Systoles and Lagrangians of random projective hypersurfaces

Recent developments in microlocal analysis MSRI, 17th october 2019

Damien Gayet (Institut Fourier, Grenoble)

Topology of planar projective curves

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, Z_{2}\right]$.

Topology of planar projective curves

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, Z_{2}\right]$. Then

$$
Z(P)=\{P=0\} \subset \mathbb{C} P^{2}
$$

Topology of planar projective curves

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, Z_{2}\right]$. Then

$$
Z(P)=\{P=0\} \subset \mathbb{C} P^{2}
$$

- is generically an orientable compact smooth Riemann surface;

Topology of planar projective curves

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, Z_{2}\right]$. Then

$$
Z(P)=\{P=0\} \subset \mathbb{C} P^{2}
$$

- is generically an orientable compact smooth Riemann surface;
- connected;

Topology of planar projective curves

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, Z_{2}\right]$. Then

$$
Z(P)=\{P=0\} \subset \mathbb{C} P^{2}
$$

- is generically an orientable compact smooth Riemann surface;
- connected;
- with a constant genus $\frac{1}{2}(d-1)(d-2)$.

- $d=1$ or $d=2$: sphere

- $d=1$ or $d=2$: sphere
- $d=3$: torus

- $d=1$ or $d=2$: sphere
- $d=3$: torus
- $d=4$: genus $g=3$

- $d=1$ or $d=2$: sphere
- $d=3$: torus
- $d=4$: genus $g=3$
- $\operatorname{dim} \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, Z_{2}\right] \sim_{d} g$.

- $d=1$ or $d=2$: sphere
- $d=3$: torus
- $d=4$: genus $g=3$
- $\operatorname{dim} \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, Z_{2}\right] \sim_{d} g$.
- Same for the moduli space of projective curves

Very different in the real case : various number of components...

... and various possible configurations: 16th Hilbert problem
(here the maximal degree 6 possible curves)

Geometry of planar projective curves

What about the geometry if $Z(P)$ is equipped with the restriction of the ambient metric $g_{F S}$?

Geometry of planar projective curves

What about the geometry if $Z(P)$ is equipped with the restriction of the ambient metric $g_{F S}$?

- W. Wirtinger theorem : $\forall P, \operatorname{Vol}(Z(P))=d$.

Geometry of planar projective curves

What about the geometry if $Z(P)$ is equipped with the restriction of the ambient metric $g_{F S}$?

- W. Wirtinger theorem : $\forall P, \operatorname{Vol}(Z(P))=d$.
- However Z can have very different shapes :

Geometry of planar projective curves

What about the geometry if $Z(P)$ is equipped with the restriction of the ambient metric $g_{F S}$?

- W. Wirtinger theorem : $\forall P, \operatorname{Vol}(Z(P))=d$.
- However Z can have very different shapes:
- if P is close to Z_{0}^{d}, Z is concentrated near a round sphere,

Geometry of planar projective curves

What about the geometry if $Z(P)$ is equipped with the restriction of the ambient metric $g_{F S}$?

- W. Wirtinger theorem : $\forall P, \operatorname{Vol}(Z(P))=d$.
- However Z can have very different shapes:
- if P is close to Z_{0}^{d}, Z is concentrated near a round sphere,
- if P is close to the product of equidistributed d lines, then Z is equidistributed.

Random projective curves

If P is taken at random, what can be said more?

Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a sequence of increasing degree random complex curves gets equidistributed in $\mathbb{C} P^{2}$.

- Complex Fubini-Study measure :
- Complex Fubini-Study measure :

$$
P=\sum_{i_{0}+i_{1}+i_{2}=d} a_{i_{0} i_{1} i_{2}} \frac{Z_{0}^{i_{0}} Z_{1}^{i_{1}} Z_{2}^{i_{2}}}{\sqrt{i_{0}!i_{1}!i_{2}!}}
$$

where $a_{i_{0} i_{1} i_{2}}$ are i.i.d. normal variables $\sim N_{\mathbb{C}}(0,1)$.

- Complex Fubini-Study measure :

$$
P=\sum_{i_{0}+i_{1}+i_{2}=d} a_{i_{0} i_{1} i_{2}} \frac{Z_{0}^{i_{0}} Z_{1}^{i_{1}} Z_{2}^{i_{2}}}{\sqrt{i_{0}!i_{1}!i_{2}!}}
$$

where $a_{i_{0} i_{1} i_{2}}$ are i.i.d. normal variables $\sim N_{\mathbb{C}}(0,1)$.

- This is the Gaussian measure associated to the Fubini-Study L^{2}-scalar product on the space of polynomials :

$$
\langle P, Q\rangle_{F S}=\int_{\mathbb{C} P^{n}} \frac{P(Z) \overline{Q(Z)}}{\|Z\|^{2 d}} d v o l_{F S}
$$

- Complex Fubini-Study measure :

$$
P=\sum_{i_{0}+i_{1}+i_{2}=d} a_{i_{0} i_{1} i_{2}} \frac{Z_{0}^{i_{0}} Z_{1}^{i_{1}} Z_{2}^{i_{2}}}{\sqrt{i_{0}!i_{1}!i_{2}!}},
$$

where $a_{i_{0} i_{1} i_{2}}$ are i.i.d. normal variables $\sim N_{\mathbb{C}}(0,1)$.

- This is the Gaussian measure associated to the Fubini-Study L^{2}-scalar product on the space of polynomials :

$$
\langle P, Q\rangle_{F S}=\int_{\mathbb{C} P^{n}} \frac{P(Z) \overline{Q(Z)}}{\|Z\|^{2 d}} d v o l_{F S}
$$

- Generalizes for random sections of high powers of an ample line bundle over a compact Kähler manifold.

What about the length of the systole of the random complex curve : its shortest non-contractible real loop?

