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Lower estimates for the expected Betti numbers of random
real hypersurfaces

Damien Gayet and Jean-Yves Welschinger

ABSTRACT

We estimate from below the expected Betti numbers of real hypersurfaces taken at random in
a smooth real projective n-dimensional manifold. These random hypersurfaces are chosen in
the linear system of a large dth power of a real ample line bundle equipped with a Hermitian
metric of positive curvature. As for the upper bounds that we recently established, these lower
bounds read as a product of a factor which only deEends on the dimension n of the manifold
with the Kahler volume of its real locus RX and v/d . Actually, any closed affine real algebraic
hypersurface appears with positive probability as part of such random real hypersurfaces in any
ball of RX of radius O(1/+/d).

1. Introduction

What is the topology of a real hypersurface taken at random in a smooth real projective
manifold? When the latter is the projective line, this question reduces to: how many real roots
does a random real polynomial in one variable have? This question was answered by Kac [8] in
1943 and for a different measure, by Kostlan [9] and Shub and Smale [13] in the early 1990s.
In our recent paper [5] (see also [6]), we did bound from above the expected Betti numbers
of such random real hypersurfaces in smooth real projective manifolds. Our purpose now is to
bound these Betti numbers from below, see Corollary 1.3.

Let us first recall our framework. We denote by X a smooth complex projective manifold of
positive dimension n defined over the reals, by cx : X — X the induced Galois antiholomorphic
involution and by RX = Fix(cx) the real locus of X which we implicitly assume to be non-
empty. We then consider an ample line bundle L over X, also defined over the reals. It
comes thus equipped with an antiholomorphic involution ¢y, : L — L which turns the bundle
projection map 7 : L — X into a Z/2Z-equivariant one, so that c¢x o 7w = 7 o ¢;,. We equip L in
addition with a real Hermitian metric h, thus invariant under ¢y, which has a positive curvature
form w, locally defined by w = (1/2i7)d0log h(e,e) for any non-vanishing local holomorphic
section e of L. This metric induces a Kéhler metric g, = w(+,i-) on X, which reduces to a
Riemannian metric g, on RX. It then induces an L?-scalar product on every space of global
holomorphic real sections of tensor products L% of L, d > 0, which are denoted by

RHY(X, LY = {0 € H'(X,LY) |c o0 =00cx}.
This L?-scalar product is defined by the formula
Y(o,7) € RHY(X,LY), (o,7)= J h(o,7)(z) dz, (1.1)
X

where dx denotes any volume form of X. For instance, dz can be chosen to be the normalized
volume form dVj, = w"/ fX w™. This L?-scalar product finally induces a Gaussian probability
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measure g on RH?(X, L%) whose density with respect to the Lebesgue one at o € RH?(X, L?)
reads (1/\/E1\]d)e—”f"“27 where Ny = dimRH?(X, L?). Tt is with respect to this probability
measure that we consider random real hypersurfaces (as in the works [9, 13]) and our results
hold for large values of d.

Let us recall the estimates from above that we recently established in [5]. For every d > 0,
we denote by RA, the discriminant locus of sections o € RH?(X, L%) which do not vanish
transversally. For every o € RHY(X, L) \ RA,4, we denote by RC, = ¢~(0) N RX its smooth
real vanishing locus. Then, for every i € {0,...,n — 1}, we denote by m;(RC,) the ith Morse
number of RC,, and by b;(RC,,) its ith Betti number with real coefficients. These are defined as
the infinimum over all Morse functions f on RC,, of the number of critical points of index i of f
and as b;(RC,) = dim H;(RC,; R), respectively. It follows from Morse theory that b;(RC,) <
m;(RC,) and we set

Eb;) = bi(RC,) dur (),

JRHO(X7L4)\RAd

and E(m;) = fRHO(X.Ld)\RAd m;(RC,) dugr (o). Then, we proved the following theorem.

THEOREM 1.1 [5, Theorem 1]. Let X be a smooth real projective manifold of positive
dimension n and (L, h) be a real holomorphic Hermitian line bundle of positive curvature over
X. Then, for every i € {0,...,n— 1},

1
——ep(i,n — 1 — i) Vol (RX).

3

1
lim sup — F(m;) <

d—oo \/En

In Theorem 1.1, Vol,(RX) denotes the total Riemannian volume of the real locus RX for
the Kahler metric g, while eg(i,n — 1 — ) is a constant which only depends on i and the
dimension of X. The latter originates from random symmetric matrices and is defined as

en(isn —1— i) :J | det A| dyuz (A),
Sym(i,n—1—1,R)
where Sym(i,n — 1 — i, R) denotes the open cone of non-degenerated real symmetric matrices
of size n — 1 and signature (i,n — 1 — ¢), while dug is the restriction to this cone of the classical
Gaussian probability measure of the space of symmetric matrices, see [5]. In particular, for fixed
1 > 0, there exists ¢; > 0 such that for large values of n,

er(i,n — 1 —1i) < exp(—cin?), (1.2)

as follows from some large deviation estimates established in [1], see [5, Theorem 1.6].

Our aim now is to get similar asymptotic estimates from below for the expected Betti
numbers of random real hypersurfaces linearly equivalent to L?, see Corollary 1.3. These
estimates will follow from our main result, Theorem 1.2, which we now formulate.

