> What does a random complex hypersurface look like?

Algebraic Geometry and Complex Geometry CIRM 28 november- 2 december 2022

Damien Gayet (Institut Fourier, Grenoble, France)

Introduction

Szolnay ceramic

Let $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, Z_{1}, \cdots, Z_{n}\right]$. Then

$$
Z(P)=\{P=0\} \subset \mathbb{C} P^{n}
$$

- is generically a smooth complex hypersurface,
- with a constant diffeomorphism type :

1. $n=1 Z(P)$ is the union of d points.
2. $n=2 Z(P)$ is connected compact smooth Riemann surface of genus $\frac{1}{2}(d-1)(d-2)$.

Lefschetz theorem (1929)

$$
\forall k \in\{0 \cdots, n-2\}, H_{k}(Z(P), \mathbb{R})=H_{k}\left(\mathbb{C} P^{n}, \mathbb{R}\right)
$$

By Poincaré duality,

$$
\forall k \in\{n, \cdots, 2 n-2\}, H_{k}(Z(P), \mathbb{R})=H_{2 n-2-k}\left(\mathbb{C} P^{n}, \mathbb{R}\right)
$$

Chern computation

$$
b_{n-1}(Z(P)) \sim d^{n} .
$$

Conclusion : the only proper homology of $Z(P)$ is $H_{n-1}(Z(P))$.

Wirtinger theorem

$$
\forall P \in \mathbb{C}_{d}^{h o m}[Z], \operatorname{Vol}(Z(P))=d \frac{1}{(n-1)!}
$$

Same topology and volumes but different shapes

$Z\left(Z_{0}^{d}+\epsilon Q\right) \quad$ and

$Z\left(7_{0}^{d_{0}} \cdots Z_{n}^{d_{0}}+\in Q\right)$

Local volume

Let $U \subset \mathbb{C} P^{n}$ be an open subset with smooth boundary.

$\operatorname{Vol}(Z(P) \cup U) \in[0, d]$.

Local topology

$$
b_{0}(Z(P) \cap U) \in[0,+\infty[.
$$

For a fixed U and large d, are they bounds for the local Betti numbers?

Theorem (Milnor 1963). Let $U \subset \mathbb{C} P^{n}$ be an open set defined by real polynomials. Then, there exists C_{U} such that

$$
\sum_{i=0}^{2 n-2} b_{i}(Z(P) \cap U) \leq C_{U} d^{2 n}
$$

Recall : $\sum_{i=0}^{2 n-2} b_{i}(Z(P)) \sim d^{n}$.

Random hypersurfaces

If P is taken at random in $\mathbb{C}_{d}^{h o m}\left[Z_{0}, \cdots, Z_{n}\right]$ and $U \subset \mathbb{C} P^{n}$,

1. What is the statistic of $\operatorname{Vol}(Z(P) \cap U)$?
2. What are the statistics of $b_{i}(Z(P) \cap U)$?
3. Can we describe generators of $H_{n-1}(Z(P) \cap U)$?
4. Is there a local echo of the global rigid constraints? In particular, could be the Milnor bound $d^{2 n}$ be amended?

Random local volume

Recall that for any complex hypersurface $Z \subset \mathbb{C} P^{n},[Z]$ denotes its current of integration, that is for any smooth ($2 n-2$)-form φ;

$$
\langle[Z], \varphi\rangle=\int_{Z} \varphi .
$$

- If $n=1$, then

$$
[Z(P)]=\sum_{x \in \mathbb{C} P^{1}, P(x)=0} \delta_{x}
$$

- If φ is closed and $P \in \mathbb{C}_{d}^{h o m}[Z]$, then

$$
\langle[Z(P)], \varphi\rangle=d \int_{\mathbb{C} P^{n}} \omega_{F S} \wedge \varphi .
$$

- Moreover,

$$
" \operatorname{vol}(Z(P) \cup U)=\left\langle[Z(P)], \frac{\mathbf{1}_{U} \omega_{F S}^{n-1}}{(n-1)!}\right\rangle "
$$

Theorem (Shiffman-Zelditch 1998)

$$
\frac{1}{d} \mathbb{E}[Z(P)] \underset{d \rightarrow \infty}{\rightarrow} \omega_{F S}
$$

In particular, for $U \subset \mathbb{C} P^{n}$,

$$
\mathbb{E}[\operatorname{vol}(Z(P) \cap U)] \underset{d \rightarrow \infty}{\sim} \frac{d}{(n-1)!} \frac{\operatorname{vol} U}{\operatorname{vol} \mathbb{C} P^{n}}
$$

Random local topology

Theorem (G. 2022) Let $U \subset \mathbb{C} P^{n}$ be an open set with smooth boundary. Then,

$$
\begin{aligned}
& \forall i \in\{0,2 n-2\} \backslash\{n-1\}, \mathbb{E}\left[b_{i}(Z(P) \cap U)\right] \\
& \mathbb{E}\left[b_{n-1}(Z(P) \cap U)\right] \\
& \underset{d \rightarrow \infty}{\sim} o\left(d^{n}\right) \\
& d^{n} \frac{\operatorname{vol}(U)}{\operatorname{vol}\left(\mathbb{C} P^{n}\right)}
\end{aligned}
$$

Known deterministic Corollary

$$
b_{n-1}(Z(P)) \underset{d \rightarrow \infty}{\sim} d^{n}
$$

Random real algebraic geometry

Theorem (G.-Welschinger 2015) : If P is a real random polynomial, $Z(P) \subset \mathbb{R} P^{n}$, then

$$
\forall i \in\{0, n-1\}, \mathbb{E}\left[b_{i}(Z(P) \cap U)\right] \underset{d \rightarrow \infty}{\asymp} \sqrt{d}^{n} \operatorname{Vol}(U)
$$

Real versus complex $b_{0} \asymp b_{1}$ versus $b_{0} \ll b_{1}$

Lagrangian representatives

Theorem (G. 2021) Assume n is odd. Let $\mathcal{L} \subset \mathbb{R}^{n}$ be a compact smooth real hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$
\exists c>0, \forall d \gg 1, c \leq \mathbb{P}\left[\exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{c d^{n}}\right. \text { pairwise disjoint, }
$$

Lagrangian, $\forall i, \mathcal{L}_{i} \sim_{\text {diff }} \mathcal{L}$,
and $\left[\mathcal{L}_{1}\right], \cdots,\left[\mathcal{L}_{c d^{n}}\right]$ are independent in $\left.H_{n-1}(Z(P) \cap U, \mathbb{R})\right]$.
Lagrangian : $\omega_{F S \mid T \mathcal{L}}=0$. In particular, \mathcal{L} is totally real, that is

$$
J T \mathcal{L} \cap T \mathcal{L}=\{0\}
$$

Symplectic fact. For any generic $P, Q \in \mathbb{C}_{d}^{h o m}[Z]$,

$$
\left(Z(P), \omega_{F S \mid Z(P)}\right) \sim_{\text {sympl }}\left(Z(Q), \omega_{F S \mid Z(Q)}\right)
$$

Deterministic symplectic Corollary. Under the same hypotheses, there exists $c>0$ such that for any generic polynomial P of large enough degree d,
$\exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{c d^{n}}$ pairwise disjoint,
Lagrangian, $\forall i, \mathcal{L}_{i} \sim_{\text {diff }} \mathcal{L}$, and $\left[\mathcal{L}_{1}\right], \cdots,\left[\mathcal{L}_{c d^{n}}\right]$ are independent in $H_{n-1}(Z(P), \mathbb{R})$.

