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1 LINEAR ALGEBRA

A. Fie’lds--*

A field is a set of elements in which a pair of operations called

multiplication and addition is defined analogous to the operations of

multipl:ication  and addition in the real number system (which is itself

an example of a field). In each field F there exist unique elements

called o and 1 which, under the operations of addition and multiplica-

tion, behave with respect to a11  the other elements of F exactly as

their correspondents in the real number system. In two respects, the

analogy is not complete: 1) multiplication is not assumed to be commu-

tative in every field, and 2) a field may  have only a finite number

of elements.

More exactly, a field is a set of elements which, under the above

mentioned operation of addition, forms an additive abelian group and

for which the elements, exclusive of zero, form a multiplicative group

and, finally, in which the two group operations are connected  by the

distributive law. Furthermore, the product of o and any  element is de-

fined to be o.

If multiplication in the field is commutative, then the field is

called a commutative field.

B. Vector Spaces.

If V is an additive abelian group with elements A, B, . . . ,

F a field with elements a, b, . . . , and if for each a c F and A e V
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the product  aA  denotes an element of V, then V is called a (left)

vector space over  F if the following assumptions hold:

1) a(A + B) = aA  + aB

2) (a + b)A = aA  + bA

3) a(bA) = (ab)A

4) 1A  =  A

The reader may  readily verify that if V is a vector space over  F, then

oA  = 0 and a0 = 0 where o is the zero element of F and 0 that of V.

For example, the first relation follows from the equations:

aA  = (a + o)A  = aA  + oA

Sometimes products between elements of F and V are written in

the form Aa in which case V is called a right vector space over  F to

distinguish it from the previous case where multiplication by field ele-

ments is from the left. If, in the discussion, left and right vector

spaces  do not occur simultaneously, we shall simply use the term

“vector space.”

C. Homogeneous Linear Equations.

If in a field F, aij, i = 1,2,.  . . , m, j = 1,2, . . . , n are m . n ele-

ments, it is frequently necessary to know conditions guaranteeing the

existence of elements in F such that the following equations are satisfied:

a,, xi + a,, x2  + . . . + alnxn  = 0.

(1) . *

a ml~l  + amzx2  + . . . + amnxn  = 0.

The reader Will recall  that such  equations are called linear

homogeneous equations, and a set of elements, xi,  x2,. . . , xr,

of F, for which a11  the above equations are true, is called
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a solution of the system. If not a11 of the elements xi,  xg, . . . , xn

are o the solution is called non-trivial; otherwise, it is called trivial.

THEOREM 1. A system of linear homogeneous equations always

has a non-trivial solution if the number of unknowns exceeds the num-

ber of equations.

The proof  of this follows the method familiar to most high school

students, namely, successive elimination of unknowns. If no equations

in n > 0 variables are prescribed, then our unknowns are unrestricted

and we may set them a11 = 1.

We shall proceed by complete  induction. Let us suppose that

each  system of k equations in more than k unknowns has a non-trivial

solution when k < m. In the system of equations (1) we assume that

n > m,  and denote  the expression a,ixi  + . . . + ainxn  by L,, i = 1,2,.  . .,m.

We seek elements xi,  . . . , x,, not a11 o such  that L, = L, = . . . = Lm = o.

If aij = o for each  i and j, then any  choice of xi , . . . , xr,  Will serve as

a solution. If not a11 aij  are o, then we may assume that ail  f o, for

the order in which the equations are written or in which the unknowns

are numbered has no influence on the existence or non-existence of a

simultaneous solution. We cari  find a non-trivial solution to our given

system of equations, if and only if we cari  find a non-trivial solution

to the following system:

L, = 0

L,  - a,,a,;lL,  =  0

. . . . .

Lm - amia,;lL,  =  0



For, if xi,.  . . , x,, is a solution of these latter equations then, since

L, = o, the second term in each  of the remaining equations is o and,

hence,  L,  = L,  = . . . = Lm = o. Conversely, if (1) is satisfied, then

the new system is clearly satisfied. The reader Will notice that the

new system was set up in such  a way as to “eliminate” x1 from the

last m-l equations. Furthermore, if a non-trivial solution of the last

m-l equations, when viewed as equations in x2, . . . , xn, exists then

taking xi = - ai;‘(  ai2xz + ar3x3  + . . . + alnxn) would give us a

solution to the whole system. However, the last m-l equations have

a solution by our inductive assumption, from which the theorem follows.

Remark: If the linear homogeneous equations had been written

in the form xxjaij  = o, j = 1,2, . . . , n, the above theorem would still

hold and with the same  proof  although with the order in which terms

are written changed  in a few instances.

D. Dependence and Independence of Vectors.

In a vector space V over  a field F, the vectors A,, . . . , An  are

called dependent if there exist elements xi,  . . . , x”, not a11 o, of F such

that xiA,  + x2A,  + . . . + xnAn = 0. If the vectors A,, . . . ,An  are

not dependent, they are called independent.

The dimension of a vector space V over  a field F is the maximum

number of independent elements in V. Thus, the dimension of V is n if

there are n independent elements in V, but no set of more than n

independent elements.

A system A,, . . . , A, of elements in V is called a

generating system of V if each  element A of V cari  be expressed
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linearly in terms of A,, . . . , Am,  i.e., A = Ca.A. for a suitable  choice
i=ll  1

ofa,,  i  =  l , . . . ,  m , i n F .

THEOREM 2. In any generating system the maximum number of

independent vectors is equal to the dimension of the vector space.

Let A,, . . . , A,,, be a generating system of a vector space V of

dimension n. Let r be the maximum number of independent elements in

the generating system. By a suitable  reordering of the generators we may as-

sumek,,  . . . , Ar  independent. By the definition of dimension it follows that

r < n. For each  j, A,, . . . ,- A,. A,+j  are dependent, and in the relation

a,A,  + a,A,  + ..* + arAr + a,+j  A,+j  = 0

expressing this, a ,+j # o, for the contrary would assert the dependence

of A,, . . . ,Ar.  Thus,

A,+j  =  - ar+y[a,A,  + a,A,  + .  .  .  +  arAr].

It follows that A,, . . . , Ar is also a generating system since in the

linear relation for any element of V the terms involving Ar+j,  j f o, cari

a11 be replaced  by linear expressions in A,, . . . , Ar.

Now, let B,, . . . , B, be any system of vectors in V where t > r,

then there exist aij  such  that Bj =iglaij  Ai, j = 1,2, .  .  . , t, since the

Ai’  s  form  a generating system. If we cari show that B,, . . . , B, are

dependent, this Will give us r > n, and the theorem Will follow from-

this together with the previous inequality r < n. Thus, we must ex--

hibit  the existence of a non-trivial solution out of F of

the equation

xiB,  + x2B,  + . . . + xrB, = 0.
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TO this end, it Will be sufficient to choose the xi’s SO as to satisfy

the linear equationsiir  xj aij = o, i = 1,2,.  .  . , r, since these ex-

pressions Will be the coefficients of Ai when in E x. B. the Bj ‘s are
r j=l J J

replaced  by 2 aij Ai and terms are collected.  A solution to the equa-
i = l

tions 2 xjaij  = 0, i = 1,2,.  .  .
. i= l

, r, always exists by Theorem 1.

Remark: Any  n independent vectors A,, . . . , A,, in an n dimen-

sional vector space form a generating system. For any  vector A, the

vectors A, A,, . . . , A,, are dependent and the coefficient of A, in the

dependence relation, cannot be zero. Solving for A in terms of

A l>“‘> A,, exhibits A,, . . . ,An  as a generating system.

A subset of a vector space is called a subspace if it is a sub-

group of the vector space and if, in addition, the multiplication of any

element in the subset by any  element of the field is also in the subset.

I f  A i , . . . , AS are elements of a vector space V, then the set of a11  ele-

ments of the form a, A, + . . . + asAS clearly forms a subspace of V.

It is also evident, from the definition of dimension, that the dimension

of any  subspace never  exceeds the dimension of the whole

vector space.

An s-tuple of elements ( a,, . . . , as ) in a field F Will  be called

a row vector. The totality of such s-tuples form a vector space if- -
we define

a) (a,,a,  ,...,  as) = (b,,b,  ,...,  bS)ifandonlyif

a, = b,, i = 1,. . . , s,

B>  (alta2,...,as)  + (bl,b2,...,bs)  = (a1  + b,,a,  + b,,

. . ..aS + bs),



y) b(a,,a, ,..., as)  = (ba,,ba,  ,..., baS),forban

element of F.

When the s-tuples are written vertically,

they Will  be called column vectors.

THEOREM 3. The row (column) vector space F” of a11  n-tuples

from a field F is a vector space of dimension n over  F.

The n elements

Cl = (l,o,o ,...> 0)

E2 = (o,l,o >..., 0)

6, = (o,o,...,o,l)

are independent and generate F”. Both remarks follow from the relation

(a1,a2,.  . . ,an)  = Xaici.

We cal1  a rectangular array

of elements of a field F a matrix. By the right row rank of a matrix, we

mean  the maximum number of independent row vectors among the rows

(ail,..., a,,) of the matrix when multiplication by field elements is

from the right. Similarly, we define left row rank, right column rank and

left column rank.

THEOREM 4. In any  matrix the right column rank equals the left

row rank and the left column rank equals the right row rank. If the field
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is commutative, these four numbers are equal to each  other and are

called the rank of the matrix.

Cal1 the column vectors of the matrix C,, . ~ . , Cn and the row

vectors R,, . . . , Rm.  The column vector 0 is o

(:)

and any
0

0

dependence Crx, + C,x, + . . . + Cnx, = 0 is equivalent to a

solution of the equations

arrxr + a12x2 + . . . + a lnxn  = O

(1) :

amlxl  + amZx2  + . . . + a nmxn  = 0.

Any  change in the order in which the rows of the matrix are written

gives rise  to the same  system of equations and, hence, does  not change

the column rank of the matrix, but also does  not change the row rank

since the changed  matrix would have the same  set of row vectors. Cal1

c the right column rank and r the left row rank of the matrix. By the

above remarks we may assume that the first r rows are independent row

vectors. The row vector space  generated by a11 the rows of the matrix

has, by Theorem 1, the dimension r and is even generated by the first

r rows. Thus, each  row after the rth  .1s linearly expressible in terms of

the first r rows. Consequently, any solution of the first r equations in

(1) Will be a solution of the entire  system since any  of the last n-r

equations is obtainable as a linear combination of the first r. Con-

versely, any solution of (1) Will also be a solution of the first r

equations. This means  that the matrix
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%la12- * .%n
. .( 4. .

. .

arr ar2.  . . a rn

consisting of the first r rows of the original matrix has the same  right

column rank as the original. It has also the same  left row rank since

the r rows were chosen  independent. But the column rank of the ampu-

tated matrix car-mot exceed r by Theorem 3. Hence,  c < r. Similarly,-

calling c’ the left column rank and r’ the right row rank, c’ < r’.-

If we form the transpose of the original matrix, that is, replace rows by

columns and columns by rows, then the left row rank of the transposed

matrix equals the left column rank of the original. If then to the

transposed matrix we apply the above considerations  we arrive at

r < c and r’ < c’.- -.

E. Non-homogeneous Linear Equations.-

The system of non-homogeneous linear equations

arrxi + ar2x2  + . . . + alnxn = bl

azlxl + . . . . . . . . . . . + aznxn  = b2

(2) :

amlxl  + . . . . . . . . . . . + a x ilmm=  n-8

has a solution if and only if the column vector lies

in the space  generated by the vectors

(..)- (i:-)
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This means that there is a solution if and only if the right column rank of

the matrix 51..  .%n

ii 4

is the same  as the

a ml’ . . amn

right column rank of the augmented matrix
51. . * %A

. .

i! i

. .

. .

a
ml* * ’ arnnb,

since the vector space generated by the original must be the same as

the vector space generated by the augmented matrix and in either case

the dimension is the same  as the rank of the matrix by Theorem 2.

By Theorem 4, this means that the row tanks are equal. Con-

versely, if the row rank of the augmented matrix is the same  as the row

rank of the original matrix, the column ranks Will  be the same  and the

equations Will  have a solution.

If the equations (2) have a solution, then any  relation among the

rows of the original matrix subsists among the rows of the augmented

matrix. For equations (2) this merely means that like combinations

of equals are equal. Conversely, if each relation which subsists be-

tween the rows of the original matrix also subsists between the rows

of the augmented matrix, then the row rank of the augmented matrix

is the same  as the row rank of the original matrix. In terms of the

equations this means that there Will  exist a solution if and only if

the equations are consistent, Le.,  if and only if any  dependence

between the left hand sides  of the equations also holds between the

right sides.
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THEOREM 5. If in equations (2) m = n, there exists a unique

solution if and only if the corresponding homogeneous equations

arrxr + arzxz + . . . + alnxn  = 0

anlxl + an2x2  + . . . + annxn  =  0

have only the trivial solution.

If they have only the trivial solution, then the column vectors

are independent. It follows that the original n equations in n unknowns

Will  have a unique solution if they have any  solution, since the differ-

ence, term by term, of two distinct solutions would be a non-trivial

solution of the homogeneous equations. A solution would exist since

the n independent column vectors form a generating system for the

n-dimensional space  of column vectors.

Conversely, let us suppose our equations have one  and only one

solution. In this case, the homogeneous equations added term by

term to a solution of the original equations would yield a new solu-

tion to the original equations. Hence, the homogeneous equations have

only the trivial solution.

F. Qeterminants.  l)

The theory of determinants that we shall develop in this chapter

is not needed in Galois theory. The reader may,  therefore, omit this

section if he SO desires.

We assume our field to be c o m m ut a t i v e and consider the

square matrix
1) Of the preceding theory only Theorem  1, for

homogeneous equations and the notion of
linear dependence are assumed known.
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(1)

allalz*  . . . %n

a21a22~**.%( J. . . . . . . . . . . .

an1 an2. . . . a nn

of n rows and n columns. We shall define  a certain function of this

matrix whose value is an element of our field. The function Will be

called the determinant and Will be denoted by

%1%2. . . .%n

%!1a22--.‘a2n

. . . . . . . . . . . .

n,?l,*  *.  ‘?ln

o r b y  D(A,,A,,... An)  if we wish to consider it as a function of the

column vectors A,, A,, . . . A,, of (1). If we keep a11  the columns but A,

constant and consider the determinant as a function of A,, then we

Write DJ  Ak)  and sometimes even only D.

Definition. A function of the column vectors is a determinant if

it satisfies the following three axioms:

1. Viewed as a function of any column A, it is linear and homogeneous, i.e..,

( 3 )  &(A,  + 4) =  Dk(Ak)  +  &(A;)

(4) D,(cA,)  = c-D,(A,  >

2. Its value is = 01)  if the adjacent columns A, and Ak+l  are equal.

3. Its value is = 1 if a11 A, are the unit vectors U,  where

1) Hencefor th ,  0  Will  denote  the  zero  element
of a field.



(5) “, f);“*=(I)  . . . . . ;-iii

The question as to whether determinants exist Will be left open

for the present. But we derive  consequences from the axioms:

a) If we put c = 0 in (4) we get: a determinant is 0 if one  of

the columns is 0.

b) Dk(Ak)  =  &(A,  +  CA,,,)or a determinant remains unchanged
-

if we add a multiple of one column to an adjacent column. Indeed

%(A,  +  CA,,,)  =  Dk(Ak)  +  cD,(A,+,)  =  Dk(Ak)-

because of axiom 2.

c) Consider the two columns A, and Ak+i.  We may replace them by

A, and Ak+i  +  A k; subtracting the second from the first we may replace

.them by - Ak+i  and Ak+i  + A,, adding  the first to the second we now

.have - Ak+r  and A,, finally, we factor  out -1. We conclude: a determi-

nant changes sign if we interchange two adjacent columns.

d) A determinant vanishes if any  two of its columns are equal.

