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Topology of planar projective curves

Let P ∈ Chom
d [Z0,Z1,Z2].

Then

Z (P) = {P = 0} ⊂ CP2

I is generically an orientable compact smooth Riemann surface ;

I connected ;

I with a constant genus 1
2(d − 1)(d − 2).
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I d = 1 or d = 2 : sphere

I d = 3 : torus

I d = 4 : genus g = 3

I dimChom
d [Z0,Z1,Z2] ∼d g .

I Same for the moduli space of projective curves
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Very different in the real case : various number of components...
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... and various possible configurations :
16th Hilbert problem

(here the maximal degree 6 possible curves)
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Geometry of planar projective curves

What about the geometry if Z (P) is equipped with the restriction
of the ambient metric gFS ?

I W. Wirtinger theorem : ∀P,Vol(Z (P)) = d .
I However Z can have very different shapes :

I if P is close to Z d
0 , Z is concentrated near a round sphere,

I if P is close to the product of equidistributed d lines, then Z is
equidistributed.
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Random projective curves

If P is taken at random, what can be said more ?

Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a
sequence of increasing degree random complex curves gets
equidistributed in CP2.
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I Complex Fubini-Study measure :

P =
∑

i0+i1+i2=d

ai0i1i2
Z i0
0 Z

i1
1 Z

i2
2√

i0!i1!i2!
,

where ai0i1i2 are i.i.d. normal variables ∼ NC(0, 1).

I This is the Gaussian measure associated to the Fubini-Study
L2-scalar product on the space of polynomials :

〈P,Q〉FS =

∫
CPn

P(Z )Q(Z )

‖Z‖2d
dvolFS .

I Generalizes for random sections of high powers of an ample
line bundle over a compact Kähler manifold.
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What about the length of the systole of the random complex
curve : its shortest non-contractible real loop ?
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The origins : hyperbolic surfaces

Let

Mg =
{

genus g compact smooth surface

with a metric of curvature − 1
}
.

I dimCMg = 3g − 3

I There exists a natural probability measure ProbWP on Mg .

Theorem (M. Mirzakhani 2013). There exist C > 0 such that
for all g ≥ 2, 0 < ε ≤ 1,

1

C
ε2 ≤ ProbWP

[
Length of the systole ≤ ε

]
≤ Cε2.
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Random projective curves

Theorem 1. There exists C > 0, for all 0 < ε ≤ 1,

∀d � 1, e−
C
ε6 ≤ ProbFS

[
Length√dgFS of the systole ≤ ε

]
.
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Recall that dimH1(Z ) = 2g ∼ d2.

Theorem 1’ There exists c > 0,

∀d � 1, c ≤ ProbFS

[
∃ γ1, · · · , γcd2 ,∀i , Length(γi ) ≤ 1

and [γ1], · · · , [γcd2 ]

is an independent family of H1

(
Z (P)

)]
.

In a hyperbolic surface, such curves give birth to disjoint simple
geodesics, however :

Theorem (M. Mirzakhani - B. Petri 2017) There exists C > 0,

∀g ≥ 2, EWP

[
number of simple geodesics of length ≤ 1

]
≤ C .
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For every d , there exists a basis of H1(Z ) such that a uniform
proportion of its elements are represented by small loops with

uniform probability
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Very useless deterministic Corollary. There exists c > 0, such
that for any genus g surface,

dimH1 ≥ cg .

In higher dimensions,

I complex curves become complex hypersurfaces ;

I non-contractible loops become Lagrangian submanifolds ;

I the useless deterministic bound becomes an non-trivial
estimate for homological (Lagrangian) representatives.

14/47



Very useless deterministic Corollary. There exists c > 0, such
that for any genus g surface,

dimH1 ≥ cg .

In higher dimensions,

I complex curves become complex hypersurfaces ;

I non-contractible loops become Lagrangian submanifolds ;

I the useless deterministic bound becomes an non-trivial
estimate for homological (Lagrangian) representatives.

14/47



Very useless deterministic Corollary. There exists c > 0, such
that for any genus g surface,

dimH1 ≥ cg .

In higher dimensions,

I complex curves become complex hypersurfaces ;

I non-contractible loops become Lagrangian submanifolds ;

I the useless deterministic bound becomes an non-trivial
estimate for homological (Lagrangian) representatives.