Older results in any dimensions :

- Andreotti-Frenkel 1968: Lagrangian spheres
- Mikhalkin 2002 : Lagrangian spheres and tori
- Corollary of G-Welschinger $2014: \sqrt{d}^{n}$ instead of d^{n}.
- Ancona 2022: d^{n} Lagrangians in $Z(P) \cap \mathbb{R} P^{n}$.

The natural measure

- The Fubini-Study measure μ_{d} on $\mathbb{C}_{d}^{h o m}\left[Z_{0}, \cdots, Z_{n}\right]$:

$$
P=\sqrt{(n+d)!} \sum_{i_{0}+\cdots+i_{n}=d} a_{i_{0} \cdots i_{n}} \frac{Z_{0}^{i_{0}} \cdots Z_{n}^{i_{n}}}{\sqrt{i_{0}!\cdots i_{n}!}},
$$

where $\Re a_{i_{0} \cdots i_{n}}, \Im a_{i_{0} \cdots i_{n}}$ are i.i.d. standard normal variables.

- These monomials form an ONB for the Fubini-Study L^{2}-scalar product :

$$
\langle P, Q\rangle_{F S}=\int_{\mathbb{C} P^{n}} \frac{P(Z) \overline{Q(Z)}}{\|Z\|^{2 d}} \frac{\omega_{F S}^{n}}{n!} .
$$

- Then, for any Borelian $A \subset \mathbb{C}_{d}^{h o m}[Z]$,

$$
\mu_{d}(A)=\int_{P \in A} e^{-\frac{1}{2}\|P\|_{L^{2}\left(h_{F S}\right)}^{2}} \frac{d P}{(2 \pi)^{N_{d}}}=\int_{P(a) \in A} e^{-\frac{1}{2}\|a\|^{2}} \frac{d a}{(2 \pi)^{N_{d}}}
$$

- One can use the uniform measure over the sphere $\mathbb{S C}_{d}^{h o m}$ of L^{2}-normalized polynomials.

Example : Let $z \in \mathbb{C} P^{n}$. What is the average

$$
\mathbb{E}\left[\|P(z)\|_{h_{F S}}\right] ?
$$

By symmetries, one can assume that $z=[1: 0: \cdots: 0]$. Then the mean equals

$$
\sqrt{(n+d)!} \mathbb{E}\left[\frac{\left|a_{0} Z_{0}^{d}\right|}{\sqrt{d!}\left|Z_{0}\right|^{d}}\right]
$$

Since

$$
\mathbb{E}\left[\left|a_{0}\right|\right]=\int_{a_{0} \in \mathbb{C}}\left|a_{0}\right| e^{-\frac{1}{2}\left|a_{0}\right|^{2}} \frac{d a_{0}}{2 \pi}=\int_{r>0} r^{2} e^{-\frac{1}{2} r^{2}} d r=1,
$$

we obtain

$$
\mathbb{E}\left[\|P(z)\|_{h_{F S}}\right] \underset{d \rightarrow \infty}{\sim} d^{\frac{n}{2}} . \square
$$

General Kähler framework

Let

- X^{n} be a compact complex manifold, and
- $L \rightarrow X$ be an ample holomorphic line bundle equipped with
- a Hermitian metric h with positive curvature ω, that is locally if e is a holomorphic trivialization,

$$
\omega=\frac{1}{i \pi} \partial \bar{\partial} \log \|e\|_{h}
$$

is a Kähler form, that is for any $z \in X, \omega(z)$ is positive over any complex line in $T_{z} X$.

Topology of hypersurfaces

For $d \gg 1$ and any generic $s \in H^{0}\left(X, L^{\otimes d}\right)$,

- Lefschetz:

$$
\forall i<n-1, H_{i}(Z(s), \mathbb{R})=H_{i}(X, \mathbb{R})
$$

- Chern :

$$
b_{n-1}(Z(s)) \underset{d \rightarrow \infty}{\sim} d^{n} \int_{X} \omega^{n}
$$

- Wirtinger :

$$
\operatorname{vol}(Z(s))=d \frac{\int_{X} \omega^{n}}{(n-1)!}
$$

In this general setting :
Theorem (S-Z) $\quad \frac{1}{d} \mathbb{E}([Z(s)] \rightarrow \omega$.

Theorem (G) The two random topological theorems extend in this context.

The natural measure

The measure μ_{d} chosen on $H^{0}\left(X, L^{d}\right)$ is the Gaussian one associated to

- the scalar product

$$
\forall s, t \in H^{0}\left(X, L^{d}\right),\langle s, t\rangle=\int_{X} h_{d}(s, t) \frac{\omega^{n}}{n!} .
$$

- For any Borelian $A \subset H^{0}\left(X, L^{d}\right)$,

$$
\mu_{d}(A)=\int_{s \in A} e^{-\frac{1}{2}\|s\|_{L^{2}}^{2}} \frac{d s}{(2 \pi)^{N_{d}}}
$$

- Other saying, if $\left(S_{i}\right)_{1 \leq i \leq N_{d}}$ is an ONB of $\left(H^{0}\left(X, L^{d}\right),\langle,\rangle_{F S}\right)$,

$$
s=\sum_{i} a_{i} S_{i}
$$

where $\Re a_{i_{0} \cdots i_{n}}, \Im a_{i_{0} \cdots i_{n}}$ are i.i.d. standard normal variables.

- Again, one can use the uniform measure over $\mathbb{S} H^{0}\left(X, L^{d}\right)$.