The origins : hyperbolic surfaces

Let

$$
\begin{aligned}
\mathcal{M}_{g}= & \{\text { genus } g \text { compact smooth surface } \\
& \text { with a metric of curvature }-1\} .
\end{aligned}
$$

The origins : hyperbolic surfaces

Let

$$
\begin{aligned}
\mathcal{M}_{g}= & \{\text { genus } g \text { compact smooth surface } \\
& \text { with a metric of curvature }-1\} .
\end{aligned}
$$

- $\operatorname{dim}_{\mathbb{C}} \mathcal{M}_{g}=3 g-3$

The origins : hyperbolic surfaces

Let

$$
\begin{aligned}
\mathcal{M}_{g}= & \{\text { genus } g \text { compact smooth surface } \\
& \text { with a metric of curvature }-1\} .
\end{aligned}
$$

- $\operatorname{dim}_{\mathbb{C}} \mathcal{M}_{g}=3 g-3$
- There exists a natural probability measure $\operatorname{Prob}_{w P}$ on \mathcal{M}_{g}.

The origins: hyperbolic surfaces

Let

$$
\begin{aligned}
\mathcal{M}_{g}= & \{\text { genus } g \text { compact smooth surface } \\
& \text { with a metric of curvature }-1\} .
\end{aligned}
$$

- $\operatorname{dim}_{\mathbb{C}} \mathcal{M}_{g}=3 g-3$
- There exists a natural probability measure $\operatorname{Prob}_{w P}$ on \mathcal{M}_{g}.

Theorem (M. Mirzakhani 2013). There exist $C>0$ such that for all $g \geq 2,0<\epsilon \leq 1$,

$$
\frac{1}{C} \epsilon^{2} \leq \operatorname{Prob}_{W P}[\text { Length of the systole } \leq \epsilon] \leq C \epsilon^{2}
$$

Random projective curves

Theorem 1. There exists $C>0$, for all $0<\epsilon \leq 1$,

$$
\forall d \gg 1, e^{-\frac{c}{\epsilon^{6}}} \leq \operatorname{Prob}_{F S}\left[\text { Length }_{\sqrt{d} g_{F S}} \text { of the systole } \leq \epsilon\right] .
$$

Recall that $\operatorname{dim} H_{1}(Z)=2 g \sim d^{2}$.

Recall that $\operatorname{dim} H_{1}(Z)=2 g \sim d^{2}$.

Theorem 1' There exists $c>0$,

$$
\begin{array}{r}
\forall d \gg 1, c \leq \operatorname{Prob}_{F S}\left[\exists \gamma_{1}, \cdots, \gamma_{c d^{2}}, \forall i, \text { Length }\left(\gamma_{i}\right) \leq 1\right. \\
\text { and }\left[\gamma_{1}\right], \cdots,\left[\gamma_{c d^{2}}\right] \\
\text { is an independent family of } \left.H_{1}(Z(P))\right] .
\end{array}
$$

Recall that $\operatorname{dim} H_{1}(Z)=2 g \sim d^{2}$.
Theorem 1' There exists $c>0$,

$$
\begin{array}{r}
\forall d \gg 1, c \leq \operatorname{Prob}_{F S}\left[\exists \gamma_{1}, \cdots, \gamma_{c d^{2}}, \forall i, \text { Length }\left(\gamma_{i}\right) \leq 1\right. \\
\text { and }\left[\gamma_{1}\right], \cdots,\left[\gamma_{c d^{2}}\right] \\
\text { is an independent family of } \left.H_{1}(Z(P))\right] .
\end{array}
$$

In a hyperbolic surface, such curves give birth to disjoint simple geodesics, however :

Recall that $\operatorname{dim} H_{1}(Z)=2 g \sim d^{2}$.

Theorem 1' There exists $c>0$,

$$
\begin{array}{r}
\forall d \gg 1, c \leq \operatorname{Prob}_{F S}\left[\exists \gamma_{1}, \cdots, \gamma_{c d^{2}}, \forall i, \text { Length }\left(\gamma_{i}\right) \leq 1\right. \\
\text { and }\left[\gamma_{1}\right], \cdots,\left[\gamma_{c d^{2}}\right] \\
\text { is an independent family of } \left.H_{1}(Z(P))\right] .
\end{array}
$$

In a hyperbolic surface, such curves give birth to disjoint simple geodesics, however :

Theorem (M. Mirzakhani - B. Petri 2017) There exists $C>0$,
$\forall g \geq 2, \mathbb{E}_{W P}[$ number of simple geodesics of length $\leq 1] \leq C$.

For every d, there exists a basis of $H_{1}(Z)$ such that a uniform proportion of its elements are represented by small loops with uniform probability

Very useless deterministic Corollary. There exists $c>0$, such that for any genus g surface,

$$
\operatorname{dim} H_{1} \geq c g .
$$

Very useless deterministic Corollary. There exists $c>0$, such that for any genus g surface,

$$
\operatorname{dim} H_{1} \geq c g .
$$

In higher dimensions,

Very useless deterministic Corollary. There exists $c>0$, such that for any genus g surface,

$$
\operatorname{dim} H_{1} \geq c g .
$$

In higher dimensions,

- complex curves become complex hypersurfaces;

Very useless deterministic Corollary. There exists $c>0$, such that for any genus g surface,

$$
\operatorname{dim} H_{1} \geq c g
$$

In higher dimensions,

- complex curves become complex hypersurfaces ;
- non-contractible loops become Lagrangian submanifolds;

Very useless deterministic Corollary. There exists $c>0$, such that for any genus g surface,

$$
\operatorname{dim} H_{1} \geq c g
$$

In higher dimensions,

- complex curves become complex hypersurfaces ;
- non-contractible loops become Lagrangian submanifolds;
- the useless deterministic bound becomes an non-trivial estimate for homological (Lagrangian) representatives.

Higher dimensions

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, \cdots, Z_{n}\right]$.

Higher dimensions

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, \cdots, Z_{n}\right]$. Then

$$
Z(P)=\{P=0\} \subset \mathbb{C} P^{n}
$$

Higher dimensions

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, \cdots, Z_{n}\right]$.Then

$$
Z(P)=\{P=0\} \subset \mathbb{C} P^{n}
$$

- is generically a smooth complex hypersurface, or $2 n-2$ real submanifold,

Higher dimensions

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, \cdots, Z_{n}\right]$.Then

$$
Z(P)=\{P=0\} \subset \mathbb{C} P^{n}
$$

- is generically a smooth complex hypersurface, or $2 n-2$ real submanifold,
- of the same diffeomorphism type.

