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Abstract

Let M7 be a smooth manifold equipped with a G2-structure φ, and Y 3 be a closed compact φ-
associative submanifold. McLean [Deformations of calibrated submanifolds, Comm. Anal. Geom.
6 (1998), 705–747] proved that the moduli space MY,φ of the φ-associative deformations of Y has
vanishing virtual dimension. In this paper, we perturb φ into a G2-structure ψ in order to ensure the
smoothness of MY,ψ near Y . If Y is allowed to have a boundary moving in a fixed coassociative
submanifold X, it was proved in Gayet and Witt [Deformations of associative submanifolds with
boundary, Adv. Math. 226 (2011), 2351–2370] that the moduli space MY,X of the associative
deformations of Y with boundary in X has finite virtual dimension. We show here that a generic
perturbation of the boundary condition X into X′ gives the smoothness of MY,X′ . In another
direction, we use Bochner’s technique to prove a vanishing theorem that forces MY or MY,X to
be smooth near Y . For every case, some explicit families of examples will be given.

1. Introduction

In the Euclidean space (R7, g0) with its canonical coordinates (xi)i=1,...,7, consider the 3-form

φ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356,

and G2 the subgroup of SO(7) defined by G2 = {g ∈ SO(7), g∗φ0 = φ0}. If M is an oriented spin
seven-dimensional Riemannian manifold, its structure group can be reduced to G2 ⊂ SO(7). Given
a set of trivialization charts for T M compatible with G2, M inherits a non-degenerate 3-form φ and a
metric g, which are the pullbacks of φ0 and g0 by these charts. We call the pair (φ, g) a G2-structure.
Moreover, T M inherits a vector product × defined by

∀u, v, w ∈ T M, 〈u × v, w〉 = g(u × v, w) = φ(u, v, w).

Note that in R
7, the subspace R

3 × {0} is stable under this vector product, which induces the classical
vector product on R

3. When φ is closed and coclosed for g, the structure is said to be torsion-free. In
this situation, the holonomy of g is a subgroup of G2, see [12].

A three-dimensional submanifold Y in (M, φ, g) is called φ-associative, or simply associative
when there is no ambiguity, if its tangent bundle is stable under the vector product associated to φ. In
other terms, φ restricted to Y is a volume form for Y . Likewise, a four-dimensional submanifold X is
called coassociative if the fibres of its normal bundle are associative, or equivalently, φ|T X vanishes.
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1.1. Genericity

Closed associative submanifolds

Definition 1.1 Consider a smooth spin 7-manifold M and Y to be a smooth compact closed
3-submanifold. For every G2-structure φ, define MY,φ to be the set of smooth φ-associative
submanifolds isotopic to Y .

It is known from [17] that the problem of associative deformations of a compact closed associative
submanifold Y is related to an elliptic partial differential equation, namely a twisted Dirac operator,
see Theorem 2.1. Hence, for a fixed G2-structure φ, the moduli space MY,φ has finite and vanishing
virtual dimension. In general, the situation is obstructed. For instance, consider the torus T

3 × {t} in
the flat torus (T7, φ0, g0) = T

3 × T
4. This is an associative submanifold, and its moduli space MT3×{t}

of associative deformations contains at least the four-dimensional T
4. See also Proposition 4.6 for a

more general situation in a product of a Calabi–Yau manifold with S1.
A natural question is to find conditions which force the moduli space MY,φ to be smooth at least

near a φ-associative Y , or in other terms, which force the cokernel of the operator to vanish. One way
to solve this is to perturb the G2-structure and get generic smoothness. It turns out that in general
we cannot do this in the realm of torsion-free structures, see Remark 2.4. On the other hand, G2-
structures with closed 3-form φ seem to be rich enough to work with, at least for the point of view
of calibrated geometries, see [8]. Indeed, any closed G2-structure φ defines a calibration, and when
this form is closed, the calibrated submanifolds, here the associative ones, do minimize the volume in
their homology class. As suggested to the author by D. Joyce, we will prove the following theorem.

Theorem 1.2 Let M be a manifold equipped with a closed G2-structure φ, and Y be a smooth
compact closed φ-associative submanifold. Then there is a neighbourhood V of Y, such that for
every generic closed G2-structure ψ close enough to φ, the subset of elements of MY,ψ lying in V

is a finite set, possibly empty.

A former result in this direction was proved by Abkulut and Salur [1], where the authors allow a
certain freedom for the definition of associativity.

Associative submanifolds with boundary. In [7], the authors showed that the problem of associative
deformations of an associative submanifold Y with boundary in a fixed coassociative submanifold
X is an elliptic problem of finite index. Moreover, they proved that this virtual dimension equals the
index of a natural Cauchy–Riemann operator related to the complex geometry of the boundary, see
Theorem 3.1. As in the case of a closed associative, the situation can be obstructed. For instance,
consider in (T7, φ0, g0) the T 2-family of associative submanifolds

Yλ = {(x1, x2, x3, λ, μ, 0, 0), 0 ≤ x1 ≤ 1
2 , x2, x3 ∈ S1}, (λ, μ) ∈ T 2.

The two components of the boundary of Yλ lie in the union X of the two coassociatives tori

Xi = {(i/2, x2, x3, x4, x5, 0, 0), x2, x3, x4, x5 ∈ S1}, i = 0, 1.

However, the index of this problem vanishes, see [7] or Theorem 3.1. For more general obstructed
situations, see Theorem 4.12.
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As in the case of a closed associative, we can perturb the closed G2-structure φ of the manifold M

into ψ to ensure the smoothness of the moduli space. Note that in this case, X has no reason to remain
coassociative for the new structure. But it remains ψ-free, i.e. the tangent space of X does not contain
any ψ-associative 3-plane, see [9] or [7, Section 5]. Indeed, φ-coassociativity implies φ-freedom,
and for a submanifold to be φ-free is an open condition in the variable φ. For any G2-structure φ, the
problem of deformations of an associative submanifold with boundary in a fixed φ-free submanifold
is still elliptic [7] and, in our present case, its index is the same as the index for the unperturbed
situation.

Definition 1.3 Consider a manifold equipped with a G2-structure (φ, g) and Y a smooth compact
associative submanifold with boundary in a φ-free submanifold X. We denote by MY,X the set of
smooth associative submanifolds with boundary in X and isotopic to Y .

Instead of changing the G2-structure, we can move the boundary condition, namely X. Still, if we
demand that X remains coassociative, in general we cannot get smoothness. Indeed, it is known [17]
that the moduli space of coassociative perturbations of X is smooth and has the dimension b+

2 (X)

of the space of harmonic self-dual 2-forms on X. In the former example of the flat torus, every
coassociative deformation of X is a translation of the initial situation, hence the problem remains
obstructed. Now, since any perturbation of a φ-free submanifold remains φ-free, we can fix φ and
perturb X.

Theorem 1.4 Let Y be a smooth associative submanifold with boundary in a smooth coassociative
submanifold X. If the virtual dimension of MY,X is non-negative, then for any sufficiently small
generic smooth deformation X′ of X, either MY,X′ is locally empty, that means there is no associative
manifold with boundary in X′ close enough to Y, or there exists a small associative deformation Y ′ of
Y such that the moduli space MY ′,X′ is smooth near Y ′ and of dimension equal to the index computed
for the unperturbed situation.

1.2. Metric conditions

Concrete examples are often non-generic, so we would like too to get a condition that is not a per-
turbative one. For holomorphic curves in dimension 4, there are topological conditions on the degree
of the normal bundle which imply the smoothness of the moduli space of complex deformations, see
[10]. The main reason is that holomorphic curves intersect positively. In our case, there is no such
phenomenon.

In [17, p. 30], McLean gives an example of an isolated associative submanifold. For this, he recalls
that Bryant and Salamon constructed in [4] a metric of holonomy G2 on the spin bundle S3 × R

4 of
the round 3-sphere. In this case, the base Y = S3 × {0} is associative, the normal bundle of Y is the
spin bundle of S3, and the operator related to the associative deformations of Y is the Dirac operator
on S3. By the famous theorem of Lichnerowicz [16], there are no non-trivial harmonic spinors on S3

for metric reasons (to be precise, because the Riemannian scalar curvature is positive), so the sphere
is isolated as an associative submanifold.

Minimal submanifolds. Recall that in a manifold with a closed G2-structure, associative sub-
manifolds are minimal. In [19], Simons gives a metric condition for a minimal submanifold to be
stable, i.e. isolated. For this, he introduces the following operator, a sort of partial Ricci operator.
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Definition 1.5 Let (M, g) be a Riemannian manifold and Y be a p-dimensional submanifold in M

and ν be its normal bundle. Choose {e1, . . . , ep} a local orthonormal frame field of T Y , and define
the 0-order operator R : �(Y, ν) → �(Y, ν) with Rs = πν

∑p

i=1 R(ei, s)ei, where R is the curvature
tensor of g on M and πν the orthogonal projection to ν.

It turns out that the definition is independent of the chosen oriented orthonormal frame, and
that R is symmetric. Simons defines another operator A related to the second fundamental
form of Y .

Definition 1.6 Let SY be the bundle over Y whose fibre at a point y is the space of symmetric
endomorphisms of TyY , and A ∈ Hom(ν, SY ) the second fundamental form defined by A(s)(u) =
−∇�

u s, where u ∈ T Y , s ∈ ν and ∇� is the projection to T Y of the ambient Levi–Civita connection
∇, with ∇ = ∇� + ∇⊥. Denote by A the operator A : �(Y, ν) −→ �(Y, ν), As = At ◦ A(s), where
At is the transpose of A.

It is classical that A is a symmetric positive 0th order operator. Moreover, it vanishes if Y is totally
geodesic. Using both operators and Bochner’s technique, Simons gives a sufficient condition for a
minimal submanifold to be stable.

Theorem 1.7 [19] Let Y be a minimal submanifold in M, and assume that R − A is positive. Then
Y cannot be deformed as a minimal submanifold.

In particular, if Y is a compact closed associative submanifold satisfying the conditions of Theorem 1.7
in a manifold M with a closed G2-structure, then it cannot be perturbed as an associative
submanifold. Now, if Y is an associative submanifold with a boundary, we introduce another
operator.