14/47



Very useless deterministic Corollary. There exists c > 0, such
that for any genus g surface,

dimH1 ≥ cg .

In higher dimensions,

I complex curves become complex hypersurfaces ;

I non-contractible loops become Lagrangian submanifolds ;

I the useless deterministic bound becomes an non-trivial
estimate for homological (Lagrangian) representatives.

14/47



Very useless deterministic Corollary. There exists c > 0, such
that for any genus g surface,

dimH1 ≥ cg .

In higher dimensions,

I complex curves become complex hypersurfaces ;

I non-contractible loops become Lagrangian submanifolds ;

I the useless deterministic bound becomes an non-trivial
estimate for homological (Lagrangian) representatives.

14/47



Higher dimensions

Let P ∈ Chom
d [Z0,Z1, · · · ,Zn].

Then

Z (P) = {P = 0} ⊂ CPn

I is generically a smooth complex hypersurface, or 2n − 2 real
submanifold,

I of the same diffeomorphism type. Indeed, the subset of
singular polynomials has real codimension 2.

I d = 1 : complex hyperplane
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I Lefschetz theorem

∀k 6= n − 1, Hk(Z (P)) = Hk(CPn).

Same for homotopy groups. In particular, Z is connected for
n ≥ 2 and simply connected for n ≥ 3.

I Chern computation

dimHn−1(Z ) ∼ dn.

I ⇒ For n = 2, Z ⊂ CP2 is a connected complex curve and its
interesting topology lies in H1(Z ), whose dimension grows like
d2.

I ⇒ For n = 3, Z ⊂ CP3 is a connected and simply connected
complex surface and its interesting homology lies in H2(Z ),
that is for real surfaces inside it.
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Hypersurfaces as symplectic manifolds

Recall that ωFS = gFS(·, J·), where J is the complex structure and
gFS .

Facts :

I
(
Z (P), ωFS|Z(P)

)
is a symplectic manifold.

I If P,Q have the same degree,(
Z (P), ωFS |Z(P)

)
∼sympl

(
Z (Q), ωFS|Z(Q)

)
.

I Hence, if you prove that a property of symplectic nature is true
with positive probability, then it is true for any hypersurface.
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Symplectic manifolds

(M2n, ω) is a symplectic manifold if ω is a closed non-degenerate
2-form.

I (R2n, ω0) with ω0 :=
∑n

i=1 dxi ∧ dyi .

I Darboux theorem : locally any symplectic manifold is
symplectomorphic to (R2n, ω0).

I A real Riemannian surface (M, g) is symplectic when
equipped with its area form dVolg .

I (CPn, ωFS) is symplectic.

I Any complex hypersurface Z (P) ⊂ CPn is symplectic for the
restriction of ωFS .

I The cotangent bundle T ∗M of a manifold is naturally
symplectic.
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Lagrangians

A Lagrangian submanifold L of (M2n, ω) is a real n-submanifold
such that ω|TL = 0.

I Any real curve of a real surface is Lagrangian.

I Easy : the only orientable compact Lagrangian in (C2, ω0) is
the 2−torus.

I Very hard : there is no Lagrangian sphere in C3 (Gromov
1985) ;

I Very easy to deform a Lagrangian : locally as much as the
differentials of real functions over it.
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differentials of real functions over it.
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I If p ∈ R[z1, · · · , zn] then Z (p) ∩ Rn is Lagrangian in
(Z (p), ω0|Z(p)).

I If P ∈ Rd
hom[Z0, · · · ,Zn] then Z (P) ∩ RPn is Lagrangian in

(Z (P), ωFS |Z(P)).
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Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

dimH∗(Z (P)) ∼d→∞ dimHn−1(Z (P)) ∼ dn.

