Local topology of random complex algebraic projective hypersurfaces

Quantum Chaos and nodal random waves
King's College London 25-28 July 2022

Damien Gayet (Institut Fourier, Grenoble, France)

Let

$$
P=\sum_{i_{0}+\cdots+i_{n}=d} a_{i_{0} \cdots i_{n}} Z_{0}^{i_{0}} \cdots Z_{n}^{i_{n}}
$$

a complex homogeneous polynomial of degree d

Let

$$
P=\sum_{i_{0}+\cdots+i_{n}=d} a_{i_{0} \cdots i_{n}} Z_{0}^{i_{0}} \cdots Z_{n}^{i_{n}}
$$

a complex homogeneous polynomial of degree d and

$$
Z(P)=\{P=0\} \subset \mathbb{C}^{n+1}
$$

Let

$$
P=\sum_{i_{0}+\cdots+i_{n}=d} a_{i_{0} \cdots i_{n}} Z_{0}^{i_{0}} \cdots Z_{n}^{i_{n}}
$$

a complex homogeneous polynomial of degree d and

$$
Z(P)=\{P=0\} \subset \mathbb{C}^{n+1}
$$

$Z(P)$ is invariant under complex homotheties.

Let

$$
P=\sum_{i_{0}+\cdots+i_{n}=d} a_{i_{0} \cdots i_{n}} Z_{0}^{i_{0}} \cdots Z_{n}^{i_{n}}
$$

a complex homogeneous polynomial of degree d and

$$
Z(P)=\{P=0\} \subset \mathbb{C}^{n+1}
$$

$Z(P)$ is invariant under complex homotheties. Better idea : consider the complex projective space

$$
\mathbb{C} P^{n}=\mathbb{C}^{n+1} /\left(z \sim \lambda z, \lambda \in \mathbb{C}^{*}\right)
$$

and study

$$
Z(P)=\left\{[Z] \in \mathbb{C} P^{n}, P(Z)=0\right\} .
$$

Facts on $\mathbb{C} P^{n}$

Facts on $\mathbb{C} P^{n}$

- $\mathbb{C} P^{n}$ is a compact smooth complex n-manifold.

Facts on $\mathbb{C} P^{n}$

- $\mathbb{C} P^{n}$ is a compact smooth complex n-manifold.
- $\operatorname{dim}_{\mathbb{R}} \mathbb{C} P^{n}=2 n$.

Facts on $\mathbb{C} P^{n}$

- $\mathbb{C} P^{n}$ is a compact smooth complex n-manifold.
- $\operatorname{dim}_{\mathbb{R}} \mathbb{C} P^{n}=2 n$.
- $\mathbb{C} P^{1} \sim_{d i f f} \mathbb{S}^{2}$

Facts on $\mathbb{C} P^{n}$

- $\mathbb{C} P^{n}$ is a compact smooth complex n-manifold.
$-\operatorname{dim}_{\mathbb{R}} \mathbb{C} P^{n}=2 n$.
- $\mathbb{C} P^{1} \sim_{\text {diff }} \mathbb{S}^{2}$
- $\mathbb{C} P^{n}=\mathbb{S}^{2 n+1} /\left(z \sim \lambda z^{\prime}, \lambda \in \mathbb{U}(1)\right)$.

Facts on $\mathbb{C} P^{n}$

- $\mathbb{C} P^{n}$ is a compact smooth complex n-manifold.
- $\operatorname{dim}_{\mathbb{R}} \mathbb{C} P^{n}=2 n$.
- $\mathbb{C} P^{1} \sim_{\text {diff }} \mathbb{S}^{2}$
- $\mathbb{C} P^{n}=\mathbb{S}^{2 n+1} /\left(z \sim \lambda z^{\prime}, \lambda \in \mathbb{U}(1)\right)$.
- The standard metric over $\mathbb{S}^{2 n+1}$ descents onto $\mathbb{C} P^{n}$ in the Fubini-Study metric $g_{F S}$.

Facts on $Z(P) \subset \mathbb{C} P^{n}$ for generic P

Facts on $Z(P) \subset \mathbb{C} P^{n}$ for generic P

- $Z(P)$ is a compact complex hypersurface, in particular a real $(2 n-2)$-dimensional smooth manifold.

Facts on $Z(P) \subset \mathbb{C} P^{n}$ for generic P

- $Z(P)$ is a compact complex hypersurface, in particular a real $(2 n-2)$-dimensional smooth manifold.
- In particular, when $n=2, Z(P)$ is a real surface in the 4-dimensional $\mathbb{C} P^{2}$.

Facts on $Z(P) \subset \mathbb{C} P^{n}$ for generic P

- $Z(P)$ is a compact complex hypersurface, in particular a real $(2 n-2)$-dimensional smooth manifold.
- In particular, when $n=2, Z(P)$ is a real surface in the 4-dimensional $\mathbb{C} P^{2}$.
$-\operatorname{Vol}_{g_{F S}} Z(P)=d$

Facts on $Z(P) \subset \mathbb{C} P^{n}$ for generic P

- $Z(P)$ is a compact complex hypersurface, in particular a real $(2 n-2)$-dimensional smooth manifold.
- In particular, when $n=2, Z(P)$ is a real surface in the 4-dimensional $\mathbb{C} P^{2}$.
- $\operatorname{Vol}_{g_{F S}} Z(P)=d$ (however the curvature is not constant).
- For $n=1, Z(P)=\{d$ roots $\}$.