Indeed, we may bring the two columns side by side after an interchange

of adjacent columns and then use axiom 2. In the same  way as in b)

and c) we may now prove the more general rules:

e) Adding  a multiple of one  column to another does  not change

the value of the determinant.

f) Interchanging any two columns changes the sign of D.
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g> Let(v,,v,,... vn) be a permutation of the subscripts

(1,2,,  . . . n). If we rearrange the columns in D( At,,i, AV2,  . . . , A,, )
n

until they are back  in the natural order, we see that

WAvl,Av  >...y
2

A, ) = +D(A,,A,  ,...> An).

Here 2 is a definite sign that do:s  not depend  on the special  values

of the A,. If we substitute U,  for A, we see that

WJl,JJv2,...,
1

U, ) = i 1 and that the sign depends  only on the

permutation of the tnit  vectors.

Now we replace each vector A, by the following linear combina-

tionAkofAr,A2,...,A,:

(6) A; = brkA,  + b,,A,  + . . . + b,,A,.

In computing D(Ai  ,A;,  . . . , AA)  we first apply axiom 1 on A;

breaking up the determinant into a sum; then in each term we do the

same with A;  and SO on. We get

( 7 )  D(A;,A;,...,A;)= 2 D(b,  ,A, ,bv22Av  >. . . Jj, ,AI, >
v1  ,v2*.  ,v, 1 1 2 n n

= c b,
VI,V2, * *.  ,vn 1

;b,
2

2.. . ..b,nD(Ar,
n 1

,A,, . . . ,A, )
2 I - 4

where each vi  runs  independently from 1 to n. Should two of the indices

vi  be equal, then D( Avl, A, , . . . ,
2

AV,) = 0; we need therefore keep

only those terras in which ( vi, v2,  . . . , vn)  is a permutation of

(1,2,..., n). This gives

(8) D(A;,A;,...,A;)

= D(A,,A2  ,...> A,). 2
( vl, * * * 9Vn)

+ bv1,.bv2,  . . . . .b,  n
n

where(v1,v2,..., v,)  runs through a11  the permutations of

(1,2,..., n) and where L stands for the sign associated with that

permutation. It is important to remark that we would have arrived at

the same formula (8) if our  function D satisfied only the first two
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of our axioms.

Many  conclusions may be derived from (8).

W’e  first assume axiom 3 and specialize the 4,  to the unit vec-

tors Uk of (5). This makes 4 = B,  where B,  is the column vector  of

the matrix of the bik.  (8) yields now:

(9) WBl,B2,...,B,,)=(V 2
1 >UZ’...’ vn  > -

+ bVll+V2î-bv n
n

giving us an explicit  formula for determinants and showing that they are

uniquely determined by our axioms provided they exist at all.

W’ith  expression (9) we retum to formula (8) and get

(10) D(A;,A;  ,...>  A;)  = D(A,,A,  ,...>  A,)D(B,,B,  ,...>  Bn).

This is the so-called multiplication theorem for determinants. At

the left of (10) we have the determinant of an n-rowed matrix whose  ele-

ments cik are given by
n

(11) Cik = x ?vbwv=1

cik is obtained  by multiplying the elements of the i - th row of

WA,,A,,..., AJbythoseofthek-thcolumnofD(B,,B,,...,B,.,)

and adding.

Let us now replace D in (8) by a function  F(A,, . . . , A,) that

satisfies only  the first two axioms. Comparing with (9) we find

F(A;,A;  ,...,  A;)=F(A,  >...,  AJD(BI,B2  ,...>  B,).

Specializing A, to the unit vectors U,  leads to

(12) F(B,,B,,  . . . ,B,)  = c.D(B,,B,,  . . . ,B,)

with c = F(U,,U,,.  . . ,U”).
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Next we specialize (10) in the following way: If i is a certain

subscript  from 1 to n-l we put A, = U, for k f i, i+ 1

Ai  = Ui + Ui+r , Ai+, = 0. Then D( A,, A,, + . . , A, ) = 0 since one  col-

umn is Q,  Thus, D(Ai  ,A;,  , . . , An)  = 0; but this determinant differs

from that of the elements bj,  only in the respect that the i+l-st  row

has been made equal to the i-tb. We therefore see:

A determinant vanishes if two adjacent rows are equal.

I&ch term in (9) is a product  where precisely one  factor cornes

from a given row,  say,  the i-th. This shows that the determinant is

linear and homogeneous if çonsidered as function of this row. If,

finally, we Select  for eaeh raw  the corresponding unit vector, the  de-

terminant is = 1 since the matrix is the same as that in which the col-

umns  are unit vectors. This shows that a determinant satisfies our

three axioms  if we consider it as function of the row vectors. In view

of the uniqueness it follows:

A determinant remains  unchanged if we transpose the row  vec-

tors into column  vectors, that is, if we rotate the matrix about  its

main diagonal.

A determinant vanishes if any  two rows are equal. It changes

sign if we interchange any  two rows. It remains unchanged if we add

a multiple of one  row  to another.

We shall now prove the existence of determinants. For a 1-rowed

matrix a 1  1  the element ai 1 itself  is the determinant. Let us assume the

existence of (n - 1) - rowed determinants. If we consider the n-rowed

matrix (1) we may  associate with it certain (n - 1) - rowed determinants

in the following way: Let ai,  be a particular element in (1). We
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cancel  the i-th row  and k-th column in (1) and take the determinant

of the remaining (n - 1) - rowed matrix. This determinant multiplied by

(-l)i+k Will  be called the cofactor of a ik and be denoted by Ai,.

The distribution of the sign (- 1) i+k follows the chessboard pattern,

namely,

. . . . . . . .

Let i be any  number from 1 to n. We consider the following

function D of the matrix (1):

(13) D = ailAi,  + ai2Ai,  + . . + ainAi,.

[t is the sum of the products  of the i-th Tow  and their cofactors.

Consider this D in its dependence on a given column, say,  A,.

For v f k, Au,  depends  linearly on A, and ai,  does not depend  on it;

for v =: k, Ai, does not depend  on A, but aik  is one  element of this

column. Thus, axiom 1 is satisfied. Assume next that two adjacent

columns A, and Ak+l are equal. For v f k, k + 1 we have then two

equal columns in Ai,  SO that A,, = 0. The determinants used in the

computation of Ai  k  and Ai  k+l are the same  but the signs are opposite

hence, Ai  k  = -Ai  k+l whereas ai  k  = a, k+l’ Thus D = 0 and axiom 2

holds. For the special  case A, = U,(  v = 1,2,.  . , n) we have

aiV = 0 for v  f i while a,, = 1, Aii  = 1. Hence, D = 1 and

this is axiom 3. This proves both the existence of an n-rowed
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determinant as well as the truth of formula (13),  the so-called develop-

ment of a determinant according to its i-th row. (13) may  be generalized

as follows: In our determinant replace the i-th row by the j-th row and

develop according to this new row. For i f j that determinant is 0 and

for i = j it is D:

D for j = i
(14) ajl *il + ajzAi2 t . . . + ainAi,, =

0 forj f i

If we interchange the rows and the columns we get the

following formula:

D for h = k
(15) a,,*  Ik t  aZr,A,,  + .  .  + a,hAnk  =

0 for h f k

Now let A represent an n-rowed and B an m-rowed square matrix.

By ( A 1, ( B \ we mean  their determinants. Let C be a matrix of n rows

and m columns and form the square matrix of n + m rows

where 0 stands for a zero matrix with m rows and n columns. If we con-

sider the determinant of the matrix (16) as a function ofthecolumns of A

only, it satisfies obviously the first two of our  axioms. Because of (12)

its value is c . 1 A 1 where c is the determinant of (16) after substituting

unit vectors for the columns of A. This c still depends  on B and con-

sidered as function of the rows of B satisfies the first two axioms.

Therefore the determinant of (16) is d. 1 A 1 . 1 B 1 where d is the special

case of the determinant of (16) with unit vectors for the columns of A

as well  as of B. Subtracting multiples of the columns of A from

C we cari  replace C by 0. This shows d = 1 and hence the formula
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(17)

In a similar fashion we could have shown

(18) A 0

I IC B
= \A\.  JBI.

The formulas (17), (18) are special  cases of a general theorem

by Lagrange that cari be derived from them. We refer the reader to any

textbook on determinants since  in most applications (17) and (18)

are sufficient.

We now investigate what it means for a matrix if its determinant

is zero. We cari  easily establish the following facts:

a) If A,, A,, . , . , An  are linearly dependent, then

DCA,,  A,, . . . t A,) = 0. Indeed one  of the vectors, say A,, is then a

linear combination of the other columns; subtracting this linear com-

bination from the column A, reduces it to 0 and SO D = 0.

b) If any  vector B cari be expressed as linear combination of

A,, A,, . . . >A, then D(A,,A,,.  . ., A,,) # 0. Returning to (6) and

(10) we may  Select  the values for bi,  in such  a fashion that every

A!  ,= I.Ji. For this choice the left side in (10) is 1 and hence

DCA,,&..., A,) on the right side f 0.

c)  Let A,, A,, . . . , A,, be linearly independent and B any  other

vector. If we go back to the components in the equation

Aix, + A,x,  + . . . + A,.,x,,+  By = 0 we obtain n linear homogeneous

equations in the n + 1 unknowns x i, x 2,. . . , xn, y. Consequently,

there is a non-trivial solution. y must be f 0 or else the

ApAz,...,& would be linearly dependent. But then we cari  compute

B out  of this equation as a linear combination of A,, A,, . . . , An.
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Combining these results we obtain:

A determinant vanishes if and only if the column vectors (or the

row vectors) are linearly dependent.

Another way of expressing this result is:

The set of n linear homogeneous equations

ail 3 + ai2x2  + . . . + ainx  =  0n ( i  =  1,2,...,n)

in n unknowns has a non-trivial solution if and only if the determinant

of the coefficients is zero.

Another result that cari  be deduced is:

If A1,A2>..., A,, are given, then their linear combinations cari

represent any other vector  B if and only if D (A *,  A,, . . . , An)  f 0.

Or:

The set of linear equations

(19) aiixI + ai2x2 + . . . + ainxn  = bi ( i  =  1,2,...,n)

has a solution for arbitrary values of the bi if and only if the determi-

nant ‘of  aik is f 0. In that case the solution is unique.

We finally express the solution of (19) by means  of determinants

if the determinant D of the aik is f 0.

We multiply for a given k the i-th equation with Ai, and add the

equations. (15) gives

( 2 0 )  D. xk = A,,b,  + A,,bz  + + Ankb, ( k  =  1,2,...,n)

and this gives xk. The right side in (12) may also be written as the

determinant obtained from D by replacing the k-th column by

b,, b,, . . , b”. The rule  thus obtained is known as Cramer’s rule.
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II FIELD THEORY

A. Extension Fields.-

If E is a field and F a subset of E which, under the operations

of addition and multiplication in E, itself forms a field, that is, if F is

a subfield of E, then we shall cal1 E an extension of F. The relation

of being an extension of F Will  be briefly designated by F C E. If

a,  P, y, . . . are elements of E, then by F(a, B, y, . . . ) we shall mean

the set of elements in E which cari  be expressed as quotients of poly-

nomials in a, p, y, . . with coefficients in F. It is clear that

F(a,/3,y,. . . ) is a field and is the smallest extension of F which con-

tains the elements a, p, y,. . We shall cal1 F(a, 6, y,. . . ) the field

obtained after the adjunction  of the elements a, @,  y, . . . to F, or the

field generated out  of F by the elements a, B, y, . . . . In the sequel a11

fields Will  be assumed commutative.. . ~.
If F C E, then ignoring the operation of multiplication defined

between the elements of E, we may  consider E as a vector space over

F. By the degree of E over  F, written (E/F), we shall mean  the dimen-

sion of the vector space E over  F. If (E/F) is finite,  E Will  be called

a finite  extension.

THEOREM 6. If F, B, E are three fields such  that

F C ES C E, then

WF)  = (B/F)  (E/B)  .

Let A1,A2,..., A,  be elements of E which are linearly

independent with respect to B and let C 1, C,, . . . , C s be elements
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of B which are independent with respect to F. Then the products Ci Ai

where i = 1,2,  . . . , s and j = 1,2, . . . , r are elements of E which are

independent with respect to F. For if 2  arj  C,A,  = 0, then
Lj

C(  iajj Ci ) Aj  is a linear combination of the A, with coefficients in B
j
and because the Aj  were independent with respect to B we have

pij Ci = 0 for each j. The independence of the Ci with respect to F

then requires that each aij = 0. Since there are r . s elements C,A, we

have shown that for each r 5 (E/B)  and s 5  (B/F)  the degree ( E/F )

> r . s. Therefore, ( E/F)  > (B/F)  ( E/B). If one  of the latter numbers- -

is infinite, the theorem follows. If both (E/B)  and (B/F)  are finite,

say  r and s respectively, we may  suppose that the Aj  and the Ci are

generating systems of E and B respectively, and we show that the set

of products Ci Aj  is a generating system of E over  F. Each A E E cari

be expressed linearly in terms of the Aj  with coefficients in B. Thus,

A = CBj Aj  . Moreover, each Bj being an element of B cari be ex-

pressed linearly with coefficients in F in terms of the Ci, i.e.,

Bj = Caij Ci,  j = 1,2, . . . , r. Thus, A = Xaij  CiAj  and the Cil form

an independent generating system of E over  F.

Corollary. If F C Fi C F, C . . . C F,,  then- -

(Fn/F)  =y (F,/F).(F,/F,  > .  .  .  (F,,/F,,i).

B. Polvnomials.

An expression of the form aOxn + a ix”-i+  . . . + an  is called  a

polynomial in F of degree n if the coefficients-~-
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a 01.  . . > a,., are elements of the field F and ao  f 0. Multiplication and

addition of polynomials are performed in the usual way ‘).

~4  polynomial in F is called reducible in F if it is equal to the

product of two polynomials in F each of degree at least  one.  Polyno-

mials which are not reducible in F are called irreducible in F.

If f (x ) = g(x) . h (x ) is a relation which holds between the

polynomials f (x ), g (x ), h (x ) in a field F, then we shall say that

g (x ) divides f (x ) in F, or that g ( x ) is a factor of f ( x ). It is readily- -

seen that the degree of f(x) is equal to the sum of the degrees of

g (x ) and h (x ), SO that if neither g ( x ) nor h ( x ) is a constant then

each has a degree less than f(x). It follows from this that by a finite

number of factorizations a polynomial cari  always be expressed as a

product of irreducible polynomials in a field F.

For any  two polynomials f (x ) and g (x ) the division algorithm

holds, i.e., f(x) = q(x).g(x)  + r(x) where q(x) and r(x) are

unique polynomials in F and the degree of r (x ) is less  than that of

g(x). ‘This  may  be shown by the same argument as the reader met in

elementary algebra in the case of the field of real or complex numbers.

We also see that r(x) is the uniquely determined polynomial of a de-

gree less than that of g (x ) such  that f(x) - r (x ) is divisible by

g (x ). We shall cal1 r (x ) the remainder of f (x ).

1)  I f  we  speak  o f  t h e  s e t  o f  a11  polynomials
o f  d e g r e e  lower  than  II,  we shall  agree  to
include the polynomial  0  in  this  set ,
though i t  has no degree in the proper  sense.
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Also, in the usual way, it may  be shown that if a is a root of

the polynomial f (x ) in F than x - u is a factor of f (x ), and as a con-

sequence of this that a polynomial in a field cannot  have more roots

in the field than its degree.

Lemma. If f(x) is an irreducible polynomial of degree n in F,- -

then there do not exist two polynomials each of degree less than n in- -
F whose product is divisible by f(x).- -

Let us suppose to the contrary that g(x) and h(x) are poly-

nomials of degree less than n whose product is divisible by f(x).