Definition 1.8 In a manifold equipped with a G2-structure, let Y be a smooth compact associative
submanifold with boundary and ν be its normal bundle. Let L be a two-dimensional real subbundle
of ν|∂Y invariant under the action of n×, where n is the inward unit normal vector field along ∂Y .
Choose {v, w = n × v} a local orthonormal frame for T ∂Y . We denote by DL the operator DL :
�(∂Y, L) → �(∂Y, L),

DLs = πL(v × ∇⊥
w s − w × ∇⊥

v s),

where πL : ν|∂Y → L is the orthogonal projection to L and ∇⊥ the normal connection on ν induced
by the Levi–Civita connection ∇ on M .

Remark 1.9 Note that such subbundles always exist. First, it is easy to check that ν|∂Y is stable under
the action of n×. Secondly, ν|∂Y has real dimension 4 > 2, so that it has a non-vanishing section e.
Then, L generated by e and n × e satisfies the conditions of Definition 1.8.

We will prove in Proposition 3.5 that DL is independent of the chosen oriented frame, is of order
0 and is symmetric. Assume further that the boundary of Y lies in a coassociative submanifold X.
It turns out that Y intersects X orthogonally, see Theorem 3.1. Denote by μX the two-dimensional
orthogonal complement of n in the normal bundle of X over ∂Y , where n is the inward normal unit
vector field in Y along ∂Y . Then we can state the following vanishing theorem.
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Theorem 1.10 Let M be a manifold equipped with a torsion-free G2-structure and Y be an associa-
tive submanifold with boundary in a coassociative submanifold X. If DμX

and R − A are positive,
the moduli space MY,X is smooth near Y and of dimension given by the index in Theorem 3.1.

Thanks to Theorem 1.10, we can find an explicit example, in the Bryant–Salamon manifold with
G2-holonomy, of a locally smooth one-dimensional moduli space of associative deformations with
boundary in a coassociative submanifold, see Corollary 4.4. In Section 4, we explain other explicit
examples, in particular for an ambient manifold which is the product of a Calabi–Yau manifold with
S1 or R, see Theorem 4.12.

2. Closed associative submanifolds

2.1. The operator D and the deformation problem

We begin with the version of McLean’s theorem proposed by Akbulut and Salur, and a proof of it.

Theorem 2.1 [2, 17] Let M be a manifold equipped with a G2-structure (φ, g), and Y be a closed
compact associative submanifold with normal bundle ν. Then the Zariski tangent space at Y of MY

can be identified with the kernel of the operator D : �(Y, ν) → �(Y, ν), where

Ds =
3∑

i=1

ei × ∇⊥
ei

s +
4∑

k=1

(∇s∗φ)(ηk, ω) ⊗ ηk. (1)

Here (ei)i=1,2,3 is any local orthonormal frame of the tangent space of Y with e3 = e1 × e2, ω =
e1 ∧ e2 ∧ e3, (ηk)k=1,2,3,4 is any local orthonormal frame of ν and ∇⊥ is the connection on ν induced
by the Levi–Civita connection ∇ of (M, g).

Note that the second sum in the right-hand side of equation (1) is a 0th order operator that vanishes
for a torsion-free G2-structure, as proved in [2].

Proof . First, recall the existence on (M, φ, g) of an important object χ , the 3-form with values
in T M and defined, for u, v, w ∈ T M by χ(u, v, w) = −u × (v × w) − 〈u, v〉w + 〈u, w〉v. It is
easy to check [2] that χ(u, v, w) is orthogonal to the 3-plane u ∧ v ∧ w. Moreover, we will use the
following useful formula [8]:

∀u, v, w, η ∈ T M, 〈χ(u, v, w), η〉 = ∗φ(u, v, w, η),

where ∗ is the Hodge star associated to the metric g. So

χ =
∑

k

(ηk�∗φ) ⊗ ηk, (2)

where (ηk)k=1,2,...,7 is a local orthonormal frame of the tangent space of M . Further, if Y is a three-
dimensional submanifold in (M, φ), then χ|T Y = 0 if and only if Y is associative. As in [17], we
use this characterization to study the moduli space of associative deformations of an associative Y .
Let Y be any smooth closed associative submanifold in M . We parametrize its deformations by
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the sections of its normal bundle ν. Fix ω a non-vanishing global section of �3T Y writing locally
ω = e1 ∧ e2 ∧ e3, with (ei)i=1,2,3 a local orthonormal frame of T Y satisfying e3 = e1 × e2. For every
smooth section σ ∈ �(Y, ν), define

F(σ) = exp∗
σ χ(ω) ∈ �(Y, νσ ), (3)

where νσ is the normal bundle of expσ (Y ). Then expσ (Y ) is associative if and only if F(σ) vanishes.
In order to compute the Zariski tangent space of MY at the vanishing section, consider a path of
normal sections (σt )t∈[0,1] ∈ �(Y, ν) and

s = dσt

dt |t=0
∈ �(Y, ν).

To differentiate F at σ = 0 in the direction of s, we use the Levi–Civita connection of (M, g).
We have

∇∂/∂tF (σt )|t=0 =
∑

k

Ls(ηk�∗φ)(ω) ⊗ ηk + (ηk�∗φ)(ω) ⊗ ∇sηk, (4)

where Ls is the Lie derivative in the direction s. Since Y is associative, ω�∗φ = 0 and the second term
vanishes. Note that this implies that the result does not depend on the chosen connection. Thanks to
classical Riemannian formulas, we compute the summand of the first term. For every k,

Ls(ηk�∗φ) = ηk� Ls(∗φ) + [ηk, s]�∗φ,

and since ([ηk, s] ∧ ω)�∗φ = 0, we get

∇∂/∂tF (σt )|t=0 =
∑

k

Ls(∗φ)(ηk, ω) ⊗ ηk. (5)

The Lie derivatives can be expressed in terms of the Levi–Civita connection, see, for instance, [11,
Formula 3.3.26], so that

Ls(∗φ)(ηk, ω) = (∇s∗φ)(ηk, ω) + ∗φ(∇ηk
s, ω)

+ ∗φ(ηk, ∇e1s, e2, e3) + ∗φ(ηk, e1, ∇e2s, e3) + ∗φ(ηk, e1, e2, ∇e3s).

The second term of the right-hand side vanishes because ω�∗φ = 0 and the third one equals
∗φ(ηk, ∇⊥

e1
s, e2, e3) = −〈∇⊥

e1
s × (e2 × e3), ηk〉. Using the relation e2 × e3 = e1 and adding up the

two last similar terms, we obtain ∇sF = ∑
i ei × ∇⊥

i s + ∑
k(∇s∗φ)(ηk, ω) ⊗ ηk. Since F(0) has

values in ν, in fact we can assume that the ηks form a local orthonormal frame of ν. �

Proposition 2.2 Let Y be a smooth closed associative submanifold in a manifold M equipped
with a G2-structure. If the (co)kernel of the operator D given by (1) vanishes, then MY is smooth
near Y and of vanishing dimension. In particular, Y is isolated among associative submanifolds
isotopic to Y .

Proof . Fix Y a smooth closed associative submanifold. For kp > 3, it makes sense to consider the
Banach space E = Wk,p(Y, ν) of sections with weak derivatives in Lp, up the kth one. Moreover, for
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(k − r)/3 > 1/p, the inclusion Wk,p(Y, ν) ⊂ Cr(Y, ν) holds and so σ ∈ E is C1 if k > 1 + 3/p. In
particular, one can define νσ the normal bundle to expσ (Y ), and F the Banach bundle over E with
fibre Fσ = Wk−1,p(Y, νσ ). It is clear that the operator F defined by (3) extends to a section Fk,p of F
over E . The proof of Theorem 2.1 shows that Fk,p is smooth and the derivative of F in the direction of
a vector field s ∈ T0E = Wk,p(Y, ν) is computed by (1). Now, the operator D : �(Y, ν) → �(Y, ν)

has symbol

σ(ξ) : s �→
∑

i

ξis × ei = s × ξ,

which is always invertible on ν as long as ξ ∈ T Y \ {0}. This proves that D is elliptic. Note that
σ(ξ)2s = −|ξ |2 s, which is the symbol of the Laplacian. Hence, F is a Fredholm operator, and
ker D and coker D have finite dimension. By the implicit function theorem for Banach bundles, if
coker D = {0}, then F−1(0) is a smooth Banach submanifold of E near the null section and of finite
dimension equal to dim ker D = index D, which vanishes since Y is odd-dimensional. Lastly, still
thanks to the ellipticity of D, all elements of MY are smooth. �

2.2. Varying the G2-structure

Theorem 1.2 Let M be a manifold equipped with a closed G2-structure φ, and Y be a smooth
compact closed φ-associative submanifold. Then there is a neighbourhood V of Y, such that for
every generic closed G2-structure ψ close enough to φ, the subset of elements of MY,ψ lying in V

is a finite set, possibly empty.

Proof . Consider Y a smooth closed associative submanifold in a manifold M equipped with a closed
G2-structure (φ, g). We modify the former map F defined in (3) in the following way. For every
normal section σ ∈ �(Y, ν) and every G2-structure φ′, consider

F(σ, φ′) = exp∗
σ χφ′(ω) ∈ �(Y, νσ ). (6)

Here the exponential map corresponds to the fixed metric g, whereas νσ , the normal vector bundle
over expσ (Y ), depends now on the metric associated to φ′, as does χφ′ . We will differentiate F(0, ·) in
the direction of Z3(M), the subspace of smooth closed 3-forms on M . Recall that the set of 3-forms
defining a G2-structure is open in �3(M), hence for every ψ ∈ Z3(M) with small enough norm,
φ + ψ still defines a closed G2-structure. Let (φt )t∈[0,1] be a smooth path of closed G2-structures,
with φ0 = φ. In formula (2), the local orthonormal trivializations ηk of the tangent bundle T M are
orthonormal for the metric gt associated to φt , consequently we have to choose them as functions
of t . On the other hand, we can keep ω constant. Hence, F(0, φt ) = ∑

k(ηk(t) ∧ ω)�∗tφt ⊗ ηk(t),
where ∗t denotes the Hodge star for gt . Since ω�∗φ = 0, at t = 0 the two terms in the derivative
containing ∇∂/∂tηk vanish, and we have

∇∂/∂tF (0, φt )|t=0 =
∑

k

(ηk ∧ ω)� ∂

∂t
�(φ(t))|t=0 ⊗ ηk.