Facts on $Z(P) \subset \mathbb{C} P^{n}$ for generic P

- $Z(P)$ is a compact complex hypersurface, in particular a real $(2 n-2)$-dimensional smooth manifold.
- In particular, when $n=2, Z(P)$ is a real surface in the 4-dimensional $\mathbb{C} P^{2}$.
- $\operatorname{Vol}_{g_{F S}} Z(P)=d$ (however the curvature is not constant).
- For $n=1, Z(P)=\{d$ roots $\}$.
- For $n \geq 2, Z(P)$ is connected.

Facts on $Z(P) \subset \mathbb{C} P^{n}$ for generic P

- $Z(P)$ is a compact complex hypersurface, in particular a real $(2 n-2)$-dimensional smooth manifold.
- In particular, when $n=2, Z(P)$ is a real surface in the 4-dimensional $\mathbb{C} P^{2}$.
- $\operatorname{Vol}_{g_{F S}} Z(P)=d$ (however the curvature is not constant).
- For $n=1, Z(P)=\{d$ roots $\}$.
- For $n \geq 2, Z(P)$ is connected.
- For $n \geq 3 Z(P)$ is simply connected.

Facts on $Z(P) \subset \mathbb{C} P^{n}$ for generic P

- $Z(P)$ is a compact complex hypersurface, in particular a real $(2 n-2)$-dimensional smooth manifold.
- In particular, when $n=2, Z(P)$ is a real surface in the 4-dimensional $\mathbb{C} P^{2}$.
- $\operatorname{Vol}_{g_{F S}} Z(P)=d$ (however the curvature is not constant).
- For $n=1, Z(P)=\{d$ roots $\}$.
- For $n \geq 2, Z(P)$ is connected.
- For $n \geq 3 Z(P)$ is simply connected.
- For $n=2 Z(P)$ is a real surface and has a constant genus

$$
g=\frac{1}{2}(d-1)(d-2)
$$

- $d=1$ or $d=2$: sphere

- $d=1$ or $d=2$: sphere
- $d=3$: torus

- $d=1$ or $d=2$: sphere
- $d=3$: torus
- $d=4$: genus $g=3$
- For fixed d, all $Z(P)$ are diffeomorphic. Very different in the real setting.
- For fixed d, all $Z(P)$ are diffeomorphic. Very different in the real setting.
- Lefschetz theorem : $\forall i \in\{0, \cdots, 2 n-2\} \backslash\{n-1\}$,

$$
H_{i}(Z(P), \mathbb{R})=H_{i}\left(\mathbb{C} P^{n}, \mathbb{R}\right)
$$

- For fixed d, all $Z(P)$ are diffeomorphic. Very different in the real setting.
- Lefschetz theorem : $\forall i \in\{0, \cdots, 2 n-2\} \backslash\{n-1\}$,

$$
H_{i}(Z(P), \mathbb{R})=H_{i}\left(\mathbb{C} P^{n}, \mathbb{R}\right)
$$

- Notation : i-th Betti number $\left.b_{i}(Z):=\operatorname{dim} H_{i}(Z, \mathbb{R})\right)$
- $b_{0}=\#$ connected components
- For fixed d, all $Z(P)$ are diffeomorphic. Very different in the real setting.
- Lefschetz theorem : $\forall i \in\{0, \cdots, 2 n-2\} \backslash\{n-1\}$,

$$
H_{i}(Z(P), \mathbb{R})=H_{i}\left(\mathbb{C} P^{n}, \mathbb{R}\right)
$$

- Notation: i-th Betti number $\left.b_{i}(Z):=\operatorname{dim} H_{i}(Z, \mathbb{R})\right)$
- $b_{0}=\#$ connected components
- $b_{1}($ genus g surface $)=2 g$
- Chern class computation :
$\operatorname{dim} H_{n-1}(Z(P)) \sim_{d} d^{n}$.
- Chern class computation : $\operatorname{dim} H_{n-1}(Z(P)) \sim_{d} d^{n}$.
- For instance, if $n=2$,

$$
b_{1}(\text { genus } g \text { surface })=2 g
$$

- Chern class computation : $\operatorname{dim} H_{n-1}(Z(P)) \sim_{d} d^{n}$.
- For instance, if $n=2$,

$$
b_{1}(\text { genus } g \text { surface })=2 g \sim d^{2}
$$

by the genus formula.

Random projective hypersurfaces

If P is taken at random, are there noticeable statistical geometric behaviours of $Z(P)$?

Random projective hypersurfaces

If P is taken at random, are there noticeable statistical geometric behaviours of $Z(P)$?

Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a sequence $\left(Z\left(P_{d}\right)\right)_{d \in \mathbb{N}}$ of increasing degree random complex curves gets equidistributed in $\mathbb{C} P^{n}$.

- Complex Fubini-Study measure :
- Complex Fubini-Study measure :

$$
P=\sum_{i_{0}+\cdots+i_{n}=d} a_{i_{0} \cdots i_{n}} \frac{Z_{0}^{i_{0}} \cdots Z_{n}^{i_{n}}}{\sqrt{i_{0}!\cdots!i_{n}!}}
$$

where $\Re a_{i_{0} \cdots i_{n}}, \Im a_{i_{0} \cdots i_{n}}$ are i.i.d. standard normal variables.

- Complex Fubini-Study measure :

$$
P=\sum_{i_{0}+\cdots+i_{n}=d} a_{i_{0} \cdots i_{n}} \frac{Z_{0}^{i_{0}} \cdots Z_{n}^{i_{n}}}{\sqrt{i_{0}!\cdots!i_{n}!}}
$$

where $\Re a_{i_{0} \cdots i_{n}}, \Im a_{i_{0} \cdots i_{n}}$ are i.i.d. standard normal variables.

- This is the Gaussian measure associated to the Fubini-Study L^{2}-scalar product on the space of polynomials :

$$
\langle P, Q\rangle_{F S}=\int_{\mathbb{C} P^{n}} \frac{P(Z) \overline{Q(Z)}}{\|Z\|^{2 d}} d v o l_{F S}
$$

What about random complex topology?

What about random complex topology?

- Globally there is no random topology.

What about random complex topology?

- Globally there is no random topology.
- And locally?

What about random complex topology?

- Globally there is no random topology.
- And locally? Fix $U \subset \mathbb{C} P^{n}$ an open subset with smooth boundary.

What about random complex topology?

- Globally there is no random topology.
- And locally? Fix $U \subset \mathbb{C} P^{n}$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?

What about random complex topology?

- Globally there is no random topology.
- And locally? Fix $U \subset \mathbb{C} P^{n}$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?
Theorem (Milnor 64) (deterministic) Assume $U \subset \mathbb{C} P^{n}$ is defined by real algebraic inequalities. Then, there exists a constant C, such that for any generic P of degree d,

$$
\sum_{i=0}^{2 n-2} b_{i}(Z(P) \cap U) \leq C d^{2 n}
$$

What about random complex topology?

- Globally there is no random topology.
- And locally? Fix $U \subset \mathbb{C} P^{n}$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?
Theorem (Milnor 64) (deterministic) Assume $U \subset \mathbb{C} P^{n}$ is defined by real algebraic inequalities. Then, there exists a constant C, such that for any generic P of degree d,

$$
\sum_{i=0}^{2 n-2} b_{i}(Z(P) \cap U) \leq C d^{2 n}
$$

For $n=2$: the bound is d^{4}, but the global bound is d^{2}.

What about random complex topology?

- Globally there is no random topology.
- And locally? Fix $U \subset \mathbb{C} P^{n}$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?
Theorem (Milnor 64) (deterministic) Assume $U \subset \mathbb{C} P^{n}$ is defined by real algebraic inequalities. Then, there exists a constant C, such that for any generic P of degree d,

$$
\sum_{i=0}^{2 n-2} b_{i}(Z(P) \cap U) \leq C d^{2 n}
$$

For $n=2$: the bound is d^{4}, but the global bound is d^{2}. Can it be amended for random P ?

What about random complex topology?

- Globally there is no random topology.
- And locally? Fix $U \subset \mathbb{C} P^{n}$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?
Theorem (Milnor 64) (deterministic) Assume $U \subset \mathbb{C} P^{n}$ is defined by real algebraic inequalities. Then, there exists a constant C, such that for any generic P of degree d,

$$
\sum_{i=0}^{2 n-2} b_{i}(Z(P) \cap U) \leq C d^{2 n}
$$

For $n=2$: the bound is d^{4}, but the global bound is d^{2}. Can it be amended for random P ? In this case, can we choose non-algebraic U 's?

What about random complex topology?

- Globally there is no random topology.
- And locally? Fix $U \subset \mathbb{C} P^{n}$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?
Theorem (Milnor 64) (deterministic) Assume $U \subset \mathbb{C} P^{n}$ is defined by real algebraic inequalities. Then, there exists a constant C, such that for any generic P of degree d,

$$
\sum_{i=0}^{2 n-2} b_{i}(Z(P) \cap U) \leq C d^{2 n}
$$

For $n=2$: the bound is d^{4}, but the global bound is d^{2}. Can it be amended for random P ? In this case, can we choose non-algebraic U 's? Can we distinguish the Betti numbers?