Theorem 2. Let L ⊂ Rn odd be any compact hypersurface with
χ(L) 6= 0. Then

∃c > 0, ∀d � 1, ∀P ∈ Cd
hom, ∃L1, · · · ,Lcdn ⊂ Z (P)

I pairwise disjoint,

I diffeomorphic to L,

I [L1], · · · , [Lcdn ] form an independent family of Hn−1(Z (P))

I Lagrangian submanifolds of
(
Z (P), ωFS|Z(P)

)
,

Proof : probabilistic !
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For any real hypersurface L with non-vanishing Euler characteristic
and every large enough degree, there exists a basis of Hn−1(Z )

such that a uniform proportion of its elements are represented by
Lagrangian submanifolds diffeomorphic to L.
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Topological Corollary Let L ⊂ Rn odd be any compact
hypersurface with χ(L) 6= 0. Then

∃c > 0, ∀d � 1, ∀P ∈ Cd
hom, ∃L1, · · · ,Lcdn ⊂ Z (P)

I pairwise disjoint,

I diffeomorphic to L,

I [L1], · · · , [Lcdn ] form an independent family of Hn−1(Z (P)).

Universal phenomenon : Same holds for zeros of sections of high
powers of an ample line bundle over a compact Kähler manifold.
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Former results

From Picard-Lefschetz theory :
Theorem (S. Chmutov 1982). There exists ∼ dn

√
d

disjoint

Lagrangian spheres in Z (P).

From tropical arguments :
Theorem (G. Mikhalkin 2004). There exists cdn disjoint
Lagrangian spheres and cdn Lagrangian tori, whose classes in
Hn−1(Z (P)) are independent, with c explicit and natural.
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From random real algebraic geometry :
Theorem (with J.-Y. Welschinger 2014). Let L ⊂ Rn as before.
Then there exists (an ugly but explicit and universal) c > 0, such
that for d � 1,

c < ProbFS ,R
[
∃ at least c

√
d
n

components of Z (P) ∩ RPn

diffeomorphic to L
]
.

Corollary. At least c
√
d
n

disjoint Lagrangians diffeomorphic to L
in any Z (P).
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Proof of Theorem 1 (systoles)

Theorem 1. There exists c > 0,

∀d � 1, c ≤ ProbFS

[
Length√dgFS of the systole ≤ 1

]
.

Fact : Enough to prove that there exists a non-contractible curve
with length ≤ 1 with uniform probability.
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Artificial non-contractible curve

Pick a generic Q ∈ R3
hom[Z0,Z1,Z2].

Then

Z (Q) ∼ T2 ⊂ CP2.

By Bézout theorem Z (Q) ∩ Z (Z0) = {3 points},

Z
[
Q(1, z1, z2)

]

27/47



Artificial non-contractible curve

Pick a generic Q ∈ R3
hom[Z0,Z1,Z2]. Then

Z (Q) ∼ T2 ⊂ CP2.
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Rescaling

Z
[
Q(1,

√
dz1,
√
dz2)

]
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Homogenization

If Qd := Zd
0 Q
(

1,
√
d(Z1

Z0
, · · · , Zn

Z0
)
)

, then

Z (Qd)
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Barrier method

The random P writes

P = aQd + R,

with a ∼ NC(0, 1) and R ∈ Q⊥d random independent
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Proposition. With uniform probability in d , R does not destroy
the toric shape of Z (Qd) in B(x , 1/

√
d).
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Indeed, over B(1/
√
d) and after rescaling,

I Qd looks like q on B ⊂ C2 ;

I R
(
[1 : z√

d
]) looks like a random holomorphic function on

B ⊂ C2, independent of d .

Everything is asymptotically independent of d !
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Why 1/
√
d ?

I ‖Zd
0 ‖FS

(
[1 : z√

d
]
)

=
|Zd

0 |
|Z |d =

(
1 + |z|2

d

)−d/2 ∼d e−
1
2
|z|2 .

I This means that 1/
√
d is the natural scale of the geometry of

degree d algebraic hypersurfaces.

I Universal semi-classical phenomenon : same for sections of an
holomorphic line bundles over a complex projective manifold.
Reason : universality of peak sections or universal asymptotic
behavior of the Bergmann kernel.