Unrealistic plan of the mini-course

1. Current of integration
2. Betti numbers
3. Local representatives of the homology
4. Annexes

Part I The mean current of integration

Image : Barnett

Theorem (B. Shiffman-S. Zelditch 1998) Let X, L, h, ω and $\left(\mu_{d}\right)_{d}$ as before. Then

$$
\frac{1}{d} \mathbb{E}[Z(s)] \underset{d \rightarrow \infty}{\rightarrow} \omega .
$$

Proof Recall that by Poincaré-Lelong formula, for any local holomorphic function f,

$$
[Z(f)]=\frac{i}{\pi} \partial \bar{\partial} \log |f|
$$

Hence, for any $s \in H^{0}\left(X, L^{d}\right)$, if locally $s=f e^{d}$,

$$
\begin{aligned}
{[Z(f)] } & =\frac{i}{\pi} \partial \bar{\partial} \log \|s\|_{h^{d}}-\frac{i}{\pi} \partial \bar{\partial} \log \left\|e^{d}\right\|_{h} \\
& =d \omega+\frac{i}{\pi} \partial \bar{\partial} \log \|s\|_{h^{d}}
\end{aligned}
$$

Write $s=\sum_{i=1}^{N_{d}} a_{i} S_{i}$, where $\left(S_{i}\right)_{i}$ is an ONB of $H^{0}\left(X, L^{d}\right)$. Then

$$
\mathbb{E}\left[\log \|s\|_{h^{d}}^{2}\right]=\log \sum_{i}\left\|S_{i}\right\|_{h_{d}}^{2}+\mathbb{E}\left[\log \frac{\|s\|^{2}}{\sum_{i}\left\|S_{i}\right\|^{2}}\right]
$$

If $\forall i, S_{i}=f_{i} e^{d}$ and $F=\left(f_{i}\right)_{i} \in \mathbb{C}^{N_{d}}$,

$$
\mathbb{E}\left[\log \frac{\|s\|^{2}}{\sum_{i}\left\|S_{i}\right\|^{2}}\right]=\mathbb{E}\left[\log \left|\left\langle a, \frac{F}{\|F\|}\right\rangle\right|^{2}\right]
$$

with a standard Gaussian vector in $\mathbb{C}^{N_{d}}$. Using a rotation, this is equal to

$$
\mathbb{E}\left[\log \left|a_{1}\right|^{2}\right]
$$

which is killed by the $\partial \bar{\partial}$.

Hence,

$$
\frac{1}{d} \mathbb{E}[Z(f)]=\omega+\frac{i}{2 \pi d} \partial \bar{\partial} \mathbb{E}\left[\log \sum_{i}\left\|S_{i}\right\|_{h^{d}}^{2}\right] .
$$

Standard case :

$$
\sum_{i}\left\|S_{i}\right\|_{h^{d}}^{2}=\frac{(n+d)!}{\|Z\|^{2 d}} \sum_{i_{0}+\cdots+i_{n}=d} \frac{\left|Z_{0}\right|^{2 i_{0}} \cdots\left|Z_{n}\right|^{2 i_{n}}}{i_{0}!\cdots i_{n}!}=\frac{(n+d)!}{d!}
$$

Hence,

$$
\frac{1}{d} \mathbb{E}[Z(f)]=\omega_{F S} . \square
$$

General case :

$$
\frac{1}{d} \mathbb{E}[Z(f)]=\omega+\frac{i}{2 \pi d} \partial \bar{\partial} \mathbb{E}\left[\log \sum_{i}\left\|S_{i}\right\|_{h^{d}}^{2}\right] .
$$

Tian Theorem : For any $x \in X$,

$$
\sum_{i}\left\|S_{i}(x)\right\|_{h^{d}}^{2}=d^{n}+O\left(d^{n-1}\right)
$$

Consequently weakly

$$
\frac{1}{d} \mathbb{E}[Z(f)] \underset{d \rightarrow \infty}{\rightarrow} \omega . \square
$$

Part 2 - Betti numbers

Image : Leon Lampret

For a generic $P \in \mathbb{C}_{d}^{\text {hom }}\left[Z_{0}, \cdots, Z_{n}\right]$,
Lefschetz: $\quad \forall k \neq n-1, \quad b_{i}(Z(P)) \quad \underset{d \rightarrow \infty}{=} O(1)$
Chern :

$$
b_{n-1}(Z(P)) \underset{d \rightarrow \infty}{\sim} d^{n} .
$$

Random polynomial :

$$
P=\sqrt{(n+d)!} \sum_{i_{0}+\cdots+i_{n}=d} a_{i_{0} \cdots i_{n}} \frac{Z_{0}^{i_{0}} \cdots Z_{n}^{i_{n}}}{\sqrt{i_{0}!\cdots i_{n}!}}
$$

where $\Re a_{i_{0} \cdots i_{n}}, \Im a_{i_{0} \cdots i_{n}}$ are i.i.d. standard normal variables.

Theorem Let $U \subset \mathbb{C} P^{n}$ be an open set with smooth boundary. Then,

$$
\begin{aligned}
& \forall i \neq n-1, \mathbb{E}\left[b_{i}(Z(P) \cap U)\right] \underset{d \rightarrow \infty}{=} o\left(d^{n}\right) \\
& \mathbb{E}\left[b_{n-1}(Z(P) \cap U)\right] \underset{d \rightarrow \infty}{\sim} d^{n} \frac{\operatorname{vol}(U)}{\operatorname{vol}\left(\mathbb{C} P^{n}\right)} .
\end{aligned}
$$

Theorem (Milnor). Let $U \subset \mathbb{C} P^{n}$ be an open set defined by polynomials. Then, there exists C_{U} such that

$$
\sum_{i=0}^{2 n-2} b_{i}(Z(P) \cap U) \leq C_{U} d^{2 n}
$$

"Proof" of Milnor's theorem
Simplification : assume $U=\mathbb{B}^{n} \subset \mathbb{R}^{n}$,

$$
P(x)=x_{n}-Q\left(x_{1}, \cdots, x_{n-1}\right)
$$

Then

$$
T_{x} Z(P)=\operatorname{vect}\left(\frac{\partial}{\partial x_{i}}+\frac{\partial Q}{\partial x_{i}} \frac{\partial}{\partial x_{n}}\right)_{1 \leq i \leq n-1}
$$

Let

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\|x\|^{2}
$$

Fact. For a generic $P, f_{\mid Z(P)}$ is a Morse function, that is all its critical points are non-degenerate, i.e the Hessian is non-degenerate.

Weak Morse inequalities :

$$
\sum_{i} b_{i}(Z(P)) \leq \# \operatorname{crit}\left(f_{\mid Z(P)}\right)
$$

Now

$$
x \in \operatorname{crit}\left(f_{\mid Z(P)}\right) \Leftrightarrow\left\{\begin{array}{l}
x_{n}=Q\left(x_{1}, \cdots, x_{n-1}\right) \\
\forall i \leq n-1 \\
\left\langle\nabla\|x\|^{2}, \frac{\partial}{\partial x_{i}}+\partial_{i} Q \frac{\partial}{\partial x_{n}}\right\rangle=0
\end{array}\right.
$$

- So, x is critical if it satisfies n algebraic equations in \mathbb{R}^{n} of degree less than $\operatorname{deg} Q$.
- Van der Waerden Theorem (1949) : there exists at most $(\operatorname{deg} Q)^{n}$ solutions.
- Hence,

$$
\sum_{i} b_{i}(Z(P)) \leq d^{n}
$$

- The constant C_{U} appears when taking in account the boundary of U. \square

Holomorphic specificities?