Let ¥ be a closed hypersurface of R™, that is, a smooth compact hypersurface of R™ which has
no boundary and which we do not assume to be connected. For every o € RH?(X, L) \ RA,,
we denote by Ny (o) the maximal number of disjoint open subsets of RX having the property
that each such open subset U’ contains a hypersurface ¥/ such that ¥’ C RC, and (U’,¥’) is
diffeomorphic to (R™, ¥). We then set

B(Ns) = | Ne(o) dpz (o),
RHO(X,LI)\RA,

and we associate to X, in fact to its isotopy class in R™, a positive constant cy out of the amount

of transversality of a real polynomial P in n variables which vanishes along a hypersurface

isotopic to X, see (2.6). Our main result is the following theorem.
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THEOREM 1.2. Let X be a smooth real projective manifold of positive dimension n and
(L, h) be a real holomorphic Hermitian line bundle of positive curvature over X. Let ¥ be a
closed hypersurface of R™, which does not need to be connected. Then,

d— oo

1
lim inf 7nE Ng 2 Cxy VOlh RX).
7 (Ns) (RX)

In particular, when ¥ is connected, Theorem 1.2 provides a lower bound for the expected
number of connected components that are diffeomorphic to ¥ in the real vanishing locus of a
random section o € RH?(X, L?). As in Theorem 1.1, the constant cx; does not depend on the
choice of the triple (X, L, h), it only depends on 3.

Let us now denote, for every positive integer n, by H,, the set of diffeomorphism classes of
smooth closed connected hypersurfaces in R™. For every i € {0,...,n — 1} and every [X] € H,,
we denote by b;(X) = dim H;(2; R) its ith Betti number with real coefficients and by m,;(X)
its ith Morse number. Then, we set [cx] = SUPse[z] €5

COROLLARY 1.3. Let X be a smooth real projective manifold of positive dimension n and
(L,h) be a real holomorphic Hermitian line bundle of positive curvature over X. Then, for
every i € {0,...,n— 1},

1
liminf —E(b;) > [ Y embi(T) | Volp(RX),
e Vd [(E]eHn

and likewise liminfdéoo(l/\/gn)E(mi) > (Z[E]EH,L crmymi(¥)) Volp (RX). In particular, for
every 1 € {0,...,n— 1},

lim inf (bi) = exp(—e®™ %) Vol (RX).

1
7nE
d—oo \/&

The last part of Corollary 1.3 follows from the fact that for every i € {0,...,n — 1}, R™ con-
tains the product of spheres S* x S"~1=% as a hypersurface, while cgiygn-1-: > exp(—e®?T69),
see Proposition 2.7. This double exponential decay has to be compared with (1.2) and is not
an optimal bound. For instance, it follows from [5, Theorem 1] that when n = 1, (1/v/d)E(b)
converges to (1/4/m)Length, (RX). The results given by Theorems 1.1 and 1.2 raise the
following question: does the quotient E(b;)/Vol,(RX)vVd " or likewise E(m;)/Voly(RX)Vd"
have a limit in general, which only depends on i € {0,...,n — 1} and the dimension n of X,
but not on the triple (X, L,h)? This holds true for n =1, see [5, Theorem 1] or also [5,
Theorem 2] for similar results on the number of critical points of given index.

Note that another natural Gaussian probability measure could have been chosen on
RH(X, L), induced by an L2?product defined by integration over RX instead of the
integration over X (see [6, §3.1.1] for a discussion on our choice and other possible ones). This
is the measure considered by Nazarov and Sodin in their study of random spherical harmonics
in dimension 2, see [12], and more recently by Lerario and Lundberg in higher dimensions, see
[10]. The upper and lower estimates they obtain for the number of connected components for
these spherical harmonics are in d" instead of Vd". These estimates are also established for
homogeneous polynomials on unit spheres in [10]. Note that such a behaviour was previously
guessed through computational experiments by Raffalli, while Sarnak and Wigman informed
us that they were able to prove the upper estimates in RP2.

In order to prove Theorem 1.2, we follow the same probability approach as Nazarov and Sodin
(see [12, §6.1] or also [10, §2.2]) which we combine with the L?-estimates of Hérmander,
see §3.1. The latter make it possible asymptotically to produce, for every smooth closed
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hypersurface ¥ of R™ contained in a ball of radius R and every ball B; of RX of radius
R/ Vd, a section o € RH 9(X, L4) which vanishes transversally in By along a hypersurface
diffeomorphic to ¥, the transversality being quantitative in the sense of Donaldson, see [3,
Definition 7] and Proposition 3.4. We then bound from above the expected C'-norm of sections
of RH?(X, L?) in such a ball B; and deduce from Markov’s inequality that a random section in
RH?(X, L) vanishes with positive probability in By along a hypersurface diffeomorphic to ¥,
see Proposition 3.8. The result follows from the fact that there are more or less Vol, (RX )\/&n
disjoint such balls in RX. Recall that the construction in [4] of real Donaldson hypersurfaces
with many spheres in their real locus was carried out in a similar manner.

The first part of the paper is devoted to preliminaries on closed affine real algebraic
hypersurfaces and the second one to the proofs of Theorem 1.2 and Corollary 1.3.