Higher dimensions

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, \cdots, Z_{n}\right]$.Then

$$
Z(P)=\{P=0\} \subset \mathbb{C} P^{n}
$$

- is generically a smooth complex hypersurface, or $2 n-2$ real submanifold,
- of the same diffeomorphism type. Indeed, the subset of singular polynomials has real codimension 2.

Higher dimensions

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, \cdots, Z_{n}\right]$.Then

$$
Z(P)=\{P=0\} \subset \mathbb{C} P^{n}
$$

- is generically a smooth complex hypersurface, or $2 n-2$ real submanifold,
- of the same diffeomorphism type. Indeed, the subset of singular polynomials has real codimension 2.
- $d=1$: complex hyperplane
- Lefschetz theorem

$$
\forall k \neq n-1, H_{k}(Z(P))=H_{k}\left(\mathbb{C} P^{n}\right)
$$

- Lefschetz theorem

$$
\forall k \neq n-1, H_{k}(Z(P))=H_{k}\left(\mathbb{C} P^{n}\right)
$$

Same for homotopy groups. In particular, Z is connected for $n \geq 2$ and simply connected for $n \geq 3$.

- Lefschetz theorem

$$
\forall k \neq n-1, H_{k}(Z(P))=H_{k}\left(\mathbb{C} P^{n}\right)
$$

Same for homotopy groups. In particular, Z is connected for $n \geq 2$ and simply connected for $n \geq 3$.

- Chern computation

$$
\operatorname{dim} H_{n-1}(Z) \sim d^{n}
$$

- Lefschetz theorem

$$
\forall k \neq n-1, H_{k}(Z(P))=H_{k}\left(\mathbb{C} P^{n}\right)
$$

Same for homotopy groups. In particular, Z is connected for $n \geq 2$ and simply connected for $n \geq 3$.

- Chern computation

$$
\operatorname{dim} H_{n-1}(Z) \sim d^{n}
$$

- \Rightarrow For $n=2, Z \subset \mathbb{C} P^{2}$ is a connected complex curve and its interesting topology lies in $H_{1}(Z)$, whose dimension grows like d^{2}.
- Lefschetz theorem

$$
\forall k \neq n-1, H_{k}(Z(P))=H_{k}\left(\mathbb{C} P^{n}\right)
$$

Same for homotopy groups. In particular, Z is connected for $n \geq 2$ and simply connected for $n \geq 3$.

- Chern computation

$$
\operatorname{dim} H_{n-1}(Z) \sim d^{n}
$$

- \Rightarrow For $n=2, Z \subset \mathbb{C} P^{2}$ is a connected complex curve and its interesting topology lies in $H_{1}(Z)$, whose dimension grows like d^{2}.
- \Rightarrow For $n=3, Z \subset \mathbb{C} P^{3}$ is a connected and simply connected complex surface and its interesting homology lies in $\mathrm{H}_{2}(Z)$, that is for real surfaces inside it.

Hypersurfaces as symplectic manifolds

Recall that $\omega_{F S}=g_{F S}(\cdot, J \cdot)$, where J is the complex structure and gfs.

Hypersurfaces as symplectic manifolds

Recall that $\omega_{F S}=g_{F S}(\cdot, J \cdot)$, where J is the complex structure and gfs.

Facts :

- $\left(Z(P), \omega_{F S \mid Z(P)}\right)$ is a symplectic manifold.

Hypersurfaces as symplectic manifolds

Recall that $\omega_{F S}=g_{F S}(\cdot, J \cdot)$, where J is the complex structure and gfs.

Facts :

- $\left(Z(P), \omega_{F S \mid Z(P)}\right)$ is a symplectic manifold.
- If P, Q have the same degree,

$$
\left(Z(P), \omega_{F S \mid Z(P)}\right) \sim_{\text {sympl }}\left(Z(Q), \omega_{F S \mid Z(Q)}\right)
$$

Hypersurfaces as symplectic manifolds

Recall that $\omega_{F S}=g_{F S}(\cdot, J \cdot)$, where J is the complex structure and gfs.

Facts :

- $\left(Z(P), \omega_{F S \mid Z(P)}\right)$ is a symplectic manifold.
- If P, Q have the same degree,

$$
\left(Z(P), \omega_{F S \mid Z(P)}\right) \sim_{\text {sympl }}\left(Z(Q), \omega_{F S \mid Z(Q)}\right)
$$

- Hence, if you prove that a property of symplectic nature is true with positive probability, then it is true for any hypersurface.

Symplectic manifolds

$\left(M^{2 n}, \omega\right)$ is a symplectic manifold if ω is a closed non-degenerate 2-form.

Symplectic manifolds

$\left(M^{2 n}, \omega\right)$ is a symplectic manifold if ω is a closed non-degenerate 2-form.

- $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ with $\omega_{0}:=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$.

Symplectic manifolds

$\left(M^{2 n}, \omega\right)$ is a symplectic manifold if ω is a closed non-degenerate 2-form.

- $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ with $\omega_{0}:=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$.
- Darboux theorem : locally any symplectic manifold is symplectomorphic to $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.

Symplectic manifolds

$\left(M^{2 n}, \omega\right)$ is a symplectic manifold if ω is a closed non-degenerate 2-form.

- $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ with $\omega_{0}:=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$.
- Darboux theorem : locally any symplectic manifold is symplectomorphic to $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.
- A real Riemannian surface (M, g) is symplectic when equipped with its area form $d \mathrm{Vol}_{g}$.

Symplectic manifolds

$\left(M^{2 n}, \omega\right)$ is a symplectic manifold if ω is a closed non-degenerate 2-form.

- $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ with $\omega_{0}:=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$.
- Darboux theorem : locally any symplectic manifold is symplectomorphic to $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.
- A real Riemannian surface (M, g) is symplectic when equipped with its area form $d \mathrm{Vol}_{g}$.
- $\left(\mathbb{C} P^{n}, \omega_{F S}\right)$ is symplectic.

Symplectic manifolds

$\left(M^{2 n}, \omega\right)$ is a symplectic manifold if ω is a closed non-degenerate 2-form.

