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Let
P =

∑
i0+···+in=d

ai0···inZ
i0
0 · · ·Zin

n

a complex homogeneous polynomial of degree d

and

Z(P ) = {P = 0} ⊂ Cn+1.

Z(P ) is invariant under complex homotheties. Better idea :
consider the complex projective space

CPn = Cn+1/(z ∼ λz, λ ∈ C∗)

and study
Z(P ) = {[Z] ∈ CPn, P (Z) = 0}.

2/20



Let
P =

∑
i0+···+in=d

ai0···inZ
i0
0 · · ·Zin

n

a complex homogeneous polynomial of degree d and

Z(P ) = {P = 0} ⊂ Cn+1.

Z(P ) is invariant under complex homotheties. Better idea :
consider the complex projective space

CPn = Cn+1/(z ∼ λz, λ ∈ C∗)

and study
Z(P ) = {[Z] ∈ CPn, P (Z) = 0}.

2/20



Let
P =

∑
i0+···+in=d

ai0···inZ
i0
0 · · ·Zin

n

a complex homogeneous polynomial of degree d and

Z(P ) = {P = 0} ⊂ Cn+1.

Z(P ) is invariant under complex homotheties.

Better idea :
consider the complex projective space

CPn = Cn+1/(z ∼ λz, λ ∈ C∗)

and study
Z(P ) = {[Z] ∈ CPn, P (Z) = 0}.

2/20



Let
P =

∑
i0+···+in=d

ai0···inZ
i0
0 · · ·Zin

n

a complex homogeneous polynomial of degree d and

Z(P ) = {P = 0} ⊂ Cn+1.

Z(P ) is invariant under complex homotheties. Better idea :
consider the complex projective space

CPn = Cn+1/(z ∼ λz, λ ∈ C∗)

and study
Z(P ) = {[Z] ∈ CPn, P (Z) = 0}.

2/20



Facts on CPn

▶ CPn is a compact smooth complex n-manifold.

▶ dimRCPn = 2n.

▶ CP 1 ∼diff S2

▶ CPn = S2n+1/(z ∼ λz′, λ ∈ U(1)).
▶ The standard metric over S2n+1 descents onto CPn in the

Fubini-Study metric gFS .
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Facts on Z(P ) ⊂ CPn for generic P

▶ Z(P ) is a compact complex hypersurface, in particular a
real (2n− 2)-dimensional smooth manifold.

▶ In particular, when n = 2, Z(P ) is a real surface in the
4-dimensional CP 2.

▶ VolgFSZ(P ) = d (however the curvature is not constant).

▶ For n = 1, Z(P ) = {d roots}.
▶ For n ≥ 2, Z(P ) is connected.

▶ For n ≥ 3 Z(P ) is simply connected.

▶ For n = 2 Z(P ) is a real surface and has a constant genus

g =
1

2
(d− 1)(d− 2).
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▶ d = 1 or d = 2 : sphere

▶ d = 3 : torus

▶ d = 4 : genus g = 3
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▶ For fixed d, all Z(P ) are diffeomorphic. Very different in
the real setting.

▶ Lefschetz theorem : ∀i ∈ {0, · · · , 2n− 2} \ {n− 1},

Hi(Z(P ),R) = Hi(CPn,R).

▶ Notation : i-th Betti number bi(Z) := dimHi(Z,R))
▶ b0 = #connected components

▶ b1(genus g surface) = 2g
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▶ Chern class computation :

dimHn−1(Z(P )) ∼d dn.

▶ For instance, if n = 2,

b1(genus g surface) = 2g ∼ d2

by the genus formula.
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Random projective hypersurfaces

If P is taken at random, are there noticeable statistical
geometric behaviours of Z(P ) ?

Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a
sequence (Z(Pd))d∈N of increasing degree random complex
curves gets equidistributed in CPn.
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▶ Complex Fubini-Study measure :

P =
∑

i0+···+in=d

ai0···in
Zi0
0 · · ·Zin

n√
i0! · · ·!in!

,

where ℜai0···in ,ℑai0···in are i.i.d. standard normal variables.

▶ This is the Gaussian measure associated to the
Fubini-Study L2-scalar product on the space of
polynomials :

⟨P,Q⟩FS =

∫
CPn

P (Z)Q(Z)

∥Z∥2d
dvolFS .
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What about random complex topology ?

▶ Globally there is no random topology.

▶ And locally ? Fix U ⊂ CPn an open subset with smooth
boundary. What can be said about the topology of
Z(P ) ∩ U ?