2. Closed affine real algebraic hypersurfaces

This paragraph is devoted to preliminaries. We first introduce two real functions which play
a role in the proof of Theorem 1.2. Then, we associate a positive constant cs to any isotopy
class of smooth closed hypersurface ¥ of R™, see (2.6), using a notion of regular pair given by
Definition 2.3. Throughout this paper, by closed manifold we mean smooth compact manifold
without boundary. Finally, we estimate from below this constant in the case of product of
spheres, see §2.3.

2.1. Two real functions

We introduce here two real functions f; and gg whose maximum and minimum turn out to
play a role in the proof of Theorem 1.2. For every 7 > 0, we set

“+o0

fria€[\VT,+oo] — % (1 — %) L e~ dt,

so that f;(v/7) = limy— fr(a) = 0. We set
m; = sup fr. (2.1)
[V7,+00]
In particular, for every positive T,
1 2
> ) > o~ (VrFT+)? 29
me > f(VIED) > e 22)

The estimate (2.2) is chosen in the light of the following Lemma 2.1.

LEMMA 2.1. For every positive T, the function f,; reaches its maximum on the interval

V7, V7T+1].

Proof. For every positive 7 and every a > /7, f.(a) = (1//7)((27/a?) f:oo e dt —(1—
7/a%)e=*"), so that if f, reaches its maximum at the point ¢ € [\/7, +oc[, (27/c?) [T et dt

(1—17/c?) e=<". Now J':roo et dt < e~ /2¢, so that (1 —7/c?) < 7/ct and ¢ — 7 < 7/c2 <

Hence, ¢ <1+ 7.

0=

Likewise, for every positive R and every positive integer n, we set

. R+8)* o (Risy
gRZSGR_‘_'—)%C (R+s)

)
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so that limg_.o gr(s) = lims_ 1o gr(s) = +00. We set

pr = inf gg. (2.3)
]R+
In particular, for every positive R,
pr < gr(R) = 4" exp(47R?). (2.4)

2.2. Real polynomials and transversality

We introduce here the notion of regular pair, see Definition 2.3, and the constant ¢y associated
to any isotopy class of smooth closed hypersurface ¥ of R™, see (2.6).

LEMMA 2.2, IfP =3 i a2 2 € R[Xy,. .., X)), then

B 2 ! 1y!
IPIZ = | IPEPe gz = 3 e PR
(215000080 ) ENT

Proof. We note that ||P||2L2 = ZI,JEN" aray IC" Az e=7I2” 4z, But for every k #0,
fc 2k e=ml=l” gz = fc gk e=ml=l® gz = 0, whereas for every non-negative k,

2k 2 e 2k+1 2 e k 1 k!
J |2 e I dy = QWJ pRTl e gy = ’/TJ the ™ dt = Ik +1)=—.
C 0 0 ™ ™
The result follows then from Fubini’s Theorem. ]

DEFINITION 2.3. Let U be a bounded open subset of R” and P € R[Xy,...,X,], n > 0.
The pair (U, P) is said to be regular if and only if

(i) zero is a regular value of the restriction of P to U;
(ii) the vanishing locus of P in U is compact.

DEFINITION 2.4.  For every regular pair (U, P) given by Definition 2.3, we denote by 7y, p
the set of (d,¢) € (R%)? such that

(i) there exists a compact subset K of U satisfying infyn g [P| > 0;
(ii) for every y € U, |P(y)| < 0 = ||d), P| > €, where ||d), P|*> = 31" | |0P/0z;|.

We then set for every regular pair (U, P), Ry, py = max(1,sup, ¢y [y||) and

. 1 ™ .
i = Momg Pl | inf (554 0 ) €L 25)
where pr, ,, is defined by (2.3).

Now, let ¥ be a closed hypersurface of R™, not necessarily connected. We denote by Zs; the
set of regular pairs (U, P) given by Definition 2.3, such that the vanishing locus of P in U
contains a subset isotopic to ¥ in R™. It follows from Nash’s Theorem for hypersurfaces in R™
that Zy, is non-empty, see [11, Theorem 1]. We then set

cx = sup ( M,y > (2.6)
w,Pyezs \2"VOl(B(Rw,p))) )’
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where m., ,, is defined by (2.1) and Vol(B(R(y,p))) denotes the volume of the Euclidean ball
of radius Ry, py in R™. From (2.2), follows that for every (U, P) €Iy,

[n/2| exp(—(y/Tw,p) + 1+ 1) (27)

~ Al IR, b (14 T(U,P))f ’

since the volume of the ball of radius Rp,p)y in R" is bounded from below by
(2r?/2 ) |n/2])RY, (v,P) for every n > 0. For large values of 7y py, as the ones which appear in
the examples given in §2.3, we deduce from (2.7) that

ey = exp(—27w,py)- (2.8)

2.3. Examples
2.3.1. The spheres

PROPOSITION 2.5. For every positive integer n, cgn—1 > exp(—e*"+5%),

For every n > 0, we set Ps(z1,...,2,) = 5 25 — 1 and Us = {(21,...,2,) € R"[ 337,

Jj=1 J
a: < 4}. The pair (Ug, Ps) is regular in the sense of Definition 2.3 and Py 1(0) ¢ Usg is isotopic

1n R™ to the unit sphere S™ 1.
LEMMA 2.6. For every n >0 and every 0 < § < 1, (§,2V1 —0) € Ty, py)-

Proof. For every x € R"™ and § > 0,
|Ps(z)]| <d<=1-0<|z|? <146
= || Ps|* = 4]|z]|* > 4(1 - 9).
Moreover, when 0 < § < 1, Ks ={z € U|1—§ < ||z]|*> < 1+ 6} is compact in Us. We deduce
that (6,€) € Ty, py) for € =4(1 —9). O

Proof of Proposition 2.5. For every positive integer n, R(QUS Ps) = 4, while from Lemma 2.2,
[Ps||2. =1+ 2n/7? < n+ 1. From (2.5) and Lemma 2.6, we deduce

™m
T(Us,Ps) < 24pR(US,PS) (TL + 1) (1 + I)
< exp(nlnd + 167 + In(96) 4+ 21n(n)) by (2.4)
< exp(4n + 54).