Answers: Yes, yes and yes :

Answers: Yes, yes and yes :

Theorem (G. 2022) Let $U \subset \mathbb{C} P^{n}$ be an open subset with smooth boundary. Then,
$\forall i \in\{0, \cdots, 2 n-2\} \backslash\{n-1\}, \frac{1}{d^{n}} \mathbb{E} b_{i}(Z(P) \cap U) \underset{d \rightarrow \infty}{\rightarrow} 0$

Answers: Yes, yes and yes :
Theorem (G. 2022) Let $U \subset \mathbb{C} P^{n}$ be an open subset with smooth boundary. Then,
$\begin{aligned} \forall i \in\{0, \cdots, 2 n-2\} \backslash\{n-1\}, & \frac{1}{d^{n}} \mathbb{E} b_{i}(Z(P) \cap U) \\ \frac{1}{d^{n}} \mathbb{E} b_{n-1}(Z(P) \cap U) & \underset{d \rightarrow \infty}{\rightarrow}\end{aligned} \underset{d \rightarrow \infty}{\rightarrow} \frac{\operatorname{vol}(U)}{\operatorname{vol}\left(\mathbb{C} P^{n}\right)}$.

Answers: Yes, yes and yes :
Theorem (G. 2022) Let $U \subset \mathbb{C} P^{n}$ be an open subset with smooth boundary. Then,
$\forall i \in\{0, \cdots, 2 n-2\} \backslash\{n-1\}, \frac{1}{d^{n}} \mathbb{E} b_{i}(Z(P) \cap U) \underset{d \rightarrow \infty}{\rightarrow} 0$

$$
\frac{1}{d^{n}} \mathbb{E} b_{n-1}(Z(P) \cap U) \underset{d \rightarrow \infty}{\rightarrow} \frac{\operatorname{vol}(U)}{\operatorname{vol}\left(\mathbb{C} P^{n}\right)}
$$

Strong contrast with the real setting :
Theorem (G.-Welschinger 2015) Take P with real
coefficients. Then, there exist positive c, C such that for any
$i \in\{0, \cdots, n-1\}$,

$$
\forall d \gg 1, c \leq \frac{1}{\sqrt{d}^{n}} \mathbb{E} b_{i}\left(Z(P) \cap \mathbb{R} P^{n}\right) \leq C
$$

Why d^{n} and \sqrt{d}^{n} ?

For the Fubini-Study measure at degree d :

- the natural scale is $1 / \sqrt{d}$ because the rescaled covariant kernel converges to the Bargmann-Fock kernel.

Why d^{n} and \sqrt{d}^{n} ?

For the Fubini-Study measure at degree d :

- the natural scale is $1 / \sqrt{d}$ because the rescaled covariant kernel converges to the Bargmann-Fock kernel.
- Hence, the geometry of $Z(P)$ in a ball of size $1 / \sqrt{d}$ should be bounded,
- hence the topology of $Z(P)$ in this ball.

Why d^{n} and \sqrt{d}^{n} ?

For the Fubini-Study measure at degree d :

- the natural scale is $1 / \sqrt{d}$ because the rescaled covariant kernel converges to the Bargmann-Fock kernel.
- Hence, the geometry of $Z(P)$ in a ball of size $1 / \sqrt{d}$ should be bounded,
- hence the topology of $Z(P)$ in this ball.
- The volume of the ball is $d^{-\frac{1}{2} \operatorname{dim}_{\mathbb{R}} M}$.

Why d^{n} and \sqrt{d}^{n} ?

For the Fubini-Study measure at degree d :

- the natural scale is $1 / \sqrt{d}$ because the rescaled covariant kernel converges to the Bargmann-Fock kernel.
- Hence, the geometry of $Z(P)$ in a ball of size $1 / \sqrt{d}$ should be bounded,
- hence the topology of $Z(P)$ in this ball.
- The volume of the ball is $d^{-\frac{1}{2} \operatorname{dim}_{\mathbb{R}} M}$.
- There are vol (M) $\sqrt{d}^{\operatorname{dim}_{\mathbb{R}} M}$ such disjoint balls.

Why d^{n} and \sqrt{d}^{n} ?

For the Fubini-Study measure at degree d :

- the natural scale is $1 / \sqrt{d}$ because the rescaled covariant kernel converges to the Bargmann-Fock kernel.
- Hence, the geometry of $Z(P)$ in a ball of size $1 / \sqrt{d}$ should be bounded,
- hence the topology of $Z(P)$ in this ball.
- The volume of the ball is $d^{-\frac{1}{2} \operatorname{dim}_{\mathbb{R}} M}$.
- There are vol (M) $\sqrt{d}^{\operatorname{dim}_{\mathbb{R}} M}$ such disjoint balls.
- This provides the d^{n} in $\mathbb{C} P^{n}$ and the \sqrt{d}^{n} in $\mathbb{R} P^{n}$.
- This heuristic argument fails for the number of connected compontents in the holomorphic case.

First ingredient of the proof : Morse theory

Theorem (Morse 1920's) : Let Z be a compact smooth n-dimensional manifold and $f: Z \rightarrow \mathbb{R}$ such that at every critical point $x \in Z$ of $f, d^{2} f(x)$ is non degenerate.