The nonlinear function � is defined on the set of G2-structures and has values in �4(X), with

�(ψ) = ∗ψψ, (7)
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where the Hodge star ∗ψ is computed for the metric associated to the G2-structure ψ . Proposition
10.3.5 in [12] shows that if φ is a G2-structure, the derivative of � at φ satisfies

∀ψ ∈ Z3(M), dφ�(ψ) = ∗P(ψ), (8)

where the Hodge star corresponds to g and

P = 4
3π1 + π7 − π27. (9)

Here π1, π7 and π27 are the orthogonal projections corresponding to the decomposition �3T ∗M =
�3

1 ⊕ �3
7 ⊕ �3

27 associated to the irreducible representations of G2, see [6, Lemma 3.2] or [12,
Proposition 10.1.4]. Hence, if ψ = (∂/∂t)φ(t)|t=0 ∈ Z3(M), we have

∇ψF =
∑

k

(ηk ∧ ω)�∗P(ψ) ⊗ ηk. (10)

Lemma 2.3 The operator ∇F : Z3(M) → �(Y, ν) defined by equation (10) is onto.

Proof . Due to the properties of χ , in this formula we can restrict our ηks to a local orthonormal frame
of ν for the metric g. Now, recall [6] that �3

7 = {∗(φ ∧ α), α ∈ �1T ∗M}. Consider s ∈ �(Y, ν), and
α the dual 1-form of s. More precisely, α ∈ �(Y, T ∗M) satisfies

∀y ∈ Y, ∀v ∈ TyM, αy(v) = 〈s(y), v〉. (11)

We choose ω such that φ(ω) = 1, which is always possible since Y is associative. Since P acts as
the identity on �3

7 and ∗ is an involution, it is straightforward to see that

∑
l

(ηl ∧ ω)�∗P(∗(φ ∧ α)) ⊗ ηl = s. (12)

In order to prove the existence of ψ ∈ Z3(M) such that ∇ψF = s, we need to extend ∗(φ ∧ α)

outside Y as a closed form. For this, let p ∈ Y , U be an open set of M containing p and local
co-ordinates y1, y2, y3, x1, x2, x3, x4 on U , where the yis are coordinates on Y and the xis are trans-
verse coordinates. Because Y is associative, the 3-form ψ ′ = ∗(φ ∧ α) ∈ �(Y, �3 T ∗M) is of the
form

∑4
i=1 dxi ∧ βi over Y ∩ U , where for all i, βi is a 2-form. We extend arbitrarily the βis as

smooth 2-forms on U . Assume first that s has compact support in U ∩ Y . Then so do the βis on
U ∩ Y . Define

ψ ′ = d

(
χU

∑
i

xiβi

)
,

where χU is a cut-off function with support in U and equal to 1 in the neighbourhood of the support
of s. Then ψ ′ is a global closed 3-form with ψ ′

|Y = ψ and hence satisfying ∇ψ ′F = s. For a general
section s ∈ �(Y, ν), a partition of unity allows us to find ψ ∈ Z3(M) such that ∇ψF = s.We conclude
that ∇F is onto in the direction of Z3(M). �
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We can now complete the proof of Theorem 1.2. If ZD is the finite-dimensional subspace of
Z3(M) generated by the former closed 3-forms ψ associated to every s ∈ coker D given by
Lemma 2.3, by the inverse mapping theorem, the set

M = {(σ, ψ) ∈ Wk,p(Y, ν) × ZD(M), F (σ, ψ) = 0}

is a smooth manifold near (0, φ) if k > 1 + 3/p. By the Sard–Smale theorem applied to the projection
π : M → ZD , for every generic ψ ∈ ZD close enough to φ, the slice

π−1(ψ) = {σ ∈ Wk,p(Y, ν), expσ (Y ) is ψ-associative}

is a smooth manifold or an empty set. As usual, the sections in π−1(ψ) are in fact smooth, hence the
result. �

Remark 2.4 By Joyce [12, Theorem 10.4.4], if φ is a torsion-free G2-structure, the tangent space at
φ of the set of torsion-free structures can be identified with L ⊕ H3(M, R), where L is the subspace
of the Lie derivatives of φ, i.e. L = {LXφ, X ∈ C0(M, T M)}, and H3(M, R) is the space of the real
harmonic 3-forms on M . If ψ = LXφ ∈ L, Lemma 2.5 shows that the derivative of F along ψ equals
DX⊥, where X⊥ ∈ �(Y, ν) is the normal projection of X onto the normal bundle of Y . Hence, L is
of no use for ∇F to be onto. But the dimension of coker D is not in general less than b3(M), and
even when it is, H3(M) → coker D might well be non-injective (see the end of the Section 4.4 for
examples of every situation). This is the reason why we use the wider space of closed G2-structures.

Lemma 2.5 LetM be a manifold equipped with a torsion-freeG2-structureφ,Y be a smooth compact
closed φ-associative submanifold and X be a smooth vector field of T M in the neighbourhood of Y .
Then

dF|(0,φ)(LXφ) = DX⊥,

where dF|(0,φ)(LXφ) denotes the derivative of the section F given by (6) at (0, φ) in the direction
LXφ, D is the Dirac-like operator given by (1) and X⊥ is the orthogonal projection of X onto the
normal bundle ν over Y .

Proof . Denote by (�t
X)t∈[0,ε] the flow generated by X near Y and φt = �t∗

Xφ the pull-back of φ.
Hence, the metric gt associated to φt is �t∗

Xg, so that �(φt) = �t∗
X (�(φ)), where � is defined by (7).

Let (ηt
k)k=1,...,4 be an orthonormal framing of the normal bundle of Y for the metric gt , depending

smoothly on t . Then

F(0, φt ) =
∑

k

(ηt
k ∧ ω)��(φt) ⊗ ηt

k =
∑

k

(ηt
k ∧ ω)��t∗

X (�(φ)) ⊗ ηt
k,

which implies

dF|(0,φ)(LXφ) =
∑

k

(η0
k ∧ ω)�LX(�(φ)) ⊗ η0

k

(there is no derivative of ηt
k because ω��(φ) = 0). This is the right-hand side of (5) with X instead

of s. The end of the proof of Theorem 2.1 shows that dF|(0,φ)(LXφ) = DX⊥. �
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In the following Proposition 2.6, we give a situation where we can find a way to isolate an
associative after perturbing the G2-structure.

Proposition 2.6 Let Y be a smooth closed φ-associative submanifold, such that ker D is gener-
ated by a non-vanishing normal vector field. Then there is a neighbourhood V of Y and a closed
perturbation ψ of φ, such that the only element of MY,ψ lying in V is Y .

Proof . Let ξ1 ∈ ker D \ {0}. Since the normal bundle ν of Y is trivial, we can find normal vector
fields ξ2, ξ3 and ξ4 such that the ξis form a global framing of ν. Let (xi)i=1,...,4 the coordinates near
Y defined by exponentiating the ξis. The 3-form ξ1�∗φ writes

∑
i=2,3,4 dxi ∧ βi . The closed form

ψ = d

(
x1

∑
i=2,3,4

xi ∧ βi

)

is defined near Y and vanishes on Y . If φλ = φ + λψ , denote by gλ the associated metric and by Dλ

the Dirac-like operator associated to φλ. We will prove that for λ small enough, the only solution to
Dλs = 0 is the null section, which will prove Proposition 2.6 by Proposition 2.2.

Derivative (5) together with equation (8) giving the derivative of the Hodge star imply that for
every s ∈ �(Y, ν),

Dλs =
∑

k

ηk ∧ ω�
(
Ls

(
�(φ) + λ∗P(ψ) + O(λ2)

)) ⊗ ηk

= Ds + λ
∑

k

ηk ∧ ω�(Ls(∗P(ψ))) ⊗ ηk + O(λ2 s),

where ∗ is the Hodge star associated to φ and P is given by (9) (note that ηk is an orthonormal framing
for every λ since gλ = g on Y ). In particular, if s ∈ ker Dλ,

Ds = O(λs). (13)

Near Y , we have ∗P(ψ) = x1ξ1�∗φ + ∑
i=2,3,4 xi∗P(dx1 ∧ βi) + O(x2), so that on Y ,

Ls(∗P(ψ)) = s1ξ1�∗φ +
∑

i=2,3,4

si∗P(dx1 ∧ βi),

where s = ∑
i=1,2,3,4 siξi . This implies

Dλs = Ds + λs1ξ1 + O(λ(si)i=2,3,4) + O(λ2 s). (14)

Since D is a self-adjoint elliptic operator, there is a constant a (depending on λ and s) such that
s − aξ1 = O(Ds), see [14, Corollary 5.7] for instance. Assume now that s ∈ ker Dλ. Then, estimate
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(13) implies that s − aξ1 = O(λs), so that projecting onto the directions ξ1 and ξi , i = 2, 3, 4,
we get

s1 − a = O(λs) (15)

and

si = O(λs) for i = 2, 3, 4. (16)

The first estimate gives ∇s1 = O(λs), and the second one together with equation (14) implies

Ds = −λs1ξ1 + O(λ2 s). (17)

This gives
D2s = −λ∇s1 × ξ1 + O(λ2 s) = O(λ2 s). (18)

Since ker D2 = ker D and D2 is elliptic, we have by Lawson and Michelsohn [14, Corollary 5.7] and
relation (18) the estimate s − aξ1 = O(D2 s) = O(λ2 s), so that

Ds = O(λ2 s), (19)

since Dξ1 = 0. Now, from (17) and (19) we deduce λs1ξ1 = O(λ2 s). Since by (16), the norm of s is
equivalent to the norm of s1 when λ tends to zero, the last estimate is impossible for λ small enough
and a non-zero s ∈ �(Y, ν), so that s = 0. �

This situation arises in particular in the Calabi–Yau extension, see Corollary 4.8.

2.3. A vanishing theorem

We turn now to the second way of getting the smoothness of the moduli space, namely Bochner’s
technique and Simons’s theorem. We formulate the following theorem which can be deduced from
Theorem 1.7, since any associative submanifold is minimal.

Theorem 2.7 Let Y be a smooth closed compact associative submanifold of a manifold M with a
closed G2-structure. If the spectrum of Rν = R − A is positive, then Y is isolated as an associative
submanifold.