The estimate cgn—1 > exp(—e?" %) follows then from (2.8). U

2.3.2. Products of spheres

PROPOSITION 2.7. For every positive integer n and every 0 <t < n—1, cgixgn-i-1 =
exp(—e®nt69),

For every n > 0 and every 0 <7 < n — 1, we set

2
1+1 n—i—1

Qi((@1, - zit1), (Y15 -+ Yn—i—1) ZI -2 + Z yjz'*la
j=1
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and Ug, = {(z,y) € R x R"=1=¢|||z||? + ||y||* < 5}. The pair (Ug,,Q;) is regular in the
sense of Definition 2.3 and Q;*(0) C Vg, is isotopic in R™ to the product S x S"~*~! of the
unit spheres in R and R*.

LEMMA 2.8. For every positive integer n and every 0 < i< n — 1,

Lo ter
2v/n’ 2/n )~ T Uan@)

Proof. For every (z,y) € R7* x R"™"~1 and every 0 < § < 1,

Qi(z,y)| <d=1-05<(|z]* - 2)* + ylI* <1+
= ||di(2,) QilI* = 4llyll* + 16]|z]*(|=[|* — 2)?,

with [z]|? >2—V1+6 > 1. Thus, ||d|,)Qill* > 4((|lz]|* — 2)* + ||ly[|?) > 4(1 — 6) and we
deduce the result by choosing § = 1/2y/n. O

Proof of Proposition 2.7. For every positive integer n and every 0 < < n — 1, REUQ' Q) =
5 PRwgy aop S 4" exp(207) by (2.4), while from Lemma 2.2, '

2 _ 32 24 16 (i+1
Qi||iz:9+7T2(n—z—1)+7T2(z+1)+7r4(z+1)+7r4( 9 ><13n2.

We deduce from (2.5) and Lemma 2.8 the upper estimate TV, Qi) S 1560n34™ 207

<
€5 +68 since Inn <n —1. We then deduce from (2.8) the lower estimate cgiygn—i-1 >
exp(—2e°m108), O

REMARK 2.9. The lower estimates given by Propositions 2.5 and 2.7 are far from being
optimal.

3. Lower bounds for the Betti numbers of random real algebraic hypersurfaces

We first realize the affine real algebraic hypersurfaces in every smooth real projective manifold
at the scale 1/v/d thanks to Hérmander L?-estimates, see Proposition 3.4. We then follow the
approach of Nazarov and Sodin (see [12] or also [10]) by first estimating the expected local
C'-norm of sections, see Proposition 3.7, and then deducing a positive probability of presence
of such affine real algebraic hypersurfaces in the vanishing locus of random sections in any ball
of radius O(1/v/d), see Proposition 3.8. Theorem 1.2 and Corollary 1.3 follow.

3.1. Hoérmander sections

DEFINITION 3.1. Let (X,cx) be a smooth real projective manifold of positive dimension
n and (L, h, cr) be a real holomorphic Hermitian line bundle of positive curvature over X. For
every x in RX, let us call an h-trivialization of L in the neighbourhood of x the following data:

(i) alocal holomorphic chart ¢, : (Wy,z) C X — (V,,0) C C" such that
(a) 1, o cx = conjo b, where conj : (y1,...,4yn) € C" — (§1,...,7n) € C™;
(b) dig¥s : (T2 X, gn) — C" is an isometry;

(ii) a non-vanishing holomorphic section e of L defined over W, and such that
(a) cpooeocx =e¢;
(b) ¢ = —logh(e,e) vanishes at = and is positive everywhere else;
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(c) there exists a positive constant ay such that on V.

o, (y) — 7llyll? < eallyll®. (3.1)

DEFINITION 3.2. Let X be a smooth real projective manifold of positive dimension n and
(L, h) be a real holomorphic Hermitian line bundle of positive curvature over X. A field of h-
trivializations on RX is the data at every real point x of an h-trivialization in the neighbourhood
of x such that the open subset V,, of C" given by Definition 3.1 does not depend on z € RX, and
such that the composition ¢ o1 gets uniformly bounded from below by a positive constant
on this open set V = V., while the constant «; can be chosen not to depend on z € RX.

LEMMA 3.3. Any smooth real projective manifold of positive dimension equipped with a
real holomorphic Hermitian line bundle of positive curvature admits a field of h-trivializations.