Affine real function. Let Z be a generic complex hypersurface such that

$$
0 \in \operatorname{crit}\left(x_{n \mid Z}\right)
$$

Then, Z is locally writes

$$
Z=\left\{z_{n}=\sum_{i} k_{i} z_{i}^{2}+O(3)\right\}
$$

Since

$$
x_{n}\left(z_{1}, \cdots, z_{n-1}, \sum_{i} k_{i} z_{i}^{2}\right)=\sum_{i} k_{i}\left(x_{i}^{2}-y_{i}^{2}\right),
$$

- 0 is a critical point of $x_{n \mid Z}$ with index $n-1$
- the spectrum of the Hessian is even.

Conclusion : The Hessian of the restriction of a linear real function on Z at a critical point has an even spectrum. In particular, it has index $n-1$.

General function

Here : $n=2$ and Z is a complex curve.

- Left, an index 1 critical point. The curve can be very curved.
- Right, an index 2 critical point. The curve cannot be locally very curved.
- If f is strictly (pseudo)convex, there is no index 0 critical point.

Revisiting Milnor's proof

- No maximum (index 2)
- The saddle points (index 1) are favored in comparison with minima (index 0).

Heuristic Proposition : Statistically,

$$
\forall i<n-1, \frac{\# \operatorname{Crit}_{i}\left(f_{\mid Z(P)}\right)}{\# \operatorname{Crit}_{n-1}\left(f_{\mid Z(P)}\right)} \rightarrow_{d} 0
$$

"Proof" :

- Near $[1: 0 \cdots: 0], p(z):=\sqrt{d}!\frac{P(Z)}{Z_{0}^{d}}$ equals

$$
a_{0}+\sqrt{d} \sum_{i=1}^{n} a_{i} z_{i}+d \sum_{i, j} a_{i j} z_{i} z_{j}+\operatorname{etc}(z \sqrt{d})
$$

- Then, $p\left(\frac{z}{\sqrt{d}}\right)$ becomes independent on d.
- Hence, the natural scale of $Z(P)$ is $\frac{1}{\sqrt{d}}$.
- After rescaling by $\times \sqrt{d}$ we should have a bounded geometry.
- Hence statistically the curvature $Z(P)$ has order d.
- However critical points with large curvature have index $n-1$.
- Hence $\frac{\text { \# } \operatorname{Crit}_{i}\left(f_{\mid Z(P)}\right)}{\# \operatorname{Crit}_{n-1}\left(f_{\mid Z(P)}\right)} \rightarrow_{d} 0$, statistically. \square

Proposition Let $U \subset X$ be an open set with smooth boundary. Then,

$$
\begin{aligned}
\forall i \neq n-1 & , \mathbb{E}\left[\# \operatorname{crit}_{i}\left(f_{\mid Z(P)} \cap U\right)\right] \underset{d \rightarrow \infty}{=} o\left(d^{n}\right) \\
& \mathbb{E}\left[\# \operatorname{crit}_{n-1}\left(f_{\mid Z(P)} \cap U\right)\right] \underset{d \rightarrow \infty}{\sim} d^{n} \frac{\operatorname{vol}(U)}{\operatorname{vol}\left(\mathbb{C} P^{n}\right)} .
\end{aligned}
$$

Weak and strong Morse inequalities Let $f: Z \rightarrow \mathbb{R}$ be a Morse function. Then,

- (weak)

$$
\forall i, b_{i}(Z) \leq \# \operatorname{crit}_{i}(f)
$$

- (strong)

$$
\forall i, \sum_{k=0}^{i}(-1)^{i-k} b_{k}(Z) \geq \sum_{k=0}^{i}(-1)^{i-k} \# \operatorname{crit}_{k}(f)
$$

Consequence :

$$
b_{n-1}(Z) \geq \# \operatorname{crit}_{n-1}(f)-2 \sum_{i<n-1} \# \operatorname{crit}_{i}(f)
$$

The Proposition for critical points and Morse inequalities imply :

$$
\begin{aligned}
\forall i \neq n-1 & , \mathbb{E}\left[b_{i}(Z(s) \cap U)\right] \\
\mathbb{E}\left[b_{n-1}(Z(s) \cap U)\right] & \underset{d \rightarrow \infty}{\sim}
\end{aligned}{ }^{\sim}\left(d^{n}\right) .
$$

How do we estimate $\mathbb{E}\left[\operatorname{crit}_{i}\left(f_{\mid Z(s)}\right)\right]$?
With the help of Kac-Rice formula

Simplest Kac-Rice formula

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be random and $U \subset \mathbb{R}$. Then

$$
\mathbb{E}[\# Z(f) \cap U]=\int_{U} \mathbb{E}\left(\left|f^{\prime}(x)\right| \mid f(x)=0\right) \phi_{f(x)}(0) d x,
$$

where $\phi_{f(x)}$ denotes the density of $f(x)$.
"Proof".

- If f vanishes transversally,

$$
\# Z(f) \cap U=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \epsilon} \int_{\mathbb{R}}\left|f^{\prime}(x)\right| \mathbf{1}_{|f| \leq \epsilon} d x
$$

- hence

$$
\mathbb{E}[\# Z(f) \cap U]=\int_{\mathbb{R}} \mathbb{E}\left(\left|f^{\prime}(x)\right| \lim _{\epsilon \rightarrow 0} \frac{1}{2 \epsilon} \mathbf{1}_{|f| \leq \epsilon}\right) d x . \square
$$

A friendly Kac-Rice formula

Proposition (G.-Welschinger 2015, G. 2022)

$$
\mathbb{E} \#\left(\operatorname{crit}_{i}\left(p_{\mid Z(P)}\right) \cap U\right)
$$

is equal to

$$
\begin{aligned}
& \int_{x \in U} \int_{\substack{\alpha \in \mathcal{L}_{\text {onto }}\left(T_{x} M, E_{x}\right) \\
\operatorname{ker} \alpha \subset \operatorname{ker} d p(x)}}\left|\operatorname{det} \alpha_{\mid \operatorname{ker}^{\perp} \alpha}\right| \\
& \mathbb{E}\left[\mathbf{1}_{\left\{\operatorname{Ind}\left(\nabla^{2} p_{\mid Z(P)}\right)=i\right\}} \mid \operatorname{det}\left(\left\langle\nabla^{2} P(x)_{\mid \operatorname{ker} \alpha}, \epsilon(x, \alpha)\right\rangle\right.\right. \\
& \left.-\langle\alpha(\nabla p(x)), \epsilon(x, \alpha)\rangle \frac{\nabla^{2} p(x)_{\mid \operatorname{ker} \alpha}}{\|d p(x)\|^{2}}\right)|\mid P(x)=0, \nabla P(x)=\alpha] \\
& \rho_{X(x)}(0, \alpha) d \operatorname{vol}(\alpha) d \operatorname{vol}(x) .
\end{aligned}
$$

How is it possible to compute such a thing?

- General fact for Gaussian fields. Kac-Rice formula can be expressed in terms of the sole covariance of f :

$$
\operatorname{cov}(f(x), f(y))=\mathbb{E}[f(x) f(y)]
$$

and its (2, 2)-jet on the diagonal.