For the reader’s convenience, we give below a proof of this result in the case where the G2-structure
is torsion-free. We will compute D2 to use Bochner’s technique. For this, we introduce the normal
equivalent of the invariant second derivative. More precisely, for any local vector fields v and w

in �(Y, T Y ), let ∇⊥2
v,w be the operator defined by ∇⊥2

v,w = ∇⊥
v ∇⊥

w − ∇⊥
∇�

v w
acting on �(Y, ν). It is

straightforward to see that it is tensorial in v and w. Moreover, define the equivalent of the connection
Laplacian:

∇⊥∗∇⊥ = −trace (∇⊥2) = −
∑

i

∇⊥2
ei ,ei

,

where the eis define a local orthonormal frame of T Y .



1224 D. GAYET

Theorem 2.8 For Y an associative submanifold in a manifold with a torsion-free G2-structure,
D2 = ∇⊥∗∇⊥ + Rν .

We refer to the appendix for the proof of this theorem.

Proof of Theorem 2.7. Let us assume that we are given a fixed closed associative submanifold Y .
Consider a section s ∈ �(Y, ν). By classical computations using normal coordinates and thanks to
Theorem 2.8, we have

−1

2
�|s|2 =

∑
i

〈∇⊥
i s, ∇⊥

i s〉 + 〈s, ∇⊥
i ∇⊥

i s〉 = |∇⊥s|2 − 〈D2s, s〉 + 〈Rνs, s〉.

Since the Laplacian equals −div( �∇), its integral over the closed Y vanishes. We get

0 =
∫

Y

|∇⊥s|2 − 〈D2s, s〉 + 〈Rνs, s〉 dy. (20)

Assume that s belongs to ker D. Under the hypothesis that Rν is positive, the last equation implies
s = 0. Hence, dim coker D = dim ker D = 0, and by Proposition 2.2, MY is a smooth manifold near
Y with vanishing dimension. In particular, Y is isolated. �

3. Associative submanifolds with boundary

In this section, we explain our results in the case of an associative submanifold with boundary in a
coassociative submanifold. We first give below the principal results of [7]. For this, recall that in a
manifold with a G2-structure and an associated vector product ×, given x ∈ M and n a unit vector
in TxM , the application

n× : TxM → TxM, v �→ n × v

defines a complex structure on n⊥, the orthogonal complement of n. A 2-plane L ⊂ n⊥ invariant
under n× will be called an n×-complex line.

Theorem 3.1 [7] Let M be a manifold equipped with a G2-structure (φ, g) and Y be a smooth
compact associative submanifold with boundary in a coassociative submanifold X. Let νX be the
normal complement of T ∂Y in T X|∂Y , and n be the inward unit normal vector to ∂Y in Y . Then

(1) The bundle νX is a subbundle of ν|∂Y and is an n×-complex line, as is the orthogonal
complement μX of νX in ν|∂Y .

(2) Viewing T ∂Y, νX and μX as n×-complex line bundles, we have μ∗
X

∼= νX ⊗C T ∂Y .
(3) Further, the problem of the associative deformations of Y with boundary in X is elliptic and

of index index (Y, X) = index ∂̄νX
= c1(νX) + 1 − g, where g is the genus of ∂Y .

Proposition 3.2 Let M be a smooth manifold equipped with a G2-structure (φ, g) and let Y be a
smooth compact associative submanifold with boundary in a coassociative submanifold X. Consider
the adapted version of the linearization of (1) for our boundary problem:

D : EX = {s ∈ �(Y, ν), s|∂Y ∈ νX} → �(Y, ν).

If the cokernel of D : EX → �(Y, ν) vanishes, then MY,X is smooth near Y and of dimension equal
to index (Y, X).
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Proof . For 2k > 3 and (k − r)/3 > 1
2 , define the adapted Banach space EX by

EX = {σ ∈ Wk,2(Y, ν), ∀y ∈ ∂Y, σ (y) ∈ νX,y},

and F the bundle over EX, where the fibre Fσ denotes Wk−1,2(Y, νσ ). As before, νσ is the normal
bundle to expσ (Y ). Let us assume first that X is totally geodesic for the metric g. Then EX parametrizes
the submanifolds with boundary in X and close enough to Y . Define the analogue of the map (3)
in the proof of Theorem 2.1 by F : EX → F, F (σ ) = exp∗

σ χ . By the proof of Theorem 2.1, F is
smooth and its derivative at the vanishing section is D : EX → �(Y, ν). Further, by Booß-Bavnbek
and Wojciechowski [3, Theorem 20.8], the operator D : EX → �(Y, ν) is Fredholm and Theorem 3.1
gives its index. Now, if the cokernel of D vanishes, then the inverse mapping theorem shows that
MY,X is smooth near Y and of the expected dimension equal to index (Y, X). Lastly, [3, Theorem 19.1]
shows that in fact, the sections belonging to MY,X are smooth and so are the associated deformations
of Y . In general, X is not totally geodesic and as explained in [5, 13], expσ (∂Y ) has no reason to lie
in X. For this, we change the metric near X, as in the mentioned works.

Lemma 3.3 There exists a tubular neighbourhood U of X and a metric ĝ such that ĝ(x) = g(x)

for every x ∈ X, ĝ equals g outside U and X is totally geodesic for ĝ.

Proof . The exponential gives a diffeomorphism � between a tubular neighbourhood U of X in M

and a neighbourhood V of the vanishing section in the normal vector bundle NX of X. Moreover, it
sends X to the vanishing section. Consider on V the metric h = π∗g|T X ⊕ gN, where gN is the natural
flat metric on the fibres induced by the metric g, g|T X is the induced metric on X and π : NX → X

denotes the natural projection. Now H = �∗h is a metric on U , for which X is clearly totally
geodesic. Take χ to be a cut-off function with support in U , equal to 1 in a neighbourhood of X. Then
ĝ = χH + (1 − χ)g satisfies all the conditions of the lemma. �

Consider ν̂ the normal bundle over Y for the new metric ĝ. For every section σ ∈ �(Y, ν̂), we
use the adapted function F̂ (σ ) = êxpσ

∗χ(ω), where ω can be chosen as before and χ is the form
associated to φ, but êxp is the exponential map for the new metric ĝ. The proof of Theorem 2.1 shows
that differentiating F̂ in the direction of s ∈ �(Y, ν̂) gives the same result ∇s F̂ = Ds ∈ �(Y, ν), even
if s does not belong to �(Y, ν). Now, given a bundle isomorphism between ν̂ and ν, it is straightforward
to see that the kernel and the cokernel of ∇̂F are isomorphic to the ones of D. The former conclusion
in the totally geodesic case still holds. �

3.1. Varying the coassociative submanifold

In Section 2.2, we perturbed the G2-structure in order for the moduli space MY to become smooth.
When the associative submanifold has a boundary, we can repeat the same arguments. We can also
move the boundary condition. As explained in Section 1, we will perturb generically X as a smooth
φ-free submanifold, and no longer as a coassociative one.

Theorem 1.4 Let Y be a smooth associative submanifold with boundary in a smooth coassociative
submanifold X. If the virtual dimension of MY,X is non-negative, then for any sufficiently small
generic smooth deformation X′ of X, there exists a small associative deformation Y ′ of Y such that
MY ′,X′ is smooth near Y ′ and of dimension equal to the index computed for the unperturbed situation.
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Proof . Recall [17] that if X is a coassociative submanifold, then its normal bundle NX can be
identified with the space of its self-dual two-forms �2+(X). For α ∈ �2+(X), define σα ∈ �(∂Y, NX)

the restriction to ∂Y of the associated normal vector field along X. By Theorem 3.1, NX|∂Y = nR ⊕
μX, with n the inward unit normal vector to T ∂Y in T Y . Consider the subspace

C = {α ∈ �2
+(X), σα ∈ �(∂Y, μX)}.

Note that infinitesimal deformations of X in these directions are normal to Y . This will be considered
as the parameter space. For every α ∈ C, extend σα to �(Y, ν) in the following way. The associative
Y is diffeomorphic to Yε = ∂Y × [0, ε] near ∂Y , where ∂Y holds for ∂Y × {0}. This allows us to
identify ν|Yε

with ν|∂Y × [0, ε] and so this gives an extension of σα on Yε . Take ρ to be a cut-off function
satisfying ρ = 1 in the neighbourhood of ∂Y and with support in Yε . Then σ̂α = ρσα ∈ �(Y, ν) is a
smooth normal vector field along Y such that σ̂α = σα near ∂Y . Now, let E∂ be the set

E∂ = {(α, s) ∈ C × �(Y, ν), ∀y ∈ ∂Y, s(y) ∈ TyX}.

Here, we will assume that X is totally geodesic as in the first part of the proof of Proposition 3.2. If
not, we change the metric by Lemma 3.3. Hence, if (α, s) ∈ E∂ and if we define φα,s = expσ̂α

◦ exps ,
then Yα,s = φα,s(Y ) is a smooth submanifold with boundary in Xα = expσα

(X). Let F be the bundle
over E∂ , where the fibre Fα,s equals �(Y, να,s) and να,s denotes the normal bundle of Yα,s . Define the
section F : E∂ → F by F(α, s) = φ∗

α,sχ(ω). Then Yα,s is an associative submanifold if and only if
F(α, s) = 0. Now for every fixed α ∈ C, consider the restriction map

Fα : {s ∈ �(Y, ν), s|∂Y ∈ T X} → �(Y, να,s),

s �→ F(α, s).

Two tedious computations analogous to the proof of Theorem 2.1 and the proof of Theorem 3.1 in
[7, Section 4] show that for every α ∈ C, the derivative of Fα is elliptic in the sense of [3, Definition
18.1]. Further, Fα is clearly a deformation of F0, hence Fα is a Fredholm map of index computed in
Theorem 3.1. For a genericity result, we need the classical theorem.

Theorem 3.4 [18, Theorem 1.5.19] Let C, E and F be Banach spaces, F : C × E → F be a
smooth map, such that for every α ∈ C, Fα = F(α, ·) is a Fredholm map between E and F . If dF :
C × E → F is onto at (α0, x0), then F−1(y0) is locally a smooth manifold, where y0 = F(α0, x0).
Further, for every generic α ∈ C close enough to α0, the fibre F−1

α (y0) is a smooth manifold of finite
dimension equal to the index of Fα .