First ingredient of the proof : Morse theory

Theorem (Morse 1920's) : Let Z be a compact smooth n-dimensional manifold and $f: Z \rightarrow \mathbb{R}$ such that at every critical point $x \in Z$ of $f, d^{2} f(x)$ is non degenerate. Then

- (Weak Morse inequalities)

$$
\forall i \in\{0, \cdots, n\}, b_{i}(Z) \leq \# \operatorname{Crit}_{i}(f),
$$

where i is the number of negative eigenvalues of the Hessian.

First ingredient of the proof : Morse theory

Theorem (Morse 1920's) : Let Z be a compact smooth n-dimensional manifold and $f: Z \rightarrow \mathbb{R}$ such that at every critical point $x \in Z$ of $f, d^{2} f(x)$ is non degenerate. Then

- (Weak Morse inequalities)

$$
\forall i \in\{0, \cdots, n\}, b_{i}(Z) \leq \# \operatorname{Crit}_{i}(f),
$$

where i is the number of negative eigenvalues of the Hessian. For instance,

$$
b_{0} \leq \# \text { minima of } f .
$$

First ingredient of the proof : Morse theory

Theorem (Morse 1920's) : Let Z be a compact smooth n-dimensional manifold and $f: Z \rightarrow \mathbb{R}$ such that at every critical point $x \in Z$ of $f, d^{2} f(x)$ is non degenerate. Then

- (Weak Morse inequalities)

$$
\forall i \in\{0, \cdots, n\}, b_{i}(Z) \leq \# \operatorname{Crit}_{i}(f),
$$

where i is the number of negative eigenvalues of the Hessian. For instance,

$$
b_{0} \leq \# \text { minima of } f
$$

- (Strong Morse inequalities)

$$
b_{i}-b_{i-1}+\cdots+(-1)^{i} b_{0} \geq \operatorname{Crit}_{i}(f)-\operatorname{Crit}_{i-1}(f)+\cdots+(-1)^{i} \operatorname{Crit}_{0}(f)
$$

First ingredient of the proof : Morse theory

Theorem (Morse 1920's) : Let Z be a compact smooth n-dimensional manifold and $f: Z \rightarrow \mathbb{R}$ such that at every critical point $x \in Z$ of $f, d^{2} f(x)$ is non degenerate. Then

- (Weak Morse inequalities)

$$
\forall i \in\{0, \cdots, n\}, b_{i}(Z) \leq \# \operatorname{Crit}_{i}(f),
$$

where i is the number of negative eigenvalues of the Hessian. For instance,

$$
b_{0} \leq \# \text { minima of } f
$$

- (Strong Morse inequalities)

$$
b_{i}-b_{i-1}+\cdots+(-1)^{i} b_{0} \geq \operatorname{Crit}_{i}(f)-\operatorname{Crit}_{i-1}(f)+\cdots+(-1)^{i} \operatorname{Crit}_{0}(f)
$$

For instance, $b_{1} \geq \operatorname{Crit}_{1}(f)-\operatorname{Crit}_{0}(f)$.

Second ingredient : Kac-Rice formula

Fix $p: \mathbb{C} P^{n} \rightarrow \mathbb{R}$ a Morse function and $U \subset \mathbb{C} P^{n}$ an open subset. We apply Morse theory to

$$
p_{\mid Z(P) \cap U}: Z(P) \cap U \rightarrow \mathbb{R}
$$

Second ingredient : Kac-Rice formula

Fix $p: \mathbb{C} P^{n} \rightarrow \mathbb{R}$ a Morse function and $U \subset \mathbb{C} P^{n}$ an open subset. We apply Morse theory to

$$
p_{\mid Z(P) \cap U}: Z(P) \cap U \rightarrow \mathbb{R}
$$

There is a Kac-Rice formula for critical points of $p_{\mid Z(P)}$:

$$
\mathbb{E}\left(\# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)\right)
$$

because

$$
x \in \operatorname{Crit}\left(p_{\mid Z(P)}\right) \Leftrightarrow\left(P(x), d P_{\mid \operatorname{ker} d p(x)}\right)=(0,0)
$$

Then, by weak Morse inequalities :

$$
\mathbb{E} b_{i}(Z(P) \cap U) \leq \mathbb{E} \# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)
$$

Then, by weak Morse inequalities :

$$
\mathbb{E} b_{i}(Z(P) \cap U) \leq \mathbb{E} \# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)
$$

and by the strong ones
$\mathbb{E} b_{n-1}(Z(P) \cap U) \geq \mathbb{E} \operatorname{Crit}_{n-1}\left(p_{\mid Z(P) \cap U}\right)-2 \sum_{i \leq n-2} \mathbb{E} \# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)$.