- $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ with $\omega_{0}:=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$.
- Darboux theorem : locally any symplectic manifold is symplectomorphic to $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.
- A real Riemannian surface (M, g) is symplectic when equipped with its area form $d \mathrm{Vol}_{g}$.
- $\left(\mathbb{C} P^{n}, \omega_{F S}\right)$ is symplectic.
- Any complex hypersurface $Z(P) \subset \mathbb{C} P^{n}$ is symplectic for the restriction of $\omega_{F S}$.

Symplectic manifolds

$\left(M^{2 n}, \omega\right)$ is a symplectic manifold if ω is a closed non-degenerate 2-form.

- $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ with $\omega_{0}:=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$.
- Darboux theorem : locally any symplectic manifold is symplectomorphic to $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.
- A real Riemannian surface (M, g) is symplectic when equipped with its area form $d \mathrm{Vol}_{g}$.
- $\left(\mathbb{C} P^{n}, \omega_{F S}\right)$ is symplectic.
- Any complex hypersurface $Z(P) \subset \mathbb{C} P^{n}$ is symplectic for the restriction of $\omega_{F S}$.
- The cotangent bundle $T^{*} M$ of a manifold is naturally symplectic.

Lagrangians

A Lagrangian submanifold \mathcal{L} of $\left(M^{2 n}, \omega\right)$ is a real n-submanifold such that $\omega_{\mid T \mathcal{L}}=0$.

Lagrangians

A Lagrangian submanifold \mathcal{L} of $\left(M^{2 n}, \omega\right)$ is a real n-submanifold such that $\omega_{\mid T \mathcal{L}}=0$.

- Any real curve of a real surface is Lagrangian.

Lagrangians

A Lagrangian submanifold \mathcal{L} of $\left(M^{2 n}, \omega\right)$ is a real n-submanifold such that $\omega_{\mid T \mathcal{L}}=0$.

- Any real curve of a real surface is Lagrangian.
- Easy : the only orientable compact Lagrangian in $\left(\mathbb{C}^{2}, \omega_{0}\right)$ is the 2 -torus.

Lagrangians

A Lagrangian submanifold \mathcal{L} of $\left(M^{2 n}, \omega\right)$ is a real n-submanifold such that $\omega_{\mid T \mathcal{L}}=0$.

- Any real curve of a real surface is Lagrangian.
- Easy : the only orientable compact Lagrangian in $\left(\mathbb{C}^{2}, \omega_{0}\right)$ is the 2 -torus.
- Very hard : there is no Lagrangian sphere in \mathbb{C}^{3} (Gromov 1985);

Lagrangians

A Lagrangian submanifold \mathcal{L} of $\left(M^{2 n}, \omega\right)$ is a real n-submanifold such that $\omega_{\mid T \mathcal{L}}=0$.

- Any real curve of a real surface is Lagrangian.
- Easy : the only orientable compact Lagrangian in $\left(\mathbb{C}^{2}, \omega_{0}\right)$ is the 2 -torus.
- Very hard : there is no Lagrangian sphere in \mathbb{C}^{3} (Gromov 1985);
- Very easy to deform a Lagrangian : locally as much as the differentials of real functions over it.

- If $p \in \mathbb{R}\left[z_{1}, \cdots, z_{n}\right]$ then $Z(p) \cap \mathbb{R}^{n}$ is Lagrangian in $\left(Z(p), \omega_{0 \mid Z(p)}\right)$.

- If $p \in \mathbb{R}\left[z_{1}, \cdots, z_{n}\right]$ then $Z(p) \cap \mathbb{R}^{n}$ is Lagrangian in $\left(Z(p), \omega_{0 \mid Z(p)}\right)$.
- If $P \in \mathbb{R}_{\text {hom }}^{d}\left[Z_{0}, \cdots, Z_{n}\right]$ then $Z(P) \cap \mathbb{R} P^{n}$ is Lagrangian in $\left(Z(P), \omega_{F S \mid Z(P)}\right)$.

Lagrangians of algebraic hypersurfaces

Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$
\operatorname{dim} H_{*}(Z(P)) \sim_{d \rightarrow \infty} \operatorname{dim} H_{n-1}(Z(P)) \sim d^{n}
$$

Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$
\operatorname{dim} H_{*}(Z(P)) \sim_{d \rightarrow \infty} \operatorname{dim} H_{n-1}(Z(P)) \sim d^{n}
$$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n}$ odd be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$
\exists c>0, \forall d \gg 1, \forall P \in \mathbb{C}_{h o m}^{d}, \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{c d^{n}} \subset Z(P)
$$

Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$
\operatorname{dim} H_{*}(Z(P)) \sim_{d \rightarrow \infty} \operatorname{dim} H_{n-1}(Z(P)) \sim d^{n}
$$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n}$ odd be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$
\exists c>0, \forall d \gg 1, \forall P \in \mathbb{C}_{h o m}^{d}, \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{c d^{n}} \subset Z(P)
$$

- pairwise disjoint,

Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$
\operatorname{dim} H_{*}(Z(P)) \sim_{d \rightarrow \infty} \operatorname{dim} H_{n-1}(Z(P)) \sim d^{n} .
$$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n}$ odd be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$
\exists c>0, \forall d \gg 1, \forall P \in \mathbb{C}_{h o m}^{d}, \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{c d^{n}} \subset Z(P)
$$

- pairwise disjoint,
- diffeomorphic to \mathcal{L},

Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$
\operatorname{dim} H_{*}(Z(P)) \sim_{d \rightarrow \infty} \operatorname{dim} H_{n-1}(Z(P)) \sim d^{n}
$$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n}$ odd be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$
\exists c>0, \forall d \gg 1, \forall P \in \mathbb{C}_{h o m}^{d}, \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{c d^{n}} \subset Z(P)
$$

- pairwise disjoint,
- diffeomorphic to \mathcal{L},
- $\left[\mathcal{L}_{1}\right], \cdots,\left[\mathcal{L}_{c d^{n}}\right]$ form an independent family of $H_{n-1}(Z(P))$

Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$
\operatorname{dim} H_{*}(Z(P)) \sim_{d \rightarrow \infty} \operatorname{dim} H_{n-1}(Z(P)) \sim d^{n}
$$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n}$ odd be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$
\exists c>0, \forall d \gg 1, \forall P \in \mathbb{C}_{\text {hom }}^{d}, \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{c d^{n}} \subset Z(P)
$$