We compute the derivative of F at (0, 0) ∈ E∂ . One can easily check using the proof of Theorem 2.1
that this is equal to

∇(0,0)F : E∂ → �(Y, ν),

(α, s) �→ D(s + σ̂α).

This derivative is onto. Indeed, let s ′ be a section in �(Y, ν). Since Y has a boundary, our Dirac-
like operator D is onto by Theorem 9.1 of the book [3], so there is a section s ∈ �(Y, ν) such that
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Ds = s ′. Now decompose s|∂Y as sν + sμ with sν ∈ �(∂Y, νX) and sμ ∈ �(∂Y, μX). Choosing the
2-form α ∈ C such that sμ = σα , we have D((s − σ̂α) + σ̂α) = s ′ with (α, s − σ̂α) ∈ E∂ , hence the
result. �

As in Theorem 1.2, we can restrict our smoothing deformations to a finite-dimensional space of
dimension equal to dim coker D.

3.2. A vanishing theorem

Given Y an associative submanifold with boundary in a coassociative submanifold X, we turn now to
metric conditions on Y that insure local smoothness of the moduli space MY,X. Let ν be the normal
bundle of Y and n is the inward normal vector to ∂Y in Y . Recall that if L ⊂ ν is an n×-complex
line bundle over ∂Y , the operator DL : �(∂Y, L) → �(∂Y, L) was defined in Section 1 by DLs =
πL(v × ∇⊥

w s − w × ∇⊥
v s), where πL : ν → L is the orthogonal projection to L and {v, w = n × v} a

local orthonormal frame for T ∂Y . We refer to the appendix for the proof of the following proposition.

Proposition 3.5 The operator DL is of order 0, symmetric and its trace is 2H, where H is the mean
curvature of ∂Y in Y with respect to −n.

Moreover, consider the operator (D, L) defined by D : {s ∈ �(Y, ν), s|∂Y ∈ L} → �(Y, ν). We will
use the following lemma, whose proof can be found in the appendix.

Lemma 3.6 We have coker (D, L) = ker(D, L⊥), where L⊥ is the orthogonal complement of L in
ν|∂Y .

We now prove the vanishing theorem stated previously.

Theorem 1.10 Let M be a manifold equipped with a torsion-free G2-structure and Y be an associa-
tive submanifold with boundary in a coassociative submanifold X. If DμX

and R − A are positive,
the moduli space MY,X is smooth near Y and of dimension given by the virtual one.

Proof . To prove Theorem 1.10, it is enough by Proposition 3.2 to show that coker (D, νX), which
equals ker(D, μX) by Lemma 3.6, is trivial. So let s ∈ ker(D, μX). Since Y has a boundary, we need
to change the integration (20), because the divergence has to be considered:∫

Y

|∇⊥s|2 + 〈Rνs, s〉 dy = 1

2

∫
Y

div ∇|s|2 dy. (21)

By Stokes, the last equals

−1

2

∫
∂Y

d|s|2(n) dσ = −
∫

∂Y

〈∇⊥
n s, s〉 dσ,

where n is the inward unit normal vector of ∂Y . Choosing a local orthonormal frame {v, w = n × v}
of T ∂Y , 0 = Ds = n × ∇⊥

n s + v × ∇⊥
v s + w × ∇⊥

w s implies that

∇⊥
n s = −w × ∇⊥

v s + v × ∇⊥
w s.
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Here, we used the formula

∀u, v, w ∈ T M, χ(u, v, w) = −u × (v × w) − 〈u, v〉w + 〈u, w〉v,

so that for orthogonal vectors u, v, w ∈ T M,

u × (v × w) = w × (u × v) (22)

and

u × (u × w) = −‖u‖2w. (23)

Hence,

−
∫

∂Y

〈∇⊥
n s, s〉 dσ =

∫
∂Y

〈w × ∇⊥
v s − v × ∇⊥

w s, s〉 dσ = −
∫

∂Y

〈DμX
s, s〉 dσ.

Summing up, we obtain the equation∫
Y

|∇⊥s|2 dy +
∫

Y

〈Rνs, s〉 dy +
∫

∂Y

〈DμX
s, s〉 dσ = 0. (24)

If DμX
and Rν are positive, s vanishes, hence the result. �

4. Examples

4.1. Flatland

In flat spaces, the curvature tensor R vanishes, and so Rν = −A ≤ 0. Consequently, a priori
Theorem 1.10 does not apply. Nevertheless, we have the following corollary.

Corollary 4.1 Let M be a manifold equipped with a torsion-free G2-structure whose metric is
flat, and Y be a totally geodesic associative submanifold with boundary in a coassociative X. If DμX

is positive, then MY,X is smooth near Y and of the expected dimension.

Proof . The hypotheses on M and Y imply that Rν = 0. Consider s ∈ coker (D, νX) = ker(D, μX).
Formula (24) shows that ∇⊥s = 0 and s|∂Y = 0. Using d|s|2 = 2〈∇⊥s, s〉 = 0. This implies s = 0
and the result. �

When M = R
7 with its canonical flat metric, we get the following very explicit example considered

in [7]. Take a ball Y in R
3 × {0} ⊂ R

7 with real analytic boundary, and choose any normal real
analytic vector field e ∈ �(∂Y, ν). By Harvey and Lawson [8], there is a unique local coassociative
Xe containing ∂Y such that its tangent bundle TyXe contains e(y) at every boundary point y.

Corollary 4.2 Let us assume that Y is a strictly convex ball in R
3. Then there exists a positive

constant ε, such that for every normal vector field e ∈ �(∂Y, ν) satisfying ‖de‖L∞ ≤ ε, the moduli
space MY,Xe

is smooth near Y and one-dimensional.
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Proof . Since the fibre bundle νXe
is trivial and the genus of ∂Y is zero, the index equals here c1(νX) +

1 − g = 1. We want to show that DμX
is positive. To see that, we choose local orthogonal principal

directions v and w = n × v in T ∂Y . From Theorem 3.1, we know that v × e is a non-vanishing
section of μX. Let us assume first that e is constant. We compute, using relation (22),

DμX
(v × e) = v × (∇⊥∂

w v × e) − w × (∇⊥∂
v v × e)

= −kvw × (n × e) = kvv × e,

where kv is the principal curvature in the direction of v. This shows that kv is an eigenvalue of DμX
,

and since we know that its trace is 2H by Proposition 3.5, we get that the other eigenvalue is kw,
the other principal curvature of ∂Y . These eigenvalues are positive if the boundary of Y is strictly
convex and Corollary 4.1 gives the result. Now, if e is close enough to be a constant vector field, the
eigenvalues of DμX

remain positive, hence the general result. �
In fact, in the case where e is constant, we can give a better statement. Indeed, let s ∈ ker(D, νX),

and decompose s|∂Y as s = s1e + s2n × e. Of course, e is in the kernel of DνX
, and hence by Propo-

sition 3.5, the second term is an eigenvector of DνX
for the eigenvalue 2H . So formula (24) applied

to s gives
∫
Y

|∇⊥s|2 + ∫
∂Y

2H |s2|2 = 0. If H > 0, this implies immediately that s2 = 0 and s1 is
constant, so s is proportional to e. This proves that dim ker(D, νX) = 1 under the weaker condition
that H > 0. Lastly, in fact we can even show that MY,Xe

= R.

4.2. The Bryant Salamon construction

The spin bundle and its metric. As recalled briefly in Section 1, Bryant and Salamon [4] found on the
total spin bundle S � S3 × R

4 of the round sphere S3 a complete metric with holonomy precisely
equal to G2. This metric is of the form

g = α(r)π∗gS + β(r)gv,

where gv is the flat metric on the fibre Sx � R
4 induced by gS , r is its associated norm, gS the round

metric on S3 and π : S → S3 the natural projection. For some particular smooth functions α and β,
the authors proved that the holonomy of the metric is G2. In this situation, the base S3 is associative
and the Dirac operator D is the classical one for the spin bundle S.

Corollary 4.3 [17] The associative S3 is isolated as an associative submanifold.

Proof . By the famous computation of Lichnerowicz [16], D2 = ∇∗∇ + s/4, where s is the scalar
curvature of (S3, gS) and ∇ is the induced connection on the spin bundle, which is in our case the
connection ∇⊥. Identifying with the equation in Theorem 2.8, we get that Rν = s/4. Since S is
positive, so is Rν , and Theorem 1.7 then implies the result. �

Example with boundary. Choose a point p on the base S3, a ball Bρ ⊂ S of radius ρ around p and
define Yρ = Bρ ∩ S3. Take a normal vector field e ∈ �(∂Yρ, ν) at the boundary of the associative Yρ .
Here νy = Sy for y ∈ ∂Yρ . The round sphere is real algebraic as is its metric gS , hence we can find for
ρ small enough a local chart � : Bρ → R

7 such that �(Yρ) ⊂ R
3 × {0}, and �∗g is a real analytic

metric. Further, we choose Bρ and e in such a way that �(∂Yρ) and �∗e are real analytic. Now, a



1230 D. GAYET

straightforward generalization of the arguments in [8] based on the Cartan–Kähler theory proves that
e and ∂Yρ generate a semi-local coassociative submanifold Xe containing ∂Yρ .

Corollary 4.4 For ρ small enough, MYρ,Xe
is smooth near Yρ and one-dimensional.

