We obtain

C(3)(0, . . . , 0, x7, . . . , xn) ≡ C(4)(x7, x8, x9) (mod p).

Putting xi = pyi for i = 1, . . . , 9 we get

C(py1, . . . , py9, x10, . . . , xn) ≡ 0 (mod p3),

and this holds identically in y1, . . . , y9, x10, . . . , xn. Denoting the form
on the left by

p3C∗(y1, . . . , y9, x10, . . . , xn),

we have the identity

C(x1, . . . , xn) = C∗(x1, . . . , x9, px10, . . . , pxn).
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Lemma 18.6. Suppose n ≥ 10. If in the result of Lemma 18.5 the form
C∗(x1, . . . , xn) has the property A(pλ) then the form C(x1, . . . , xn) has
the property A(p) for some � ≤ λ + 3.

Proof. As we observed at the start of the proof of Lemma 18.4, the
hypothesis that C∗ has the property A(pλ) implies the existence of values
y1, . . . , yn such that

C∗(y1, . . . , yn) ≡ 0 (mod p2λ+2), pλ−1‖
(

∂C∗

∂y1
, . . . ,

∂C∗

∂yn

)
.

Since

C(py1, . . . , py9, y10, . . . , yn) = p3C∗(y1, . . . , y9, y10, . . . , yn)

identically, we have

C(py1, . . . , py9, y10, . . . , yn) ≡ 0 (mod p2λ+5)

and one, at least, of ∂C/∂y1, . . . , ∂C/∂y9, ∂C/∂y10, . . . , ∂C/∂yn is not
divisible by pλ+3. Putting xi = pyi for i = 1, . . . , 9 and xi = yi for
i ≥ 10, we have one at least of ∂C/∂x1, . . . , ∂C/∂xn not divisible by
pλ+3, whence the result.

Lemma 18.7. Any non-degenerate cubic form with integral coefficients
in at least 10 variables has the property A(p) for every prime p and a
suitable � depending on p. There is an upper bound for � depending only
on the cubic form.

Proof. Suppose C(x) is a cubic form with integer coefficients which
does not have any of the properties A(p),A(p2), . . . ,A(p3m), where m

is a positive integer. By Lemma 18.5, this form is equivalent to a form
of type (18.5). This implies that there is a linear transformation

x′
i =

n∑
r=1

qirxr, (1 ≤ i ≤ n),

with integral coefficients and determinant pn−9, which transforms
C(x1, . . . , xn) into another form C(1)(x′

1, . . . , x
′
n) with integral coeffi-

cients. By Lemma 18.6, the form C(1) does not have any of the proper-
ties A(p), A(p2), . . . ,A(p3m−3). By repetition, it follows that there is a
linear transformation with integral coefficients and determinant p(n−9)m

which transforms C(x) into a form C(m)(y) with integral coefficients.
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It follows from Lemma 18.1 that h(C) is divisible by p(n−9)m. Further
h(C) is a positive integer by Lemma 18.2. Thus

(n − 9)m ≤ log h(C)/ log p ≤ log h(C)/ log 2,

and this gives an upper bound for m, independent of p. This completes
the proof of Lemma 18.7.

In view of Theorem 17.1 and the subsequent remarks of Chapter 17,
we see that Lemma 18.7 completes the proof of the following result.

Theorem 18.1. If C(x1, . . . , xn) is any cubic form with integral coeffi-
cients, and n ≥ 17, the equation

C(x1, . . . , xn) = 0

has a solution in integers x1, . . . , xn, not all 0.
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Homogeneous equations of higher degree

In [6], Birch has given a far-reaching extension of the method by which
we have treated the homogeneous cubic equation, but this involves some
important modifications. He considers the problem of solving a homo-
geneous equation, or a system of simultaneous homogeneous equations
(all of the same degree). Here one is faced by two serious difficulties. In
the first place, even for a single equation of degree k > 3, we do not in
general know of any reasonable function n0 of k which will be such that,
if n ≥ n0(k), the congruence conditions corresponding to the equation
will be satisfied for every prime. (We know there is some function of
k for which the equation is soluble in the p-adic field, by the work of
Brauer, quoted in Chapter 11, but this leads to an astronomical value.
Moreover, a solution in the p-adic field would not be quite enough; we
need a non-singular solution in order to be sure that we can satisfy the
congruence conditions.) Thus we must postulate that the congruence
conditions are satisfied for each prime p. We must also postulate that
the equation, or system of equations, is soluble in the real number-field,
with a non-singular solution.