Among a11  polynomials occurring in such  pairs we may  suppose g(x)

has the smallest degree. Then since f(x) is a factor of g(x) . h (x )

there is a polynomial k(x) such  that

k(x).f(x) = g(x).h(x)

By the division algorithm,

f(x) = q(x).g(x)  + r(x)

where the degree of r (x ) is less  than that of g(x) and r (x ) f 0

since f(x) was assumed irreducible. Multiplying

f(x) = q(x).g(x)  + r(x)

by h (x ) and transposing, we have

r(x),h(x) = f(x).h(x)-q(x).g(x).h(x)=f(x).h(x)-q(x).k(x).f(x)

from which it follows that r(x) . h (x ) is divisible by f (x ). Since r (x )

has a smaller degree than g(x), this last is in contradiction to the

choice of g (x ), from which the lemma follows.

As we saw, many  of the theorems of elementary algebra

hold in any  field F. However, the so-called Fundamental

Theorem of Algebra, at least in its customary form, does not

hold. It Will  be replaced  by a theorem due to Kronecker
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which guarantees for a given polynomial in F the existence of an ex-

tension field in which the polynomial has a root. We  shall also show

that, in a given field, a polynomial cari net  only be factored into irre-

ducible  factors, but that this factorization  is unique up to a constant

factor. The uniqueness depends  on the theorem of Kronecker.

C. Algebraic  Elements.

Let F be a field and E an extension field of F. If a is an ele-

ment of E we may  ask whether there are polynomials with coefficients

in F which have a as root.  a ia çalled  algebraic  with respect to F if.-

tkere are such  polynomials. New  let a be algebraic and Select  among ail

polynomials in F which have a as root one,  f(x), of lowest degree.

We may  assume that the highest coefficient of f(x) La  1. We  con-

tend that this  f(x) ia uniquely  determined, that it ts trreducible  and

that each polynomial in F w#r  the root  o is divisible  by f (x ). If, in-

deed,  g ix  ) !w  a palynomial  in F with g(a) = 0, we may  divide

g(x) == f(x)q(x)  t r(x) where r(x) bas a degree smaller  than  tha t

of f(x). Substituting x = a we get  r(o)  = Q: Dow  r(x) has to he

identically  0 since otherwise r (x > would havg  the  root a apd  be  of

lower degree thap f (x ): SO  g ( x ) ia divisible by f (x )!  Thia  also shows

the uniqueness of f (x ). If f (x ) were not irreducible,  one  of the  factors

wopld have to vanish for x = a contradicting  again  the  choice  of f ( y ).

We consider now  the subset  E0 of the  following  elements

8 of E:
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8 = g(a) = CO  + cla  + c2a2  + . . . + CnTlanel

where g(x) is a polynomial in F of degree less than n (n being the de-

gree of f(x)). This set l$,  is closed under addition and multiplication.

The latter may  be verified as follows:

If g (x ) and h (x ) are two polynomials of degree less than n we

put g(x)h(x) = q(x)f(x)  + r(x) and hence g(a)h(a)  = r(a).

Finally we see that the constants cO,  c 1, . . , cr,i  are uniquely deter-

mined by the element 8. Indeed two expressions for the same 0 would

lead after subtracting to an equation for a of lower degree than n.

We remark that the interna1 structure of the set EO does not de-

pend on the nature of a but only on the irreducible f (x ). The knowledge

of this polynomial enables us to perform the operations of addition and

multiplication in our set EO.  We shall see very soon that E, is a field;

in fact,  EO is nothing but the field F(a). As soon as this is shown we

have at once the degree, ( F (a) /F),  determined as n, since  the space

F(a) is generated by the linearly independent 1, a, a2,  . . . , an-l.

We shall now try to imitate  the set EO without having an exten-

sion field E and an element a at our disposal. We shall assume only

an irreducible polynomial

f(x) = x” + a xn-i +n-l . . . + aO

as given.

We Select  a symbol  6 and let E, be the set of a11  forma1

polynomials

g(5‘)  = CO  + c,c  + . . + cnJy-l

of a degree lower than n. This set forms a group under

addition. We now introduce besides the ordinary multiplication
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a new  kind  of  multiplication  of  two elements  g  (5)  and  h  (4)  of  E i

denoted  by  g  ([) x h  (5). It is defined as the  remainder  r (6)  of  the

ordinary  product  g (6)  h(c) un  erd  d ivision  by  f (4‘ ). We  first  remark

that  any  product  of  m terms  gi(  c),  gz( t), . . . , g,(  0  is again the  re-

mainder of  the ordinary  product  g  i( 5) g,(  5). . . g,(  5).  This  is true by

definition  for  m = 2  and  follows  for  every m by  induction if we just

prove  the  easy  lemma: The remainder of  the  product  of  two remainders

(of  two polynomials)  is the  remainder  of  the  product  of  these two

polynomials.  This  fact shows  that our  new  product  is associative  and

commutative  and  also that the  new  product  g  i( 4) x g,(  4) x . . . x  g  I[)

Will  coincide  with the  old product  g  i( 5) g,(  6). . . g,(  6) if the  latter

does not  exceed  n in degree.  The distributive  law for  our  multiplication

is readily  verified.

The set E i contains  our  field  F and  our  multiplication  in E, has

for  F the meaning of  the  old multiplication.  One  of  the  polynomials  of

E, is ç:. Multiplying it i-times  with itself,  clearly  Will  just lead to  ti

as long,  as i < n.  For  i = n  this  is not  any  more the  case since  it

leads to  the  remainder  of  the  polynomial 5”.

This  remainder  is

5” - f(t)  = - a,-&“-‘-  anJn-*-  . . . - a,.

We  now  give up  our  old multiplication  altogether  and  keep only

the  new  one;  we also change notation, using the  point (or  juxtaposition)

as symbol  for  the new  multiplication.

Computing in this  sense

c, + Cl[  + c*p  + . . . + c,-lp-l

Will  readily  lead to  this  element,  since  a11  the degrees
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involved are below n. But

5”  = - anyl[n-l-  a,-2[n-2-  . . . - a0.

Transposing we see that f(ç)  = 0.

We thus have constructed a set E, and an addition and multipli-

cation in E r that already satisfies most of the field axioms. E r contains

F as subfield and 5‘ satisfies the equation f (5)  = 0. We next have to

show: If g ( 6) $  0 and h ( .$) are given elements of E r, there is

an element

X(l$> = x, + x1( + . . . + X,J--1

in E, such  that

g(Ç)  *X(t)  = h(t).

TO prove it we consider the coefficients xi of  X (6)  as unknowns and

compute nevertheless the product on the left side,  always reducing

higher powers of [ to lower ones.  The result is an expression

L, + LJ + . . + L,-, (““where  each Li is a linear combination of

of the xi with coefficients in F. This expression is to be equal to

h(t); this leads to the n equations with n unknowns:

L, = b,,  L, = b,,  . . . > L,-, = b,-,

where the bi  are the coefficients of h(E).  This system Will  be soluble

if the corresponding homogeneous equations

L, = 0, L, = 0, * . . > L,-r =  0

bave  only the trivial solution.

The homogeneous problem  would occur if we should ask for

the set of elements X(Q) satisfying g (5) . X ( 6) = 0. Going back

for a moment to the old multiplication this would mean  that the

ordinary product g( 6) X (6) has the remainder 0, and is
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therefore divisible by f(t). According to the lemma, page 24, this is

only possible for X (6)  = 0.

Therefore E, is a field.

Assume now that we have also our old extension E with a root

a of f(x), leading to the set E,. We see that E, has in a certain sense

the same structure as E 1 if we map the element g (6)  of E 1 onto  the

element g(a) of EO.  This mapping Will  have the property that the image

of a sum of elements is the sum of the images, and the image of a

product is the product of the images.

Let  us therefore define: A mapping u of one  field onto  another

which is one  to one  in both directions such  that

o(a+~)  = o(a)  + CT(~) and O(U.@)  = o(a).  o(p)  is called an

isomorphism. If the fields in question are not distinct - i.e., are both~-

the same field - the isomorphism is called an automorphism. Two

fields for which there exists an isomorphism mapping one  on another

are called isomorphic. If not every element of the image field is the image

under o of an element in the first field, then 0 is called an isomorphism

of the first field into the second. Under each isomorphism it is clear

that o(O)  = 0 and o(  1) = 1.

We see that E, is also a field and that it is isomorphic to E,.

We now mention a few theorems that follow from our discussion:

THEOREM 7. (Kronecker). If f (x ) is a polynomial in a field F,

there exists an extension E of F in which f(x) has a root.
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Proof:  Construct  an extension field in which an irreducible

factor of f ( x ) has a root.

THEOREM  8. Let o be an isomorphism mapping a field F on a

f i e l d  F’ Let f (x ) be an irreducible polynomial in F and f ’ (x ) the cor-~~

responding polynomial in F ’ . If E = F (B)  and E ’ = F ’ (@‘) are exten--~
sions of F and F’  , respectively, where f(p)  = 0 in E and f ’ ( p ‘) = 0 in E’ ,~~

then o’ cari be extended to an isomorphism between E and E ’ .

Proof:  E and E’ are both isomorphic to EO.

D. Splitting Fields.

If F, B and E are three fields such  that F C B C E, then we

shall refer to B as an intermediate field.

If E is an extension of a field F in which a polynomial p(x) in F

cari be factored into linear factors, and if p(x) cari  not be SO factored

in any intermediate field, then we cal1  E a splitting field for p(x). Thus,

if E is a splitting field of p(x), the roots of p(x) generate E.

A splitting field is of finite  degree since it is constructed by a

finite  number of adjunctions  of algebraic elements, each  defining an

extension field of finite  degree. Because of the corollary on page 22,

the total degree is finite.

THEOREM 9. If p(x) is a polynomial in a field F, there exists-~~

a splitting field E of p(x).~~

We factor p (x ) in F into irreducible factors

f,(x) . . . f*(x) = p(x). If each  of these is of the first

degree then F itself is the required splitting field. Suppose

then that fi(x)  is of degree higher than the first. By
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Theorem 7 there is an extension Fr of F in which f r( x ) has a root.

Factor  each  of the factors f r( x), . . . , fr( x ) into irreducible factors in

Fr and proceed as before. We finally arrive at a field in which p (x)

cari be split into linear factors. The field generated out  of F by the

roots of p(x) is the required splitting field.

The following theorem asserts that up to isomorphisms, the

splitting field of a polynomial is unique.

THEOREM 10. Let (T  be an isomorphism mapping the field F on

the field F’  , Let p (x ) be a polynomial in F and p ’ (x ) the polynomial~~

in F ’ with coefficients corresponding to those of p (x ) under 0. Finally,--~

let E be a splitting field of p(x) and E’  a splitting field of p’  (x).~-
Under these conditions the isomorphism o cari be extended to an~~

isomorphism between E and E’  .

If f(x) is an irreducible factor  of p(x) in F, then E contains  a

root of f( x ). For let p (x )=(x-a J (x-a, ) . . (x-a .) be the splitting of

p(x) in E. Then (x-ar)(x-a,).  . .(x-as)  = f(x) g(x). We consider

f(x) as a polynomial in E and construct  the extension field B = E(a)

inwhichf(a)  = 0. Then(a-aI).(a-a2)...:(a-as)  = f(a).g(a)  = 0

and a-ai  being elements of the field B cari  have a product  equal to 0

only if f’or  one  of the factors, say  the first, we have a-a1 = 0. Thus,

a = al,  and a1  is aroot of f(x).

Now in case a11 roots of p(x) are in F, then E = F and p(x)

cari be split in F. This factored form has an image in F’  which is a

splitting, of p’  (x), since the isomorphism o preserves a11 operations

of addition and multiplication in the process of multiplying out the
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cari be split in F’ , we must have F ’ = E ’ . In this case, o itself is

the required extension and the theorem is proved if a11  roots of p(x)

are in F.

We proceed by complete  induction. Let us suppose the theorem

proved for a11  cases in which the number of roots of p(x) outside of F

is less than n > 1, and suppose that p (x ) is a polynomial having n

roots outside of F. We factor p (x ) into irreducible factors in F;

p(x) = f,(x) fJx) . . f,(x). Not a11  of  these factors  cari be of

degree 1, since otherwise p (x ) would split in F, contrary to assump-

tion. Hence, we may  suppose the degree of f 1( x) to be r > 1. Let

f’,(x).f\(x) . . . f;(x) = p’(x) be the factorization of p’(x) into

the polynomials corrrespondng to f 1( x ) , . . . , fm( x ) under O.  fi (x )

is irreducible in F ’ , for a factorization of fi (x) in F ’ would induce 1)

under 0-l a factorization of f,(x), which was however taken to

be irreducible.

By Theorem 8, the isomorphism o cari  be extended to an isomor-

phism ol,  between the fields F(a)  and F ’ (a’  ).

Since F C F(a), p(x) is a polynomial in F(U) and E is a

splitting field for p(x) in F(a). Similarly for p ’ (x). There are now

less than n roots of p (x ) outside the new ground field F (a). Hence

by our inductive assumption o1  cari  be extended from an isomorphism

between F(a)  and F ’ (a ’ ) to an isomorphism o2  between E and E ’ .

Since u,  is an extension of (T,  and o2  an extension of o,,  we conclude

u2  is an extension of u and the theorem follows.

1)  See page 38 for the definition of (2-l.
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Corollary.  If p(x) is a polynomial in a field  F, then  any  two-~

splitting  fields  for  p  (x ) are isomorphic.--
This  follows  from  Theorem  10 if we take  F = F ’ and  o to  be  the

identity mapping,  i.e., o(x) = x.

As  a consequence  of  this  corollary  we see that we are justified

in using the  expression  ‘?he splitting  field  of  p(x)” since  any  two

differ only by  an  isomorphism.  Thus,  if p (x ) has repeated roots in one

splitting  field,  SO  also in any  other  splitting  field  it Will  have  repeated

roots.  The  statement  “p(x) has repeated roots”  Will  be  significant

without  reference  to  a particular  splitting  field.

E. Unique  Decomposition  of  Polynomials  into Irreducible  Factors.---

THEOREM 11. If p(x) is a polynomial in a field  F, and  if--

p(x) = pi(x).p,(x)...  . .p,(x) = qi(x).q*(x)...  . . qs(x)  are two~-
factorizations  of  p(x) into  irreducible  polynomials  each of  degree at

least  one,  then  r = s and  after a suitable  change  in the  order  in which~-
the  q’s are written, p,(x)  = ciqi(x),  i = 1,2,.  . ,r, and  ci 6 F.~-

Let F(a)  be  an  extension  of  F in which p i(a)  = 0. We  may

suppose  the  leading  coefficients  of  the  pi( x  ) and  the  qi( x  ) to  be  1, for,

by  factoring  out  a11  leading  coefficients  and  combining, the  constant

multiplier  on  each side of  the  equation must  be  the  leading  coefficient

of  p  (x ) and  hence cari be  divided out  of  both  sides  of  the  equation.

Since 0 = ~~(a).~~(a).  . . . .~,(a)  = p(a)  = si(a)..  . . .4,(a) and

since a product  of  elements  of  F(a)  cari be  0 only if one  of  these is 0,

it follows  that  one  of  the  qi( a), say  qi(  a), is 0. This  gives (see page

25)p,(x) = si(x). Thus~,(x).~,(x).....~,(x)

= Pdx).q,(x).  . . .q,(x) or
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pi(x).[p,(x)..  . . .p,(x)  - q*(x)..  . . .qs(x)]  = 0. Since the product

of two polynomials is 0 only if one of the two is the 0 polynomial, it

follows that the polynomial within the brackets  is 0 SO that

p,(x) . . . .p,(x)  = q*(x).  . .: q.(x).  If we repeat the above argument

r times we obtain p,(x)  = si(x),  i = 1,2,.  . , r. Since the remaining

q’s must have a product 1, it follows that r = s .

F. Group Characters.-~-- -

If G is a multiplicative group, F a field and o a homomorphism

mapping G into F, then o is called a character of G in F. By homomor-

phism is meant a mapping u such  that for a, fi any two elements of G,

o(a).a(B)  = a(a.@)ando(a)  f O f o r a n y a .

(If o(a) = 0 for one element a, then o(x) = 0 for each  x t G, since

o( ay)  = o(a).  o(y) = 0 and ay  takes a11 values in G when y assumes

a11 values in G).