Proof . The genus of ∂Yρ vanishes and the subbundle νXe
is trivial, hence the index of the associative

deformations problem equals one. We can assume that �∗g(0) is the standard metric of R
7, hence

dp�(Sp) = 0 ⊕ R
4. Moreover, we choose � such that the Levi–Civita connection of �∗g vanishes at

0. When ρ tends to zero, �(∂Yρ) is asymptotically close to be the round ball ρB3 ⊂ R
3 for the metric

g0. Then we know from the proof of Corollary 4.2 that the eigenvalues of the operator DμXe
computed

in the model situation (i.e. with the flat metric and connection) equal the principal curvatures, here
the inverse of ρ. Hence, for ρ small enough, DμXe

and Rν = s/4 are both positive. Theorem 1.10
then implies the result. �

4.3. The Joyce construction

Recall briefly the construction of the compact smooth manifold with holonomy G2 constructed by
Joyce [12, Section 12.2] and used in [7] for an example of an associative with boundary. On the
flat torus (T 7, g0) equipped with the G2 structure φ0 = dx123 + dx145 + dx167 + dx246 − dx257 −
dx347 − dx356, let

α : (x1, . . . , x7) �→ (x1, x2, x3, −x4, −x5, −x6, −x7),

β : (x1, . . . , x7) �→ (x1, −x2, −x3, x4, x5,
1
2 − x6, −x7),

γ : (x1, . . . , x7) �→ (−x1, x2, −x3, x4,
1
2 − x5, x6,

1
2 − x7),

σ0 : (x1, . . . , x7) �→ (x1,
1
2 − x2,

1
2 − x3, x4, x5, −x6,

1
2 − x7),

τ0 : (x1, . . . , x7) �→ (x1, x2,
1
2 − x3,

1
2 − x4, x5, x6,

1
2 − x7)

be isometric involutions, where σ ∗
0 φ0 = φ0 and τ ∗

0 φ0 = −φ0. If π : T 7 → T 7/� is the quotient
of T 7 by � the group generated by α, β and γ , one can check that the image Y by π of
{(x1,

1
4 , 1

4 , x4, x5, 0, 1
4 ), x1,4,5 ∈ T 3} in T 7/� is a smooth closed associative submanifold Y belong-

ing to the fixed point set of the well-defined involution σ = π∗σ0. Likewise, the image Y∂ by π of
{(x1,

1
4 , 1

4 , x4, x5, 0, 1
4 ), x1,5 ∈ T 2, 1

4 ≤ x4 ≤ 3
4 } is a smooth associative submanifold with boundary.

This boundary is the union of two 2-tori embedded in the two disjoint smooth coassociatives X1 and
X2, where Xi is the image by π of {(x1, x2,

1
4 , ai, x5, x6,

1
4 ), x1,2,5,6 ∈ T 4} with a1 = 1

4 and a2 = 3
4 .

The latter submanifolds are components of the fixed point set of τ = π∗τ0. Joyce’s method to con-
struct a metric with holonomy precisely equal to G2 on a resolution M of the singularities of T 7/�

can be made σ - and τ -equivariantly, so that after the process Y , Y∂ , X1 and X2 remain associa-
tive and coassociative, respectively. Now, the bundles νXi

, i = 1, 2, are clearly trivial over the two
components of ∂Y∂ , so that the index of the deformation problem vanishes. From Theorems 1.2
and 1.4, we get that for every generic closed perturbation ψ of the G2-structure, Y disappears
or is perturbed into an isolated closed ψ-associative torus. Likewise, for every generic small φ-
free deformation X̃i of Xi, there is a perturbation Ỹ∂ of Y∂ such that MỸ∂ ,X̃

is a singleton near Ỹ

or is empty.
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Remark 4.5 We would like to know which alternative holds. Unfortunately, even if we are far from
the singularities of T 7/�, we do not know how to improve [12, Proposition 11.8.1] in order to get
a control of the ηj s in C2-norm. Said otherwise, the perturbation of the metric a priori has effects
on the whole M , and can be big in C2 norm. Hence, our methods do not allow us to understand the
effects of the perturbation on the associative submanifolds.

4.4. Extensions from the Calabi−Yau world

The closed case. Let (N, J, �, ω) be a Calabi–Yau six-dimensional manifold, where J is an integrable
complex structure, � a non-vanishing holomorphic 3-form and ω a Kähler form. Then M = N ×
S1 is a manifold with holonomy in SU(3) ⊂ G2. An associated torsion-free G2-structure on M is
given by φ = ω ∧ dt + Re �. Recall that a closed special Lagrangian L in N is a three-dimensional
submanifold satisfying both conditions ω|T L = 0 and Im �|T L = 0. We know from [17] that ML

the moduli space of special Lagrangian deformations of L is smooth and of dimension b1(L). Now
for every t ∈ S1, the product Y = L × {t} of a special Lagrangian and a point is a φ-associative
submanifold of M . The following is inspired by an analogous result on coassociative submanifolds
of Leung [15, Proposition 5].

Proposition 4.6 Let t ∈ S1. The moduli space ML×{t} of associative deformations of L × {t} is
always smooth, and can be identified with the product ML × S1, hence of dimension b1(L) + 1.

Proof . Consider a closed associative submanifold Y in the same homology class as L × {t}. On the
one hand, Y has a bigger volume than its projection π(Y ) to N × {t} and equality holds only if Y

lies in N × {t ′} for a constant t ′. On the other hand, π(Y ) is in the same homology class as L, hence
has volume larger than that of L, since special Lagrangians minimize the volume in their homology
class. But Y is associative, hence has the same volume as L. Consequently, all these volumes equal,
and Y is of the form L′ × {t ′}. It is now immediate that φ-associativity of Y implies that L′ is special
Lagrangian. �

For the sequel, we will need another.

Proof of Proposition 4.6. Recall that since L is Lagrangian, its normal bundle NL is simply JT L, and
the normal bundle ν of Y = L × {t} is isomorphic to JT L × R∂t , where ∂t is the dual vector field of
dt . In this situation, we do not use the expression for D2 given in Theorem 2.8. Instead, we give another
formula for it. If s = Jσ ⊕ τ∂t is a section of ν, with σ ∈ �(L, T L) and τ ∈ �(L, R) = �0(L), we
call σ∨ ∈ �1(L, R) the 1-form dual to σ , and we use the same symbol for its inverse. Moreover, we
use the classical notation ∗ : �k(L) → �3−k(L) for the Hodge star. Lastly, we define

D∨ : �1(L) × �0(L) −→ �1(L) × �0(L),

(α, τ ) �→ ((−JπLD(Jα∨, τ ))∨, πtD(Jα∨, τ )),

where πL (respectively, πt ) is the orthogonal projection ν = NL ⊕ R to the first (respectively, the
second) component. This is just a way to use forms on L instead of normal ambient vector fields.
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Proposition 4.7 For every (α, τ ) ∈ �1(L) × �0(L),

D∨(α, τ ) = (−∗dα − dτ, ∗d∗α),

(D∨)2(α, τ ) = −�(α, τ),

where � = d∗d + dd∗ (note that it is d∗d on τ).

We refer to the appendix for the proof of this proposition. We see that for an infinitesimal associative
deformation of L × {t}, then α and τ are harmonic over the compact L. In particular, τ is constant and
α describes an infinitesimal special Lagrangian deformation of L (see [17]). In other words, the only
way to displace Y is to perturb L as special Lagrangian in N or translate it along the S1-direction.
Lastly, dim coker D = dim ker D = b1(L) + 1 and by an immediate refinement of Proposition 2.2
for cokernels with constant dimension, MY is smooth and of dimension b1(L) + 1. �
Symmetry breaking. Although the moduli space is smooth, the deformation problem for L × {·} is
always obstructed. Theorem 1.2 proves that any closed generic perturbation of the G2-structure φ

will make the S1-symmetry disappear as well as the ML-family of associative submanifolds. We give
here a family of examples of this phenomenon.

Corollary 4.8 Let L be a smooth closed special Lagrangian sphere in N, t0 ∈ S1 and Y = L × {t0}
in N × S1 equipped with the G2-form φ = Re � + ω ∧ dt and f : S1 → R be a smooth function
vanishing transversally at a finite number of points in S1. Then, there is a closed perturbation ψ of
φ such that the connected components of L × f −1(0) are associative with respect to ψ, and are the
only ψ-associatives near {L × {t} : t ∈ S1}.

Proof . Define ψ̃ = −f (t)∗(φ ∧ dt) = −f (t)(∂/∂t)�∗φ = f (t) Im � on L × S1, since ∗φ =
Im � ∧ dt + ω2/2. We extend ψ̃ as a closed 3-form ψ following the proof of Lemma 2.3: since
L is special Lagrangian, Im �|L ∈ �(L, �3 T ∗N) can locally be written as

∑3
i=1 dxi ∧ βi , where

(xi)i=1,2,3 are local normal coordinates in N over L. If (χU)U is a finite set of cut-off functions in
a neighbourhood of L, then the closed 3-form ψ = d(f (t)

∑
U,i χUxiβi) is well defined on N × S1

and satisfies ψ = f (t) Im � + O(dist(·, L × S1)). We choose as a closed perturbation the 3-form
φλ = φ + λψ . Now take t0 ∈ S1, such that f (t0) = 0. If we choose coordinates on S1 such that
t0 = 0, then there exists a �= 0 with f (t) = at + O(t2). Proposition 2.6 shows that for λ small
enough, L × {t0} is the only local ψ-associative. Now take t0 such that f (t0) �= 0. The following
lemma holds in a general situation.

Lemma 4.9 Let Y be a compact smooth associative submanifold of M equipped with a closed
G2-structure φ, such that near Y , MY,φ is one-dimensional and dim ker D = 1 at every element of
MY,φ . Let ξ ∈ �(Y, NY ) be a non-trivial normal vector field in ker D and ψ̃ be the 3-form ξ�∗φ ∈
�(Y, �3T ∗M). If ψ is any closed extension of ψ in a neighbourhood of Y and φλ = φ + λψ, then
for λ �= 0 small enough the moduli space MY,φλ

near Y is empty.

Proof . By definition of φλ and Lemma 2.3, the derivative of F(λ, s) = exp∗
s χφλ

(ω) is of index 1 and
surjective at (λ = 0, s = 0), so that the vanishing locus of F is locally smooth, of dimension 1 and
contains MY,φ . These sets must be locally equal, hence the result. �
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We come back to the situation described in Proposition 4.8. If t is such that f (t) �= 0, Lemma 4.9
shows that ML×{t0},φλ

is empty for λ small enough. �
Coclosed deformations. If we prefer coclosed deformations of the G2-structure, we get a more precise
statement and a very short proof.

Proposition 4.10 Let L be a smooth closed special Lagrangian sphere in N, Y = L × {1} ⊂ N ×
S1 and f : S1 → R be a smooth function vanishing at a finite number of points in S1. For every λ ∈ R,

define φλ = Re(eiλf (t)�) + ω ∧ dt a family of coclosed G2-structures. Then, if λ �= 0, MY,φλ
=

f −1(0) near L × S1.

Note that in particular, the transversality condition for f is no more needed.