- The covariance of $P \in \mathbb{C}_{d}^{h o m}[Z]$ or $s \in H^{0}\left(X, L^{d}\right)$ is the Bergman kernel which is known to converge to a universal covariance, after rescaling by \sqrt{d}.

Covariance and Bergman kernel

Define the Bergman kernel

$$
\forall x, y \in X, k_{d}(x, y):=\sum_{i=1}^{n} S_{i}(x) \otimes S_{i}(y)^{*} \in L_{x}^{d} \otimes L_{y}^{d *}
$$

where for any $s \in L_{y}$,

$$
\forall t \in L, s^{*}(t)=h_{d}(s, t)
$$

Fact. k_{d} is the kernel of the projection :

$$
\pi_{d}: L^{2}(X, L) \rightarrow H^{0}\left(X, L^{d}\right)
$$

Proof : For any $s \in L^{2}\left(X, L^{d}\right)$,

$$
\begin{aligned}
\pi_{d} s(x) & =\sum_{i}\left\langle S_{i}, s\right\rangle_{L^{2}} S_{i}(x) \\
& =\int_{X} k_{d}(x, y) s(y) d \mathrm{vol}(y) . \square
\end{aligned}
$$

Now the covariance of the random section $s \in H^{0}\left(X, L^{d}\right)$ is defined by

$$
\operatorname{cov}(s(x), s(y)):=\mathbb{E}\left[s(x) \otimes s^{*}(y)\right]
$$

Fact :

$$
\operatorname{cov}(s(x), s(y))=k_{d}(x, y)
$$

Proof :

$$
\mathbb{E}\left[s(x) \otimes s^{*}(y)\right]=\sum_{i, j} \mathbb{E}\left[a_{i} \overline{a_{j}}\right] S_{i}(x) \otimes S_{j}(y)^{*}
$$

Since a_{i} and a_{j} are independent,

$$
\mathbb{E}\left[a_{i} \overline{a_{j}}\right]=\delta_{i j},
$$

hence the result. \square

Propreties of the covariance :

- If $x=y$,

$$
\operatorname{var}(s(x))=\operatorname{cov}(s(x), s(x))=\sum_{i}\left\|S_{i}(x)\right\|_{h_{d}}^{2}
$$

- If $s(x)$ is independent of $s(y)$, the we would have

$$
\operatorname{cov}(s(x), s(y))=0
$$

- Hence, the covariance measures the dependency between $s(x)$ and $s(y)$.
- The intuition is that cov $\rightarrow 0$ when $\operatorname{dist}(x, y)$ becomes large.
- The distance where cov ≈ 0 should be the natural scale of $Z(s)$.

Is there a simplification of the Bergman kernel when $d \rightarrow \infty$?

Theorem (Tian 1988) For any $x \in X$, for any $d \gg 1$, there exists

$$
S_{d}^{x} \in \mathbb{S} H^{0}\left(X, L^{d}\right)
$$

such that

$$
\left\|S_{d}^{x}(y)\right\|_{h_{d}} \underset{d \rightarrow \infty}{\sim} d^{\frac{n}{2}} e^{-d\|y-x\|^{2}}
$$

and $\left\{s \in \mathbb{S} H^{0}\left(X, L^{d}\right), s(x)=0\right\}$ is asymptotically orthogonal to S_{d}^{x}.

Corollary : The Bergman kernel has a universal limit shape at scale $\frac{1}{\sqrt{d}}$.

Proof. Fix $x \in X$. Choose as an ONB of $H^{0}\left(X, L^{d}\right)$

$$
S_{1}=S_{d}^{x} \text { and }\left(S_{i}\right)_{2 \leq N_{d}} \in\left(S_{d}^{x}\right)^{\perp}
$$

Then,

$$
\sum_{i}\left\|S_{i}(x)\right\|_{h_{d}}^{2} \sim d^{n}
$$

and

$$
\begin{aligned}
&\left\|k_{d}\left(x, x+\frac{y}{\sqrt{d}}\right)\right\|_{h_{d}}=\left\|\sum_{i=1}^{n} S_{i}(x) \otimes S_{i}\left(x+\frac{y}{\sqrt{d}}\right)^{*}\right\|_{h_{d}} \\
& \underset{d \rightarrow \infty}{\sim} d^{n} \exp \left(-\|y\|^{2}\right) . \square
\end{aligned}
$$

Standard example : $X=\mathbb{C} P^{n}, L=\mathcal{O}(1), h=h_{F S}$. Then, Let $x=[1: 0 \ldots: 0]$. Then

$$
S_{d}^{x}=\sqrt{\frac{(d+n)!}{d!}} Z_{0}^{d}
$$

Indeed,

$$
\left\|S_{x}^{d}\right\|_{L^{2}(F S)}=1
$$

and pointwise

$$
\left\|S_{x}^{d}\right\|_{F S} \sim d^{n / 2} \frac{1}{\sqrt{1+\|z\|^{2}}} \sim_{d} d^{n / 2} e^{-\frac{1}{2} d\|z\|^{2}}
$$

Moreover

$$
\left(\frac{Z_{0}^{i_{0}} \cdots Z_{n}^{i_{n}}}{\sqrt{i_{0}!\cdots i_{n}!}}\right)_{i_{0}+\cdots+i_{n}=d}
$$

is an ONB of $\mathcal{O}(d)$. Hence

$$
\begin{aligned}
k_{d}([Z],[W]) & =\frac{1}{\|W\|^{d}} \sum_{i_{0}+\cdots+i_{n}=d} \frac{\left(Z_{0} \overline{W_{0}}\right)^{i_{0}} \cdots\left(Z_{n} \overline{W_{n}}\right)^{i_{n}}}{i_{0}!\cdots i_{n}!} \\
& =\frac{(\langle Z, W\rangle)^{d}}{\|W\|^{d}}
\end{aligned}
$$

Hence,

$$
\left\|k_{d}\right\|_{h_{F S}}=\frac{(\langle Z, W\rangle)^{d}}{(\|Z\|\|W\|)^{d}}
$$

In coordinates near $[1: 0 \cdots: 0]$, with $Z=(1,0)$ and $W=\left(1, w_{1}, \cdots, w_{n}\right)$, we have

$$
\left\|k_{d}\left(0, \frac{w}{\sqrt{d}}\right)\right\|_{h_{F S}}=\frac{1}{\sqrt{1+\frac{\|w\|^{2}}{d}}}{ }_{d \rightarrow \infty}^{\sim} \exp \left(-\|w\|^{2}\right)
$$

Why d^{n} in complex versus \sqrt{d}^{n} in real?

Since the natural scale is $\frac{1}{\sqrt{d}}$,

- $Z(s) \cap B_{x, \frac{1}{\sqrt{d}}}$, after rescaling $\times \sqrt{d}$, should look like a uniform random Z in $\mathbb{B}(0,1)$.
- So the topology should be uniform in such a ball. In particular, the Betti numbers of $Z(s) \cap B_{x, \frac{1}{\sqrt{d}}}$ should be bounded.