Then, by weak Morse inequalities :

$$
\mathbb{E} b_{i}(Z(P) \cap U) \leq \mathbb{E} \# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)
$$

and by the strong ones

$$
\mathbb{E} b_{n-1}(Z(P) \cap U) \geq \mathbb{E} \operatorname{Crit}_{n-1}\left(p_{\mid Z(P) \cap U}\right)-2 \sum_{i \leq n-2} \mathbb{E} \# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)
$$

Goal : prove that for $0 \leq i \leq n-2$,

$$
\mathbb{E}\left(\# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)\right)=o\left(d^{n}\right),
$$

Then, by weak Morse inequalities :

$$
\mathbb{E} b_{i}(Z(P) \cap U) \leq \mathbb{E} \# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)
$$

and by the strong ones

$$
\mathbb{E} b_{n-1}(Z(P) \cap U) \geq \mathbb{E} \operatorname{Crit}_{n-1}\left(p_{\mid Z(P) \cap U}\right)-2 \sum_{i \leq n-2} \mathbb{E} \# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)
$$

Goal : prove that for $0 \leq i \leq n-2$,

$$
\mathbb{E}\left(\# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)\right)=o\left(d^{n}\right),
$$

and

$$
\mathbb{E} \# \operatorname{Crit}_{n-1}\left(p_{\mid Z(P) \cap U}\right) \sim_{d} \frac{\operatorname{vol} U}{\operatorname{vol} \mathbb{C} P^{n}} d^{n},
$$

then we are (almost) done.

Then, by weak Morse inequalities :

$$
\mathbb{E} b_{i}(Z(P) \cap U) \leq \mathbb{E} \# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)
$$

and by the strong ones

$$
\mathbb{E} b_{n-1}(Z(P) \cap U) \geq \mathbb{E} \operatorname{Crit}_{n-1}\left(p_{\mid Z(P) \cap U}\right)-2 \sum_{i \leq n-2} \mathbb{E} \# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)
$$

Goal : prove that for $0 \leq i \leq n-2$,

$$
\mathbb{E}\left(\# \operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)\right)=o\left(d^{n}\right),
$$

and

$$
\mathbb{E} \# \operatorname{Crit}_{n-1}\left(p_{\mid Z(P) \cap U}\right) \sim_{d} \frac{\operatorname{vol} U}{\operatorname{vol} \mathbb{C} P^{n}} d^{n}
$$

then we are (almost) done. Almost because of the boundary of U.

Kac-Rice formula

$$
\mathbb{E} \#\left(\operatorname{Crit}_{i}\left(p_{\mid Z(P)}\right) \cap U\right)
$$

equals (G.-Welschinger 2015, G. 2022)

Kac-Rice formula

$\mathbb{E} \#\left(\operatorname{Crit}_{i}\left(p_{\mid Z(P)}\right) \cap U\right)$

equals (G.-Welschinger 2015, G. 2022)

$$
\begin{aligned}
= & \int_{x \in U} \int_{\alpha \in \mathcal{L}_{\text {onto }\left(T T_{x} M, E_{x}\right)}}\left|\operatorname{det} \alpha_{\mid \operatorname{ker}}{ }^{\perp} \alpha\right| \\
& \mathbb{E}\left[\mathbf{1}_{\left\{\operatorname{Ind}\left(\nabla^{2} p_{\mid Z(P)}\right)=i\right\}} \mid\left(\operatorname { d e t } \left(\left\langle\left.\nabla^{2} P(x)\right|_{\mid \operatorname{ker} \alpha} \alpha \epsilon(x, \alpha)\right\rangle\right.\right.\right. \\
& \left.-\langle\alpha(\nabla p(x)), \epsilon(x, \alpha)\rangle \frac{\nabla^{2} p(x)_{\mid \operatorname{ker} \alpha}}{\|d p(x)\|^{2}}\right)|\mid P(x)=0, \nabla P(x)=\alpha] \\
& \rho_{X(x)}(0, \alpha) d \operatorname{vol}(\alpha) d \operatorname{vol}(x),
\end{aligned}
$$

Kac-Rice formula

$\mathbb{E} \#\left(\operatorname{Crit}_{i}\left(p_{\mid Z(P)}\right) \cap U\right)$

equals (G.-Welschinger 2015, G. 2022)

$$
\begin{aligned}
= & \int_{x \in U} \int_{\substack{\alpha \in \mathcal{L}_{\text {onto }\left(T_{x} M, E_{x}\right)}^{\operatorname{ker} \alpha \subset \operatorname{ker} d p(x)}}}\left|\operatorname{det} \alpha_{\mid \operatorname{ker}^{\perp} \alpha}\right| \\
& \mathbb{E}\left[\mathbf{1}_{\left\{\operatorname{Ind}\left(\nabla^{2} p_{\mid Z(P)}\right)=i\right\}} \mid \operatorname{det}\left(\left\langle\nabla^{2} P(x)_{\mid \operatorname{ker} \alpha}, \epsilon(x, \alpha)\right\rangle\right.\right. \\
& \left.-\langle\alpha(\nabla p(x)), \epsilon(x, \alpha)\rangle \frac{\nabla^{2} p(x)_{\mid \operatorname{ker} \alpha}}{\|d p(x)\|^{2}}\right)|\mid P(x)=0, \nabla P(x)=\alpha] \\
& \rho_{X(x)}(0, \alpha) d \operatorname{vol}(\alpha) d \operatorname{vol}(x),
\end{aligned}
$$

Hard to distinguish the different types of critical points !