Proof . The proof is almost the same as the proof of Proposition 4.6. Take Y to be a φλ-associative
submanifold of N × S1 in the same class of homology as L × {1}. Since the metric associated to
φλ is independent of λ, the arguments of Proposition 4.6 still hold, and Y writes L′ × {t ′} for some
submanifold L′ ∈ N and t ∈ S1. The latter L′ must be a special Lagrangian for eiλf (t)� since Y is
φλ-associative. Hence, Im(eiλf (t)�) vanishes on T L′. But L′ lies in the same class of homology as
L, so

∫
L

Im(eiλf (t)�) should vanish because � is closed. Now, this is in fact
∫
L

sin(λf (t))Re � =
sin(λf (t))Vol(L) which is non-zero if λ �= 0 is small enough (independently of t) and f (t) �= 0. If
f (t) = 0 and L′ is close enough to L, then L′ = L since a special Lagrangian sphere is isolated. Note
that φλ is coclosed because ∗φλ = Im(eiλf (t)�) ∧ dt + 1

2ω2. �

Remark 4.11 If L is not a sphere, then the same proof shows that MY,φλ
= ML × f −1(0) for

λ �= 0 small enough. This remains an obstructed situation, in the G2 point of view.

With boundary. Recall that if � is a complex surface of N and t ∈ S1, then X = � × {t} is a
co-associative submanifold of M . Consider the problem of associative deformations of Y = L × {t}
with boundary in X.

Theorem 4.12 Let t ∈ S1 and L be a special Lagrangian submanifold in a six-dimensional Calabi–
Yau N, such that L has boundary in a complex surface �. Let Y = L × {t} in N × S1 and X =
� × {t}.

(1) The moduli space MY,X of associative deformations of L × {t} with boundary in the
co-associative � × {t} can be identified with the moduli space of special Lagrangian
deformations of L with boundary in the fixed �.

(2) If the Ricci curvature of L is positive and if the boundary of L has positive mean curvature in
L, then MY,X is locally smooth and has dimension g, where g is the genus of ∂L.

Although the moduli space is smooth, its dimension exceeds by 1 the index of the deformation
problem, see the beginning of the proof of the second assertion. As a consequence, Theorem 1.4
shows that generic perturbations of the boundary condition will decrement by one the dimension of
the initial moduli space.

Note, moreover, that the deformation theory in [5] concerns minimal Lagrangian submanifolds
with boundary in �, a wider class than that of special Lagrangian submanifolds of fixed phase.

Proof of Theorem 4.12(1). First, if M is equipped with a closed G2-structure φ, note that an associa-
tive submanifold Y with boundary in a coassociative X minimizes the volume in the relative homology
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class [Y ] ∈ H3(M, X, Z). Indeed, let Z be any 3-cycle with boundary in X, such that [Z] = [Y ]. There
is a 4-chain S with boundary in X and T a 3-chain in X, such that Z − Y = ∂S + T . Since φ is a
calibration,

Volume(Z) ≥
∫

Z

φ =
∫

Y

φ +
∫

∂S

φ +
∫

T

φ =
∫

Y

φ = Volume(Y ),

by Stokes and the fact that φ vanishes on any coassociative submanifold. By the same arguments as
in the closed case, this proves the identity of the two moduli spaces. �
Proof of Theorem 4.12(2). Consider a special Lagrangian L with boundary ∂L in a complex surface
�. If Y = L × {t} and X = � × {t}, it is clear that the orthogonal complement νX of T ∂Y in T X is
equal as a real bundle to JT ∂L ⊕ {0}, and μX is the trivial n×-complex line bundle generated by ∂t ,
where n is the inward unit normal vector field of ∂Y in Y . We begin by computing the index of the
boundary problem. This is very easy, since μX is trivial, and by Theorem 3.1, we have νX

∼= T ∂L∗
as n×-bundles. Hence, the index equals −c1(T ∂L) + 1 − g = −(2 − 2g) + 1 − g = g − 1, where
g is the genus of ∂L. Now let ψ = s + τ(∂/∂t) belonging to coker (D, νX) = ker(D, μX), where s

is a section of NL and τ ∈ �(L, R). Let α = −J s∨. By Proposition 4.7, α is a harmonic 1-form, and
τ is harmonic (note that Y is not closed, so τ may be not constant). By classical results for harmonic
1-forms, we have

1
2�|ψ |2 = 1

2�(|α|2 + |τ |2) = |∇Lα|2 + |dτ |2 + 1
2 Ric (α, α).

Integrating on L × {t}, we obtain the equivalent of formula (24):

−
∫

∂Y

〈DμX
ψ, ψ〉 dσ =

∫
Y

|∇Lα|2 + |dτ |2 + 1

2
Ric (α, α) dy.

Lastly, let us compute the eigenvalues of DμX
. The constant vector ∂/∂t over ∂Y lies clearly in the

kernel of DμX
. By Proposition 3.5, the other eigenvalue of DμX

is 2H , with eigenspace generated
by n × (∂/∂t). Over ∂Y , s lies in JT L ∩ μX, hence is proportional to n × (∂/∂t). Consequently,
DμX

ψ = 2Hs and

−
∫

∂Y

2H |s|2 dσ =
∫

Y

|∇Lα|2 + |dτ |2 + 1

2
Ric (α, α) dy.

This equation, the positivity of the Ricci curvature and the positivity of H show that α vanishes and τ

is constant. So we see that dim coker (D, νX) = 1, and by the constant rank theorem, MY,X is locally
smooth and of dimension dim ker(D, νX) = g. �

Theorem 4.12 shows an equivalent result for deformations of special Lagrangian submanifold with
metric conditions and boundary in a complex surface. Certainly, a direct proof would be shorter. But
it seems to us that our proof has didactic virtues in our context of associative deformations.

A family of examples where b3(M) < dim coker D. Let N be a projective Calabi–Yau 3-fold
equipped with an ample holomorphic line bundle L, and Nd be the dimension of PH 0(N, Ld). Take
d to be big enough, so that Nd(Nd − 1)/2 > b3(N × S1) and choose C a generic complex curve
defined by the intersection of the vanishing locus of two sections of Ld . Then, its moduli space of
complex deformations is of dimension Nd(Nd − 1)/2, so that the dimension of the kernel of the Dirac
operator associated to the associative C × S1 is bigger than b3(N × S1).
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Appendix

We will need the following trivial lemma.

Lemma A.1 Let ∇ be the Levi–Civita connection on M and R its curvature tensor. For any vector fields w, z, u

and v on M, we have

∇(u × v) = ∇u × v + u × ∇v,

R(w, z)(u × v) = R(w, z)u × v + u × R(w, z)v.

If Y is an associative submanifold of M with normal bundle ν, u ∈ �(Y, T Y ), v ∈ �(Y, T Y ) and η ∈ �(Y, ν),

then

∇�(u × v) = ∇�u × v + u × ∇�v,

∇⊥(u × η) = ∇�u × v + u × ∇⊥v,

where ∇� = ∇ − ∇⊥ is the orthogonal projection of ∇ to T Y .

Proof . Let x1, . . . , x7 be normal coordinates on M near x, and ei = ∂/∂xi be their derivatives, orthonormal at
x. We have

u × v =
∑

i

〈u × v, ei〉ei =
∑

i

φ(u, v, ei)ei ,

so that at x, where ∇ej
ei = 0,

∇(u × v) =
∑

i

(∇φ(u, v, ei) + φ(∇u, v, ei) + φ(u, ∇v, ei) + φ(u, v, ∇ei))ei

=
∑

i

(φ(∇u, v, ei) + φ(u, ∇v, ei))ei = ∇u × v + u × ∇v,

because ∇φ = 0. Now if u and v are in T Y , then we get the result after noting that (∇u × v)� = ∇�u × v,
because T Y is invariant under ×. The last relation is implied by T Y × ν ⊂ ν and ν × ν ⊂ T Y . The curvature
relation is easily derived from the definition R(w, z) = ∇w∇z − ∇z∇w − ∇[w,z] and the differentiation of the
vector product. �

A.1. Proof of Lemma 3.6

In this paragraph, we will assume that the ambient manifold M has a torsion-free G2-structure (φ, g). Consider
Y an associative submanifold and ν its normal bundle in (M, g). We begin with the classical lemma.

Lemma A.2 For a torsion-free structure, the operator D defined in (1) is formally self-adjoint, i.e. for s and
s′ ∈ �(Y, ν), ∫

Y

〈Ds, s′〉 − 〈s, Ds′〉 dy = −
∫

∂Y

〈n × s, s′〉 dσ, (A.1)

where dσ is the volume induced by the restriction of g on the boundary, and n is the inward unit normal
vector of ∂Y .
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Proof . The proof of this lemma is mutatis mutandis, the one for the classical Dirac operator, see [3,
Proposition 3.4], for example. For the reader’s convenience, we give a proof of this.

〈Ds, s′〉 =
〈∑

i

ei × ∇⊥
i s, s′

〉
= −

∑
i

〈∇⊥
i s, ei × s′〉

= −
∑

i

dei
〈s, ei × s′〉 + 〈s, ∇⊥

i (ei × s′)〉

= −
∑

i

dei
〈s, ei × s′〉 + 〈s, ∇�

i ei × s′ + ei × ∇⊥
i s′〉.

By a classical trick, define the vector field X ∈ �(Y, T Y ) by 〈X, w〉 = −〈s, w × s′〉 ∀w ∈ T Y. Note that the
product on the LHS is on T Y , and the one on the RHS is on ν. Now

−
∑

i

dei
〈s, ei × s′〉 =

∑
i

dei
〈X, ei〉 =

∑
i

〈∇�
i X, ei〉 + 〈X, ∇�

i ei〉 =
∑

i

div X − 〈s, ∇�
i ei × s′〉.

By Stokes, we get∫
Y

〈Ds, s′〉 dy =
∫

∂Y

〈X, −n〉 dσ +
∫

Y

〈s, Ds′〉 dy =
∫

∂Y

〈s, n × s′〉 dσ +
∫

Y

〈s, Ds′〉 dy,

which is what we wanted. �
Now, consider L a subbundle of ν|∂Y of real rank equal to 2 and invariant under the action of n×. Let s′ ∈

�(Y, ν) lying in coker (D, L). This means that for every s ∈ �(Y, ν) with s|∂Y ∈ L, we have
∫

Y

〈Ds, s′〉 dy = 0.