At least $\asymp d^{n}$ disjoint small balls in X

- Since vol $B_{x, \frac{1}{\sqrt{d}}} \asymp\left(\frac{1}{\sqrt{d}}\right)^{2 n}$, there are around d^{n} such balls.
- The total topology should be of order d^{n}.

In the real world

At least $\asymp \sqrt{d}^{n}$ disjoint small balls in $\mathbb{R} X$

- In $\mathbb{R} X$, there are around \sqrt{d}^{n} balls.
- The total topology should be \sqrt{d}^{n}

Part 3 - Topology

Image : Lorenzo Sirigatti, 1596

Theorem (G. 2021) Let $\mathcal{L} \subset \mathbb{R}^{n}$ odd be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$, and $U \subset X$ an open subset with smooth bounary. Then

$$
\exists c>0, \forall d \gg 1, c \leq \mathbb{P}\left[\exists \mathcal{L}_{1}, \cdots, \mathcal{L}_{c d^{n}}\right. \text { pairwise disjoint, }
$$ Lagrangian, $\forall i, \mathcal{L}_{i} \sim_{\text {diff }} \mathcal{L}$, and $\left[\mathcal{L}_{1}\right], \cdots,\left[\mathcal{L}_{c d^{n}}\right]$ are independent in $\left.H_{n-1}(Z(s) \cap U, \mathbb{Z})\right]$.

At microscopical scale

Proposition. Let $x \in X$ and $\mathcal{L} \subset \mathbb{R}^{n}$ any compact smooth hypersurface. Then,

$$
\begin{gathered}
\exists c_{\mathcal{L}}>0, \forall d \gg 1, \mathbb{P} \quad\left[\exists \mathcal{L}^{\prime} \sim_{\text {diff }} \mathcal{L}, \mathcal{L}^{\prime} \text { and totally real } \mid\right. \\
\left.\mathcal{L}^{\prime} \subset Z(s) \cap B_{x, \frac{1}{\sqrt{d}}},\right] \geq c_{\mathcal{L}} .
\end{gathered}
$$

Proposition implies Theorem :

By Proposition :

$$
\begin{aligned}
c \operatorname{vol}(U) d^{n} \leq & \sum_{x \in \frac{2}{\sqrt{d}} \mathbb{Z}^{n} \cap U} \mathbb{P}\left[Z(s) \cap B_{x, \frac{1}{\sqrt{d}}} \supset \mathcal{L}\right] \\
= & \sum_{1}^{\operatorname{vol}(U) d^{n}} k \mathbb{P}[\# \text { small balls containing } \mathcal{L}=k] \\
\leq & c \frac{1}{2} \operatorname{vol}(U) d^{n} \mathbb{P}\left[\# \text { balls with } \mathcal{L} \leq c \frac{1}{2} \operatorname{vol}(U) d^{n}\right] \\
& +\operatorname{vol}(U) d^{n} \mathbb{P}\left[\# \text { balls with } \mathcal{L} \geq c \frac{1}{2} \operatorname{vol}(U) d^{n}\right]
\end{aligned}
$$

so that

$$
\frac{c}{2} \leq \mathbb{P}\left[\# \text { balls with } \mathcal{L} \geq c \frac{1}{2} \operatorname{vol}(U) d^{n}\right]
$$

Proof of the proposition in the standard case

(Based on the real proof done with J.-Y. Welschinger)

Theorem (Seifert 1936). Every compact smooth real hypersurface \mathcal{L} in \mathbb{R}^{n} can be C^{1}-perturbed into a component \mathcal{L}^{\prime} of an algebraic regular hypersurface.

By symmetry one can assume that $x=[1: 0 \cdots: 0]$. Recall that

$$
S_{x}^{d}:=d^{n / 2} Z_{0}^{d}
$$

has

1. L^{2} norm $\simeq 1$
2. is exponentially concentrated near x at scale $\frac{1}{\sqrt{d}}$.
3. On $B\left(x, \frac{1}{\sqrt{d}}\right)$,

$$
S_{x}^{d} \asymp_{d} d^{\frac{n}{2}}
$$

By Seifert Theorem, let $p \in \mathbb{R}\left[x_{1}, \cdots, x_{n}\right]$ be such that

1. p vanishes transversally onto $\Sigma:=Z(p) \cap \mathbb{B} \subset \mathbb{C}^{n}$.
2. $\Sigma \cap \mathbb{R}^{n}$ contains a diffeomorphic copy of \mathcal{L};
3. \mathcal{L} is Lagrangian, hence totally real.

For $i \geq 1$, let $z_{i}=\frac{Z_{i}}{Z_{0}}$, and define :

$$
P:=p(z \sqrt{d}) S_{x}^{d}
$$

Then

1. $\|P\|_{L^{2}} \asymp 1$ since S_{x}^{d} has an exponential decay against a polynome.
2. P vanishes along $\Sigma^{\prime} \sim \Sigma$, containing $\mathcal{L}^{\prime} \sim_{\text {diff }} \mathcal{L}$ (and other things) in $B_{x, \frac{1}{\sqrt{d}}}$, and \mathcal{L}^{\prime} is totally real.

Now a random $Q \in \mathbb{C}_{d}^{h o m}[Z]$ can be written as

$$
Q=a P+R
$$

with

$$
a \sim N_{\mathbb{C}}(0,1) \text { and } R \in P^{\perp} \subset \mathbb{C}_{d}^{\text {hom }}[Z]
$$

taken at random for the restriction of the Gaussian law on the hyperplane R^{\perp}. Then a and R are independent.

Intuitive fact : If R is C^{1}-small compared to $a P$, then 1. $Z(Q) \cap B_{x, \frac{1}{\sqrt{d}}} \sim_{\text {diff }} \Sigma \supset \mathcal{L}^{\prime} \sim_{\text {diff }} \mathcal{L}$;
2. \mathcal{L}^{\prime} remains totally real.