Secondly — and this is more important — even these postulates are
not always enough to ensure the solubility of the equation in integers
(or rational numbers). The following example was shown to me by
Swinnerton-Dyer;

3(x2
1 + · · · + x2

r)
3 + 4(x2

r+1 + · · · + x2
s)

3 = 5(x2
s+1 + · · · + x2

n)3 (19.1)

where r < s < n. It is known from the work of Selmer [78] that the
equation

3X3 + 4Y 3 = 5Y 3

is insoluble except with X = Y = Z = 0, and it follows that (19.1) is

120
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insoluble except with x1 = · · · = xn = 0. On the other hand it can be
proved that (19.1) satisfies the congruence conditions for every p, and it
is of course also soluble non-singularly in the real field.

Hence some further condition must be imposed if we are to establish
solubility in integers. The type of condition which Birch is led to impose
is expressed in terms of the dimension of a ‘singular locus’ associated
with the system of equations.

We shall outline the general plan of his paper, giving comparisons
with the problem of one cubic equation in places where this may be
helpful. The details are somewhat formidable because of the inevitable
complexity of the notation.

Suppose we have R homogeneous forms of degree k in n variables,
where R < n. We can write them as

f (1)(x) =
∑

j0,...,jk−1

C
(1)
j0,...,jk−1

xj0 . . . xjk−1 ,

...

f (R)(x) =
∑

j0,...,jk−1

C
(R)
j0,...,jk−1

xj0 . . . xjk−1 ,

where the variables of summation go from 1 to n. Let B be a box in n

dimensional space, and define the exponential sum

S(α1, . . . , αR) =
∑

x∈PB

e
(
α1f

(1)(x) + · · · + αRf (R)(x)
)

.

Then the number of integer points x in PB which satisfy the simulta-
neous equations f (1)(x) = 0, . . . , f (R)(x) = 0 is given by

N (P ) =
∫ 1

0

· · ·
∫ 1

0

S(α1, . . . , αR) dα1 . . . dαR.

By a straightforward extension of Lemma 13.1, we find that if

|S(α1, . . . , αR)| ≥ Pn−K , (K > 0),

then ∑
x(1)

· · ·
∑

x(k−1)

n∏
J=1

min
{

P,
∥∥∥α1M

(1)
J + · · · + αRM

(R)
J

∥∥∥−1
}

� Pnk−2k−1K ,
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where M
(1)
J , . . . ,M

(R)
J are the multilinear forms in k−1 points x(1), . . . ,

x(k−1) defined by

M
(i)
J

(
x(1) | · · · |x(k−1)

)
=

∑
j1,...,jk−1

c
(i)
J,j1,...,jk−1

x
(1)
j1

· · ·x(k−1)
jk−1

,

for i = 1, . . . , R. Lemma 13.1 itself is the case R = 1, k = 3. As in
Lemma 13.2, it follows that the number of sets of k − 1 integer points
which satisfy ∣∣x(1)

∣∣ < P, . . . ,
∣∣x(k−1)

∣∣ < P,∥∥∥α1M
(1)
J + · · · + αRM

(R)
J

∥∥∥ < P−1, (1 ≤ J ≤ n),

is

� P (k−1)n−2k−1K−ε.

Using Lemma 12.6 k−1 times (instead of twice, as in the proof of Lemma
13.3), we deduce that the number of sets of k−1 integer points satisfying∣∣x(1)

∣∣ < P θ, . . . ,
∣∣x(k−1)

∣∣ < P θ,∥∥∥α1M
(1)
J + · · · + αRM

(R)
J

∥∥∥ < P−k+(k−1)θ

is

� P (k−1)nθ−2k−1K−ε.