Proof. Let (X,cx) be a smooth real projective manifold of positive dimension n and
(L,h,cr) be a real holomorphic Hermitian line bundle with positive curvature w over X.
Let x be a real point of X and let us first prove the existence of an h-trivialization of L
near x. The existence of the local chart ¥, : (W,,x) — (V,,0) satisfying the first condition of
Definition 3.1 is given by definition. Now, restricting W, if necessary and averaging a local
holomorphic section, we get a local holomorphic section € of Ly, which does not vanish
and satisfies ¢;, o € = € o cx. The plurisubharmonic function é = —log h(é, €) takes real values.
Its composition ¢ o' reads ¢ ot = Rp1 + po, where ¢1 € Cly,...,yn] is a degree 2
polynomial and ¢2(y) = 7(|y||* + O(||ly[|?), since the Hermitian part of the second derivative of
¢ at x is wgp, by definition. We then set, following [7], e = exp(¢; o ¥, )é which satisfies the
second condition of Definition 3.1 after restricting the open subset W, if necessary.

The larger the higher order derivatives of ¢ are, the smaller W, has to be chosen. However,
these higher order derivatives are the same as the ones of (50 1 since they are not affected
by ¢1. Now, we can cover RX with the supports of finitely many real sections €y, ..., é.
The derivative of these sections is uniformly bounded over RX. We can thus choose an h-
trivialization near every point = of RX in such a way that the open subset V, of C™ does
not depend on z € RX. Restricting V. if necessary, this ensures the existence of a field of
h-trivialization on RX. |

For every positive d and every o € RH(X,L%), ||o||12(n) denotes the L?-norm for the
normalized volume form induced by the Kahler form w, that is,

otz = | ol dvi,
X

where dVj, = w" /fX w™. Moreover, if the restriction of ¢ to W, reads o = f,e? for some
holomorphic f, : W, — C, we set |o| = |f,], so that o] = |o|* exp(—dp) on W, and for
every z in W,

|djz0] = |d)y (fo 0z )| where y = 9 (2). (3.2)
We also denote, for every small enough R > 0, by B(z, R) C W, the ball centred at = and

of radius R for the flat metric of V pulled back by ., so that B(x, R) = ¢, (B(0, R)). We
finally denote by 6 = [ ¢1(L)™ the degree of the bundle L.

PRrROPOSITION 3.4. Let X be a smooth real projective manifold of positive dimension n and
(L,h) be a real holomorphic Hermitian line bundle of positive curvature over X. Let F be a
field of h-trivializations on RX. Then, for every regular pair (U, P), every large enough integer d
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and every z in RX, there exist oy py € RH(X, L?) and an open subset Uy C B(x, Ry, py/Vd)
such that

(i) llow,pyllL2(n) converges to || P|[z2/+/dr as d grows to infinity;
(i1) (Uy, a(_Ulp) (0) N Uy) is diffeomorphic to (U, P~1(0)NU) C R™;
(iii) for every (0,€) € Ty, p), there exists a compact subset Kq C Uq such that

0 ,n
inf —Vd ;
Uir\le |CT(U,P)| > 2\[ ;

while for every y in Uy,

5 n € n+1
low,py(y)] < 5\@ = |djyow,py| > 5\/3 . (3.3)

Recall that the norm of the derivative is given by (3.2), and note that the quantitative
transversality condition (3.3) is the one used by Donaldson [3].

Under the hypotheses of Proposition 3.4, let 2 € RX. We set Uy = ;' ((1/V/d)U) C
B(z, Ry, py/Vd) for every sufficiently large d so that (1/v/d)U C V. Let y: C" — [0,1] be
a smooth function with compact support in V' which equals one in a neighbourhood of the
origin. Then, let ¢ be the global smooth section of L¢ defined by o x\w,) = 0 and

ow, = (xo Vo) P(Vdi)y e

From the L2-estimates of Hormander, see [7, 14, 15], there exists a global section 7 of L?
such that 01 = 0o and ||7||z2(n) < [|00| 12 for d large enough. This section can be chosen
orthogonal to the holomorphic sections and is then unique, in particular real, so that cra o7 o
cx = 7. Moreover, we obtain the following lemma.

LEMMA 3.5. There exist positive constants ¢; and ce, which do not depend on x € RX
and satisty ||7||p2(n) < c1e72? as well as |7|c1(v,) < c1 e 2%, where the C'-norm is defined
by (3.2).

Proof. The L2-estimates of Hormander (see [15, Proposition 1.1], for example) read for
large enough d

Il < | 10012 aVh = [ s P(/aw) et av (3.4)

2

P(Vdy)
\/adeg P

where ¢y = inf, ¢y pp(ay) (@ © ¥, 1(y)) > 0 by Definition 3.2, so that for d large enough there
exist positive constants ci,cs not depending on z such that ||7][12¢n) < ¢1exp(—2cad). Now,
since 7o ! is holomorphic on x~!(1), the mean value inequality for plurisubharmonic
functions implies that for every z in Uy,

2o b
IT(2)]" < Vol(B(1/+/d)) J'B(wz(Z)vl/\/E)

1 J' 2 d
< 750 €4} dy
Vol(B(1/VA) Jpeajvay

1
<—————+— sup (e|detd . v.|)|I7l32n),
VOl BUVD) srrva : "

< =) sup [ 13y
yeVv

e ez, (3.5)

oz (y)I* dy
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where the determinant |det d|.1),| is computed with respect to the volume forms dV}, and dy.
Since the coefficient in the front of ||7]|%, (ny in the right-hand side of the inequality has a
polynomial growth, it gets bounded from above by exp(2cad) for d large enough and we deduce
that |7| < e=°2? on Uy,. The estimate for |d7| is proved along the same lines. O

Proof of Proposition 3.4. We set oy p) = Vd' (o0 —7) and K4 =17 ((1/VA)K), see
Definition 2.4. The section oy, py is global and holomorphic. Lemma 3.5 shows that on Uy,
ow,p) is a small perturbation of Vd'o. In particular,

1217

2 o~ 2 —drllyl* %Y
low,pllz2(n) dﬂood L—lu) |P(Vdy)|* e 5, i oL (3.6)

Moreover, for every pair (d,¢) € Ty, py and every z € Uy \ Kg,

1
< Erown()] = lote) = 7(2) (37)
2 lo(2)] - sup 7| (3-8)
B(z, R, py/Vd)
> [P(Vdia(2))| — sup |7 (3.9)
B(z,Ru,py/Vd)
>0 — sup |7| from Definition 2.4. (3.10)

B(z,R(y,py/Vd)

Thus, by Lemma 3.5, if d is large enough, then infy \ g, |o@w,py| > (6/2)V/d" whenever z €
RX. Moreover, for every z € Uy,

low.p)(2)] < g\/ﬁn = |o(2) — 7(2)| < g

— Jo(2)| < 3 + I7(:)]
= |P(Vdyu(2))| < 6,

for d large enough, whatever x € RX is. Thus,

) n
low,py(2)] < 5\@ = 14 vay, Pl >

= |d|,o| > eVd using notation (3.2)

€ n—+1
— |d|zU(U,P)| > 5\/;1 s

for d large enough by Lemma 3.5. Finally, Lemma 3.5 together with Lemma 3.6 imply that
(0'(_U17P)(0) NUy) is isotopic to (¢=(0) N Uy) and so diffeomorphic to (P~1(0) NU) when d is
large enough. |

LEMMA 3.6. Let U be an open subset of R", f:U — R be a function of class C' and
(6,¢€) € (R%)? be such that

(i) there exists a compact subset K of U such that infy i | f| > 0;
(ii) for every y in U, |f(y)| < & = |df},| > €.

Then, for every function g : U — R of class C' such that supy; |g| < § and supy, |dg| < €, zero
is a regular value of f + g and (f + g)~1(0) is compact and isotopic to f~(0) in U.
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Proof. For every t € [0,1] and every y € U,

f+tg(y) =0=[f(y)| = Itg(y)| <é.

The point y is then contained in K and |dfj,| > €. Hence, we have
|d|y(f + tg)| = |d|yf‘ - |td|yg| > 0,

so that 0 is a regular value of f + tg. The hypersurface ¥y = (f +tg)~1(0) is smooth and
included in K by the implicit function theorem. It produces an isotopy between f~1(0) and

(f +9)71(0). O

3.2. The expected local C*-norm of sections

The following Proposition 3.7 computes the expected local C''-norm of sections. It is inspired
by an analogous result of Nazarov and Sodin, see [12] (or also [10]). Recall that we denote by
oz the degree [ c1(L)" of the line bundle L over X, that | - | denotes the modulus evaluated
in the charts given by h-trivializations, see (3.2), and that the constant pp is defined by (2.3).
Finally, we denote by v the density of dV}, with respect to the volume form dz chosen in (1.1)
to define the L2-product, so that dV}, = v(z) dx.

PRrROPOSITION 3.7. Let X be a smooth real projective manifold of positive dimension n and
(L, h) be a real holomorphic Hermitian line bundle of positive curvature over X. We equip RX
with a field of h-trivializations. Then, for every positive R,

1 2
limsup sup —F sup ﬂ < 60rpRr
d—oo ackX d Bla,ryva) (%)

and

. 1 |do|?
limsup sup THE sup < 6mndLpR-
d—oo zeRX d B(xz,R/Vd) v(w)

Proof. Let R > 0, x € RX and W, be a neighbourhood given by the h-trivialization. When
d is large enough, B(xz, R/Vd) C W, and ¢ o ¢, ' (y) = 7|y + o(||y[|*). We deduce from the
mean value inequality that for every s € Ry and o € RH®(X, L%),
R 1
VzeB (:v ) L )P < —J
Vd Vol(B(s/Vd)) Jz,s/va)
e
Vol(B(s/Vd)) I (rts)/va)

Thus, supp ., r/va) lo|? < (1/Vol(B(s/V/d))) fB(z (Rots)/va) |o|2% dy and after exchange of the
integrals,

|o|*5 dy

|o[?7 dy.

E( swp o <;j
B, R/Va) Vol(B(s/Vd)) JB(x,(R+s)/vd)

Then, let z € Bz, (R+ 5)/Vd) NRX and oy € RH°(X, L?) be the Bergman section at z. Its
norm equals 1 and it is orthogonal to the space of sections vanishing at z. Assume for the
moment that the volume form dz chosen to define the L2-scalar product equals dV},, so that
v = 1. Then, from [15, Lemma 2.2] (see also 2, 6]),

loo(2)l30 ~_drd".