Making the intuition quantitative :
Second, we saw in the introduction that

$$
\mathbb{E}\left[\|R(x)\|_{F S}\right] \sim_{d} d^{\frac{n}{2}}
$$

Since the scale is $\frac{1}{\sqrt{d}}$,

$$
\mathbb{E}\left[\max _{\left.B_{x, \frac{1}{\sqrt{d}}}\|R\|_{F S}\right] \asymp_{d} d^{\frac{n}{2}} ~}\right.
$$

Again because of $\frac{1}{\sqrt{d}}$ scale,

$$
\mathbb{E}\left[\max _{B_{x, \frac{1}{\sqrt{d}}}} \frac{1}{\sqrt{d}}\|\nabla R\|_{F S}\right] \asymp_{d} d^{\frac{n}{2}} .
$$

Since p vanishes transversally, there exists $\epsilon>0$, tel que

$$
\forall z \in \mathbb{B},|p(z)|<\epsilon \Rightarrow|d p(z)|>\epsilon
$$

This implies that on $B_{x, 1 \sqrt{d}}$,

$$
|P|<\epsilon d^{n / 2} \Rightarrow|\nabla P|>\epsilon \sqrt{d} d^{n / 2}
$$

Ehresmann Theorem : For any $M>0$,

$$
\left\{\begin{array}{ccc}
|a| & \geq & M \\
\left(\|R\|+\frac{1}{\sqrt{d}}\|\nabla R\|\right)_{L^{\infty}\left(B_{x, \frac{1}{\sqrt{d}}}\right)} & < & \frac{M}{2} \epsilon d^{\frac{n}{2}}
\end{array}\right.
$$

implies that

$$
Z(f) \cap B_{x, \frac{1}{\sqrt{d}}} \sim_{\text {diff }} \Sigma
$$

with $\Sigma \supset \mathcal{L}^{\prime} \sim_{\text {diff }} \mathcal{L}$ and \mathcal{L}^{\prime} totally real.

Hence, $\mathbb{P}\left[Z(Q) \cap B_{x, \frac{1}{\sqrt{d}}} \sim \Sigma\right]$ is larger than

$$
\mathbb{P}[|a|>M] \mathbb{P}\left[\|R\|_{L^{\infty}} \text { and } \frac{1}{\sqrt{d}}\|\nabla R\|_{L^{\infty}}<\frac{M}{4} \epsilon d^{\frac{n}{2}}\right] .
$$

Markov inequality : $\mathbb{P}[X>m]<\frac{\mathbb{E} X}{m}$.
Hence,

$$
\mathbb{P}\left[\|R\|_{L^{\infty}}>\frac{M}{4} \epsilon d^{\frac{n}{2}}\right] \leq 4 \frac{\mathbb{E}\|R\|_{L^{\infty}}}{M \epsilon d^{n / 2}} \underset{d \rightarrow \infty}{\asymp} \frac{4}{M \epsilon} .
$$

Same for $\frac{1}{\sqrt{d}}\|\nabla R\|_{L^{\infty}}$.

Hence,

$$
\mathbb{P}\left[Z(Q) \cap B_{x, \frac{1}{\sqrt{d}}} \sim \Sigma\right] \geq e^{-M^{2}}\left(1-\frac{8}{M \epsilon}\right)
$$

Hence, for $M=\frac{16}{\epsilon}$, we obtain a uniform positive probability. \square

For the Theorem, it remains to prove that totally real implies non trivial homology

Totally reality and homology

Facts : If $\mathcal{L} \subset(Z, J)$ is totally real, then

- $J T \mathcal{L} \cap T \mathcal{L}=\{0\}$, so that

$$
N \mathcal{L} \sim T \mathcal{L}
$$

- If moreover $\chi(\mathcal{L}) \neq 0$ then

$$
0 \neq[\mathcal{L}] \in H_{n-1}(Z)
$$

Proof : for \mathcal{L} orientable,
$\chi(\mathcal{L})=\#\{$ zeros of a tangent vector field with signs $\}$.
$=\#\{$ zeros of a normal vector field with signs $\}$
$=[\mathcal{L}] \cdot[\mathcal{L}] . \square$

- If $\mathcal{L}_{1}, \cdots, \mathcal{L}_{k}$ are disjoint totally real submanifolds with $\chi\left(\mathcal{L}_{i}\right) \neq 0$, then they form an independent family.

Proof : Assume that

$$
\sum_{i=1}^{k} \lambda_{i}\left[\mathcal{L}_{i}\right]=0
$$

Intersecting with \mathcal{L}_{j} gives

$$
\lambda_{j}\left[\mathcal{L}_{j}\right]^{2}=0
$$

so that $\forall j, \lambda_{j}=0 \square$.

See the annex for the general proof (for X, L, h, ω).

Annexes

1. An open question : holomorphic percolation
2. A proof in the general setting
3. Peak sections

Bonus : holomorphic percolation

Let P as before, $U \subset \mathbb{C} P^{2}$ a ball, $V \subset \partial U$ and $W \subset \partial U$ two open subsets of the sphere, whose adherence are disjoint.
Conjecture. There exists $c>0$, such that for d large enough,

$$
\mathbb{P}(\exists \text { a c. c. of } Z(P) \cap U \text { intersecting } V \text { and } W)>c .
$$

- Prove in real in \mathbb{R}^{2} by G.-Beffara
- and in $\mathbb{R} P^{2}$ by Belyaev-Muirhead-Wigman.

Proof of the Proposition

- Let $p \in \mathbb{R}\left[x_{1}, \cdots, x_{n}\right]$ such that $Z(p) \subset \mathbb{R}^{n}$ contains a diffeomorphic copy of \mathcal{L} and vanishing transversally.
- Fix $x \in X$ and let S_{x}^{d} be a peak section at x for L^{d}.
- Let

$$
\chi: X \rightarrow \mathbb{R}
$$

be a cut-off function, that is $\chi=1$ in the ball $B(x, \delta)$ and $\chi=0$ oustide $B(x, 2 \delta)$, where $\delta>0$ is small enough.

- Then,

$$
s_{x}:=\chi p(z \sqrt{d}) S_{x}^{d}(z) \in C^{\infty}\left(X, L^{d}\right)
$$

is holomorphic over $B(x, \delta)$ and vanishes along $\mathcal{L}^{\prime} \sim_{\text {diff }} \mathcal{L}$ (and other things).

- Since $\mathcal{L}^{\prime} \subset \mathbb{R}^{n}$ in complex coordinates, it is totally real.

Hörmander theorem : There exist $C>0$ depending only on (X, L, h), and $u \in C^{\infty}\left(X, L^{d}\right)$, such that

$$
\sigma_{x}:=s_{x}+u \in H^{0}\left(X, L^{d}\right)
$$

and

$$
\|u\|_{L^{2}\left(h_{d}\right)} \leq C\left\|\bar{\partial} s_{x}\right\|_{L^{2}\left(h_{d}\right)}
$$

However

$$
\begin{aligned}
\left\|\bar{\partial} s_{x}\right\|_{h_{d}} & =|\bar{\partial} \chi|\left\|S_{d}^{x} \mathbf{1}_{\{|z|>\delta\}}\right\|_{h_{d}} \\
& \leq C \exp \left(-d \delta^{2}\right)
\end{aligned}
$$

Since u is holomorphic in $B_{x, \frac{1}{\sqrt{d}}}, \frac{u}{S_{d}^{x}}$ is a holomorphic function, and by the mean inequality,

$$
\left\|\frac{u}{S_{d}^{x}}\right\|_{L^{\infty}\left(B_{x, \frac{1}{\sqrt{d}}}\right)} \leq d^{n} C \exp \left(-d \delta^{2}\right)
$$

Now a random $s \in H^{0}\left(X, L^{d}\right)$ can be written as

$$
s=a \frac{\sigma_{x}}{\left\|\sigma_{x}\right\|_{L^{2}\left(h_{d}\right)}}+\tau
$$

with

$$
a \sim N_{\mathbb{C}}(0,1) \text { and } \tau \in \sigma_{x}^{\perp} \subset H^{0}\left(X, L^{d}\right)
$$

taken at random for the restriction of the Gaussian law. Then a and τ are independent.