The characters or, 02,. . . , onare  called dependent if there exist

elements a r, a,, . . . , a,, not a11 zero in F such  that

a,o,(x)  + a202(x) + . . . + anon = 0 for each  x t G. Such  a de-

pendence relation is called non-trivial. If the characters are not

dependent they are called independent.

THEOREM 12. If G is a group and or, u2,. . . , on are n mutu-

ally distinct characters of G in a field F, then oi,  02,. . . , on

are independent.

One character cannot  be dependent, since a rcr( x) = 0 implies

a1 = 0 due to the assumption that or(x)  f 0. Suppose n > 1.
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We make the inductive assumption that no set of less than n distinct

characters is dependent. Suppose now that

aru,  i a,o,(x> + .  . + angn(  x) = 0 is a non-trivial dependence

between the u’s.  None of the elements ai is zero, else we should have

a dependence between less than n characters contrary to our induc-

tive assumption. Since  or and un are distinct, there exists an element

a in G;  such  that or (a) f o”(a).  Multiply the relation between the

u’s b y  a-rWe obtain a relationn

( * ) bru,(x)  + .  .  .  + b,.r on-r(x)  + o,(x) = 0, bi =  air  ai f 0.

Replace in this relation x by ax. We have

b,o,(a)ol(x)  + .  .  + b,-,  un.,  (a>un.,(x>  +  un(a  (x> =  0,

o r  a, ( a  j’b,u,(a)u,  ( x )  +  .  + U,(X)  =  0 .

Subtracting the latter from (*) we have

(**>  [b,  - un (a)-‘blul  (a>la,(x) t - .  + cn.lun.l  (x) =  0 .

The c’oefficient  of ur (x ) in this relation is not 0, otherwise we should

h a v e  b, = u, (a)-‘b,al  (a), SO that

q, (a)b,  = blo,(a)  = u,(a)b,

and since b, f 0, we get a,( a) = ur (a) contrary to the choice of a.

Thus, (* * ) is a non-trivial dependence between u r, g2,  . ,v”- 1 which

is contrary to our inductive assumption.

Corollary. If E and E’ are two fields, and q , u2, . . , un are n

mutually distinct isomorphisms mapping E into E ’ , then u, , . , u,

are independent. (Where “independent”  again means  there exists no

non-trivial dependence a ru r (x ) + . + anun  (x ) = 0 which holds for

every x 6 E).

This follows from Theorem 12, since E without the 0 is a group
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and the u’s defined in this group are mutually distinct characters.

If oi > a2 > . . . , u, are isomorphisms of a field E into a field E’ ,

then each  element a of E such  that o*(a)  = o,(a) = . . . = on(a)

is called a fixed point of E under oi , 02, . . . , o,., . This name  is

chosen  because in the case where the u’s are automorphisms and ui

is the identity, i.e., u1 (x) = x, we have ui (x) = x for  a

fixed point.

Lemma. The set of fixed points of E is a subfield of E. We

shall cal1  this subfield the fixed field.

For if a and b are fixed points, then

ui(a  -1  b) = u,(a) + u,(b)  = uj (a) + oj  (b) = uj (a + b) and

uj(a.b)  =  ui(a).ui(b)  =  uj (a).uj(b)  =  uj (a.b).

Finally from u,(a)  = aj (a) we have (uj(a))-’  = (u,(a))-’

= ~,(a-‘)  = uj ( a - ‘ ) .

Thus,  the sum and product  of two fixed points is a fixed point, and

the inverse of a fixed point is a fixed point. Clearly, the negative of a

fixed point is a fixed point.

THEOREM 13. If cri,. . . >un are n mutually distinct isomorphisms

of a field E into a field E’ , and if F is the fixed field of E, then

(E/F:)  > n .L

Suppose to the contrary that (E/F)  = r < n. We shall show that

we are led to a contradiction. Let w i, o 2,  . . . , o, be a generating sys-

tem of E over  F. In the homogeneous linear equations
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ul(ol)xl + u*(w1)x2  + . . . + u,(wl)x,  =  0

OI(OZ)XI + u2(o*)x2  + . . . + u,(o*)xn =  0

UI(W,)XI  + u*(or)x2  + . . . + un(o,)xn  =  0

there are more unknowns than equations SO that there exists a non-

trivial solution which, we may  suppose, x r, x 2,  . . . ,x, denotes.  For

any  element a in E we cari find ar,  a2,.  . . , a, in F such  that

a = aIci>,  f . . . + a,o,. We multiply the first equation by o 1 ( a 1 ),

the second by o1  (a ,J, and SO on. Using that ai 6  F, hence that

ol(ar)  = oj (ai)and  also tha t  oj(ai)  oj(ai)  = oj(aiwi),

we obtain

ol(a,wI)x, + .  .  .  +  on(a,o,)x =  0n

oI(ar~,)xl  + .  .  .  + on(arWr)x  =  0 .n

Adding  these last equations and using

oi(a,o,) + oi(a2W2)  + . . . + oi(aro,)  = oi(a,o,  + . . . + aru,)  = ai(Q)

we obtain

o,(a)x,  + o,(a>x, + . . . + un(a)xn  = 0.

This, however, is a non-trivial dependence relation between or,  02, . . . , on

which cannot  exist according to the corollary  of Theorem 12.

Ciorollary.  If or,  u2, . . . , cr,, are automorphisms of the field E, and-
F is the fixed field, then (E/F) > n.-

If F is a subfield of the field E, and 0 an automorphism of E, we

shall say  that u leaves F fixed if for each element a of F, o(a) = a.
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If o and r are  two automorphisms  of E, then  the mapping  o( r( x)) written

briefly  ur is an automorphism,  as the reader  may readily  verify.

[E.g., u~(x.Y) =o(r(~.~)) = o(r(~>.~(y)>  = a(~(x))~o(s(y))l.
We shall  cal1  UT  the product  of o and r. If o is an automorphism

(o(x)  = y),  then  we  shall  cal1  0-l the mapping  of y into  x, i.e.,o-‘(y)  = x

the inverse  of o. The reader  may readily  verify  that  o-r is an automor-

phism.  The automorphism  1 (x ) = x shall  be called  the

unit  automorphism.----

Lemma.  If E is an extension  field  of F,  the set G  of automorphisms-~

which  leave  F fixed  is a group.

The  product  of two automorphisms  which  leave  F fixed  clearly

leaves  F fixed.  Also,  the inverse  of any automorphism  in G  is in G.

The  reader  Will observe  that  G,  the  set of automorphisms  which

leave F fixed,  does  not necessarily  have  F as its  fixed  field.  It may be

that  certain  elements  in E which  do not belong  to  F are  left fixed by

every  automorphism  which  leaves  F fixed.  Thus,  the fixed  field  of G

may be larger than  F.

G. Applications  and Examples to  Theorem  13.

Theorem  13  is very  powerful  as the following  examples show:

1) Let k be a field  and consider the field  E = k (x ) of a11

rational  functions  of the variable  x. If we  map each  of the functions

f (x ) of E onto f(L) we  obviously  obtain  an automorphism  of E. Let us
X

consider  the following  six  automorphisms  where  f (x ) is mapped onto

f (x ) (identity),  f ( l-x), f ($),  f (l-i),  f (&)  and f (5)  and cal1  F the
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fixed point field. F consists  of a11  rational functions satisfying

(1) f ( x )  =  f ( l - x )  =  f(i) =  f(l-$)  =  f(A)  =  f($$.

It suffices  to check  the first two equalities, the others being conse-

quences. The function

(2) 1 = I(x)  = (x2  - x+1j3
x*(x-l)*

belongs to F as is readily seen. Hence, the field S = k (1) of a11

rational functions of 1 Will belong to F.

We contend: F = S and (E/F)  = 6.

Indeed, from Theorem 13 we obtain (E/F)  1 6. Since  S C F it

suffices  to prove (E/S) < 6. Now E = S(x). It is thus sufficient to-

find some  6-th degree equation with coefficients in S satisfied by x.

The following one  is obviously satisfied;

(x2  - x+1)3  -1.x2(x-1)2  =  0 .

The reader Will find the study of these fields a profitable exer-

cise.  At a later occasion he Will be able to derive a11  intermediate fields.

2 )  LetkbeafieldandE  = k(x,,x2,...,x,)thefieldofall

rational functions of n variables x1, x2, . . . , xn.  If (vi  , v2, . . . , Vu  ) is a

permutation of (1,2,  . . . , n) we replace in each function f (x 1,  x *, . . . , xn)

of E the variable x, by x
Vl ’

x2  by  x
1/2’.  . ’

xn  by  x1/ . The mapping of E
n

onto  itself obtained in this way is obviously an automorphism and we

may construct  n ! automorphisms in this fashion (including the identity).

Let F be the fixed point field, that is, the set of a11  so-called

“symmetric functions.” Theorem 13 shows that (E/F) > n ! . Let us in--

troduce the polynomial:

(3) f(t)  = (t-xr)(t-x2).  .  . (t-x,) = t” + a itn-i  + . + an



40

wherear  = - (x1 + x2 + . . . + x,); a2  .: + (x1x2  + x1x3 + . . . + xn-rxn)

and more generally ai is ( - 1)’ times the sum of a11  products of i differ-

erent variables of the set x1, x2, . . . , xn.  The functions a,, a*,  . . . , an

are called the elementary symmetric functions and the field

S = k(a,,a,,..., an  ) of a11  rational functions of a,, a2, . . . , ati  is

obviously a part of F. Should we suceed in proving ( E/S ) < n ! we-

would have shown S = F and (E/F)  = n ! .

We construct  to this effect  the following tower of fields:

S = S, c SnT1  c Snm2  . . . c S, c S, =  E

by the definition

( 4 )  sn  =  s; si =  s(xi+l ‘xi+*‘...‘xn)  =  si+l (xi+l  1.

It would be sufficient to prove ( Si-r/S,  ) < i or that the generator xi-

for Si-r  out  of S satisfies an equation of degree i with coefficients

in S, .

Such an equation is easily constructed. Put

(5) Fi (t> = f(t) Fi+,  (t)
(t-xi+l  )(t-Xi+*  ). . . (t-x,)  = (t-xi+l  )

and Fn  ( t ) = f ( t ). Performing the division we see that Fi  (t ) is a

polynomial in t of degree i whose highest coefficient is 1 and whose

coefficients are polynomials in the variables

a1 , azF  . . . , a,, and xi+r  , xi+2 , . . . , x,. Only integers enter as coefficients

in these expressions. Now xi is obviously a root of Fi  (t ) = 0.

Nowletg(x,,x,,..., xn)  be a polynomial in x1,x2,.  . . , xn.

Since Fr  ( xr  ) = 0 is of first degree in xr  , we cari  express x, as a

polynomial of the a,  and of x2, x3, . . . , xn . We introduce this expression

ing(x,,x,,..., xn).  Since F, (x2  ) = 0 we cari  express x2 or higher
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powers as polynomials in x3,  . . . , xn and the ai.  Since F, ( xg) = 0

we cari  express xi and higher powers as polynomials of x4,  x5,. . . , x,,

and the ai.  Introducing these expressions in g( xi, x2,. . . , xn)  we see

that we cari  express it as a polynomial in the xr, and the ar,  such that

the degree in xi is below i. SO g( xi, x2,  . . . , xn)  is a linear combination

of the following n ! terms:

(6)
Vl  V2 Un

x1 x2 . . . xn where each vi  5  i - 1.

The coefficients of these terms are polynomials in the ai  . Since the

expressions (6) are linearly independent in S (this is our previous

result), the expression is unique.

This  is a generalization of the theorem of symmetric functions in

its usual form. The latter says that a symmetric polynomial cari be

written. as a polynomial in ai,  a,, . . . , a,,. Indeed, if g(x,, . . . ,x,) is

symmetric we have already an expression as linear combination of the

terms (,6) where only the term 1 corresponding to vi  = v2  = . . . = v,,  = 0

has a coefficient # 0 in S, namely, g( xi,. . . , x,.,). SO g( xi, x2,.  . . , xn)

is a polynomial in a,, a2,.  . . , a,.

Hut our theorem gives an expression of any  polynomial, symmetric

or not.

H. Normal Extensions.

An extension field E of a field F is called a normal extension if

the group  G of automorphisms of E which leave F fixed has F for its

fixed field, and (E/F) is finite.

Mthough  the result in Theorem 13 cannot  be sharpened in general,
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there is one case in which the equality sign Will  always occur, namely,

in the case in which CT~,  02,  . . . , an  is a set of automorphisms which

form a group. We prove

THEOREM 14. If ol>  g2>.  . . , o,, is a group of automorphisms of a

field E and if F is the fixed field of g1 ,u*,. . . , on, then (E/F) = n.- -

Ifa,,o,,...,un is a group, then the identity occurs, say, u1 = 1.

The fixed field consists  of those elements x which are not moved by

any  of the U’S,  i.e., ai(x)  = x, i = 1,2,  . . . n. Suppose that (E/F  ) > n.

Then there exist n + 1 elements al, a*, . . . , a,,, of E which are

linearly independent with respect to F. By Theorem 1, there exists a

non-trivial solution in E to the system of equations

x1 q (a1  > + x2 q (a,  > + . . . + xn+,  q (a,,,  > = 0

x1 u2 (a1  > + x2 o2 (a2  > + . . . + xn+l  a2  ( a,+l > = 0
(’ >

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xlun(al) + x2un(a2)  + . . . + xn+lun(an+l>  = 0

We not.e that the solution cannot lie in F, otherwise, since u1 is the

identity, the first equation would be a dependence between a,, . . . , a n+l  .

Among a11  non-trivial solutions x1,  x2,  . . . , x,+~  we choose  one

which has the least number of elements different from 0. We may  sup-

pose this solution to be al, a*,  . . . , a,, 0, . . . , 0, where the first r

terms are different from 0. Moreover, r # 1 because a, u1 (a1  ) = 0

implies a1 = 0 since u1 (a, ) = a1 f 0. Also, we may  suppose ar  = 1,

since if we multiply the given solution by a;’ we obtain a new solution

in which the r-th term is 1. Thus, we have
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(*>  alUi(al  > +  a2Ui(a2 > +  a-.  +  ar.,ui(a,_l  > +  oi(ar>  =  0

for i = 1,2,  . . . , n. Since  ai, . . . , ar_i cannot a11  belong to F, one  of

these, say a 1, is in E but not in F. There is an automorphism ok  for

which o,,( a, ) # a1 . If we use the fact  that oi, 02, . . . , o,,  form a group,

we see ok.  gi, ok*  02,. . . ,ak.  an  is a permutation of Oi,oz,. . - tu,.

Applying ok  to the expressions in (*)  we obtain

Ukk(a,).UkQj(al  > + *f.  + ~~(ar-l)-~~Qj(a,-l)  + @kUj(ar)  = 0

for j = ‘l,2,.  . . , n, SO that from okaj = (T.1

(**>  Uk(al >Ui(al>  +  .  ..+ Uk(ar-l)Ui(a,-l  > + Ui(a,  > = 0

and if we subtract ( * * ) from ( * ) we have

[a,  - uk(al  >l. Qi(Q1  > + . .. + [ar-l  - uk(arel >l~i(Qr-l)  = 0

which is a non-trivial solution to the system (’ ) having fewer than r

elements different from 0, contrary to the choice  of r.

Corollary 1. If F is the fixed field for the finite  group G, then-

each automorphism u that leaves F fixed must belong to G.

(E/F) = order of G = n. Assume there is a u not in G. Then F

would remain fixed under the n + 1 elements consisting of u and the

elements of G, thus contradicting the corollary to Theorem 13.

Corollary 2. There are no two finite  groups G, and G, with the

same  fixed field.

This  follows immediately from Corollary 1.

If f(x) is a polynomial in F, then f(x) is called separable if its

irreducible  factors do not have repeated roots. If E is an extension of
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the field F, the element a of E is called separable if it is root of a

separable polynomial f(x) in F, and E is called a separable extension

if each element of E is separable.

THEOREM 15. E is a normal extension of F if and only if E is

the splitting field of a separable polynomial p(x) in F.- -
Sufficiency. Under the assumption that E splits p (x) we prove

that E is a normal extension of F.

If a11  roots of p(x) are in F, then our proposition is trivial, since

then E = F and only the unit automorphism leaves F fixed.

Let us suppose p(x) has n > 1 roots in E but not in F. We make

the inductive assumption that for a11  pairs of fields with fewer than n

roots of p(x) outside of F our proposition holds.

Let p(x) = pr(x).p,(x)..  .  . . pr(  x) be a factorization of p(x)

into irreducible factors. We may  suppose one of these to have a degree

greater than one, for otherwise p(x) would split in F. Suppose deg

p,(x) = s > 1. Let ai be a root of p,(x). Then (F(a, )/F)  = deg p,(x) = s.

If we consider F (ai  ) as the new ground field, fewer roots of p( x) than

n are outside. From the fact that p(x) lies in F(a, ) and E is a split-

ting field of p(x) over F( a1 ), it follows by our inductive assumption

that E is a normal extension of F(a, ). Thus, each element in E which

is not in F(a, ) is moved by at least one automorphism which leaves

F(a, ) fixed.

p (x) being separable, the roots ai  ,aZ, . . . , as of pi  (x) are a

distinct elements of E. By Theorem 8 there exist isomorphisms
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Ul>ff2>. f *, os  mappingF(a,)onF(a,),  F(a,),...,F(a,),

respect.ively,  which are each  the identity on F and map or on

a1,a2,...,as respectively. We now apply Theorem 10. E is a splitting

field of p(x) in F(a, ) and is also a splitting field of p(x) in F(ai  ).

Hence, the isomorphism oi,  which makes p(  x ) in F ( a1 ) correspond to

the same  p(x) in F( ai ), cari  be extended to an isomorphic mapping of

E onto :E,  that is, to an automorphism of E that we denote  again by oi.

Hence, u1,02,.  . . , os are automorphisms of E that leave F fixed and

map a1 ont0 a1,a2,.  . . a,.

Now let 8 be an element that remains fixed under a11 automor-

phisms of E that leave F fixed. We know already that it is in F (a 1 )

and hence  has the form

8 = CO  + CIaI  +  C2 a: +  . . . + csml  as-l

where the ci are in F. If we apply ui to this equation we get, since

Ui(0)  = 8:

8 = C,  +  CIai  +  C2af +  . . . + Csml  a:-’

The polynomial es-r xs-1 + csd2x s-z  + . . . + crx + (c Cl - 0)

has therefore the s distinct roots or, 02, . . . , as. These are more than

its degree. SO a11 coefficients of it must vanish, among them c 0 - 8.

This shows 8 in F.

Necessity.  If E is a normal extension of F, then E is spiitting

field of a separable polynomial p(x). We first prove the

Lemma. If E is a normal extension of F, then E is a separable-~

extension of F. Moreover any element of E is a root ofan  equation over

F which splits completely in E.
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Let (5,  , u2, . . . , o,  be the group G of automorphisms of E whose

fixed field is F. Let a be an element of E, and let Q,  a2, a3, . . . ,cr be

the set of distinct elements in the sequence  oi( a), O~(U), . . . , os(c).

Since G is a group,

Uj(Qi)  = Uj(c7,(U))  = ajo&)  = a,(u) = a,.

Therefore, the elements u,u2,  . . . , cr are permuted by the automorphisms

of G. The coefficients of the polynomial f(x) = (~-a)(  X-U *). . . (xa,)

are left fixed by each automorphism of G, since in its factored form the

factors of f(x) are only permuted. Since the only elements of E which

are left fixed by a11  the automorphisms of G belong to F, f(x) is a

polynomial in F. If g(x) is a polynomial in F which also has a as root,

then applying the automorphisms of G to the expression g (u ) = 0 we

obtain g(a,)  = 0, SO that the degree of g(x) > s. Hence  f(x) is irre--
ducible,  and the lemma is established.

TO complete the proof  of the theorem, let or, 02,.  . . , ut be a gen-

erating system for the vector space  E over  F. Let fi(x)  be the separable

polynomial having oi  as a root. Then E is the splitting field of

p ( x )  =  f,(x).f,(x).....f,(x).

If f(x) is a polynomial in a field F, and E the splitting field of

f (x ), then we shall cal1 the group of automorphisms of E over  F the

group of the equation f(x) = 0. We corne now to a theorem known in-~
algebra as the Fundamental Theorem of Galois Theory which gives the

relation between the structure of a splitting field and its group

of automorphisms.

THEOREM 16. (Fundamental Theorem). If p(x) is a separable

polynomial in a field F, and G the group of the equation p(x) = 0

where E is the- - -
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splitting field of p(x), then: (1) Each intermediate field, B,is the

fixed field for a subgroup G, of G, and distinct subgroups have dis-

tinct fixed fields. We say  B and G, “belong”  to each other. (2) The

intermediate field B is a normal extension of F if a,nd  only if the sub-

group G, is a normal subgroup of G. In this case the group of automor-

phisms of B which leaves F fixed is isomorphic to the factor group

(G/G  ). (3) For each intermediate field B, we have (B/F)  = index of-
G, and (E/B)  = order of G,.

The first part of the theorem cornes from the observation that E

is splitting field for p(x) when p(x) is taken to be in any  intermediate

field. Hence, E is a normal extension of each intermediate field B, SO

that B is the fixed field of the subgroup of G consisting of the automor-

phisms which leave B fixed. That distinct subgroups have distinct fixed

fields is stated in Corollary 2 to Theorem 14.

Let  B be any  intermediate field. Since B is the fixed field for

the subgroup G, of G, by Theorem 14 we have (E/B)  = order of G,.

Let us cal1 o(G) the order of a group G and i(G) its index. Then

o(G) =: o(Ga But (E/F) = o(G), and (E/F) = (E/B)*(B/F)

from which (B/F)  = i (G, ), which proves the third part of the theorem.

The number i( G, ) is equal to the number of left cosets  of G,.

The elements of G, being automorphisms of E, are isomorphisms of B;

that is, they map B isomorphically into some other subfield of E and

are the identity on F. The elements of G in any  one  coset  of G, map B

in the same  way. For let U.  a1  and o.  o2  be two elements of the coset

uG,.  Since or  and o2  leave B fixed, for each a in B
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we  have  (ror( a ) = a(  cz  ) = oo2( a ). Elements  of different cosets give

different isomorphisms,  for if o and r give the same  isomorphism,

o(a)  = r(c)  for each  a in B, then  o-‘r(a)  = a for each  a in B. Hence,

dT ==  al> where  or is an element  of G,.  But  then  T  = oo,  and

rG,  := oorGs=  aG,  SO that  o and  r belong  to  the same  coset.

Each  isomorphism  of B which  is the identity  on F is given by an

automorphism  belonging  to  G.  For  let  Q be an isomorphism  mapping  B

on B’ and the identity  on  F. Then  under  c, p(x)  corresponds  to  p(x),

and E is the splitting  field  of p(x)  in B and  of p(x)  in B ’ . By

Theorem  10, a cari be extended  to  an automorphism  o’ of E, and  since

0’ leaves  F fixed  it belongs to  G.  Therefore,  the number  of distinct

isomorphisms  of B is equal  to  the number  of cosets of G,  and  is there-

fore equal  to  (B/F).

The field  aB onto which  g maps  B has obviously  oGso-1  as cor-

responding  group, since the elements  of aB are  left invariant  by

precisely  this  group.

If 13  is a normal  extension of F,  the number  of distinct automor-

phisms  of B which  leave F fixed  is (B/F)  by Theorem  14. Conversely,

if the number  of automorphisms  is (B/F)  then  B is a normal  extension,

because  if F’  is the fixed  field  of a11 these  automorphisms,  then

F C  F’  (1 B, and  by Theorem  14, (B/F ‘) is equal  to  the number  of

automorphisms  in the group, hence  (B/F ‘) = (B/F).  From ( B/F)  =

(B/F’)(F’/F)  we  have  (F’/F)  = 1 or F = F’. Thus,  B is a normal

extension of F if and  only  if the number  of automorphisms  of B is (B/F).

B is a normal  extension of F if and only  if each  isomorphism  of

B into  E is an automorphism  of B. This  follows  from  the fact that  each

of the above  conditions  are  equivalent  to  the assertion  that  there  are



49

the same  numberof isomorphisms and automorphisms. Since, for each

u, B = aB is equivalent to oG,o  -*  C G,,  we cari finally say  that B is

a normal extension of F and only if G,  is a normal subgroup of G.

As we have shown, each  isomorphism of B is described by the

effect of the elements of some left coset of G,. If B is a normal exten-

sion these isomorphisms are a11 automorphisms, but in this case the

cosets are elements of the factor  group (G/G,  ). Thus, each  automor-

phism of B corresponds uniquely to an element of ( G/G,  ) and con-

versely. Since multiplication in ( G/G,  ) is obtained by iterating the

mappings, the correspondence  is an isomorphism between (G/G,  ) and

the group of automorphisms of B which leave F fixed. This completes

the proof  of Theorem 16.

1.  Finite  F i e l d s .

It is frequently necessary to know the nature of a finite  subset

of a field which under multiplication in the field is a group. The

answer to this question is particularly simple.

THEOREM 17. If S is a finite  subset (f  0 ) of a field F which-

is a group under multiplication in F, then S is a cyclic group.~~

The proof  is based on the following lemmas for abelian groups.

L,emma 1. If in an abelian group A and B are two elements of-

orders a and b, and if c is the least common  multiple of a and b, then~-

there is an element C of order c in the group.~~
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Proof: (a) If a and b are relatively prime, C = AB has the re-

quired order ab. The order of C a = B” is b and therefore c is divisible

by b. Similarly it is divisible by a. Since Ceb  = 1 it follows c = ab.

(b) If d is a divisor of a, we cari find in the group an element of

order d. Indeed Aa/d  is this element.

(c) Now let us consider the general case. Let pr,  pz, . . . , p,  be

the prime numbers dividing either a or b and let

“1 n2a = p,  pz . . . prnr

b = pimlpzm;,  . ..prm’.

Cal1 ti the larger of the two numbers ni  and 1. Then

t1 t2 t
c = p* p2 . . . prr*.

According to (b) we cari find in the group an element of order pni  and

one  of order pi?.  Thus there is one  of order pi ti.  Part (a) shows that

the product  of these elements Will  have the desired order c.

Lemma 2. If there is an element C in an abelian group whose- -

order c is maximal (as is always the case if the group is finite)  then c- -

is divisible by the order a of every element A in the group; hence- -

xc = 1 is satisfied by each element in the group.- -

Proof: If a does not divide c, the greatest common  multiple of a

and c would be larger than c and we could find an element of that order,

thus contradicting the choice of c.

We  now prove Theorem 17. Let n be the order of S and r the

largest order occuring in S. Then x’ - 1 = 0  is satisfied for a11  ele-
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ments of S. Since this polynomial of degree r in the field cannot  have

more than r roots, it follows that r > n. On the other hand r < n be-- -

cause the order of each  element divides n. S is therefore a cyclic

group consisting of l,~, ~2,. . . , c”-I where 6” = 1.

Theorem 17 could  also have been based on the decomposition

theorem for abelian groups having a finite  number of generators. Since

this theorem Will be needed later,  we interpolate a proof  of it here.

Let G be an abelian group, with group operation written as +.

The element g,, . . . , g, Will be said to generate G if each  element g of

G cari be written as sum of multiples of g,, . . . , g,, g = n,g, + . . . + nkgk.

If no set of fewer than k elements generate G, then g,, . . . , G Will be

called a minimal generating system. Any group having a finite  genera-

ting system admits a minimal generating system. In particular, a finite

group al.ways admits a minimal generating system.

F r o m  t h e  i d e n t i t y  nl(  g, + mg,) + (n2 - n,m)g2 = n,g, + n2g,

it follows that if g,, g,, . . . , g, generate G, also g, + mg,,

g,, * . . >g, generate G.

An equation  m,g, + m,g, + . . . + m,g, = 0 Will be called a re-

lation between the generators, and ml, . . . , mk  Will be called the co-

efficients in the relation.

We shall say  that the abelian group G is the direct product  of its

subgroups G,,  G,, . . . , G,  if each  g E G is uniquely representable as a

sumg = x1 + x2 + .  .  .  + x,,wherexi  E Gi,i  =  l,...,  k..
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Decomposition Theorem. Each  abelian group having a finite  num--

ber of generators is the direct product  of cyclic subgroups G,,  . . . , G,~~

where the order of Gi  divides the order of Gi+i,  i = 1, . . . , n-l and n is
~-
the number of elements in a minimal generating system. ( Gr, Gr+i  , . . . , Gn

may each  be infinite, in which case, to be precise,

O(Gi)lO(Gi+,)fori  = 1,2,...,r-2).

We assume the theorem true for a11 groups having minimal genera-

ting systems of k-l elements. If n = 1 the group is cyclic and the

theorem trivial. Now suppose G is an abelian group having a minimal

generating system of k elements. If no minimal generating system satis-

fies a non-trivial relation, then let g,, g,, . . . , g, be a minimal generating

system and G,,G,,  . . . , G,  be the cyclic groups generated by them.

For each  g 6 G, g = n,g, + . . . + nkgk  where the expression is

uniqu.e;  otherwise we should obtain a relation. Thus the theorem would

be true. Assume now that some non-trivial relations hold for some mini-

mal generating systems. Among a11 relations between minimal genera-

ting systems, let

(1) m,g, + . . . + mkg, =  0

be a relation in which the smallest positive coefficient occurs. After

an eventual reordering of the generators we cari  suppose this coefficient

to be mi.  In any other relation between g,, . . . , g,.

(2) ni g, + . . . + nkgk  =  0

we must have mi/ni.  Otherwise n 1
= qmi + r, 0 < r < mi and q times

relation (1) subtracted from relation (2) would yield a relation with a

coefficient r < mi.  Also in relation (1) we must have m,/m,, i = 2,. . . , k.
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For suppose mi does  not divide one  coefficient, say  m, . Then

m2
= qm, + r, 0 < r < mr. In the generating system

g, + g,, k$‘...> g, we should have a relation

mi(  g, + qg,)  + rg, + m,g, + . . . + mkq,  = 0 where the coefficient

r contradicts the choice of mi. Hence  m2  = q2m1, m3  = q,m,,  . . . , mk  = q,m,.

The system & = g, + q,g, + . . . + qkgk,  g,, . . . , g, is minimal gen-

erating, and m,gr = 0. In any relation 0 = n,Fi + n2g2  + . . . + nkgk

since mr  is a coefficient in a relation between gi,  g,, . . . , g, our pre-

vious argument yields mr  / nr , and hence nr gr = 0.

Let G’ be the subgroup of G generated by g,, . . . , g, and G, the

cyclic group of order m, generated by gr . Then G is the direct product

of G, and G’  . Each element g of G cari be written

g = nigi  + n2g2  + . . . + nkg, = nrgr + g’.

The representation is unique, since n,g,  + g’ = nr’gl  + g” implies

the relation (nr  - nr’)g, + (g’ - g”)  =  0 ,  hence

(nl - ni )E, = 0, SO that nrgr = n;gi and also g’ = g”.

E3y  our inductive hypothesis, G ’ is the direct product of k-l

cyclic groups generated by elements g2, ES, . . . , gk whose respective

orders t,,  . . . , t,  satisfy ti / ti+r  , i = 2, . . . , k-l. The preceding argu-

ment applied to the generators gr, g2,  . . . , g, yields m, j t,,  from which

the theorem follows.

I3y a finite  field is meant one  having only a finite  number

of elements.

Corollary. The non-zero elements of a finite  field form a cyclic-~~

group.

If a is an element of a field F, let us denote  the n-fold of a, i.e.,
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the element of F obtained by adding  a to itself n times, by na. It is ob-

vious that n.(m.a)  = (nm).a  and(n.a)(m.b)  = nmeab.  If for one

element a f 0, there is an integer n such  that na a = 0 then n. b = 0

foreachbinF,sincen.b=(n.a)(a-‘b)=O.a-’b=O..Ifthereisa

positive integer p such  that p.  a = 0 for each  a in F, and if p is the

smallest integer with this property, then F is said to have the charac-

teristic p. If no such  positive integer exists then we say  F has charac-- -

teristic 0. The characteristic of a field is always a prime number. for if

p =  r.s  t h e n p a  =  rs.a  = r.(s.a).  H o w e v e r ,  s.a  = b # Oif  a  f 0

and r b + 0 since both r and s are less than p,  SO that pa f 0 contrary

to the definition of the characteristic. If na = 0 for a f 0, then p divides

n, for n = qp + r where 0 < r < p and na = (qp + r)a = qpa + ra.-

Hence  na = 0 implies ra = 0 and from the definition of the characteristic

since r < p, we must have r = 0.

If F is a finite  field having q elements and E an extension of F

such  that (E/F)  = n, then E has q” elements. For if or,  02,.  . . ,W isn

a basis of E over  F, each  element of E cari  be uniquely represented as

a linear combination xiwr + xZoZ + . . . + x,w,  where the xi belong to

F. Since each  xi cari assume q values in F, there are qn distinct possi-

ble choices of x1, . . . , xn and hence qn distinct elements of E. E is

finite,,  hence, there is an element a of E SO that E = F(a). (The non-

zero elements of E form a cyclic group generated by a).

IfwedenotebyP  5 [0,1,2  ,..., p-l] the set of multiples of the

unit element in a field F of characteristic p,  then P is a subfield of F

having p distinct elements. In fact,  P is isomorphic to the field of

integers reduced mod p. If F is a finite  field, then the degree of F over
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P is finite, say  (F/P)  = n, and F contains p*  elements. In other

words, the order of any  finite field is a power of its characteristic.

If F and F’ are two finite fields having the same  order q, then

by the preceding, they have the same  characteristic since  q is a power

of the characteristic. The multiples of the unit in F and FI  form two

fields P and P’ which are isomorphic.

The non-zero elements of F and F’ form a group of order q-l

and, therefore, satisfy the equation xq-l  - 1 = 0.  The fields F and FI

are splitting fields of the equation x q-l  = 1 considered as lying in P

and P’ respectively. By Theorem 10, the isomorphism between P and

P ’ cari  be extended to an isomorphism between F and F ’ . We have thus proved

THEOREM 18. Two finite fields having the same  number of ele-

ments are isomorphic.~-

gifferentiation.  If f(x) = ao + six  + . . . + anxn  is  a  poly-

nomial in a field F, then we define f’ = a, + 2a,x  + . . . + nanx”-i .

The reader may  readily verify that for each pair of polynomials f and

g we have

(f + g)’ = f’ + g’

(f g>’ = fg’ + gf’

(f^)’ = nf”-‘. f’

THEOREM 19. The polynomial f has repeated roots if and only-

if in the splitting field E the polynomials f and f’ have a common

root. This condition is eauivalent to the assertion that f and f’ have a
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common factor of degree greater than 0 in F.~-
If a is a root of multiplicity k of f(x) then f = (x-a )kQ  (x) where

Q(a) f 0. This gives

f ’ = ( x-a  )kQ  ’ ( x ) + k ( x-a ) k-1  Q ( x ) = ( x-a ) k-1  [ ( x-a ) Q’ ( x ) + kQ  ( x ) 1.

If k > 1, then a is a root of f’ of multiplicity at least k-l. If

k  = 1, then f’(x) = Q(x) + (x-a)Q’(x)  and f’(a) = Q(a) f; 0. Thus,

f and f’ have a root a in common if and only if a is a root of f of

multiplicity greater than 1.

If f and f’ have a root a in common then the irreducible polynomial

in F having a as root divides both f and f’ . Conversely, any  root of a

factor common to both f and f’ is a root of f and f ’ .

Corollary. If F is a field of characteristic 0 then each irreducible-~

polynomial in F is separable.~~
Suppose to the contrary that the irreducible polynomial f(x) has

a root a of multiplicity greater than 1. Then, f ’ (x) is a polynomial

which is not identically zero (its leading coefficient is a multiple of

the leading coefficient of f(x) and is not zero since the characteristic

is 0) and of degree 1 less than the degree of f(x). But a is also a root

of f’ (x) which contradicts the irreducibility of f(x).

J. Roots of Unity.- -
If F is a field having any  characteristic p, and E the splitting

field of the polynomial x D - 1 where p does  not divide n,  then we

shall refer to E as the field generated out  of F by the adjunction  of a

primitive nth  root of unity.~~

The polynomial x”  ~ 1 does not have repeated roots in E, since

its derivative, nx”-’ , has only the root 0 and has, therefore, no roots
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in common with x n - 1. Thus,  E is a normal extension cf F.

IfE,,t*  ,...,  Cn are the roots of x n - 1 in E, they form a group under

multiplication and by Theorem 17 this group Will be cyclic. If

1 ,C,C2,a.  .,c n-1  are the elements of the group, we shall  cal1  c a primi-

tive n th  root of unity.  The smallest power of E which is 1 is the n th.

THEOREM 20. If E is the field generated from F by a primitive-~

nth  root of unity,  then the group G of E over  F is abelian for any n and~~

cyclic if n is a prime number.~-

We have E = F(É), since the roots of x” - 1 are powers of 6.

Thus,  if o and r are distinct elements of G, o(c)  f r(e).  But ~(6) is  a

root of xn - 1 and, hence, a power of 6.  Thus,  o(c) = c ““where  no

is an integer 1 5 no < n. Moreover, ru(~) = r( r”o) = (r(t))  “ o =

cnr  “u = or(~). T h u s ,  nor = snr  mod n. Thus,  the mapping of o on no

is a homomorphism of G into a multiplicative subgroup of the integers

mod n. Since r f o implies T(E) f o(c),  it follows that r f o implies

“a f nr mod n. Hence,  the homomorphism is an isomorphism. If n is a

prime number, the multiplicative group of numbers forms a cyclic group.

K. Noether  Equations.

If E is a field, and G = ( CJ,  r, . . .) a group of automorphisms of E,

any set of elements x,, xr , . . . in E Will be said to provide  a solution to

Noether’s equations if xo . D (xr ) = xor for each  o and r in G. If one~~
element x0 = 0 then xr = 0 for each r 6 G. As T traces G, or assumes

a11 values in G, and in the above equation xor  = 0 when xo = 0. Thus,

in any solution of the Noether  equations no element xo = 0 unless the

solution is completely trivial. We shall assume in the sequel that the
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trivial solution has been excluded.

THEOREM 21. The system xo, xr , . . . is a solution to Noether’s-
equations if and only if there exists an element a in E, such that

=XfJ CL/(~(  a ) for each o.

For any  a, it is clear that xo = a/o(  a) is a solution to the

equations, since

a/o(a)~o(a/r(a>)  =  a/a(a>*o(a)/ui-(a)  =  a/o7(a).

Conversely, let x0,  xr , . . . be a non-trivial solution. Since the

automorphisms o, T , . . . are distinct they are linearly independent, and

the equation x0 ‘U(Z) + XrT(Z)  + . . . = 0 does not hold identically.

Hence, there is an element a in E such that

xo.cr(a) + x,r(a)  + . . . = a f 0. Applying u to a gives

o(a)  = T,CG  a(x,).m(a>.

Multiplying by ~0 gives

xu.u(u) = C xoo(x,).or(a>.
7CG

Replacing xc. c( xr ) by b and noting that or assumes a11  values in

G when r does,  we have

SO that

Xrlr . o(a)  =  C x,r(a) =  a
TEG

xu = a/o(a).
A solution to the Noether  equations defines a mapping C of G

into E, namely, C(a) = x,,. If F is the fixed field of G, and the ele-

ments xc lie in F, then C is a character of G. For

C(OT)=  xm = x,.a(x,) = x0x7=  C(a).C(r)sinceo(x,)  = x,if

xr c F. Conversely, each character C of G in F provides a solution
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to the Noether  equations. Cal1 C(o) = xo. Then, since xr 6 F,

we have a(  xr) = xr . Thus,

xu .a(s:,)  ==  xoexr = C(~)*C(T)  = C(or)  = xor.  W e  t h e r e f o r e h a v e ,

by combining this with Theorem 21,

THEOREM 22. If G is the group of the normal field E over  F,

then for each  character C of G into F there exists an element Q in E

such  that C(a) = a/o(a)  and, conversely, if a/o(  a) is in F for each~~

(T,  then C ((7) = a/o(  a ) is a character of G. If r is the least  common

multiple of the orders of elements of G, then a’ c F.~~

We have already shown a11 but the last  sentence of Theorem 22.

TO prove this we need only show o(ar)  = a’ for each  o E  G. But

ar/a(ar)  =  (a/a(a))= =  (C(o))r =  C(or)  =  C ( 1 )  =  1 .

L. Kummer’s Fields.

If F contains  a primitive nth root of unity,  any  splitting field E

of a polynomial (x” - a,)(x” - a*).  . .(x” - ar) where ai 6 F for

i = 1,2,.  . . , r Will be called a Kummer extension of F, or more briefly,

a Kummer field----.--z

If a field F contains  a primitive nth  root of unity,  the number n

is not divisible by the characteristic of F. Suppose, to the contrary, F

has characteristic p and n = qp. Then yn  - 1 = (y - 1 )n since in the

expansion of (y - 1 )P  each  coefficient other than the first and last is

divisible by p and therefore is a multiple of the p-fold  of the unit of F

and thus  is equal to 0. Therefore x” - 1 = (x q)P  - 1 = (x4 - 1 )n

and x” - 1 cannot  have more than q distinct roots. But we assumed

that F has a primitive n th  root of unity  and 1, 6,~ 2,. . . , E n-1 would be
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n distinct roots of x” - 1. It follows that n is not divisible by the

characteristic of F. For a Kummer field E, none  of the factors

X” - ai, ai f 0 has repeated roots since the derivative, nx”-l , has

only the root 0 and has therefore no roots in common with xn  - ai.

Therefore, the irreducible factors of x” - a, are separable, SO that E-

is a normal extension of F.

Let ai be a root of x” - ai in E. If ci,  c2, . . . , tn  are the n dis-

tinct nth  roots of unity in F, then ai+,,  aic2, . . . , a,~,,  Will be n distinct

roots of x” - ai,  and hence  Will  be the roots of x” - a,, SO that

E = F(a,,a,,..., ar).  Let o and r be two automorphisms in the group

G of E over  F. For each ai,  both o and r map ai on some other root of

x” - ai.  Thus r(ai) = ciTai  and o(ai) = cio ai where Q, and tir are nth

roots of unity  in the basic  field F. It follows that

r(o(ai))  = T(tiaai)  = ciuT = tiocirai  = o(T(ai). Since oand r

are commutative over  the generators of E, they commute over  each  ele-

ment of E:.  Hence, G is commutative. If ~7  c G, then o(ai) =

ciGai,  a'(a,) = eio 2ai, etc. Thus, oni = ai for ni  such that

%J
“i = 1. Since the order of an n th root of unity  is a divisor of n, we

have ni  a divisor of n and the least common multiple m of nr,  n2,.  . . , nr

is a divisor of n. Since o ya,) = ai for i = 1,2,.  . . , r it follows that m

is the order of CJ.  Hence, the order of each element of G is a divisor of

n and, therefore, the least common multiple r of the orders of the ele-

ments of G is a divisor of n. If c is a primitive nth  root of unity, then

en/’  is a primitive r th root of unity. These remarks cari  be summarized

in the following.
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THEOREM 23. If E is a Kummer field, i.e., a splitting field of- -

p(x) = (x”  - a,)(x”  - az). . .(x” - ar) whete a, lie in F, and F~-
contains  a primitive nth root of unity, then: (a) E is a normal extension~~

of F; (b) the group G of E over  F is abelian, (c) the least common multi-~-
ple of the orders of the elements of G is a divisor of n.~~

Corollary. If E is the splitting field of xp - a, and F contains  a- - -

primitive pth root of unity where p is a prime number, then either E = F~~
and xp -- a is split in F, or xp - a is irreducible and the group of E

over  F is cyclic of order p.

The order of each element of G is, by Theorem 23, a divisor of p

and, hence, if the element is not the unit its order must be p. If Q is a

root of xp - a, then a,ey,  . . . ,cp-lc are a11 the roots of xP - a SO that

F(a ) = E and ( E/F) < p . Hence, the order of G does not exceed p SO-

that if G has one  element different from the unit, it and its powers must

constitute  a11  of G. Since  G has p distinct elements and their behavior

is determined  by their effect  on a, then a must have p distinct images.

Hence, the irreducible equation in F for a must be of degree p and is

therefore xp - a = 0.

The properties (a), (b) and (c) in Theorem 23 actually characterize

Kummer fields.

Let us suppose that E is a normal extension of a field F, whose

group G over  F is abelian. Let us further  assume that F contains  a

primitive r th root of unity where r is the least common multiple of the

orders of elements of G.

The group of characters X of G into the group of r th  roots of
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unity  is isomorphic to G. Moreover, to each  cr 6 G, if 0 f 1, there exists

a character C 6 X such  that C (0)  f 1. Write G as the direct product  of

the cyclic groups G,, G,, . . . , G, of orders mi / m2  / . . . / m,. Each u E  G

Vl v2may be wr i t t en  D = 0r 0z . . .0rVt . Cal1 Ci the character sending cri

into ci, a primitive m.Ith  root of unity  and 5 into 1 for j f i. Let C be

any character. C(oi)  = cri,  then we have C = CFi  . C 2 i.  . . C,’ i.

Conversely, C P1  . . . Ct Pr
1

defines a character. Since the order of Ci  is

mi, the character group X of G is isomorphic to G. If 0 f 1, then in

u=o 9 1.‘2u2  . ..u Vt
1 t at least one  vi,  say  vr , is not divisible by mi.

T h u s  Cr(  u) = civl  f 1.

Let A denote  the set of those non-zero elements cz of E for which

a’ 6 F and let Fi  denote  the non-zero elements of F. It is obvious that

A is a multiplicative group and that Fi  is a subgroup of A. Let A’  de-

note the set of rth  powers of elements in A and Fi  the set of r th  powers

of elements of Fi.  The following theorem provides  in most applications

a convenient  method for computing the group G.

THEOREM 24. The factor groups (A/F,  ) and (A’/F  ;) are iso-

morphic to each  other and to the groups G and X.

We map A on A’ by making a 6 A correspond to a’  6 A’. If a’ t Fi,

where a 6 F, then b c A is mapped on ar if and only if br = a=,  that is,

if b is a solution to the equation x’ - a’ = 0. But a, ca, c2a,. . . , cr-’  a

are distinct solutions to this equation and since 6 and a belong to Fi,

it follows that b must be one  of these elements and must belong to Fi.

Thus, the inverse set in A of the subgroup Fi  of A’  is Fi  , SO that the

factor groups (A/F,  ) and (A’/F;  ) are isomorphic.
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If a is an element of A, then (a/o(~))~  = ar/o(a*)  = 1. Hence,

a/o(a) is an rth root of unity and lies in F 1. By Theorem 22, ~/a  (a )

defines  a character C (0)  of G in F. We map a on the corresponding

character C. Each  character C is by Theorem 22, image of some a.

Moreover, u . a ’ is mapped on the character C * (0)  =

a.a’/o(a.a’)  =  a.a’/o(a>-a(a’>  =  C(o>.C’(a>  =  C.C’(u),  SO

that the mapping is homomorphism. The kernel of this homomorphism

is the set of those elements a for which a/a(a)  = 1 for each o,  hence

is Fi.  It follows, therefore, that (A/F,  ) is isomorphic to X and hence

also  to G. In particular, (A/F,  ) is a finite  group.

We now prove the equivalence  between Kummer fields and fields

satisfying (a), (b) and (c) of Theorem 23.

THEOREM 25. If E is an extension field over  F, then E is a

Kummet field if and only if E is normal, its group G is abelian and F

contains  a primitive rth root 6 of unity  where r is the least common

multinle  of the orders of the elements of G.

The necessity is already contained  in Theorem 23.. We prove the

sufficiency. Out  of the group A, let a,F,,a,F,,  . . . ,a,F, be the cosets

of Fi. Since  ai E A, we have af = ai 6 F. Thus, ai is a root of the

equation x’ - ai = 0 and since coi, c2ai, . . . , c'-*ai are also roots,

X’ - ai must split in E. We prove that E is the splitting field of

(x’ - a1 )(x’  - a2  ). .  . (x’ - a,) which Will complete the proof  of the

theorem. TO this end it suffices  to show that F ( ai,  a2, . . . , ut)  = E.
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Suppose that F(a,,a*,  . . . ,a,)  f E. Then F(a,, . . . ,a,)  is an

intermediate field between F and E, and since E is normal over

F ( a , , . . . , ut)  there exists an automorphism o 6 G, D f 1, which

leavesF(a,,..., a,) fixed. There exists a character C of G for which

C(a) f 1. Finally, there exists an element a in E such  that

C(o) = a/a(a)  f 1. But a* E Fi  by Theorem 22, hence  a 6 A.

Moreover, A C F(a,, . . . ,a, ) since a11 the cosets a,F, are contained

in F(a,, . . . , a,). Since F(a,, . . . ,a,)  is by assumption left fixed by

o, a(a) = a which contradicts a/o(a)  f 1. It follows, therefore, that

F(a,,...,a,)  = E.

Corollary. If E is a normal extension of F, of prime order p,  and-~

if F contains  a primitive pth- - root of unity,  then E is splitting field of

an irreducible polynomial xn - a in F.~~

E is generated by elements ai,  . . . ,a,, where ay 6 F. Let ai be

not in F..  Then xp - a is irreducible, for otherwise F(a 1 ) would be an

intermediate field between F and E of degree less than p, and by the

product  theorem for the degrees, p would not be a prime number, con-

trary to assumption. E = F ( a1 ) is the splitting field of xp - a.

M. Simple Extensions.

We consider the question of determining under what conditions

an extension field is generated by a single  element, called a primitive.

We prove the following

THEOREM 26. A finite  extension E of F is primitive over  F if-
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and only if there are only a finite number of intermediate fields.~-
(a) Let E = F(a) and cal1  f(x) = 0 the irreducible equation for

a in F. Let B be an intermediate field and g(x) the irreducible equa-

tion for Q in B. The coefficients of g(x) adjoined to F Will  generate a

field B ’ between F and B. g ( x ) is irreducible in B, hence also in B ’ .

Since 15 = B’(a) we see (E/B)  = (E/B’).  This proves B’ = B. SO B

is uniquely determined by the polynomial g(x). But g(x) is a divisor

of f(x), and there are only a finite  number of possible divisors of f(x)

in E. Hence there are only a finite  number of possible B’s.

(b) Assume there are only  a finite number of fields between E

and F. Should F consist  only of a finite number of elements, then E is

generated by one element according to the Corollary on page 53. We

may  therefore assume F to contain  an infinity of elements. We prove:

TO any  two elements a, p there is a y in E such that F(a, /? ) = F (y).

Let y -= a + ap with a in F but for the moment undetermined. Con-

sider a11  the fields F(y) obtained in this way. Since we have an

infinity of a’s  at our disposal, we cari  find two, say  a, and a2,  such

that the corresponding y’s,  yr = a + a,/3  and y2 = a + a,@,  yield

the same  field F ( y1 ) = F ( y2 ). Since both y1 and y2 are in F ( y1 ),

their difference  (and therefore 6) is in this field. Consequently also

Y1 - a,P  := a. SO F(a,P)  C F(y,).  Since F(y,)  C F(a,B)  our con-

tention is proved. Select now I] in E in such a way that ( F ( T]  )/F ) is

as large as possible. Every element E of E mustbe in F( ‘7)  or else we

could fïnd an element 6 such that F(6) contains  both 7 and 6.  This

proves E = F(n).
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THEOREM 27. If E = F(a,, a2,  . . . ,a,)  is a finite  extension of-
the field F, and ai,  a*, . . . ,a, are separable elements in E, then there

exists a primitive 19 in E such that E = F (0).- -

Proof: Let fi(x)  be the irreducible equation of ai  in F and let B

be an extension of E that splits fi(x) fz( x) . . . f,(x). Then B is normal

over F and contains, therefore, only a finite  number of intermediate

fields (as many  as there are subgroups of G). SO the subfield E contains

only a finite  number of intermediate fields. Theorem 26 now compietes

the proof.

N. Existence of a Normal Basis.-~

The following theorem is true for any  field though we prove it

only in the case that F contains  an infinity of elements.

THEOREM 28. If E is a normal extension of F and hi,  oz, . . . , on- -
are the elements of its group G, there is an element 8 in E such that-~

the n elements o,(t9),a,(ti),  . . . , un(  0) are linearly independent with-~
resuect to F.

According to Theorem 27 there is an a such that E = F(U). Let

f(x) be the equation for a, put o,(a) = ci,

and  gi(x) =  o,(g(x>>  =  (x-af,\~?ca.)
1 1

g i( x y)  is a polynomial in E having ak as root for k f i and hence

(1) g,(x)g,(x) = 0 (mod f(x)) for i f k.

In the equation

(2) g*(x) + g,(x)  + . . . + g,(x) - 1 = 0

the left side is of degree at most n - 1. If (2) is true for n different

values of x, the left side must be identically 0. Such  n values are
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al,a2,.  . . ,a,, since gi(  ai) = 1 and gk(ai  ) = 0 for k f i.

Multiplying (2) by gi(  x) and using (1) shows:

(3) (g,(X))’  = gi(X) (mod  f(x))-

We next compute the determinant

(4) D ( x )  =  loiok(g(x))l  i , k  = 1,2  ,...,  n

and prove D(x) f 0. If we square it by multiplying column by column

and compute its value (mod f(x)) we get from (l), (2), (3) a determi-

nant that has 1 in the diagonal and 0 elsewhere.

S O

(D(x))~  = 1  ( m o d  f ( x ) ) .

D (x 1)  cari  have only a finite  number of roots in F. Avoiding them

we cari find a value a for x such  that D(a) f 0. Now set 8 = g(a).

Then the determinant

(5) l”iak(e)l  f O’

C:onsider  any linear relation

x1a,(8)  + xp*(8>  + . . . + ~,.,a,(  0) = 0 where the xi are in F. Apply-

ing the automorphism oi to it would lead to n homogeneous equations for

the n unknowns xi.  (5) shows that xi = 0 and our theorem is proved.

0. Theorem on Natural Irrationalities.~~

L,et F be a field, p(x) a polynomial in F whose irreducible factors

are separable, and let E be a splitting field for p(x). Let B be an arbi-

trary extension of F, and let us denote  by EB the splitting field of p(x)

when p(x) is taken to lie in B. If al, . . . ,as  are the roots of p(x) in

EB, then F(a,, . . . , as)  is a subfield of EB which is readily seen  to

form a splitting field for p(x) in F. By Theorem 10, E and F(a*,  . . . , as  )



68

are isomorphic. There is therefore no loss of generality if in the sequel

wetakeE  = F(al,..., a,) and assume therefore that E is a subfield

ofEB.Also ,EB = B (a  *,...>  as).

Let  us  denote  by E A B the intersection of E and B. It is readily

seen  that E n B is a field and is intermediate to F and E.

THEOREM 29. If G is the group of automorphisms of E over  F,

and H the group of EB over  B, then H is isomorphic to the subgroup of- -

G having E n B as its fixed field.

Each automorphism of EB over  B simply permutes al,  . . . , as in

some fashion and leaves B, and hence also F, fixed. Since the ele-

ments of EB are quotients of polynomial expressions in al,  . . . , as with

coefficients in B, the automorphism is completely determined by the

permutation it effects on a 1, . . . , as. Thus, each  automorphism of EB

over  B defines an automorphism of E = F ( al,  . . . , as ) which leaves F

fixed. Distinct automorphisms, since (x1,.  . . , as belong to E, have

different effects on E. Thus, the group H of EB ovet B cari  be con-

sidered as a subgroup of the group G of E over  F. Each  element of H

leaves E n B fixed since it leaves even a11 of B fixed. Howevet, any

element of E which is not in E n B is not in B, and hence would be

moved by at least one automorphism of H. It follows that E r\ B is the

fixed field of H.

Corollaty. If, undet the conditions of Theorem 29, the gtoup G is of- -

prime order, then either H = G or H consists  of the unit element alone.- -



69

II I  APPLICATIONS

by

A. N. Milgram

A. Solvable Groups.- -

Before proceeding with the applications we must discuss certain

questions in the theory of groups. We shall  assume several simple propo-

sitions: (a) If N is a normal subgroup of the group G, then the mapping

f(x) = xN is a homomorphism of G on the factor group G/N.  f is called

the natural homomorphism. (b) The image and the inverse image of a

normal subgroup under a homomorphism is a normal subgroup. (c) If f

is a homomorphism of the group G on G’  , then setting N’  = f(N), and

defining the mapping g as g( xN ) = f(x) N ’ , we readily see that g is

a homomorphism of the factor group G/N  on the factor group G ‘/NI .

Indeed, if N is the inverse image of N’ then g is an isomorphism.

We now prove

THEOREM 1. (Zassenhaus). If U and V are subgroups of G, u and-~~

v normal subgroups of U and V, respectively, then the following three

factor groups are isomorphic: u (U nV) /II (U nv),

v(UnV)/V(UnV),  (unv)/(unv)(vnu).

It is obvious that U n v is a normal subgroup of U n V. Let f

be the natural mapping of U on V/u.  Cal1 f(UnV) = H and f(Unv) = K.

Then f-‘(H) = u(UnV)  and f“(K)  = u(Unv)  from which it follows

that u( UnV)/u(  Unv) is isomorphic to H/K.  If, however, we view f as

defined only over  U n V, then f-‘(K)  = [un(UnV)](Unv)  =

(unV)(Unv)  SO that (UnV)/(unV)(Unv)  is also isomorphic to H/K.
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Thus the first and third of the above factor groups are isomorphic to

each  other. Similarly, the second and third factor groups are isomorphic.

Corollary 1. If H is a subgroup and N a normal subgroup of the-

group G, then H/HnN  is isomorphic to HN/N,  a subgroup of G/N.

Proof:  Set G = U, N = u, H = V and the identity 1 = v in

Theorem 1.

Corollary 2. Under the conditions of Corollary 1, if G/N  is-

abelian, SO also is H/HnN.- -

Let us cal1  a group G solvable if it contains  a sequence of sub-

groupsG  = Go 1 G, I... 1 Gs  = 1, each  a normal subgroup of the

preceding, and with G,-r  /Gi  abelian.

THEOREM 2. Any subgroup of a solvable group is solvable. For-

let H be a subgroup of G, and cal1 Hi  = HnG,.  Then that Hi-r/H,  is

abelian follows from Corollary 2 above, where Gi_r,  Gi  and Hi_, play

the role of G, N and H.

THEOREM 3. The homomorph of a solvable group is solvable.-

Let f(G) = G’ , and define  G 1 = f ( Gi)  where Gi  belongs to a

a sequence exhibiting the solvability of G. Then by (c) there exists a

homomorphism mappingGi_r/Gi  on Gi_,/Gi . But the homomorphic image

of an abelian group is abelian SO that the groups GI exhibit the

solvability of G’ .

B. Permutation Groups.- -

Any one  to one  mapping of a set of n abjects on itself is called

a permutation. The iteration of two such  mapping is called their product.- - -
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It may be readily verified that the set of a11 such  mappings forms a

group in which the unit is the identity map. The group is called the

symmetric group on n letters.~-

Let us for simplicity  denote  the set of n abjects by the numbers

1,2,..., n. The mapping S such  that S(i) = i + 1 mod n Will be de-

noted by (12!3.  . .n) and more generally (i j . . . m) Will denote  the map-

pingTsuchthatT(i)=j,...,T(m)=i.If(ij...m)hasknumbers,

then it Will be called a k cycle. It is clear that if T = (i j . . . s) then

T-i  =  ( s . .  .ji).

We now establish the

Lemma. If a subgroup U of the symmetric group on n letters-~-

(n > 4) contains  every 3-cycle, and if u is a normal subgroup of U~~

such  that U,/u is abelian, then u contains  every 3-cycle.~~

Proof:  Let f be the natural homomorphism f(U) = U/u  and let

x = (ijk), y = (krs) be twoelements of U, where i, j, k, r, s are 5

numbers. Then since V/u is abelian, setting f(x) = x’ , f(y) = y ’

we have f(x-‘y-‘xy)  = ~‘-~y’-rx’y’  = 1, so that x-‘y-‘xy E u. But

x-‘y-‘xy = (kji).(srk).(ijk).(krs)  = (kjs) and for each  k, j, s we

have (kjs) #F  u.

THEOREM 4. The symmetric group G on n letters is not solvable-~~

for n > ,4.

If there were a sequence exhibiting the solvability, since G con-

tains every 3-cycle, SO would each  succeeding group, and the sequence

could  not end with the unit.
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C. Solutïon of Equations by Radicals.- -

The extension field E over F is called an extension by radicals

if there exist intermediate fields B,  , B,  , . . . , Br  = E and Bi  = Bi-r(  a i)

where each ai  is a root of an equation of the form xni - ai  = 0,

ai  E  Bi-,  . A polynomial f ( x ) in a field F is said to be solvable by

radicals if its splitting field lies in an extension by radicals. We assume

unless otherwise specified that the base field has characteristic 0 and

that F contains as many  roots of unity  as are needed to make our sub-

sequent statements valid.

Let us remark first that any  extension of F by radicals cari  always

be extended to an extension of F by radicals which is normal over F.

Indeed B, is a normal extension of B, since  it contains  not only ar,

but cal, where E is any  n,-root  of unity,  SO that B,  is the splitting field

of xnl - a,. If fr(x) =TT(xn2 -
u

c( a2  )), where 0 takes a11  values in

the group of automorphisms of B, over BO,  then f, is in BO,  and ad-

joining successively the roots of xn2  - o( a 2)  brings us to an exten-

sion of B2 which is normal over F. Continuing in this way we arrive at

an extension of E by radicals which Will  be normal over F. We now

prove

THEOREM 5. The polynomial f(x) is solvable by radicals if-

and only if its group is solvable.

Suppose f(x) is solvable by radicals. Let E be a normal exten-

sion of F by radicals containing the splïtting field B of f(x), and cal1

G the group of E over F. Since for each i, Bi  is a Kummer extension of

Bi_r,  the group of Bi  over B,-r is abelian. In the sequence  of groups
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G = GB 11  GB
1

3 . . . 3 GB = 1 each is a normal subgroup of the

precediig  since  G
r

Bi-l
is the group of E over  Bis1 and Bi is a normal

extension of B,-i. But GB, /GB,  is the group of B, over  B,-i and hence
1-l 1

is abelian. Thus G is solvable. However, G, is a normal subgroup of

G, and G/G, is the group of B over  F, and is therefore the group of the

polynomial f(x). But G/G, is a homomorph of the solvable group G and

hence is itself solvable.

On the other hand, suppose the group G of f(x) to be solvable

and let E be the splitting field. Let G = Go 1 G, 1 . . . 1 Gr = 1 be a

sequence  with abelian factor  groups. Cal1 Bi the fixed field for Gi.

Since G,-i is the group of E over  B,-i and Gi is a normal subgroup of

Gi-l, then Bi is normal over  B,-i and the group Ci-i/G, is abelian. Thus

Bi is a Kummer extension of Bi_i, hence is splitting field of a polynomial

oftheform(x”-a,)(x”-a2)...(xn-as) SO that by forming the successive

splitting fields of the x” - ak  we see that Bi is an extension of Biml by

radicals, from which it follows that E is an extension by radicals.