E(lo[*)y; dy.
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But ool 2 2 = |0pg(Z 2 e dd)(z) fI'OHl WhiCh we deduce
H 0( )”hd ‘ 0( )l )
loo(2)]? < dpd” em(Rts)” 4 o(d"),

where the o(d™) term can be chosen not to depend on z € RX. As a consequence,

l0(2)]? dpag () = |oo(2)]? = j a? e da

E(jo(2)]?) = 77

JRH"(X,Ld)
1
< §5Ld” em(Bts)” 4 o(d™).
When z € B(z, (R+ s)/v/d) \ RX, the space of real sections vanishing at z gets of real

co-dimension 2 in RH?(X,L?). Let (6;,03) be an orthonormal basis of its orthogonal
complement. From [15, Lemmas 1.2 and 2.1], we deduce as before that for every j € {1, 2},

1
lim sup —-16;(=)|* < 20, em(R+)*
d—oo

an upper bound which does not depend on z. We deduce that

2 o]
E(lo(2)]?) = J (@161 (2) + azb()[* e~~~ day das
Rz

1
< 20Ld" e”(R+s)2(1 +0(1)) J (a3 4 a3 + 2|a1||as|) emai—a3 - day das
R2

< 66,d" e™ P (1 4 o(1)).

Finally,
sup E sup  |o]? | < _ Gowd” J em(B+e)? dy + o(d™)
2€RX  \ B(e,R/d) Vol(B(s/Vd)) Jp(0,(r+s)/v/d)
2 (R 2n
o e B

Choosing s € R7 such that gr(s) = pr, see (2.3), we deduce that

1
limsup sup —F sup |o* | < 6proL.
d—oo xeRX dn

B(z,R/\/d)
Likewise, we deduce from the mean value inequality that for every s € Ry, j € {1,...,n} and
z € B(z, R/V4d),
2 Z1y 2
g—; 2) < Vol(B(ls/\/E)) J *8((’; w“’ W ) ay,
J B(0,(s+R)/Vd) Y
from which follows after summation over j € {1,...,n} that

1
E sup |do|* | < —J E(ld,, 1, 0l?) dy.
(B(IvR/\/E) VOI(B(S/\/&)) B(0,(s+R)/Vd) [a " (y)

Let 2 € B(z, (R + s)/Vd) NRX and for every j € {1,...,n}, o; € RH(X, L%) be the normed
section orthogonal to the hyperplane of sections o such that do/0y;|z = 0. Still assuming that
dx = dVy,, we know from [15, Lemma 2.1], see also [6, Lemma 2.2.3], that

el

dn-&-l’
8yj

~ 7T5L
hd d— oo

so that again
2

< 7o ew(R+s)2dn+1 + O(dn+1)7

e

0y,
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with an o(d"*!) term which does not depend on x € RX. We deduce that

awi-Ee(5)

-5 gl o

3yj
R+s) dn—i—l O(dn+1).

_ 42
" da

NS 2775[/6

When z € B(z,(R+s)/vVd) \RX, we get in the same way as before that E(|do).|*) <
6nmsy e™ B’ qntl 4 o(dn+1). Finally, limsup,_, ., superx (1/d" ) E(Sup g, g/vay ldol?) <
6nmdLgr(s). By choosing s such that gr(s) = pr, see (2.3), we obtain the result in the case
where v =1 on X.

In general, the Bergman section at = for the L?-product (1.1) associated to the volume form
dx is equivalent to the Bergman section o at z for dVj, times y/v(z), because og has its L>-
norm concentrated on the ball B(z,log d/v/d). The same holds true for every oj,7€{1,...,n},
and the result follows by replacing d;, with v(z)dy,.

3.3. Probability of the local presence of closed affine hypersurfaces

Following the approach of Nazarov and Sodin (see [12] or also [10]), we deduce the following
Proposition 3.8 from Propositions 3.4 and 3.7. It estimates from below the probability of
presence, in a ball of radius inversely proportional to v/d, of a given closed affine real algebraic
hypersurface in the vanishing locus of sections of high tensor powers of an ample real line
bundle.

Let (X,cx) be a smooth real projective manifold of positive dimension n and (L, h,cr,)
be a real holomorphic Hermitian line bundle of positive curvature over X. Let (U, P) be
a regular pair given by Definition 2.3 and ¥ = P~1(0) C U. Then, for every z € RX, we
set By = B(z, R,p)/Vd) and denote by Prob, (L% the probability that o € RH(X, L¢)
has the property that ¢=1(0) N By contains a hypersurface ¥ such that the pair (Bg,Y') be
diffeomorphic to (R™,X). That is,

Prob, 5 (L%) = ur{c € RH(X,L%) |0~ *(0) N By D ¥’ and (By,¥') ~ (R™,X)}.
We then set Probs(L9) = inf,crx Probz,g(Ld).

PROPOSITION 3.8. Let X be a smooth real projective manifold of positive dimension n and
L be a real holomorphic Hermitian line bundle of positive curvature over X. Let (U, P) be a
regular pair given by Definition 2.3 and ¥ = P~'(0) C U. Then,

lim inf Probs (L) = msy, ),

see (2.1).

Proof. Let x € RX and let us choose an h-trivialization of (L, h) given by Definition 3.1.
By Proposition 3.4, there exist, for every d large enough, a compact K , an open set Uy and a
section oy py € RH?(X, L?) such that

KycUgC By CW,,
and (Uq, 0~ 1(0) N Uy) be diffeomorphic to (U, ). Moreover, for every (d,€) € 7y, p),

0 ,n
inf —Vd 3.11
Ui{le |U(U,P)| > 2\[ ) ( )
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and for every z in Uy,
n+1
low,p(2)] < f = |dow,p| > f (3.12)
The moduli |o(y,py| and |do, py| are computed here in the h-trivialization of L%, see (3.2).