If there is any one of these sets of k − 1 points for which the rank of
the matrix 


M

(1)
1 · · · M

(R)
1

...
...

M
(1)
n · · · M

(R)
n




is R, then we get good rational approximations to α1, . . . , αR, all with
the same denominator q. This denominator arises as the value of some
determinant (non-zero) of order R in the above matrix. In fact we get

|qαi − ai| � P−k+R(k−1)θ

and

q � PR(k−1)θ.

The exponents here correspond to −3 + 2θ and 2θ respectively, as in
alternative B of Lemma 13.4.

The real difficulty is when the above fails, i.e., when the rank of the
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above matrix is ≤ R − 1 for all sets x(1), . . . ,x(k−1). In the case R = 1
this would mean that the multilinear forms MJ all vanish at all these
sets of integer points.

The main new idea of Birch’s paper is to express this possibility in
terms of dimensions of varieties. We regard a set of k − 1 points as a
single point in a space of (k − 1)n dimensions. The condition that the
rank of the above matrix shall be ≤ R−1 defines an algebraic variety in
this space; and from the lower bound for the number of integer points
on it, we deduce that the dimension of this variety is

≥ (k − 1)n − 2k−1K/θ + ε.

It is a simple principle of algebraic geometry that the dimension of a
variety (that is, the maximum dimension of any of its absolutely irre-
ducible components) cannot be reduced by more than t if we pass to
the intersection of the variety with a linear space defined by t equations.
Hence the intersection of the above variety with the ‘diagonal’ linear
space

x(1) = x(2) = · · · = x(k−1),

defined by (k − 2)n equations, has dimension

≥ n − 2k−1K/θ − ε.

If x = x(1) = · · · = x(k−1), the new variety consists of all points x for
which the rank of the matrix


∂f(1)

∂x1
· · · ∂f(R)

∂x1
...

...
∂f(1)

∂xn
· · · ∂f(R)

∂xn




is ≤ R − 1. We call this the singular locus associated with the given
equations, and denote it by V ∗. Thus the present case leads to

dim V ∗ ≥ n − 2k−1K/θ − ε.

If dimV ∗ = s, we can prevent this happening (and thereby exclude the
situation which now corresponds to alternative A of Lemma 13.4) by
choosing

K =
θ

2k−1
(n − s − 2ε).

Having made this choice, we have a situation similar to that of al-
ternative B; that is, for each α1, . . . , αR there is either an estimate
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for |S(α1, . . . , αR)| or a good set of simultaneous approximations to
α1, . . . , αR. This proves the basis for a treatment similar in principle
to that of Chapters 15, 16, 17 for one cubic equation.

The main difficulty lies with the singular integral, and here again the
dimension of the singular variety comes in. The treatment of the integral
is too elaborate to be outlined here. It is essential to suppose that the
original equations define a variety of dimension n − R.

The result of Birch’s paper is as follows:

Theorem 19.1. Let f1, . . . , fR be forms of degree k in n variables
with integral coefficients, where n > R ≥ 1. Let V denote the algebraic
variety

f1(x) = 0, . . . , fR(x) = 0,

and suppose V has dimension n − R. Let V ∗ be the associated singular
locus, and let s = dimV ∗. Suppose there is a non-singular real point
on V , and a non-singular p-adic point on V for every prime p. Then
provided

n − s > R(R + 1)(k − 1)2k−1,

there is an integer point x �= 0 on V .



20

A Diophantine inequality

In the subject of Diophantine inequalities, our aim is to solve in integers
some given type of inequality, and usually one involving polynomials
or forms with arbitrary real coefficients. The geometry of numbers pro-
vides useful methods for investigating the solubility of linear inequalities,
and gives some information about inequalities involving polynomials of
higher degree, but is limited in its power in relation to the latter.

The simplest Diophantine inequality of higher degree than the first is

|λ1x
2
1 + · · · + λnx2

n| < C.

On the basis of analogy with Meyer’s theorem which was encountered
in Chapter 11, it was conjectured by Oppenheim in 1929 that provided
n ≥ 5, the inequality should be soluble for all C > 0, provided that
λ1, . . . , λn are real numbers which are not all of the same sign. Of
course, if λ1, . . . , λn are in rational ratios, we can make the left-hand
side zero, so the problem relates to the case in which the ratios are not
all rational.

In 1934 the result was proved to hold if n ≥ 9 by Chowla [13]; he
deduced it from results of Jarńık and Walfisz [51] on the number of
integer points in a large ellipsoid. In 1945 it was proved to hold for
n ≥ 5 by Davenport and Heilbronn [26], and the present chapter is
mainly devoted to an account of the proof. It should be noted that
although the bound 5 for the number of variables is in some sense best
possible, there is a deeper sense in which it is probably not. If we assume
that the ratios λi/λj are not all rational, the result may (for all we know
to the contrary) hold for n ≥ 3.

Stated formally, the result to be proved is:

Theorem 20.1. Let λ1, . . . , λ5 be real numbers, none of them 0, and
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not all positive nor all negative. Suppose that one at least of the ratios
λi/λj is irrational. Then, for any ε > 0 there exist integers x1, . . . , x5,
not all 0, such that

|λ1x
2
1 + · · · + λ5x

2
5| < ε.

We can suppose without loss of generality that

λ1 > 0, λ5 < 0, λ1/λ2 �∈ Q.

It will suffice to prove the solubility of

|λ1x
2
1 + · · · + λ5x

2
5| < 1, (20.1)

since then the solubility of the apparently more general inequality follows
on replacing λ1, . . . , λ5 in the last inequality by λ1/ε, . . . , λ5/ε.

The first step is to construct a function of a real variable Q which
is positive for |Q| < 1 and zero for |Q| ≥ 1. One such is given in the
following lemma, but there are various other similar ones.

Lemma 20.1. We have∫ ∞

−∞
e(αQ)

(
sin πα

πα

)2

dα =
{

1 − |Q|, |Q| ≤ 1,

0, |Q| ≥ 1.

Proof. It is well known that∫ ∞

−∞

(
sinπα

πα

)2

dα = 1.

Hence ∫ ∞

−∞

(
sinπηα

πα

)2

dα = |η|

for any real η. This gives∫ ∞

−∞
e(αQ)

(
sin πα

πα

)2

dα

=
∫ ∞

−∞
cos 2παQ

(
sinπα

πα

)2

dα

=
1
2

∫ ∞

−∞

sin2 πα(Q + 1) + sin2 πα(Q − 1) − 2 sin2 παQ

(πα)2
dα

=
1
2
{|Q + 1| + |Q − 1| − 2|Q|} ,

which gives the result.
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Let P be a large positive integer. Define

S(α) =
P∑

x=1

e(αx2), I(α) =
∫ P

0

e(αx2)dx.

Taking Q = λ1x
2
1 + · · ·+λ5x

2
5 in the result of Lemma 20.1 and summing

over x1, . . . , x5 we get∫ ∞

−∞
S(λ1α) · · ·S(λ5α)

(
sin πα

πα

)2

dα =
∑

x1, . . . , x5
|Q| < 1

(1 − |Q|), (20.2)

where the summation is over integers with 1 ≤ xj ≤ P subject to (20.1).
Similarly, integrating over x1, . . . , x5 instead of summing, we get∫ ∞

−∞
I(λ1α) · · · I(λ5α)

(
sinπα

πα

)2

dα =
∫

· · ·
∫

(1 − |Q|)dx1 · · · dx5,

(20.3)
where the integration is over real variables with 0 ≤ xj ≤ P subject to
(20.1).

The general idea of the proof is to compare (20.2) with (20.3). It will
be an easy matter to prove that the right-hand side of (20.3) is � P 3 as
P → ∞ (see Lemma 20.2 below). If we could prove that the left-hand
sides of (20.2) and (20.3) differ by an amount which is o(P 3) as P → ∞,
it would follow that the right-hand side of (20.2) was � P 3. This would
imply that there are � P 3 integral solutions (x1, . . . , x5) of (20.1), with
1 ≤ xj ≤ P.

We shall prove that there is a small interval around α = 0 in which
Sj(α) differs very little from Ij(α), and from this we shall deduce that
the contributions made by this interval to the two integrals are effectively
the same (Lemma 20.4). It will be easy to prove that all other α make
a negligible contribution to the integral on the left-hand side of (20.3).
The difficulty lies in estimating the contribution made by such α to
the integral on the left side of (20.2). Here (and here only) we use the
hypothesis that λ1/λ2 is irrational, and we shall not prove the result in
question for all large P but only for a particular sequence.

Lemma 20.2. We have∫ ∞

−∞
I(λ1α) · · · I(λ5α)

(
sinπα

πα

)2

dα � P 3.
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Proof. In the right-hand side of (20.3) we put |λi|x2
i = yi. The integral

becomes (apart from the constant factor)∫ |λ1|P 2

0

· · ·
∫ |λ5|P 2

0

{1 − |y1 ± y2 ± · · · − y5|} (y1 · · · y5)−1/2dy1 · · · dy5,

where the integral is over y1, . . . , y5 for which |y1 ± y2 ± · · · − y5| < 1
and the signs are those of λ1, . . . , λ5.

We limit the variables y2, y3, y4 to the interval 1
2γP 2 < yj < γP 2, and

we limit y5 to the interval 4γP 2 < y5 < 5γP 2, and we limit y1 to the
interval

|y1 ± y2 ± y3 ± y4 − y5| <
1
2
.

Then all the remaining points have 0 < yj < |λj |P 2 provided 9γ <

min |λj |. Hence we have a portion of the domain of integration, of volume
� (P 2)4. In this domain, the integrand is

� (y1 · · · y5)−1/2 � (P 10)−1/2.

Hence the integral is � P 3.

Lemma 20.3. If |α| < (4λP )−1, where λ = max |λj |, then

S(λjα) = I(λjα) + O(1).

Proof. This is a case of Lemma 9.1 (van der Corput’s lemma), with
f(x) = λjαx2. We have

|f ′(x)| = |2λjαx| ≤ 2|λjα|P ≤ 1
2
,

and f ′′(x) is of fixed sign.

Lemma 20.4. We have∫
|α|<(4λP )−1

S(λ1α) · · ·S(λ5α)
(

sin πα

πα

)2

dα � P 3.

Proof. First we note that, for any α,

|I(λjα)| � min(P, |α|−1/2).

The estimate P is obvious, and the estimate |α|−1/2 follows from

I(λjα) =
∫ P

0

e(λjαx2)dx =
1
2
|λjα|−1/2

∫ |λjα|P 2

0

t−1/2e(±t)dt,
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since the last integral is bounded. It follows from Lemma 20.3 that if
|α| < (4λP )−1 then

|S(λjα)| � min(P, |α|−1/2)

also. Hence, using these two estimates in conjunction with Lemma 20.3,
we have

|S(λ1α) · · ·S(λ5α) − I(λ1α) · · · I(λ5α)| � min(P 4, α−2)

in the above interval. Hence the integral of the difference over |α| <

(4λP )−1 is O(P 2).
Hence it suffices to prove that∫

|α|<(4λP )−1
I(λ1α) · · · I(λ5α)

(
sin πα

πα

)2

dα � P 3.

We already know that this is true for the corresponding integral over
(−∞,∞). Now by the above estimate for I(λjα), we have∫

|α|≥(4λP )−1
|I(λ1α) · · · I(λ5α)|dα �

∫
|α|≥(4λP )−1

α−5/2dα � P 3/2.

Hence the result is proved.

We now come to the heart of the problem; that is, the estimation of∫
|α|≥(4λP )−1

|S(λ1α) · · ·S(λ5α)|
(

sin πα

πα

)2

dα.

Lemma 20.5. For any ε > 0 we have∫ 1

0

|S(α)|4dα � P 2+ε.

Proof. By the definition of S(α), the integral equals the number of
solutions of x2

1 + x2
2 = y2

1 + y2
2 in integers between 1 and P inclusive.

The number of solutions with x2 = y2 is P 2. In other solutions, the
value of x2 and y2 determine those of x1 − y1 and x1 + y1 with � P ε

possibilities, since these are factors of x2
2 − y2

2 . Hence the result.

Lemma 20.6. For any fixed δ > 0 we have∫
|α|≥P δ

|S(λ1α) · · ·S(λ5α)|
(

sin πα

πα

)2

dα � P 3−δ/2.
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Proof. In view of the trivial estimate |S(λ5α)| ≤ P , it suffices to prove
that ∫

|α|≥P δ

|S(λ1α) · · ·S(λ4α)|
(

sin πα

πα

)2

dα � P 2−δ/2.

By Hölder’s inequality, it suffices to prove that∫
|α|≥P δ

|S(λjα)|4
(

sin πα

πα

)2

dα � P 2−δ/2,

and hence it suffices to prove that∫
|α|≥P δ

|S(α)|4 dα

α2
� P 2−δ/2.

Since S(α) is periodic with period 1, Lemma 20.5 implies that∫ m+1

m

|S(α)|4dα � P 2+ε.

Hence, if M = [P δ], the integral in question is at most
∞∑

m=M

∫ m+1

m

|S(α)|4 dα

α2
� P 2+ε

∞∑
m=M

∫ m+1

m

dα

α2

� P 2+εM−1

� P 2−δ+ε

� P 2−δ/2.

Hence the result.

By (20.2) and Lemma 20.4 and Lemma 20.6, it suffices to prove that∫
(4λP )−1<|α|<P δ

|S(λ1α) · · ·S(λ5α)|dα = o(P 3).

For then the right-hand side of (20.2) is � P 3, and this is what we
want to prove. As mentioned earlier, we can only prove this for certain
restricted values of P .

It follows from Lemma 20.5 and Hölder’s inequality that∫
(4λP )−1<|α|<P δ

|S(λi1α) · · ·S(λi4α)|dα � P 2+δ+ε

for any four different subscripts i1, . . . , i4. Using this with the subscripts
2, 3, 4, 5 and 1, 3, 4, 5, we see that it will suffice if, for each α in the range
of integration, we have

min (|S(λ1α)|, |S(λ2α)|) � P 1−2δ. (20.4)
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For this we must use the irrationality of λ1/λ2.

Lemma 20.7. Suppose that (a, q) = 1 and |α − a/q| < q−2. Then

|S(α)| � P 1+ε

{
P−1/2 + q−1/2 +

(
P 2

q

)−1/2
}

.

Proof. This is Lemma 3.1 (Weyl’s inequality), with k = 2, and conse-
quently also K = 2.

We choose any convergent a0/q0 to the continued fraction for λ1/λ2,
and therefore have ∣∣∣∣λ1

λ2
− a0

q0

∣∣∣∣ <
1
q2
0

. (20.5)

We take P = q2
0 ; this limits P to an infinite sequence of values.

Lemma 20.8. With P restricted as above, the estimate (20.4) holds for
each α in the range (4λP )−1 < α < P δ.

Proof. There exists a rational approximation a1/q1 to λ1α such that

(a1, q1) = 1, 1 ≤ q1 ≤ P 3/2,

∣∣∣∣λ1α − a1

q1

∣∣∣∣ <
1

q1P 3/2
. (20.6)

We observe that a1 �= 0, for if a1 = 0 then |λ1α| < P−3/2, contrary to
hypothesis. Similarly there exists a rational approximation a2/q2 to λ2α

such that

(a2, q2) = 1, 1 ≤ q2 ≤ P 3/2,

∣∣∣∣λ2α − a2

q2

∣∣∣∣ <
1

q2P 3/2
, (20.7)

and again a2 �= 0.
If q1 > P 5δ, we can apply Lemma 20.7 to S(λ1α), with a1, q1 in place

of a, q, and this gives1

|S(λ1α)| � P 1+ε−5δ/2 � P 1−2δ.

Similarly if q2 > P 5δ we get the analogous result for |S(λ2α)|. In either
of these events, (20.4) is satisfied. So we can suppose that

q1 ≤ P 5δ, q2 ≤ P 5δ. (20.8)

1 We assume that δ is small.
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We can now deduce from (20.6) and (20.7) that λ1/λ2 is well approx-
imated by a1q2/a2q1. We note that since a1/q1 is an approximation to
λ1α, and |α| < P δ, we have |a1| � P 6δ, and similarly |a2| � P 6δ. Hence

λ1

λ2
=

λ1α

λ2α
=

a1
q1

(
1 + O(P−3/2)

)
a2
q2

(
1 + O(P−3/2)

)
=

a1q2

a2q1

(
1 + O(P−3/2)

)
,

and since |a1q2/a2q1| is bounded above, this implies∣∣∣∣λ1

λ2
− a1q2

a2q1

∣∣∣∣ � P−3/2.

We have 1 ≤ |a2|q1 � P 11δ.

Comparison of the last result with (20.5) gives a contradiction if δ is
sufficiently small (and q0 is sufficiently large). For we get∣∣∣∣λ1

λ2
− a1q2

a2q1

∣∣∣∣ � P−3/2 + q−2
0

� q−2
0 ,

for P = q2
0 , whereas the left-hand side is

≥ 1
q0|a2|q1

� 1
q0P 11δ

� q−1−6δ
0 .

This completes the proof of Lemma 20.8; and by our earlier remarks,
Lemma 20.8 completes the proof of Theorem 20.1.

Certain extensions of Theorem 20.1 are almost immediate. First, we
could prove the same result for the inequality

|λ1x
2
1 + · · · + λ5x

2
5 − µ| < ε,

for any real number µ (assuming that the ratios λi/λj are not all ratio-
nal). Secondly we could replace the squares by kth powers, provided the
number of variables is at least 2k + 1. In this case we should use Hua’s
inequality (Lemma 3.2) in place of the above Lemma 20.7. More precise
results have been proved by Davenport and Roth [30] and by Danicic
[16].

The extension to Diophantine inequalities involving general forms with
real coefficients, in place of additive forms, present perhaps even more
difficulty than the corresponding extension for Diophantine equations.
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All the results so far obtained depend on results for Diophantine equa-
tions, and usually one needs these in a more precise form, in which there
is an estimate for the size of a solution.

The first problem that naturally presents itself is that of establishing
the solubility of

|Q(x1, . . . , xn)| < ε (20.9)

for any ε > 0, where Q is any indefinite quadratic form. By some very
complicated work, this has been proved to hold if n ≥ 21, the work
being the result of joint efforts by Birch, Davenport and Ridout [70]. By
a result of Oppenheim [64, 65], it follows that if Q is not proportional
to a form with integral coefficients, then the inequality

|Q(x1, . . . , xn) − µ| < ε,

for any real µ, is soluble. Thus the values of any real indefinite quadratic
form in 21 or more variables are either discrete (if the form is propor-
tional to an integral form) or everywhere dense.

An analogue of (20.9) for any real cubic form has been proved by
Pitman [66], but the number of variables needed is fairly large. There
seems to be a difficulty of principle in proving any analogous result for
a form of degree five.
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[2] Baker, R. C., J. Brüdern, and T. D. Wooley. Cubic Diophantine inequal-
ities. Mathematika, 42, 1995:264–277.

[3] Bentkus, V. and F. Götze. Lattice point problems and distribution of
values of quadratic forms. Annals of Math., 150(3), 1999:977–1027.

[4] Bentkus, V. and F. Götze. Lattice points in multidimensional bodies.
Forum Math., 13(2), 2001:149–225.

[5] Birch, B. J. Homogeneous forms of odd degree in a large number of
variables. Mathematika, 4, 1957:102–105.

[6] Birch, B. J. Forms in many variables. Proc. Royal Soc. A, 265, 1962:245–
263.

[7] Birch, B. J. Small zeros of diagonal forms of odd degree in many variables.
Proc. London Math. Soc., 21, 1970:12–18.

[8] Boklan, K. D. The asymptotic formula in Waring’s problem. Mathe-
matika, 41, 1994:329–347.

[9] Brauer, R. A note on systems of homogeneous algebraic equations. Bull.
American Math. Soc., 51, 1945:749–755.
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