Kac-Rice formula

$\mathbb{E} \#\left(\operatorname{Crit}_{i}\left(p_{\mid Z(P) \cap U}\right)\right)$

equals (G.-Welschinger 2015, G. 2022)

$$
\begin{aligned}
& =\int_{x \in U} \int_{\substack{\alpha \in \mathcal{C}_{\text {onto }}\left(T_{x} M, E_{x} x\right) \\
\operatorname{ker} \alpha \subset \operatorname{ker} d p(x)}}\left|\operatorname{det} \alpha_{\left|\operatorname{ker}^{\perp} \alpha\right|}\right| \\
& \mathbb{E}\left[1_{\left\{\operatorname{Ind}\left(\nabla^{2} p_{\mid Z(P)}\right)=i\right\}} \mid \operatorname{det}\left(\left\langle\nabla^{2} P(x)_{\mid \operatorname{ker} \alpha}, \epsilon(x, \alpha)\right\rangle\right.\right. \\
& \left.-\langle\alpha(\nabla p(x)), \epsilon(x, \alpha)\rangle \frac{\nabla^{2} p(x)_{\mid \operatorname{ker} \alpha}}{\|d p(x)\|^{2}}\right)|\mid P(x)=0, \nabla P(x)=\alpha] \\
& \rho_{X(x)}(0, \alpha) d \operatorname{vol}(\alpha) d \operatorname{vol}(x),
\end{aligned}
$$

Hard to distinguish the different types of critical points !

Third tool : complex geometry

Let

$$
\begin{aligned}
p: \mathbb{C}^{2} & \rightarrow \mathbb{R}, \\
(x+i y, s+i t) & \mapsto x
\end{aligned}
$$

This is a Morse function (with no critical points)

Facts :

- Let $Z \subset \mathbb{C}^{2}$ a smooth complex curve. Then if $p_{\mid Z}$ has a local minimum at any $x \in Z$, then Z is locally flat.

Third tool : complex geometry

Let

$$
\begin{aligned}
p: \mathbb{C}^{2} & \rightarrow \mathbb{R}, \\
(x+i y, s+i t) & \mapsto x
\end{aligned}
$$

This is a Morse function (with no critical points)

Facts :

- Let $Z \subset \mathbb{C}^{2}$ a smooth complex curve. Then if $p_{\mid Z}$ has a local minimum at any $x \in Z$, then Z is locally flat.

Proof : Parametrize locally Z by a holomorphic disc :

$$
F=(f, g): \mathbb{D} \rightarrow Z
$$

Third tool : complex geometry

Let

$$
\begin{aligned}
p: \mathbb{C}^{2} & \rightarrow \mathbb{R}, \\
(x+i y, s+i t) & \mapsto x
\end{aligned}
$$

This is a Morse function (with no critical points)

Facts :

- Let $Z \subset \mathbb{C}^{2}$ a smooth complex curve. Then if $p_{\mid Z}$ has a local minimum at any $x \in Z$, then Z is locally flat.

Proof : Parametrize locally Z by a holomorphic disc :

$$
F=(f, g): \mathbb{D} \rightarrow Z
$$

Then, $p_{\mid Z}$ has a local max iff $\Re f$ has a local max.

Third tool : complex geometry

Let

$$
\begin{aligned}
p: \mathbb{C}^{2} & \rightarrow \mathbb{R}, \\
(x+i y, s+i t) & \mapsto x
\end{aligned}
$$

This is a Morse function (with no critical points)
Facts :

- Let $Z \subset \mathbb{C}^{2}$ a smooth complex curve. Then if $p_{\mid Z}$ has a local minimum at any $x \in Z$, then Z is locally flat.

Proof : Parametrize locally Z by a holomorphic disc :

$$
F=(f, g): \mathbb{D} \rightarrow Z
$$

Then, $p_{\mid Z}$ has a local max iff $\Re f$ has a local max. But if this happens, f it is locally constant and Z is flat. \square