I Random sums of eigenfunctions of the Laplacian with
eigenvalues less than L : 1/

√
L is the natural scale of the

geometry of zeros of the random sums. Reason : universal
behavior of the spectral kernel.
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There is at least ∼ d2 disjoint small balls
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With uniform probability, a uniform proportion of these d2 balls
contain the affine torus
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Ideas of the proof of Theorem 2

Theorem (Alexander 1936). Every compact smooth real
hypersurface L in Rn can be C 1-perturbed into a component L′ of
an algebraic hypersurface.
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I Choose q such that L ⊂ Z (q) ;

I homogeneize and rescale q into Qd ;

I decompose P = aQd + R.
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Proposition. With uniform probability, in B(1/
√
d),

I R does not kill the shape of Z (Qd),

I there exists L′ ⊂ Z (P) Lagrangian for ωFS .
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I L ⊂ Z (Qd)

is Lagrangian for ω0 ;

I how to find L′ ⊂ Z (P) Lagrangian for ωFS ?
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Facts :
I ∃ϕ, ϕ(Z (Qd)) = Z (P).
I Then

L′ Lagrangian for ωFS in Z(P)

⇔
ϕ−1(L′) Lagrangian for ϕ∗ωFS in Z (Qd)
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Moser Trick. Let ω symplectic and exact over Z ∩B. Then, there
exists ψ : Z ∩ B→ Z such that ψ∗ω = ω0.

For us : ω = φ∗ωFS ,

I L′′ = ψ(L) is Lagrangian, for ω,

I L′ = φ ◦ ψ(L) is Lagrangian for ωFS

Objection ! It could happen that ψ or ϕ sends L′′ out of the ball !
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Quantitative

Moser Trick. Let ω symplectic and exact over
Z ∩ B. Then, there exists ψ : Z ∩ B→ Z such that

I ψ∗ω = ω0

I |ψ − id | is controlled by |ω − ω0|
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Since

I ωFS is close to ω0,

I with uniform probability R is small,

I so that ϕ close to the identity,

I so that L′′ and L′ stay in the ball. �
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From one to a lot of Lagrangians

I There exists ∼ dn balls of size 1/
√
d

I With uniform probability, a uniform proportion of them
contains a Lagrangian copy of L

I Deterministic conclusion : there exists at least one such
hypersurface

I Hence, all of them have cdn such Lagrangians.

�

45/47



From one to a lot of Lagrangians

I There exists ∼ dn balls of size 1/
√
d

I With uniform probability, a uniform proportion of them
contains a Lagrangian copy of L

I Deterministic conclusion : there exists at least one such
hypersurface

I Hence, all of them have cdn such Lagrangians.

�

45/47



From one to a lot of Lagrangians

I There exists ∼ dn balls of size 1/
√
d

I With uniform probability, a uniform proportion of them
contains a Lagrangian copy of L

I Deterministic conclusion : there exists at least one such
hypersurface

I Hence, all of them have cdn such Lagrangians.

�

45/47



From one to a lot of Lagrangians

I There exists ∼ dn balls of size 1/
√
d

I With uniform probability, a uniform proportion of them
contains a Lagrangian copy of L

I Deterministic conclusion : there exists at least one such
hypersurface

I Hence, all of them have cdn such Lagrangians.

�
45/47



Why non-vanishing Euler characteristics ?

Fact : If L ⊂ (Z , ω, J) is Lagrangian, then

I

NL = TL.

Indeed, ω = g(·, J·), so that JTL ⊥ TL. �

I If moreover χ(L) 6= 0 then

0 6= [L] ∈ Hn−1(Z ).

Indeed for L orientable,

χ(L) = #{ zeros of a tangent vector field}.
= #{ zeros of a normal vector field}
= [L] · [L]. �

Corollary The only orientable compact Lagrangian in R4 is the
torus.
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The Moser trick
Moser Trick. Let ω symplectic and exact over Z ∩B. Then, there
exists ψ : Z ∩ B→ Z such that ψ∗ω = ω0.

Proof. Let ωt := ω0 + t(ω − ω0). We search (φt)t , such that

φ∗tωt = ω0.

Assume that (Xt)t is a generating vector field, that is

∂tφt(x) = Xt(φt(x)).

This implies φ∗t
(
LXtωt + ∂tωt

)
= 0, which is true if

d
(
ωt(Xt , ·)

)
+ ω − ω0,

is true, which is true if

ωt(Xt , ·) + λ− λ0.

Since ωt is non-degenerate, this has a solution (Xt)t . �
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