By the former result, we see that this is equivalent to∫
Y

〈s, Ds′〉 +
∫

∂Y

〈n × s, s′〉 = 0.

This clearly implies that Ds′ = 0, and s′|∂Y ⊥ L, because L is invariant under the action of n×. So s′ ∈
ker(D, L⊥). The reverse inclusion holds too by similar reasons.

A.2. Proof of Proposition 3.5

Proof . Let Y be a smooth compact associative with boundary, and L be a subbundle of ν|∂Y invariant under
the action of n×. It is straightforward to check that DL defined in Definition 1.8 does not depend on the chosen
orthonormal frame {v, w = n × v}. For every ψ ∈ �(∂Y, L) and f a function,

DL(f ψ) = πL(v × ∇w(f ψ) − w × ∇v(f ψ))

= f DLψ + (dwf )πL(v × ψ) − (dvf )πL(w × ψ) = f DLψ,

because w × L and v × L are orthogonal to L. Now, decompose the connexion ∇� on T Y as ∇� = ∇�∂ + ∇⊥∂

into its two projections along T ∂Y and along the normal (in T Y ) n-direction. For the computations, choose v and
w = n × v the two orthogonal characteristic directions on T ∂Y , i.e. ∇�∂

v n = −kvv and ∇�∂
w n = −kww, where

kv and kw are the two principal curvatures. We have ∇⊥∂
v v = kvn and 〈∇⊥∂

w v, n〉 = 0, and the same, mutatis
mutandis, for w. Then, for ψ and φ ∈ �(∂Y, L), using the fact that T ∂Y × L is orthogonal to L and Lemma A.1,

〈DLψ, φ〉 = 〈∇⊥
w (v × ψ) − (∇⊥∂

w v) × ψ − ∇⊥
v (w × ψ) + (∇⊥∂

v w) × ψ, φ〉
= 〈∇⊥

w (v × ψ) − ∇⊥
v (w × ψ), φ〉 = −〈v × ψ, ∇⊥

w φ〉 + 〈w × ψ, ∇⊥
v φ〉

= 〈ψ, v × ∇⊥
w φ − w × ∇⊥

v φ〉 = 〈ψ, DLφ〉.
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To prove that the trace of DL is 2H , let e ∈ L be a local unit section of L. We have n × e ∈ L too, and using
again Lemma A.1 and relation (22),

〈DL(n × e), n × e〉 = 〈v × ((∇�∂
w n) × e) + v × (n × ∇⊥

w e), n × e〉
− 〈w × ((∇�∂

v n) × e) − w × (n × ∇⊥
v e), n × e〉

= 〈v × (−kww × e) − w × (−kvv × e), n × e〉
+ 〈v × (n × ∇⊥

w e) − w × (n × ∇⊥
v e), n × e〉

= 〈kwn × e + kvn × e, n × e〉 + 〈w × ∇⊥
w e + v × ∇⊥

v e, n × e〉.
Using again relations (22) and (23) and the fact that n× is an isometry on the orthogonal complement of n,
we get

〈DL(n × e), n × e〉 = kw + kv − 〈n × (w × ∇⊥
w e + v × ∇⊥

v e), e〉
= 2H − 〈v × ∇⊥

w e − w × ∇⊥
v e, e〉

= 2H − 〈DLe, e〉.
This shows that trace DL = 2H . �

A.3. Computation of D2

Proof of Theorem 2.8. We compute D2 at a point x ∈ Y . For this, we choose normal coordinates on Y and
ei ∈ �(Y, T Y ) their associated derivatives, orthonormal at x. To be explicit, ∇�ei = 0 at x. Let ψ ∈ �(Y, ν).

D2ψ =
∑
i,j

ei × ∇⊥
i (ej × ∇⊥

j ψ)

=
∑
i,j

ei × (ej × ∇⊥
i ∇⊥

j ψ) +
∑
i,j

ei × (∇�
i ej × ∇⊥

j ψ).

The second sum of the right-hand side vanishes, so that using relations (22) and (23) for the first sum we get

D2ψ = −
∑

i

∇⊥
i ∇⊥

i ψ −
∑
i �=j

(ei × ej ) × ∇⊥
i ∇⊥

j ψ

= ∇⊥∗∇⊥ψ −
∑
i<j

(ei × ej ) × (∇⊥
i ∇⊥

j − ∇⊥
j ∇⊥

i )ψ

= ∇⊥∗∇⊥ψ −
∑
i<j

(ei × ej ) × R⊥(ei , ej )ψ.

Since (ei × ej ) × R⊥(ei , ej ) is symmetric in i, j , this is equal to

∇⊥∗∇⊥ψ − 1

2

∑
i,j

(ei × ej ) × R⊥(ei , ej )ψ.

The main tool for what follows is the Ricci equation. Let u, v be sections of �(Y, T Y ) and φ, ψ be elements of
�(Y, ν).

〈R⊥(u, v)ψ, φ〉 = 〈R(u, v)ψ, φ〉 + 〈(AψAφ − AφAψ)u, v〉,
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where Aφ(u) = A(φ)(u) = −∇�
u φ. Choosing η1, . . . , η4 to be an orthonormal basis of ν at the point x, we get

−1

2

∑
i,j

(ei × ej ) × R⊥(ei , ej )ψ = −1

2

∑
i,j,k

〈(ei × ej ) × R⊥(ei , ej )ψ, ηk〉ηk

= 1

2

∑
i,j,k

〈R⊥(ei , ej )ψ, (ei × ej ) × ηk〉ηk

= −1

2
πν

∑
i,j

(ei × ej ) × R(ei, ej )ψ

+ 1

2

∑
i,j,k

〈(AψA(ei×ej )×ηk
− A(ei×ej )×ηk

Aψ)ei , ej 〉ηk.

Using the classical Bianchi relation R(ei, ej )ψ = −R(ψ, ei)ej − R(ej , ψ)ei , the first part of the sum
− 1

2 πν

∑
i,j (ei × ej ) × R(ei, ej )ψ is equal to

I = −2πν(e1 × R(e2, ψ)e3 + e2 × R(e3, ψ)e1 + e3 × R(e1, ψ)e2)

= −2πν(e1 × R(e2, ψ)(e1 × e2) + e2 × R(e3, ψ)(e2 × e3) + e3 × R(e1, ψ)(e3 × e1))

= −2πν(e1 × (R(e2, ψ)e1 × e2 + e1 × R(e2, ψ)e2) + e2 × (R(e3, ψ)e2 × e3 + e2 × R(e3, ψ)e1)

+ e3 × (R(e1, ψ)e3 × e1 + e3 × R(e1, ψ)e2))

= −I + 2πν

∑
i

R(ei , ψ)ei ,

which gives I = πν

∑
i R(ei , ψ)ei . The Weingarten endomorphisms are symmetric, so that the second part of

the sum is

1

2

∑
i,j,k

〈A(ei×ej )×ηk
ei , Aψej 〉ηk − 1

2

∑
i,j,k

〈Aψei, A(ei×ej )×ηk
ej 〉ηk.

It is easy to see that the second sum is the opposite of the first one. We compute

A(ei×ej )×ηk
ei = −(∇⊥

i ei × ej ) × ηk − (ei × ∇⊥
i ej ) × ηk + (ei × ej ) × Aηk

ei .

But we know that an associative submanifold is minimal, so that
∑

i ∇⊥
i ei = 0. Moreover, differentiating the

relation e3 = ±e1 × e2, one easily checks that
∑

i ei × ∇⊥
j ei = 0. Summing up, the only remaining term is∑

i,j,k

〈(ei × ej ) × Aηk
ei , Aψej 〉ηk.

We now use the classical formula for vectors u, v and w in T Y :

(v × w) × u = 〈u, v〉w − 〈u, w〉v,

hence

(ei × ej ) × Aηk
ei = 〈Aηk

ei , ei〉ej − 〈Aηk
ei , ej 〉ei .

One more simplification comes from
∑

i〈Aηk
ei , ei〉 = 0 for all k because Y is minimal, so our sum is

now equal to

−
∑
i,j,k

〈Aηk
ei , ej 〉〈ei , Aψej 〉ηk = −Aψ. �



1240 D. GAYET

A.4. Computation of D in the Calabi−Yau extension

Proof of Proposition 4.7. We will use the simple formula ∇⊥J s = J∇�s for all sections s ∈ �(L, NL). For
(s, τ ) ∈ �(L, NL) × �(L, R), and ei local orthonormal frame on L,

D(s, τ ) =
∑
i,j

〈ei × ∇⊥
i s, J ej 〉Jej +

∑
i

〈ei × ∇⊥
i s, ∂t 〉∂t +

∑
i

∂iτ ei × ∂t

= J
∑
i,j

φ(ei , ∇⊥
i s, J ej )ej +

∑
i

φ(ei , ∇⊥
i s, ∂t )∂t + J

∑
i,j

∂iτ 〈ei × ∂t , J ej 〉ej ,

where we used that ei × ∂t ⊥ ∂t .

= J
∑
i,j

Re �(ei, ∇⊥
i s, J ej )ej +

∑
i

ω(ei , ∇⊥
i s)∂t + J

∑
i,j

∂iτ φ(ei , ∂t , J ej )ej

= J
∑
i,j

Re �(ei, J∇�
i σ, J ej )ej +

∑
i

ω(ei , J∇�
i σ )∂t + J

∑
i,j

∂iτ ω(J ej , ei)ej ,

where σ = −J s ∈ �(L, T L).

= −J
∑
i,j

Re �(ei, ∇�
i σ, ej )ej +

∑
i

〈ei , ∇�
i σ 〉∂t − J

∑
i,j

∂iτ 〈ej , ei〉ej

= −J
∑
i,j

Vol(ei , ∇�
i σ, ej )ej +

∑
i

〈ei , ∇�
i σ 〉∂t − J

∑
i

∂iτei ,

since Re � is the volume form on T L. It is easy to find that this is equivalent to

D(s, τ ) = −J (∗dσ∨)∨ + (∗d ∗ σ∨)∂t − J (dτ)∨,

and so D∨(σ∨, τ ) = (−∗dσ∨ − dτ, ∗d ∗ σ∨). Now, since d∗ = (−1)3p+1∗d∗ on the p-forms, one easily
checks the formula for D2. �


