Quantum Walks in Electric Fields

Christopher Cedzich, A. Werner, R. F. Werner

Quantum Walks in Grenoble, France

November 14, 2012

Christopher Cedzich, A. Werner, R. F. Werner

Outline

Electric and Magnetic Fields in Continuous Time Settings

Electric and Magnetic Fields in Discrete Settings $E \in 2\pi\mathbb{Q}$ $E \notin 2\pi\mathbb{Q}$

Summary

Outlook

Electric and Magnetic Fields in Continuous Time Settings

Electric and Magnetic Fields in Discrete Settings Summary Outlook

Definition of e.m. fields in continuous space-time

Consider a Schrödinger operator

$$H=\frac{p^2}{2m}+V.$$

Introduce electromagnetic interaction via minimal coupling

$$p \mapsto p - eA, \quad i\hbar\partial_t \mapsto i\hbar\partial_t - e\phi$$
$$H \mapsto \tilde{H} = \frac{(p - eA)^2}{2m} + V + e\phi$$
$$\Rightarrow \quad [\tilde{H}, p_k + eA_k] = 0.$$

Hence, as a consequence,

$$T(a)T(b) = e^{iF_{\mu\nu}a^{\mu}b^{\nu}}T(b)T(a)$$

for $T(a) = e^{i(p_{\mu} + eA_{\mu})a^{\mu}}$ the Magnetic Translation Operators.

Definition of e.m. fields in Discrete Time Settings

Dynamical map given by a unitary

- \Rightarrow no notion of generator of (finite) time translations
- \Rightarrow no notion of minimal coupling

BUT: we can nevertheless find a notion of electromagnetic fields by imposing obstructions on the commutators of translations for $T_{\mu} := T(a_{\mu})$

$$T_{\mu}T_{\nu} = e^{iF_{\mu\nu}}T_{\nu}pT_{\mu}, \qquad \mu, \nu = 0, \dots, s$$
 (1)

and we define as in the continuous case:

$$egin{aligned} & F_{\mu\mu} = 0 \ & (F_{0,\mu})_{\mu=0,\dots,s} =: E \ & (F_{\mu,
u})_{\mu,
u=1,\dots,s} =: B \end{aligned}$$

Christopher Cedzich, A. Werner, R. F. Werner

Classification of 1D translationally invariant walks

To electrify a walk W with $W T_1 = T_1 W$ for s = 1, find an operator F such that $T_0 = F \cdot W$ and

 $\begin{array}{c} \pmb{\mathsf{E}} \in 2\pi \mathbb{Q} \\ \pmb{\mathsf{E}} \notin 2\pi \mathbb{Q} \end{array}$

$$T_0 T_1 = e^{iE} T_1 T_0. (2)$$

 T_1 acts on wave functions as

$$(T_1\psi)(x)=\psi(x+1).$$

Hence an operator we may consider is $F = e^{iEQ}$ for $E \in \mathbb{R}$ which assures (2) as

$$\begin{pmatrix} F^{-1}T_1^{-1}FT_1\psi \end{pmatrix}(x) = e^{-iEx}e^{iE(x+1)}\psi(x)$$
$$= e^{iE}\psi(x) \qquad \forall \psi.$$

Hence, to electrify a translationally invariant walk W we DEFINE

$$W_E := e^{iEQ} W. \tag{3}$$

Discrete Space - Almost Mathieu Operator

Consider $\mathcal{A}_{\theta} = \{(u^k v^l)_{k,l} | vu = e^{2\pi i \theta} uv\}$ represented on discrete space $\mathcal{H} = \ell^2(\mathbb{Z})$ as

$$u \mapsto U : \psi(n) \mapsto \psi(n+1)$$

 $v \mapsto V : \psi(n) \mapsto e^{i2\pi\theta n}\psi(n)$

Take the self adjoint element $\mathcal{A}_ heta
i H = u + \lambda v + (u + \lambda v)^*$.

The Almost Mathieu operator is defined as

$$(H_{\lambda,\alpha,\theta}\psi)(n) = \psi(n+1) + \psi(n-1) + 2\lambda\cos(n\theta - \alpha)\psi(n)$$

Hofstadter '76:

"The problem of Bloch electrons in magnetic fields is a very peculiar problem, because it is one of the very few places in physics where the difference between rational numbers and irrational numbers makes itself felt."