Remark. The assumption that F contains  roots of unity is not

necessary  in the above theorem. For if f(x) has a solvable group G,

then we may  adjoin to F a primitive nth  root of unity,  where n is, say,

equal to  the order of G. The group of f(x) when considered as lying in

F’ is, by the theorem on Natural Irrationalities, a subgroup G’ of G,

and hence is solvable. Thus the splitting field over  F’ of f(x) cari be

obtained by radicals. Conversely, if the splitting field E over  F of f(x)

cari  be obtained by radicals, then by adjoining a suitable  root of unity

E is extended to E’ which is still normal over  F’ . But E’ could  be
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obtained by adjoining first the root of unity, and then the radicals,  to

F; F would first be extended to F ’ and then F ’ would be extended to

E ’ . Calling G the group of E ’ over  F and G ’ the group of E ’ over  F ’ ,

we see that G ’ is solvable and G/G  ’ is the group of F ’ over  F and

hence  abelian. Thus G is solvable. The factor group G/G,  is the

group of f(x) and being a homomorph of a solvable group is

also solvable.

D. The General Equation of Degree n.

If F is a field, the collection of rational expressions in the

variables ui,  up,  . . . , un  with coefficients in F is a field F(ui,  u2, . . . , un).

By the general equation of degree n we mean  the equation

(1) f ( x )  =  x” - ulx”-i  + l12x”-2  - +  .  .  .  +  (-l)“u,.

Let E be the splitting field of f(x) over  F(ui,  II~,. . . , un). If

V l’VZ>...> v,  are the roots of f(x) in E, then

u1  = v1  + v2  + . . . + vn>  u2  = v1v2  + v1v3,  + . . . + vnel  Vn’. .

. . . , un  = VI . v2 . . . . . vn .

We shall  prove that the group of E over  F(ui,  u2,  . . . , un) is the

symmetric group.

LetF(x,,x,,..., xn)  be the field generated from F by the

variables xi,  x2,. . . ,x,. Let ai = xi + x2 + . . . + x”,

a2 = x1x2 + x1x3  + . . . + XnelXn  >...> an = x1x*.  . . xn be the ele-

mentary symmetric functions,  i.e., (x-x ,)(x-x 2). . . (x-x,) =

X” - alx”-’ + - .  .  .(-l)% ” = f*(x). If g(al,a2, .  .  . , a , )  is a

polynomial in ai,  . . . ,a,, then g(a,  ,a2,  . . . ,a,) = 0 only if g is the
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zero polynomial.  For if g( xx,, cxixk, . . .) = 0, then this relation would

hold also if the xi were replaced by the vi. Thus,

g(cvi,cviv,,...) = Oorg(ul,uz,...,un)  = Ofromwhichi t fo l lows

that g is identically zero.

Between the subfield F(a,, . . . , an) of F( xi,  . . . , xn) and

F(ul,u2,.  . . > un)  we set up the following correspondence: Let

f(u,,  *. . ,11,)/g(u,,  . . . >un)  be an element of F(ui,.  . . ,un).  We make

this correspond to f(a,,  . . . ,a,)/g(a,,  . . . ,a,). This is clearly a map-

ping of F(ui,uz,.  . . ,u,)  on a11 of F(ai  , . . . ,a,). Moreover, if

f(al,a2,...,an)/g(a1,a~,...,a~)

= fi (al,az!,  . . . ,a,)/gl(al,a2,.  . . ,a*), then fg, - gf, = 0. But this

implies by the above that

f(u,,  . ..9U,h$Ul,.  . .>U,)  - g(u,,  . ..,Un)‘f,(U,,  . . .>U,)  = 0

SO that f(u,,  . . . ,u,)/g(u1,u2,.  . . ,u,)

= fi(U],..., U”)/6cl(UI>U2>...> un).  It follows readily from this that

themappingof F(u,,u,  ,..., un) on F(a,,a,,.  ..,an)is  an isomor-

phism. But under this correspondence f(x) corresponds to f * ( x).

SinceE:andF(x,,x,,..., xn) are respectively splitting fields of f(x)

and f * I[X),  by Theorem 10 the isomorphism cari be extended to an iso-

morphism between E and F (xi,  x2,  . . . , xn). Therefore, the group of E

over  F(ur,uz,.  . . , un)  is isomorphic to the group of F ( x1,  x2,  . . . , xn)

over  F(al,a2,.  . . ,a,).

E:ach.  permutation of xi,  x2,. . . , xn leaves al,az,  . . . ,a,,  fixed

and, therefore, induces an automorphism of F( xi,  x2,  . . . , x”)  which

leaves F(a,,a*,  . . . , a,.,) fixed. Conversely, each  automorphism of

F(xl>xZ>...> x,, ) which leaves F(a 1, . . . , a,, ) fixed must permute the

roots xi,  x:!, . . . , xn of f*(x) and is completely determined by the
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permutation  it effects  on x1,  x2, . . . , xn.  Thus,  the group  of F( x1,  x2,  . . . , xn)

over  F(a1,a2,.  . .,a,)is th e s y mmetric group  on n letters.  Because of

the isomorphism  between  F ( x1, . . . , xn ) and  E, the  group  for E over

W++.  . . >u,,)  is also the symmetric  group.  If we  remark  that the

symmetric  group  for n > 4 is not solvable,  we  obtain  from the theorem

on solvability  of equations  the famous  theorem  of Abel:

THEOREM  6. The  group  of the  general equation  of degree n is

the symmetric  group  on n letters.  The  general equation  of degree n is~~

not solvable  by radicals  if n > 4.

E. Solvable  Equations  of Prime  Degree.

The  group  of an equation  cari  always  be considered  as a permu-

tation  group.  If f(x)  is a polynomial  in a field  F,  let a,, a2,  . . . , c, be

the  roots  of f(x)  in the splitting  field  E = F( ar, . . . , an). Then  each

automorphism  of E over  F maps each root  of f(x)  into  a root  of f(x),

that  is,  permutes  the roots.  Since E is generated by the  roots  of f(x),

different  automorphisms  must  effect distinct permutations.  Thus,  the

group  of E over  F is a permutation  group  acting on the roots

al,a2,...,Qn of f(x).

For  an irreducible  equation  this  group  is always  transitive.  For

let a and a ’  be any  two roots  of f(x),  where  f(x)  is assumed  irreduci-

ble.  F(a  ) and  F(a  ’ ) are  isomorphic  where  the  isomorphism  is the

identity  on F,  and this  isomorphism  cari  be extended  to  an automorphism

of E (Theorem  10). Thus,  there  is an automorphism  sending  any  given

root into any  other  root, which  establishes  the “transitivity”  of the group.
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A permutation o of the numbers 1,2, , . . , q is called a linear

substitution modulo q if there exists a number b b 0 modulo q such~~-

that o(i) :E bi + c(mod q), i = 1,2,.  . . ,q.

THEOREM 7. Let f( x ) be an irreducible  equation of prime de-- -

gree q in a field F. The group G of f( x) (which is a permutation group~-
of the roots, or the numbers 1,2, . . . , q) is solvable if and only if,~~
after a suitable  change in the numbering of the roots, G is a group of~~

linear substitutions modulo q,  and in the group G a11  the substitutions~~

withb = l,o(i) = c + l(c = 1,2 ,..., q)occur.~-
Let G be a transitive substitution group on the numbers

1,2,.  . . , q and let G, be a normal subgroup of G. Let 1,2,.  . . , k be the

images of 1 under the permutations of G,; we say: 1,2, . . . , k is a

domain of transitivity of G,. If i < q is a number not belonging to thise- -

domain of transitivity, there is a o E  G which maps 1 on i. Then

0(1,2,...,k) is a domain of transitivity of oGlu-‘.  Since G, is  a

normal subgroup of G, we have G, = oG,o-‘.  Thus, (T(  1,2,.  . . , k) is

again  a domain of transitivity of G, which contains  the integer i and

has k elements. Since i was arbitrary, the domains of transitivity of

G, a11  contain  k elements. Thus,  the numbers 1,2, . . . , q are divided

into a collection of mutually exclusive sets, each containing k ele-

ments, SO that k is a divisor of q. Thus,  in case q is a prime, either

k = 1 (and then G, consists  of the unit alone) or k = q and G, is

also transitive.

TO prove the theorem, we consider the case in which G is

solvable. Let G = G0 7> G, 3 . . . 3 Gs+l = 1 be a sequence  exhibiting

the solvability. Since G, is abelian, choosing a cyclic subgroup of it
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would  permit  us  to  assume  the  term before  the last  to  be cyclic, i.e.,

Gs  is cyclic.  If ~7  is a generator  of Gs, CJ  must  consist of a cycle con-

taining  a11 q of the numbers  1,2, . . . , q since in any  other  case  Gs

would  not be transitive  [ if <z  = ( lij . . . m)( n . . . p) . . . then  the powers

of (T  would  map 1 only  into 1, i, j . . ..m,  contradicting  the transitivity  of

Gs  1. By a change in the  number  of the permutation  letters,  we

may assume

o(i)  = i + 1 (mod  q)

oc(i)  E i + c (modq)

Now  let r be any  element  of Gsel.  Since Gs  is a normal  subgroup

of Gs..,  > 7~7 -l isanelementofGs,sayrm-1=ob.Let7(i)  = jorr-l(j)  = i,

then  ro-r-l( j) = ob( j) = j + b (mod  q). Therefore,

Ta(i)  E r(i)  + b (mod  q) or r(i+l)  = r(i)  + b for each i. Thus,

setting  T(O) = c, we  have  r(l)  = c + b, r(2)  = r( 1) + b = c + 2b

and in general 7(i)  E c + ib (mod  q). Thus,  each  substitution  in G s-l

is a linear  substitution.  Moreover,  the only  elements  of Gsml  which

leave  no element  fixed belong  to  Gs, since for each  a f 1, there  is an

i such  that  ai + b = i (mod  q) [ take  i such  that  (a-l)  i z - b].

We prove by an induction  that  the elements  of G are  a11 linear

substitutions,  and  that  the only  cycles of q letters  belong  to  Gs. Sup-

pose  the assertion  true  of Gsq.  Let r c Gsmnml  and  let v be a cycle

which  belongs to  Gs  (hence  also to  G,-,).  Since the transform  of a

cycle  is a cycle,  r-107 is a cycle  in Gs-,  and  hence  belongs to  Gn.

Thus  T-~UT  = ub for some  b. By the argument  in the preceding  para-

graph,  r is a linear  substitution  bi + c and  if 7 itself  does  not belong  to

Gs, then  7 leaves  one integer  fixed  and  hence  is not a cycle of q elements.
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We now prove the second half of the theorem. Suppose G is a

group of linear substitutions which contains  a subgroup N of the form

c(i) 5: i -+  c. Since the only linear substitutions which do not leave

an integer fixed belong to N, and since the transform of a cycle of q

elements is again a cycle of q elements, N is a normal subgroup of G.

In each  coset N . r where r(i) = bi + c the substitution 0-l~  occurs,

where (T  E i + c. But o-ir(  i) = (bi + c) - c F bi. Moreover, if

r(i) z biandr’(i)  = b’i thenrr’(i)  E bb ’ i .  Thus ,  t he fac to rg roup

(G/N)  is isomorphic to a multiplicative subgroup of the numbers

1,2,.  . . , q-1 mod q and is therefore abelian. Since (G/N)  and N are

both abelian, G is solvable.

Corollary 1. If G is a solvable transitive substitution group on q . *--~

letters (q prime), then the only substitution of G which leaves two or~-

more letters fixed is the identity.~~

This follows from the fact  that each  substitution is linear modula

q and bi + c E i (mod q) has either no solution (b z 1, c + 0) or

exactly one solution(b f 1) unless b = 1, c = 0 in which case the sub-

stitution is the identity.

Corollary 2. A solvable, irreducible equation of prime degree in--~

a field which is a subset of the real numbers has either one real root~~

or a11 its roots are real.

The group of the equation is a solvable transitive substitution

group on q (prime) letters. In the splitting field (contained in the field

of complex numbers) the automorphism which maps a number into  its

complex conjugate  would leave fixed a11 the real numbers. By Corollary
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1, if two roots are left fixed, then a11  the roots are left fixed, SO that

if the equation has two real roots a11  its roots are real.

F. Ruler and Compass Constructions.

Suppose there is given in the plane a finite  number of elementary

geometric figures, that is, points, straight lines  and circles. We seek

to construct others which satisfy certain conditions in terms of the

given figures.

Permissible steps in the construction Will entai1 the choice of

an arbitrary point interior to a given region, drawing a line through two

points and a circle with given tenter  and radius, and finally intersec-

ting pairs of lines,  or circles, or a line and circle.

Since a straight line, or a line segment, or a circle is determined

by two points, we cari  consider ruler and compass constructions as con-

structions of points from given points, subject to certain conditions.

If we are given two points we may  join  them by a line, erect a

perpendicular to this line at, say,  one  of the points and, taking the dis-

tance between the two points to be the unit, we cari with the compass

lay off any  integer n on each of the lines.  Moreover, by the usual

method, we cari  draw parallels and cari construct m/n. Using the two

lines  as axes of a cartesian coordinate system, we cari with ruler and

compass construct a11  points with rational coordinates.

Ifa,b,c,... are numbers involved as coordinates of points which

determine the figures given, then the sum, product,  difference  and

quotient of any  two of these numbers cari be constructed. Thus, each
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element of the field R( a, b, c, . . .)  which they generate out  of the

rational numbers cari  be constructed.

It is required that an arbitrary point is any  point of a given region.

If a construction by ruler and compass is possible, we cari  always

choose our arbitrary points as points having rational coordinates. If we

join  two points with coefficients in R( a, b, c, . . . ) by a line, its equa-

tion Will have coefficients in R( a, b, c, . . .) and the intersection of two

such lines  Will be a point with coordinates in R( a, b, c, . . . ). The equa-

tion of a circle Will have coefficients in the field if the circle passes

through three points whose coordinates are in the field or if its tenter

and one  point have coordinates in the field. However, the coordinates

of the intersection of two such  circles, or a straight line and circle, Will

involve square roots.

It follows that if a point cari  be constructed with a ruler and com-

pass,  its coordinates must be obtainable from R( a, b, c, . . . ) by a formula

only involving square roots, that is, its coordinates Will lie in a field

RS  3 Rs-i  3 .  .  . 3 R,  = R(a,b,c,... ) where each field Ri is splitting

field over  Ri-r of a quadratic equation x2 - a = 0. It follows (Theorem

6, p. 21) since either Ri = Ri-r or ( Ri/Ri-r  ) = 2, that (RJR,  ) is a

power of two. If x is the coordinate of a constructed point, tben

(Rr(  x)/R,  ) * ( RS/R,  (x)) = (RJR,  ) = 2” SO that Rr( x)/R,  must also

be a power of two.

Conversely, if the coordinates of a point cari  be obtained from

R(a,b,c,... ) by a formula involving square roots only, then the point

cari  be constructed by ruler and compass. For, the field operations of
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addition, subtraction, multiplication and division may be performed by

ruler and compass constructions and, also, square roots using 1: r =

r : rl to obtain r = d rI may be performed by means  of ruler and

compass instructions.

As an illustration of these considerations,  let us show that it is

impossible to trisect an angle of 604 Suppose we have drawn the unit

circle with tenter  at the vertex of the angle, and set up our coordinate

system with X-axis as a side of the angle and origin at the vertex.

Trisection of the angle would be equivalent to the construction

of the point (COS 20”, sin 209  on the unit circle. From the equation

COS 38 = 4 cos3  0 - 3 COS 8, the abscissa would satisfy

4x3  -. 3x = 1/2. The reader may readily verify that this equation has

no rational roots, and is therefore irreducible in the field of rational

numbers. But since we may assume only a straight line and unit

length given, and since the 60° angle cari be constructed,  we may take

R(a,b,c,. . ..)  to be the field R of rational numbers. A root a of the

irreducible equation 8x3 - 6x - 1 = 0 is such  that (R(a)/R)  = 3,

and not a power of two.