- If $p: \mathbb{C}^{2} \rightarrow \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{\mid Z}$, then Z is nearly flat near x.
- If $p: \mathbb{C}^{2} \rightarrow \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{\mid Z}$, then Z is nearly flat near x.
- For random P :
- Since the natural scale of the zero set $Z(P)$ of a degree d polynomial P is $1 / \sqrt{d}$,
- If $p: \mathbb{C}^{2} \rightarrow \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{\mid Z}$, then Z is nearly flat near x.
- For random P :
- Since the natural scale of the zero set $Z(P)$ of a degree d polynomial P is $1 / \sqrt{d}$,
- the curvature of $Z(P)$ for random homogeneous polynomials of degree d is of order d,
- If $p: \mathbb{C}^{2} \rightarrow \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{\mid Z}$, then Z is nearly flat near x.
- For random P :
- Since the natural scale of the zero set $Z(P)$ of a degree d polynomial P is $1 / \sqrt{d}$,
- the curvature of $Z(P)$ for random homogeneous polynomials of degree d is of order d,
- hence is less and less likely to be flat.
- If $p: \mathbb{C}^{2} \rightarrow \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{\mid Z}$, then Z is nearly flat near x.
- For random P :
- Since the natural scale of the zero set $Z(P)$ of a degree d polynomial P is $1 / \sqrt{d}$,
- the curvature of $Z(P)$ for random homogeneous polynomials of degree d is of order d,
- hence is less and less likely to be flat.
- Hence, the probability that $p_{\mid Z(P)}$ has a local maximal decreases with d.
- If $p: \mathbb{C}^{2} \rightarrow \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{\mid Z}$, then Z is nearly flat near x.
- For random P :
- Since the natural scale of the zero set $Z(P)$ of a degree d polynomial P is $1 / \sqrt{d}$,
- the curvature of $Z(P)$ for random homogeneous polynomials of degree d is of order d,
- hence is less and less likely to be flat.
- Hence, the probability that $p_{\mid Z(P)}$ has a local maximal decreases with d.
- The same conclusion holds for local minima!
- If $p: \mathbb{C}^{2} \rightarrow \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{\mid Z}$, then Z is nearly flat near x.
- For random P :
- Since the natural scale of the zero set $Z(P)$ of a degree d polynomial P is $1 / \sqrt{d}$,
- the curvature of $Z(P)$ for random homogeneous polynomials of degree d is of order d,
- hence is less and less likely to be flat.
- Hence, the probability that $p_{\mid Z(P)}$ has a local maximal decreases with d.
- The same conclusion holds for local minima!
- Hence, index 1 critical points are likely to be dominant.
- If $p: \mathbb{C}^{2} \rightarrow \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{\mid Z}$, then Z is nearly flat near x.
- For random P :
- Since the natural scale of the zero set $Z(P)$ of a degree d polynomial P is $1 / \sqrt{d}$,
- the curvature of $Z(P)$ for random homogeneous polynomials of degree d is of order d,
- hence is less and less likely to be flat.
- Hence, the probability that $p_{\mid Z(P)}$ has a local maximal decreases with d.
- The same conclusion holds for local minima!
- Hence, index 1 critical points are likely to be dominant.

Conclusion :

- If $n=2$, the dominant Kac-Rice formula is the one for $i=1$.
- If $p: \mathbb{C}^{2} \rightarrow \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{\mid Z}$, then Z is nearly flat near x.
- For random P :
- Since the natural scale of the zero set $Z(P)$ of a degree d polynomial P is $1 / \sqrt{d}$,
- the curvature of $Z(P)$ for random homogeneous polynomials of degree d is of order d,
- hence is less and less likely to be flat.
- Hence, the probability that $p_{\mid Z(P)}$ has a local maximal decreases with d.
- The same conclusion holds for local minima!
- Hence, index 1 critical points are likely to be dominant.

Conclusion :

- If $n=2$, the dominant Kac-Rice formula is the one for $i=1$.
- The horrible Kac-Rice formula can be computed when $i=n-1$ and $d \rightarrow \infty$.

Related problem : holomorphic percolation

Let P be as before, $U \subset \mathbb{C} P^{2}$ be a small ball, $V \subset \partial U$ and $W \subset \partial U$ two open subsets with disjoint closure. Prove that there exists $c>0$, such that for any large enough d,
$\mathbb{P}(\exists$ a c. c. of $Z(P) \cap U$ intersecting V and $W)>c$.

Related problem : holomorphic percolation

Let P be as before, $U \subset \mathbb{C} P^{2}$ be a small ball, $V \subset \partial U$ and $W \subset \partial U$ two open subsets with disjoint closure. Prove that there exists $c>0$, such that for any large enough d,

$$
\mathbb{P}(\exists \text { a c. c. of } Z(P) \cap U \text { intersecting } V \text { and } W)>c
$$

- Proved in the real setting in \mathbb{R}^{2} by G.-Beffara

Related problem : holomorphic percolation

Let P be as before, $U \subset \mathbb{C} P^{2}$ be a small ball, $V \subset \partial U$ and $W \subset \partial U$ two open subsets with disjoint closure. Prove that there exists $c>0$, such that for any large enough d,

$$
\mathbb{P}(\exists \text { a c. c. of } Z(P) \cap U \text { intersecting } V \text { and } W)>c
$$

- Proved in the real setting in \mathbb{R}^{2} by G.-Beffara
- and in $\mathbb{R} P^{2}$ by Belyaev-Muirhead-Wigman.

Related problem : holomorphic percolation

Let P be as before, $U \subset \mathbb{C} P^{2}$ be a small ball, $V \subset \partial U$ and $W \subset \partial U$ two open subsets with disjoint closure. Prove that there exists $c>0$, such that for any large enough d,

$$
\mathbb{P}(\exists \text { a c. c. of } Z(P) \cap U \text { intersecting } V \text { and } W)>c
$$

- Proved in the real setting in \mathbb{R}^{2} by G.-Beffara
- and in $\mathbb{R} P^{2}$ by Belyaev-Muirhead-Wigman.
- None of the tools of classical percolation work in the complex setting.