- pairwise disjoint,
- diffeomorphic to \mathcal{L},
- $\left[\mathcal{L}_{1}\right], \cdots,\left[\mathcal{L}_{c d^{n}}\right]$ form an independent family of $H_{n-1}(Z(P))$
- Lagrangian submanifolds of $\left(Z(P), \omega_{F S \mid Z(P)}\right)$,

Lagrangians of algebraic hypersurfaces

Recall that for a degree d polynomial P,

$$
\operatorname{dim} H_{*}(Z(P)) \sim_{d \rightarrow \infty} \operatorname{dim} H_{n-1}(Z(P)) \sim d^{n}
$$

Theorem 2. Let $\mathcal{L} \subset \mathbb{R}^{n}$ odd be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$
\exists c>0, \forall d \gg 1, \forall P \in \mathbb{C}_{\text {hom }}^{d}, \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{c d^{n}} \subset Z(P)
$$

- pairwise disjoint,
- diffeomorphic to \mathcal{L},
- $\left[\mathcal{L}_{1}\right], \cdots,\left[\mathcal{L}_{c d^{n}}\right]$ form an independent family of $H_{n-1}(Z(P))$
- Lagrangian submanifolds of $\left(Z(P), \omega_{F S \mid Z(P)}\right)$,

Proof : probabilistic!

For any real hypersurface \mathcal{L} with non-vanishing Euler characteristic and every large enough degree, there exists a basis of $H_{n-1}(Z)$ such that a uniform proportion of its elements are represented by Lagrangian submanifolds diffeomorphic to \mathcal{L}.

Topological Corollary Let $\mathcal{L} \subset \mathbb{R}^{n \text { odd }}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$
\exists c>0, \forall d \gg 1, \forall P \in \mathbb{C}_{\text {hom }}^{d}, \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{c d^{n}} \subset Z(P)
$$

- pairwise disjoint,
- diffeomorphic to \mathcal{L},
- $\left[\mathcal{L}_{1}\right], \cdots,\left[\mathcal{L}_{c d^{n}}\right]$ form an independent family of $H_{n-1}(Z(P))$.

Topological Corollary Let $\mathcal{L} \subset \mathbb{R}^{n \text { odd }}$ be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$
\exists c>0, \forall d \gg 1, \forall P \in \mathbb{C}_{\text {hom }}^{d}, \exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{c d^{n}} \subset Z(P)
$$

- pairwise disjoint,
- diffeomorphic to \mathcal{L},
- $\left[\mathcal{L}_{1}\right], \cdots,\left[\mathcal{L}_{c d^{n}}\right]$ form an independent family of $H_{n-1}(Z(P))$.

Universal phenomenon : Same holds for zeros of sections of high powers of an ample line bundle over a compact Kähler manifold.

Former results

From Picard-Lefschetz theory:
Theorem (S. Chmutov 1982). There exists $\sim \frac{d^{n}}{\sqrt{d}}$ disjoint Lagrangian spheres in $Z(P)$.

Former results

From Picard-Lefschetz theory:
Theorem (S. Chmutov 1982). There exists $\sim \frac{d^{n}}{\sqrt{d}}$ disjoint Lagrangian spheres in $Z(P)$.

From tropical arguments :
Theorem (G. Mikhalkin 2004). There exists $c d^{n}$ disjoint Lagrangian spheres and $c d^{n}$ Lagrangian tori, whose classes in $H_{n-1}(Z(P))$ are independent, with c explicit and natural.

From random real algebraic geometry :
Theorem (with J.-Y. Welschinger 2014). Let $\mathcal{L} \subset \mathbb{R}^{n}$ as before. Then there exists (an ugly but explicit and universal) $c>0$, such that for $d \gg 1$,
$c<\operatorname{Prob}_{F S, \mathbb{R}}\left[\exists\right.$ at least $c \sqrt{d}^{n}$ components of $Z(P) \cap \mathbb{R} P^{n}$ diffeomorphic to $\mathcal{L}]$.

From random real algebraic geometry :
Theorem (with J.-Y. Welschinger 2014). Let $\mathcal{L} \subset \mathbb{R}^{n}$ as before. Then there exists (an ugly but explicit and universal) $c>0$, such that for $d \gg 1$,

$$
\begin{array}{r}
c<\operatorname{Prob}_{F S, \mathbb{R}}\left[\exists \text { at least } c \sqrt{d}^{n} \text { components of } Z(P) \cap \mathbb{R} P^{n}\right. \\
\text { diffeomorphic to } \mathcal{L}] .
\end{array}
$$

Corollary. At least $c \sqrt{d}^{n}$ disjoint Lagrangians diffeomorphic to \mathcal{L} in any $Z(P)$.

Proof of Theorem 1 (systoles)

Theorem 1. There exists $c>0$,
$\forall d \gg 1, c \leq \operatorname{Prob}_{F S}\left[\right.$ Length $_{\sqrt{d} g_{F S}}$ of the systole $\left.\leq 1\right]$.

Proof of Theorem 1 (systoles)

Theorem 1. There exists $c>0$,

$$
\forall d \gg 1, c \leq \operatorname{Prob}_{F S}\left[\text { Length }_{\sqrt{d} g_{F S}} \text { of the systole } \leq 1\right] .
$$

Fact : Enough to prove that there exists a non-contractible curve with length ≤ 1 with uniform probability.

Artificial non-contractible curve

Pick a generic $Q \in \mathbb{R}_{\text {hom }}^{3}\left[Z_{0}, Z_{1}, Z_{2}\right]$.