Theorem (Milnor 64) (deterministic) Assume U ⊂ CPn is
defined by real algebraic inequalities. Then, there exists a
constant C, such that for any generic P of degree d,

2n−2∑
i=0

bi(Z(P ) ∩ U) ≤ Cd2n.

For n = 2 : the bound is d4, but the global bound is d2. Can it
be amended for random P ? In this case, can we choose
non-algebraic U ’s ? Can we distinguish the Betti numbers ?
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Answers : Yes, yes and yes :

Theorem (G. 2022) Let U ⊂ CPn be an open subset with
smooth boundary. Then,

∀i ∈ {0, · · · , 2n− 2} \ {n− 1}, 1

dn
Ebi(Z(P ) ∩ U) →

d→∞
0

1

dn
Ebn−1(Z(P ) ∩ U) →

d→∞

vol(U)

vol(CPn)
.

Strong contrast with the real setting :

Theorem (G.-Welschinger 2015) Take P with real
coefficients. Then, there exist positive c, C such that for any
i ∈ {0, · · · , n− 1},

∀d ≫ 1, c ≤ 1√
d
nEbi(Z(P ) ∩ RPn) ≤ C.
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Why dn and
√
d
n
?

For the Fubini-Study measure at degree d :

▶ the natural scale is 1/
√
d because the rescaled covariant

kernel converges to the Bargmann-Fock kernel.

▶ Hence, the geometry of Z(P ) in a ball of size 1/
√
d should

be bounded,

▶ hence the topology of Z(P ) in this ball.

▶ The volume of the ball is d−
1
2
dimR M .

▶ There are vol (M)
√
d
dimR M

such disjoint balls.

▶ This provides the dn in CPn and the
√
d
n
in RPn.

▶ This heuristic argument fails for the number of connected
compontents in the holomorphic case.
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First ingredient of the proof : Morse theory
Theorem (Morse 1920’s) : Let Z be a compact smooth
n-dimensional manifold and f : Z → R such that at every
critical point x ∈ Z of f , d2f(x) is non degenerate.

Then

▶ (Weak Morse inequalities)

∀i ∈ {0, · · · , n}, bi(Z) ≤ #Criti(f),

where i is the number of negative eigenvalues of the
Hessian. For instance,

b0 ≤ # minima of f.

▶ (Strong Morse inequalities)

bi−bi−1+· · ·+(−1)ib0 ≥ Criti(f)−Criti−1(f)+· · ·+(−1)iCrit0(f)

For instance, b1 ≥ Crit1(f)− Crit0(f).

13/20



First ingredient of the proof : Morse theory
Theorem (Morse 1920’s) : Let Z be a compact smooth
n-dimensional manifold and f : Z → R such that at every
critical point x ∈ Z of f , d2f(x) is non degenerate. Then

▶ (Weak Morse inequalities)

∀i ∈ {0, · · · , n}, bi(Z) ≤ #Criti(f),

where i is the number of negative eigenvalues of the
Hessian.

For instance,

b0 ≤ # minima of f.

▶ (Strong Morse inequalities)

bi−bi−1+· · ·+(−1)ib0 ≥ Criti(f)−Criti−1(f)+· · ·+(−1)iCrit0(f)

For instance, b1 ≥ Crit1(f)− Crit0(f).

13/20



First ingredient of the proof : Morse theory
Theorem (Morse 1920’s) : Let Z be a compact smooth
n-dimensional manifold and f : Z → R such that at every
critical point x ∈ Z of f , d2f(x) is non degenerate. Then

▶ (Weak Morse inequalities)

∀i ∈ {0, · · · , n}, bi(Z) ≤ #Criti(f),

where i is the number of negative eigenvalues of the
Hessian. For instance,

b0 ≤ # minima of f.

▶ (Strong Morse inequalities)

bi−bi−1+· · ·+(−1)ib0 ≥ Criti(f)−Criti−1(f)+· · ·+(−1)iCrit0(f)

For instance, b1 ≥ Crit1(f)− Crit0(f).

13/20



First ingredient of the proof : Morse theory
Theorem (Morse 1920’s) : Let Z be a compact smooth
n-dimensional manifold and f : Z → R such that at every
critical point x ∈ Z of f , d2f(x) is non degenerate. Then

▶ (Weak Morse inequalities)

∀i ∈ {0, · · · , n}, bi(Z) ≤ #Criti(f),

where i is the number of negative eigenvalues of the
Hessian. For instance,

b0 ≤ # minima of f.