Discrete Space - Almost Mathieu Operator

 $\theta \in 2\pi \mathbb{Q}$:

Hofstadter '76: for $\theta \in 2\pi\mathbb{Q}$ the spectrum of $H_{\lambda=1,\alpha,\theta}$ consists of Denominator(θ) bands as

 $\begin{array}{c} \pmb{\mathsf{E}} \in 2\pi \mathbb{Q} \\ \pmb{\mathsf{E}} \notin 2\pi \mathbb{Q} \end{array}$

Christopher Cedzich, A. Werner, R. F. Werner

Discrete Space - Almost Mathieu Operator

 $\theta \notin 2\pi \mathbb{Q}$:

Hofstadter '76: "...From this algorithm, the nature of the spectrum at an "irrational" field can be deduced; it is seen to be an uncountable but measure-zero set of points (a Cantor set)"

 $E \in 2\pi \mathbb{Q}$

 $E \notin 2\pi \Omega$

Conjecture (B.Simon)

The spectrum of $H_{\lambda,\alpha,\theta}$ is a Cantor set for all $\lambda > 0$ and $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Q}$.

Proved by Avila and Jitomirskaya in 2005 (preceded by various partial results).

Analog in Quantum walks? Open question...

Electrification of 1D translationally invariant walks

 $W_{E}:=e^{iEQ}W$ leaves us as in the continuous case with two options:

 $\begin{array}{c} \pmb{\mathsf{E}} \in 2\pi \mathbb{Q} \\ \pmb{\mathsf{E}} \notin 2\pi \mathbb{Q} \end{array}$

- ▶ $E \in 2\pi \mathbb{Q}$
- ► $E \notin 2\pi \mathbb{Q}$

Hint for distinct behaviour:

Deelectrify W_E by either spatial or temporal regrouping in case $E\in 2\pi\mathbb{Q}$.

 $egin{array}{c} m{E} \in 2\pi\,\mathbb{Q} \ m{E}
otin 2\pi\,\mathbb{Q} \ m{E}
otin 2\pi\,\mathbb{Q} \end{array}$

Outline

Electric and Magnetic Fields in Continuous Time Settings

Electric and Magnetic Fields in Discrete Settings $E \in 2\pi\mathbb{Q}$ $E \notin 2\pi\mathbb{Q}$

Summary

Outlook

 $E \in 2\pi \mathbb{Q}$ $E \notin 2\pi \mathbb{Q}$

Numerical Results

Choose
$$E = 2\pi \frac{p}{q} \in 2\pi \mathbb{Q}$$
.

Christopher Cedzich, A. Werner, R. F. Werner

 $E \in \mathbb{Q}$: Generic behaviour and spectral considerations

Take walk W on $\ell^2(\mathbb{Z})\otimes \mathbb{C}^2$ and electrify:

$$W_E = e^{iEQ} W.$$

 $\begin{array}{c} \boldsymbol{E} \in 2\pi \mathbb{Q} \\ \boldsymbol{E} \notin 2\pi \mathbb{Q} \end{array}$

 $\mathbb{Q} \in E = 2\pi \frac{p}{q} \Rightarrow \rho := e^{iE}$ primitive q^{th} root of unity $\Rightarrow W_E^q$ translation inv. \Rightarrow Fourier-transform makes sense:

$$(W_E^q\psi)(p) = W(p+E) \cdot (W_E^{q-1}\psi)(p+E)$$
(4)

$$= \mathcal{T}\left[\prod_{j=1}^{q} W(p+jE)\right] \psi(p) \tag{5}$$

$$=: \widetilde{W}_{q}(p) \psi(p).$$
(6)

This matrix may be written as

$$\widetilde{W}_{q}(p) = R \cdot W(p) \cdot R^{2} \cdot W(p) \dots R^{q} \cdot W(p), \quad R = e^{iE\sigma_{3}}$$
(7)

Christopher Cedzich, A. Werner, R. F. Werner Qua

 $egin{array}{c} m{E} \in 2\pi\,\mathbb{Q} \ m{E}
otin 2\pi\,\mathbb{Q} \end{array}$

The revival theorem

Theorem

Let \hat{W}_q be the temporal regrouped and hence translational invariant electric walk with $E = 2\pi \frac{p}{q}$. Then

$$\|W_{E}^{2q} + 1\||_{op} = 2|a|^{q} \qquad q \text{ odd}$$

$$\|W_{E}^{q} + (-1)^{\frac{q}{2}}1\|_{op} = 2|a|^{\frac{q}{2}} \qquad q \text{ even}$$

where $SU(2) \ni C = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}$. This bound is exponentially good in q iff |a| < 1.

A trace formula

To determine the spectrum, solve

$$\det\left[\tilde{W}_{q}(p) - \lambda \mathbb{1}\right] = \det\tilde{W}_{q}(p) - \lambda \operatorname{Tr}\tilde{W}_{q}(p) + \lambda^{2} \stackrel{!}{=} 0$$
(8)

 $\begin{array}{c} \pmb{E} \in \pmb{2}\pi \mathbb{Q} \\ \pmb{E} \notin \pmb{2}\pi \mathbb{Q} \end{array}$

det $\widetilde{W}_q(p)$ is simply given by det $W(p)^q = 1$, and for the trace:

Lemma

Let $\tilde{W}_q(p)$ be given by (7) and $R^q = 1$ s.t. $R^k \neq 1 \, \forall k < q$. Then $Tr \tilde{W}_q(p)$ is given by

$$Tr\tilde{W}_{q}(p) = \begin{cases} a^{q} + d^{q} & q \text{ odd} \\ -(a^{q} + d^{q}) + (-1)^{\frac{q}{2}+1} 2\left((\det W(p))^{\frac{q}{2}} - (ad)^{\frac{q}{2}} \right) & q \text{ even} \end{cases}$$
(9)

Christopher Cedzich, A. Werner, R. F. Werner Quant

 $\begin{array}{c} \pmb{E} \in \pmb{2}\pi\mathbb{Q} \\ \pmb{E} \notin \pmb{2}\pi\mathbb{Q} \end{array}$

Outline

Electric and Magnetic Fields in Continuous Time Settings

Electric and Magnetic Fields in Discrete Settings $E \in 2\pi \mathbb{Q}$ $E \notin 2\pi \mathbb{Q}$

Summary

Outlook

Continued Fraction Expansions of $E \in \mathbb{R} \setminus 2\pi\mathbb{Q}$

Consider $E \in 2\pi \mathbb{R} \setminus \mathbb{Q}$. Represent E as

$$E = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}} =: [a_0; a_1, a_2, \dots]$$

 $E \in 2\pi \mathbb{Q}$ $E \notin 2\pi \mathbb{Q}$

Knowing $(a_i)_{i \in \mathbb{N}}$ one defines finite approximations

$$\frac{p_n}{q_n} := [a_0; a_1, \dots, a_n], \qquad \text{where} \quad \begin{cases} \frac{p_n}{q_n} > E & n \text{ odd} \\ \frac{p_n}{q_n} < E & n \text{ even} \end{cases}$$

which approximate E as

$$\left|E-\frac{p_n}{q_n}\right|<\frac{1}{a_{n+1}q_n^2}.$$

Christopher Cedzich, A. Werner, R. F. Werner

Estimates for Revivals for $E \in \mathbb{R} \setminus 2\pi\mathbb{Q}$

Consider $\psi \in \mathcal{H}$ with supp $\psi = [-L, L]$. Then

$$\begin{split} \|W_E\psi - W_{E'}\psi\| &\leq L|E - E'| \\ \Rightarrow \quad \|W_E^t\psi - W_{E'}^t\psi\| &\leq \frac{t}{2}(t+2L-1)|E - E'| \end{split}$$

 $E \in 2\pi \mathbb{Q}$ $E \notin 2\pi \mathbb{Q}$

hence with $E' = 2\pi \frac{p_n}{q_n}$ and the Revival Theorem

$$\begin{split} \|W_E^{2q_n}\psi+\psi\| &\leq \frac{4\pi}{a_{n+1}} + \mathcal{O}\left(Lq_n^{-1}\right) \qquad q_n \text{ odd} \\ \|W_E^{q_n}\psi+(-1)^{\frac{q_n}{2}}\psi\| &\leq \frac{\pi}{a_{n+1}} + \mathcal{O}\left(Lq_n^{-1}\right) \qquad q_n \text{ even} \end{split}$$

Christopher Cedzich, A. Werner, R. F. Werner

 $oldsymbol{E}\in 2\pi\,\mathbb{Q}$ $oldsymbol{E}
otin 2\pi\,\mathbb{Q}$

Spectral Considerations for $E \in \mathbb{R} \setminus 2\pi\mathbb{Q}$

Hence

$$\begin{split} \lim_{n \to \infty} a_n &= \infty & \Longrightarrow & \text{inf. seq. of sharper and sharper revivals} \\ & \Rightarrow & \sigma_{\mathsf{ac}} = \varnothing \end{split}$$

and

$$\lim_{n \to \infty} a_{n+1} - a_n = \infty \text{ sufficiently fast} \Rightarrow \sigma_{pp}(W_E) = \emptyset$$
$$\Rightarrow \sigma(W_E) = \sigma_{sc}(W_E)$$

Christopher Cedzich, A. Werner, R. F. Werner Qu

 $E \in 2\pi \mathbb{Q}$ $E \notin 2\pi \mathbb{Q}$

Bounded CFE

In the case of $\lim_{n\to\infty} a_n < \infty$ (e.g. E =Golden Ratio = [0; 1, 1, 1, ...)

Conjecture

Let $E=[a_0;a_1,\dots]$ with $\lim_{n\to\infty}a_n<\infty.$ Then the system shows Anderson localization, i.e.

$$\sigma\left(W_{E}\right)\equiv\sigma_{pp}\left(W_{E}\right)$$

Christopher Cedzich, A. Werner, R. F. Werner

Summary

Outlook

Next step: obviously magnetic fields - as an appetizer:

Acknowledgements

Thanks for your attention!

LA FIN!

Christopher Cedzich, A. Werner, R. F. Werner