Denote by o3 the hyperplane orthogonal to ow,py in RH 9(X,L% and by sp the orthogonal
symmetry of RHY(X, L%) which fixes o5. Then, the average value of supp, |0]> on o4 satisfies

B (sup o) = | sup 0P aus(0)
Bg oj Bg

o+ sp(o)]?

B dur(o)

= J sup
RHO(X,L4) Ba

1 1
<3 sup o dux(o) + 5 | sup |sp ()2 dus ()
2 Jruo(x,L4) By 2 Jruo(x,L4) Ba

<5 aplr
< 60LpR,, P)v(m)d" + o(d"),

from Proposition 3.7, where the o(d™) term does not depend on = € RX.
Likewise, from Proposition 3.7,

E (Sup |d6‘2> < 65L7mpR<U~P)v(:c)d”+1 + o(d™™h),
Bg

where the o(d"*1) term does not depend on x € RX. From Markov’s inequality follows that
for every M > 0,

2
2 n} < 24\Pz2Prw.p) +o(1)

0cop 0 > M?
/J]R{ EO’P|S§F| | U<$)4HP”%2 M252

and

2 247n|| P2,
1 2 2 0L 41 L2PRw,p)
R0 €o0p|supldd|® > M*v(x }< o(1),
1% { P | B, | | ( )4||P||%2 M2e2 ( )

where the o(1) term does not depend on x € RX. As a consequence, setting
825,
4||PI7

25
Eoy = {0 € op | sup|0)® < M?v(x) d™ and sup|df|* < M?v(x) < oL d"+1},
Bd Bd

4] P|Z

we have

M? 52

where the o(1) term does not depend on z. Choosing (9, €) which minimizes the function (4, €) —
(1/6% + mn/e?), we deduce from (2.5) that pr(E,1) =1 — Tw,py/M? — o(1). Now, setting

Fuar,w,py = { |

IPIIZ2pR 1 7
pr(Eyy) 21— 24—=— 00 < + 62) —o(1),

TUP) | g e RHO(X, LY [a> M and 6 € &, b,
low,pyllz2 P

where

p
low,pllre  ~ I (3.13)

d—o0 v(:c)5L ’
by the first part of Proposition 3.4 and the fact that the mass of oy, py concentrates on small

balls B(x,logd/V/d). Take 0 € Far, (v, py- From the estimates (3.11)~(3.13) and the definition of
501%, for d large enough, 0 is a regular value of o and from Lemma 3.6, ~1(0) N U, is isotopic
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to oy, P)( ) N Uy, so that the pair (Bg,o~1(0) N Uy) is diffeomorphic to (B(0, Rw,p)),¥). The
result follows from the fact that

1 > 2 T(U.P
d —t (U,P)
PI‘Obw’Z(L ) > /,L]R(./TM’(IT’P)) > (f JM e dt) (1 e 0(1))

= fT(U,p) (M) - 0(1),

see §2.1. We choose M € [,/T(y,p), +oo[ which maximizes f-, ., see (2.1), and take the
limit. 1

Proof of Theorem 1.2. Let (U, P) € Iy, see §2.2. For every d > 0, let Ay be a maximal
subset of RX with the property that two distinct points of Ay are at distance greater than
QR(UJD)/\/& The balls centred at points of Ay and of radius R(U,p)/\/g are disjoints, whereas
the ones of radius 2R(U’p)/\/a cover RX. For every z € Ay and every o € RHY(X, L) \ RA,
we set Nx;(z,0) = 1if the ball By contains a hypersurface >’ such that X' C ¢71(0) and (B, %)
is diffeomorphic to (R, X), whereas Nx(z,0) = 0 otherwise. Recall that Ny (o) denotes the
maximal number of disjoint open subsets of RX having the property that each such open subset
U’ contains a hypersurface 3’ such that ¥’ C RC, and (U’,%’) be diffeomorphic to (R, X).
Thus,

E(Ng) > J (Z Ng(:l:,d)) dpg (o)
RHO(X,LI)\RAG \ yen,
= > Prob,s(L
€Ay

> |Ag4| Probg (LY,
by Proposition 3.8. We deduce from the inclusion RX C [J,c,, B(, 2R y,p)/Vd) that

Vol (RX) ZV01< ( R\%’”))

TEAN,

A
< 2" Ag| Vol(By) + o (1/5”> .

From Proposition 3.8 follows then that
My py YOlp(RX)
27 Vol(By)

lim inf —E ) =

T

This lower bound holds for every pair (U, P) € I, and we get the result by taking the
supremum, see (2.6). O

Proof of Corollary 1.3. For every d > 0,

E(bz) = bi(RC[”R) d,uR(G')

JRHU(X,Ld)\]RAd

> JRHO(Xde)\RAd (Zgn NZ(U)bZ(E)> d/J/R(O')

> Z bi(X)E(Nx)

YeHn

Hence, the first lower bound follows from Theorem 1.2, while the second one follows along the
same lines. The last part of Corollary 1.3 is then a consequence of Proposition 2.7. |
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