▶ (Strong Morse inequalities)

bi−bi−1+· · ·+(−1)ib0 ≥ Criti(f)−Criti−1(f)+· · ·+(−1)iCrit0(f)

For instance, b1 ≥ Crit1(f)− Crit0(f).

13/20



First ingredient of the proof : Morse theory
Theorem (Morse 1920’s) : Let Z be a compact smooth
n-dimensional manifold and f : Z → R such that at every
critical point x ∈ Z of f , d2f(x) is non degenerate. Then

▶ (Weak Morse inequalities)

∀i ∈ {0, · · · , n}, bi(Z) ≤ #Criti(f),

where i is the number of negative eigenvalues of the
Hessian. For instance,

b0 ≤ # minima of f.

▶ (Strong Morse inequalities)

bi−bi−1+· · ·+(−1)ib0 ≥ Criti(f)−Criti−1(f)+· · ·+(−1)iCrit0(f)

For instance, b1 ≥ Crit1(f)− Crit0(f).

13/20



Second ingredient : Kac-Rice formula

Fix p : CPn → R a Morse function and U ⊂ CPn an open
subset. We apply Morse theory to

p|Z(P )∩U : Z(P ) ∩ U → R.

There is a Kac-Rice formula for critical points of p|Z(P ) :

E(#Criti(p|Z(P )∩U ))

because

x ∈ Crit(p|Z(P )) ⇔ (P (x), dP| ker dp(x)) = (0, 0).
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Then, by weak Morse inequalities :

Ebi(Z(P ) ∩ U) ≤ E#Criti(p|Z(P )∩U )

and by the strong ones

Ebn−1(Z(P )∩U) ≥ ECritn−1(p|Z(P )∩U )−2
∑

i≤n−2

E#Criti(p|Z(P )∩U ).

Goal : prove that for 0 ≤ i ≤ n− 2,

E(#Criti(p|Z(P )∩U )) = o(dn),

and

E#Critn−1(p|Z(P )∩U ) ∼d
vol U

vol CPn
dn,

then we are (almost) done. Almost because of the boundary of
U .
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Kac-Rice formula

E#
(
Criti(p|Z(P )) ∩ U

)
equals (G.-Welschinger 2015, G. 2022)

=

∫
x∈U

∫
α∈Lonto(TxM,Ex)
kerα⊂ker dp(x)

∣∣∣detα| ker⊥ α

∣∣∣
E
[
1{Ind (∇2p|Z(P ))=i}

∣∣∣det(⟨∇2P (x)| kerα, ϵ(x, α)⟩

−⟨α(∇p(x)), ϵ(x, α)⟩
∇2p(x)| kerα

∥dp(x)∥2
)∣∣∣ | P (x) = 0,∇P (x) = α

]
ρX(x)(0, α)dvol(α)dvol(x),

Hard to distinguish the different types of critical points !
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Third tool : complex geometry

Let

p : C2 → R,
(x+ iy, s+ it) 7→ x.

This is a Morse function (with no critical points)

Facts :

▶ Let Z ⊂ C2 a smooth complex curve. Then if p|Z has a
local minimum at any x ∈ Z, then Z is locally flat.

Proof : Parametrize locally Z by a holomorphic disc :

F = (f, g) : D → Z.

Then, p|Z has a local max iff ℜf has a local max. But if
this happens, f it is locally constant and Z is flat. □
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▶ If p : C2 → R is a Morse function and x ∈ Z a local
maximum of p|Z , then Z is nearly flat near x.

▶ For random P :
▶ Since the natural scale of the zero set Z(P ) of a degree d

polynomial P is 1/
√
d,

▶ the curvature of Z(P ) for random homogeneous
polynomials of degree d is of order d,

▶ hence is less and less likely to be flat.
▶ Hence, the probability that p|Z(P ) has a local maximal

decreases with d.

▶ The same conclusion holds for local minima !

▶ Hence, index 1 critical points are likely to be dominant.

Conclusion :

▶ If n = 2, the dominant Kac-Rice formula is the one for
i = 1.

▶ The horrible Kac-Rice formula can be computed when
i = n− 1 and d → ∞.
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Related problem : holomorphic percolation

Let P be as before, U ⊂ CP 2 be a small ball, V ⊂ ∂U and
W ⊂ ∂U two open subsets with disjoint closure. Prove that
there exists c > 0, such that for any large enough d,

P(∃ a c. c. of Z(P ) ∩ U intersecting V and W ) > c.

▶ Proved in the real setting in R2 by G.-Beffara

▶ and in RP 2 by Belyaev-Muirhead-Wigman.

▶ None of the tools of classical percolation work in the
complex setting.
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