Artificial non-contractible curve

Pick a generic $Q \in \mathbb{R}_{\text {hom }}^{3}\left[Z_{0}, Z_{1}, Z_{2}\right]$. Then

$$
Z(Q) \sim \mathbb{T}^{2} \subset \mathbb{C} P^{2}
$$

Artificial non-contractible curve

Pick a generic $Q \in \mathbb{R}_{\text {hom }}^{3}\left[Z_{0}, Z_{1}, Z_{2}\right]$. Then

$$
Z(Q) \sim \mathbb{T}^{2} \subset \mathbb{C} P^{2}
$$

By Bézout theorem $Z(Q) \cap Z\left(Z_{0}\right)=\{3$ points $\}$,

Artificial non-contractible curve

Pick a generic $Q \in \mathbb{R}_{\text {hom }}^{3}\left[Z_{0}, Z_{1}, Z_{2}\right]$. Then

$$
Z(Q) \sim \mathbb{T}^{2} \subset \mathbb{C} P^{2}
$$

By Bézout theorem $Z(Q) \cap Z\left(Z_{0}\right)=\{3$ points $\}$,

Rescaling

Homogenization

If $Q_{d}:=Z_{0}^{d} Q\left(1, \sqrt{d}\left(\frac{Z_{1}}{Z_{0}}, \cdots, \frac{Z_{n}}{Z_{0}}\right)\right)$, then

Homogenization

If $Q_{d}:=Z_{0}^{d} Q\left(1, \sqrt{d}\left(\frac{Z_{1}}{Z_{0}}, \cdots, \frac{Z_{n}}{Z_{0}}\right)\right)$, then

Barrier method

The random P writes

$$
\begin{gathered}
P \quad=\quad a Q_{d}+R, \\
\text { with } a \sim N_{\mathbb{C}}(0,1) \quad \text { and } \quad R \in Q_{d}^{\perp} \text { random independent }
\end{gathered}
$$

Barrier method

The random P writes

$$
P=a Q_{d}+R,
$$

with $a \sim N_{\mathbb{C}}(0,1)$ and $R \in Q_{d}^{\perp}$ random independent

Barrier method

The random P writes

$$
P=a Q_{d}+R,
$$

with $a \sim N_{\mathbb{C}}(0,1)$ and $R \in Q_{d}^{\perp}$ random independent

Proposition. With uniform probability in d, R does not destroy the toric shape of $Z\left(Q_{d}\right)$ in $B(x, 1 / \sqrt{d})$.

Indeed, over $B(1 / \sqrt{d})$ and after rescaling,

Indeed, over $B(1 / \sqrt{d})$ and after rescaling,

- Q_{d} looks like q on $\mathbb{B} \subset \mathbb{C}^{2}$;

Indeed, over $B(1 / \sqrt{d})$ and after rescaling,

- Q_{d} looks like q on $\mathbb{B} \subset \mathbb{C}^{2}$;
- $R\left(\left[1: \frac{z}{\sqrt{d}}\right]\right)$ looks like a random holomorphic function on $\mathbb{B} \subset \mathbb{C}^{2}$, independent of d.

Indeed, over $B(1 / \sqrt{d})$ and after rescaling,

- Q_{d} looks like q on $\mathbb{B} \subset \mathbb{C}^{2}$;
- $R\left(\left[1: \frac{z}{\sqrt{d}}\right]\right)$ looks like a random holomorphic function on $\mathbb{B} \subset \mathbb{C}^{2}$, independent of d.
Everything is asymptotically independent of d !

Why $1 / \sqrt{d}$?

Why $1 / \sqrt{d}$?

- $\left\|Z_{0}^{d}\right\|_{F S}\left(\left[1: \frac{z}{\sqrt{d}}\right]\right)=\frac{\left|Z_{0}^{d}\right|}{|Z|^{d}}=\left(1+\frac{|z|^{2}}{d}\right)^{-d / 2} \sim_{d} e^{-\frac{1}{2}|z|^{2}}$.

Why $1 / \sqrt{d}$?

- $\left\|Z_{0}^{d}\right\|_{F S}\left(\left[1: \frac{z}{\sqrt{d}}\right]\right)=\frac{\left|Z_{0}^{d}\right|}{\mid Z Z^{d}}=\left(1+\frac{|z|^{2}}{d}\right)^{-d / 2} \sim_{d} e^{-\frac{1}{2}|z|^{2}}$.
- This means that $1 / \sqrt{d}$ is the natural scale of the geometry of degree d algebraic hypersurfaces.

Why $1 / \sqrt{d}$?

- $\left\|Z_{0}^{d}\right\|_{F S}\left(\left[1: \frac{z}{\sqrt{d}}\right]\right)=\frac{\left|Z_{0}^{d}\right|}{\mid Z Z^{d}}=\left(1+\frac{|z|^{2}}{d}\right)^{-d / 2} \sim_{d} e^{-\frac{1}{2}|z|^{2}}$.
- This means that $1 / \sqrt{d}$ is the natural scale of the geometry of degree d algebraic hypersurfaces.
- Universal semi-classical phenomenon : same for sections of an holomorphic line bundles over a complex projective manifold. Reason : universality of peak sections or universal asymptotic behavior of the Bergmann kernel.

Why $1 / \sqrt{d}$?

- $\left\|Z_{0}^{d}\right\|_{F S}\left(\left[1: \frac{z}{\sqrt{d}}\right]\right)=\frac{\left|Z_{0}^{d}\right|}{|Z|^{d}}=\left(1+\frac{|z|^{2}}{d}\right)^{-d / 2} \sim_{d} e^{-\frac{1}{2}|z|^{2}}$.
- This means that $1 / \sqrt{d}$ is the natural scale of the geometry of degree d algebraic hypersurfaces.
- Universal semi-classical phenomenon : same for sections of an holomorphic line bundles over a complex projective manifold. Reason : universality of peak sections or universal asymptotic behavior of the Bergmann kernel.
- Random sums of eigenfunctions of the Laplacian with eigenvalues less than $L: 1 / \sqrt{L}$ is the natural scale of the geometry of zeros of the random sums. Reason : universal behavior of the spectral kernel.

There is at least $\sim d^{2}$ disjoint small balls

With uniform probability, a uniform proportion of these d^{2} balls contain the affine torus

Ideas of the proof of Theorem 2

Ideas of the proof of Theorem 2

Theorem (Alexander 1936). Every compact smooth real hypersurface \mathcal{L} in \mathbb{R}^{n} can be C^{1}-perturbed into a component \mathcal{L}^{\prime} of an algebraic hypersurface.

- Choose q such that $\mathcal{L} \subset Z(q)$;

- Choose q such that $\mathcal{L} \subset Z(q)$;
- homogeneize and rescale q into Q_{d};

- Choose q such that $\mathcal{L} \subset Z(q)$;
- homogeneize and rescale q into Q_{d};
- decompose $P=a Q_{d}+R$.