Intuitive fact : If τ is C^{1}-small compared to $a \frac{\sigma_{x}}{\left\|\sigma_{x}\right\|_{L^{2}\left(h_{d}\right)}}$, then

$$
Z(s) \cap B_{x, \frac{1}{\sqrt{d}}} \supset \mathcal{L}^{\prime} \sim_{\mathrm{diff}} \mathcal{L}
$$

and \mathcal{L}^{\prime} is totally real.

Making the intuition quantitative : First,

$$
\begin{aligned}
\left\|\sigma_{x}\right\|_{L^{2}}^{2} & \underset{d \rightarrow \infty}{\asymp} \int_{B\left(0, \frac{\log d}{\sqrt{d}}\right)}|p(z \sqrt{d})|^{2} e^{-d\|z\|^{2}} d z \\
& \sim_{d} \quad d^{-n} \int_{\mathbb{C}^{n}}|p|^{2} e^{-|z|^{2}} d z
\end{aligned}
$$

Second, writing over $B_{x, \frac{1}{\sqrt{d}}}$

$$
s=f S_{x}^{d} \text { and } \tau=g S_{x}^{d}
$$

we have

$$
f \asymp a p(z \sqrt{d}) d^{\frac{n}{2}}+g
$$

Since p vanishes transversally, there exists $\epsilon>0$, tel que

$$
\forall z \in B_{x, \frac{1}{\sqrt{d}}},|p(z \sqrt{d})|<\epsilon \Rightarrow|d(p(z \sqrt{d}))|>\epsilon \sqrt{d}
$$

Ehresmann Theorem : For any $M>0$,

$$
\left\{\begin{array}{cl}
|a| & \geq \\
\left(\|g\|+\frac{1}{\sqrt{d}}\|d g\|\right)_{B_{x, \frac{1}{\sqrt{d}}}} & <\frac{M \epsilon}{2} d^{\frac{n}{2}} \Rightarrow Z(f) \cap B_{x, \frac{1}{\sqrt{d}}} \sim \Sigma .
\end{array}\right.
$$

Now, since g is holomorphic, $|g|^{2}$ is plurisubharmonic so that

$$
\begin{aligned}
|g(z)|^{2} & \leq \frac{1}{\operatorname{vol} B_{x, \frac{2}{\sqrt{d}}}} \int_{B_{x, \frac{2}{\sqrt{d}}}|g|^{2} d \mathrm{vol}} \\
& \leq \frac{e^{4}}{\operatorname{vol} B_{x, \frac{2}{\sqrt{d}}}} \int_{B_{x, \frac{2}{\sqrt{d}}}}\|\tau\|_{h_{d}}^{2} d \mathrm{vol}
\end{aligned}
$$

This implies that

$$
\mathbb{E}|g(z)|^{2} \leq C \max \mathbb{E}\|\tau\|_{h_{d}}^{2}
$$

Let $\left(S_{i}\right)_{i=1, \cdots, N_{d}}$ be an orthonormal basis of $H^{0}\left(X, L^{d}\right)$. Then,

$$
\mathbb{E}\|\tau\|_{h_{d}}^{2}=\sum_{i}\left\|S_{i}\right\|_{h_{d}}^{2}
$$

Theorem (Tian 1988) : For any $x \in X$,

$$
\sum_{i}\left\|S_{i}(x)\right\|_{h^{d}}^{2}=d^{n}+O\left(d^{n-1}\right)
$$

Markov inequality : $\mathbb{P}[X>m]<\frac{\mathbb{E} X}{m}$.
Hence,

$$
\mathbb{P}\left[|g|>\frac{M}{4} \epsilon d^{\frac{n}{2}}\right] \leq 4 C \frac{\mathbb{E}\|\tau\|_{h_{d}}^{2}}{M^{2} \epsilon^{2} d^{n}} \underset{d \rightarrow \infty}{\sim} \frac{4 C}{M^{2} \epsilon^{2}}
$$

Hence,

$$
\begin{aligned}
\mathbb{P}\left[Z(s) \cap B_{x, \frac{1}{\sqrt{d}}} \sim \Sigma\right] \geq & \mathbb{P}[|a|>M] \\
& \mathbb{P}\left[|g|<\frac{M}{4} \epsilon d^{\frac{n}{2}}\right. \text { and } \\
& \left.|d g|<\frac{M}{4} \epsilon d^{\frac{n}{2}} \sqrt{d}\right] \\
\geq & e^{-M^{2}}\left(1-\frac{8 C}{M^{2} \epsilon^{2}}\right) .
\end{aligned}
$$

Hence, for $M^{2}=\frac{8 C}{\epsilon^{2}}$, we obtain a uniform positive probability.
Lastly, $\mathcal{L} \subset \Sigma \cap \mathbb{R}^{n}$ is totally real, that is $T \mathcal{L} \cap i T \mathcal{L}=\{0\}$ (it is even Lagrangian). Hence, after C^{1} perturbation, its copy $\mathcal{L}^{\prime} \subset Z(s)$ remains totally real.

Existence of a peak section

Proposition (Existence of a local peak section) For any $x \in X$, there exists a local holomorophic trivizalization S_{x} of L such that

$$
\left\|S_{x}(z)\right\|_{h}=\exp \left(-\|z\|^{2}+O\left(\|z\|^{3}\right)\right)
$$

Let $x \in X$ and e_{x} be a local trivialization.
Proof. Let e_{x} any local trivialization and write

$$
\left\|e_{x}\right\|_{h}=\exp (-\varphi)
$$

where φ is a plurisubharmonic function satisfying

$$
i \partial \bar{\partial} \varphi=\omega
$$

The Taylor expansion of φ at x writes

$$
\varphi(x+z)=\Re Q(z)+\sum_{i, j} \partial_{z_{i} \overline{z_{j}}}^{2} \varphi(x) z_{i} \overline{z_{j}}+O\left(\|z\|^{3}\right)
$$

where

$$
Q(z)=\varphi(x)+\sum_{j} \partial_{z_{j}} \varphi z_{j}+\sum_{i, j} \partial_{z_{i} z_{j}}^{2} \varphi z_{i} z_{j},
$$

so that

$$
\left\|e_{x} e^{\varphi(x)+Q(z)}\right\| \leq \exp \left(-\|z\|_{g_{\omega}}^{2}\right)
$$

where g_{ω} is the metric associated to $\omega(x)$. \square
Proof of the first part of Tian's theorem. Hörmander estimate for S_{x}^{d}, as above. \square