Proposition. With uniform probability, in $B(1 / \sqrt{d})$,

- R does not kill the shape of $Z\left(Q_{d}\right)$,

Proposition. With uniform probability, in $B(1 / \sqrt{d})$,

- R does not kill the shape of $Z\left(Q_{d}\right)$,
- there exists $\mathcal{L}^{\prime} \subset Z(P)$ Lagrangian for $\omega_{F S}$.

- $\mathcal{L} \subset Z\left(Q_{d}\right)$

- $\mathcal{L} \subset Z\left(Q_{d}\right)$ is Lagrangian for ω_{0}

- $\mathcal{L} \subset Z\left(Q_{d}\right)$ is Lagrangian for ω_{0};
- how to find $\mathcal{L}^{\prime} \subset Z(P)$ Lagrangian for $\omega_{F S}$?

Facts :

Facts :

- $\exists \varphi, \varphi\left(Z\left(Q_{d}\right)\right)=Z(P)$.

Facts :

- $\exists \varphi, \varphi\left(Z\left(Q_{d}\right)\right)=Z(P)$.
- Then

$$
\begin{array}{ccc}
\mathcal{L}^{\prime} \quad \text { Lagrangian for } \omega_{F S} & \text { in } Z(P) \\
\Leftrightarrow & \Leftrightarrow & \\
\varphi^{-1}\left(\mathcal{L}^{\prime}\right) \quad \text { Lagrangian for } \varphi^{*} \omega_{F S} & \text { in } Z\left(Q_{d}\right)
\end{array}
$$

- \mathcal{L} Lagrangian for ω_{0} in $Z\left(Q_{d}\right)$;

- \mathcal{L} Lagrangian for ω_{0} in $Z\left(Q_{d}\right)$;
- how to find $\mathcal{L}^{\prime \prime}$ Lagrangian for $\varphi^{*} \omega_{F S}$ in $Z\left(Q_{d}\right)$?

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi: Z \cap \mathbb{B} \rightarrow Z$ such that $\psi^{*} \omega=\omega_{0}$.

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi: Z \cap \mathbb{B} \rightarrow Z$ such that $\psi^{*} \omega=\omega_{0}$.

For us: $\omega=\phi^{*} \omega_{F S}$,

- $\mathcal{L}^{\prime \prime}=\psi(\mathcal{L})$ is Lagrangian, for ω,
- $\mathcal{L}^{\prime}=\phi \circ \psi(\mathcal{L})$ is Lagrangian for $\omega_{F S}$

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi: Z \cap \mathbb{B} \rightarrow Z$ such that $\psi^{*} \omega=\omega_{0}$.

For us: $\omega=\phi^{*} \omega_{F S}$,

- $\mathcal{L}^{\prime \prime}=\psi(\mathcal{L})$ is Lagrangian, for ω,
- $\mathcal{L}^{\prime}=\phi \circ \psi(\mathcal{L})$ is Lagrangian for $\omega_{F S}$

Objection! It could happen that ψ or φ sends $\mathcal{L}^{\prime \prime}$ out of the ball!

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi: Z \cap \mathbb{B} \rightarrow Z$ such that

- $\psi^{*} \omega=\omega_{0}$

Quantitative Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi: Z \cap \mathbb{B} \rightarrow Z$ such that

- $\psi^{*} \omega=\omega_{0}$
- $|\psi-i d|$ is controlled by $\left|\omega-\omega_{0}\right|$

Since

- $\omega_{F S}$ is close to ω_{0},

Since

- $\omega_{F S}$ is close to ω_{0},
- with uniform probability R is small,

Since

- $\omega_{F S}$ is close to ω_{0},
- with uniform probability R is small,
- so that φ close to the identity,

Since

- $\omega_{F S}$ is close to ω_{0},
- with uniform probability R is small,
- so that φ close to the identity,
- so that $\mathcal{L}^{\prime \prime}$ and \mathcal{L}^{\prime} stay in the ball. \square

From one to a lot of Lagrangians

- There exists $\sim d^{n}$ balls of size $1 / \sqrt{d}$

From one to a lot of Lagrangians

- There exists $\sim d^{n}$ balls of size $1 / \sqrt{d}$
- With uniform probability, a uniform proportion of them contains a Lagrangian copy of \mathcal{L}

From one to a lot of Lagrangians

- There exists $\sim d^{n}$ balls of size $1 / \sqrt{d}$
- With uniform probability, a uniform proportion of them contains a Lagrangian copy of \mathcal{L}
- Deterministic conclusion : there exists at least one such hypersurface

From one to a lot of Lagrangians

- There exists $\sim d^{n}$ balls of size $1 / \sqrt{d}$
- With uniform probability, a uniform proportion of them contains a Lagrangian copy of \mathcal{L}
- Deterministic conclusion : there exists at least one such hypersurface
- Hence, all of them have $c d^{n}$ such Lagrangians.

Why non-vanishing Euler characteristics?

Fact : If $\mathcal{L} \subset(Z, \omega, J)$ is Lagrangian, then

$$
N \mathcal{L}=T \mathcal{L}
$$

Why non-vanishing Euler characteristics?

Fact : If $\mathcal{L} \subset(Z, \omega, J)$ is Lagrangian, then

$$
\begin{gathered}
N \mathcal{L}=T \mathcal{L} \\
\text { Indeed, } \omega=g(\cdot, J \cdot), \text { so that } J T \mathcal{L} \perp T \mathcal{L} . \square
\end{gathered}
$$

Why non-vanishing Euler characteristics?

Fact : If $\mathcal{L} \subset(Z, \omega, J)$ is Lagrangian, then

$$
N \mathcal{L}=T \mathcal{L}
$$

Indeed, $\omega=g(\cdot, J \cdot)$, so that $J T \mathcal{L} \perp T \mathcal{L} . \square$

- If moreover $\chi(\mathcal{L}) \neq 0$ then

$$
0 \neq[\mathcal{L}] \in H_{n-1}(Z)
$$

Why non-vanishing Euler characteristics?

Fact : If $\mathcal{L} \subset(Z, \omega, J)$ is Lagrangian, then

$$
N \mathcal{L}=T \mathcal{L}
$$

Indeed, $\omega=g(\cdot, J \cdot)$, so that $J T \mathcal{L} \perp T \mathcal{L} . \square$

- If moreover $\chi(\mathcal{L}) \neq 0$ then

$$
0 \neq[\mathcal{L}] \in H_{n-1}(Z)
$$

Indeed for \mathcal{L} orientable,
$\chi(\mathcal{L})=\#\{$ zeros of a tangent vector field $\}$.

Why non-vanishing Euler characteristics?

Fact : If $\mathcal{L} \subset(Z, \omega, J)$ is Lagrangian, then

$$
N \mathcal{L}=T \mathcal{L}
$$

Indeed, $\omega=g(\cdot, J \cdot)$, so that $J T \mathcal{L} \perp T \mathcal{L} . \square$

- If moreover $\chi(\mathcal{L}) \neq 0$ then

$$
0 \neq[\mathcal{L}] \in H_{n-1}(Z)
$$

Indeed for \mathcal{L} orientable,
$\chi(\mathcal{L})=\#\{$ zeros of a tangent vector field $\}$.
$=\#\{$ zeros of a normal vector field $\}$

Why non-vanishing Euler characteristics?

Fact : If $\mathcal{L} \subset(Z, \omega, J)$ is Lagrangian, then

$$
N \mathcal{L}=T \mathcal{L}
$$

Indeed, $\omega=g(\cdot, J \cdot)$, so that $J T \mathcal{L} \perp T \mathcal{L} . \square$

- If moreover $\chi(\mathcal{L}) \neq 0$ then

$$
0 \neq[\mathcal{L}] \in H_{n-1}(Z)
$$

Indeed for \mathcal{L} orientable,
$\chi(\mathcal{L})=\#\{$ zeros of a tangent vector field $\}$.
$=\#\{$ zeros of a normal vector field $\}$
$=[\mathcal{L}] \cdot[\mathcal{L}] . \square$

Why non-vanishing Euler characteristics?

Fact : If $\mathcal{L} \subset(Z, \omega, J)$ is Lagrangian, then

$$
N \mathcal{L}=T \mathcal{L} .
$$

Indeed, $\omega=g(\cdot, J \cdot)$, so that $J T \mathcal{L} \perp T \mathcal{L}$. \square

- If moreover $\chi(\mathcal{L}) \neq 0$ then

$$
0 \neq[\mathcal{L}] \in H_{n-1}(Z)
$$

Indeed for \mathcal{L} orientable,

$$
\begin{aligned}
\chi(\mathcal{L}) & =\#\{\text { zeros of a tangent vector field }\} . \\
& =\#\{\text { zeros of a normal vector field }\} \\
& =[\mathcal{L}] \cdot[\mathcal{L}] .
\end{aligned}
$$

Corollary The only orientable compact Lagrangian in \mathbb{R}^{4} is the torus.

The Moser trick

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi: Z \cap \mathbb{B} \rightarrow Z$ such that $\psi^{*} \omega=\omega_{0}$.

The Moser trick

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi: Z \cap \mathbb{B} \rightarrow Z$ such that $\psi^{*} \omega=\omega_{0}$.

Proof. Let $\omega_{t}:=\omega_{0}+t\left(\omega-\omega_{0}\right)$. We search $\left(\phi_{t}\right)_{t}$, such that

$$
\phi_{t}^{*} \omega_{t}=\omega_{0}
$$

The Moser trick

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi: Z \cap \mathbb{B} \rightarrow Z$ such that $\psi^{*} \omega=\omega_{0}$.

Proof. Let $\omega_{t}:=\omega_{0}+t\left(\omega-\omega_{0}\right)$. We search $\left(\phi_{t}\right)_{t}$, such that

$$
\phi_{t}^{*} \omega_{t}=\omega_{0}
$$

Assume that $\left(X_{t}\right)_{t}$ is a generating vector field, that is

$$
\partial_{t} \phi_{t}(x)=X_{t}\left(\phi_{t}(x)\right)
$$

The Moser trick

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi: Z \cap \mathbb{B} \rightarrow Z$ such that $\psi^{*} \omega=\omega_{0}$.

Proof. Let $\omega_{t}:=\omega_{0}+t\left(\omega-\omega_{0}\right)$. We search $\left(\phi_{t}\right)_{t}$, such that

$$
\phi_{t}^{*} \omega_{t}=\omega_{0}
$$

Assume that $\left(X_{t}\right)_{t}$ is a generating vector field, that is

$$
\partial_{t} \phi_{t}(x)=X_{t}\left(\phi_{t}(x)\right)
$$

This implies $\phi_{t}^{*}\left(\mathcal{L}_{X_{t}} \omega_{t}+\partial_{t} \omega_{t}\right)=0$, which is true if

$$
d\left(\omega_{t}\left(X_{t}, \cdot\right)\right)+\omega-\omega_{0}
$$

is true, which is true if

$$
\omega_{t}\left(X_{t}, \cdot\right)+\lambda-\lambda_{0}
$$

The Moser trick

Moser Trick. Let ω symplectic and exact over $Z \cap \mathbb{B}$. Then, there exists $\psi: Z \cap \mathbb{B} \rightarrow Z$ such that $\psi^{*} \omega=\omega_{0}$.

Proof. Let $\omega_{t}:=\omega_{0}+t\left(\omega-\omega_{0}\right)$. We search $\left(\phi_{t}\right)_{t}$, such that

$$
\phi_{t}^{*} \omega_{t}=\omega_{0}
$$

Assume that $\left(X_{t}\right)_{t}$ is a generating vector field, that is

$$
\partial_{t} \phi_{t}(x)=X_{t}\left(\phi_{t}(x)\right)
$$

This implies $\phi_{t}^{*}\left(\mathcal{L}_{X_{t}} \omega_{t}+\partial_{t} \omega_{t}\right)=0$, which is true if

$$
d\left(\omega_{t}\left(X_{t}, \cdot\right)\right)+\omega-\omega_{0}
$$

is true, which is true if

$$
\omega_{t}\left(X_{t}, \cdot\right)+\lambda-\lambda_{0}
$$

Since ω_{t} is non-degenerate, this has a solution $\left(X_{t}\right)_{t} . \square$

