CC2 - ALGÈBRE L3A 21 OCTOBRE 2015. DURÉE: 3H

DOCUMENTS, TÉLÉPHONES PORTABLES ET CALCULATRICES INTERDITS

Exercice 1. Soit $Aff(\mathbb{R})$ l'ensemble des bijections de \mathbb{R} dans lui-même de la forme

$$f_{a,b}: \begin{array}{c} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto ax + b, \end{array}$$

avec $a \in \mathbb{R}^{\times}$ et $b \in \mathbb{R}$.

- 1) Montrer que $\mathrm{Aff}(\mathbb{R})$ est un groupe pour la composition des applications.
- 2) Montrer que l'ensemble $T(\mathbb{R})$ des applications de la forme

$$\mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto x + b,$$

avec $b \in \mathbb{R}$, est un sous-groupe distingué de Aff(\mathbb{R}).

3) Montrer que l'on a un isomorphisme de groupes

$$\operatorname{Aff}(\mathbb{R})/\operatorname{T}(\mathbb{R}) \simeq \mathbb{R}^{\times}.$$

Exercice 2. On rappelle que si deux éléments d'ordre fini x, y d'un groupe G commutent et ont des ordres premiers entre eux, alors xy est d'ordre fini et o(xy) = o(x)o(y).

Dans la suite, G désigne un groupe fini d'ordre $n \geq 2$.

- 1) Montrer qu'il existe un plus petit entier $e \ge 2$ tel que $x^e = 1_G$ pour tout $x \in G$. On le note $\exp(G)$ et on l'appelle exposant de G.
- 2) Calculer $\exp(G)$ lorsque $G = \mathbb{Z}/n\mathbb{Z}, D_4, S_3$.
- 3) Montrer que $\exp(G) = \operatorname{ppcm}(o(x), x \in G)$.
- 4) On suppose que G est abélien, et on écrit $\exp(G) = p_1^{m_1} \cdots p_r^{m_r}$, où les p_i sont des premiers deux à deux distincts, et $m_i \geq 1$.
- a) En utilisant 3), montrer qu'il existe $y_i \in G$ dont l'ordre est divisible par $p_i^{m_i}$.
- b) En déduire qu'il existe $x_i \in G$ d'ordre $p_i^{m_i}$, puis qu'il existe $g \in G$ tel que $\exp(G) = o(g)$.
- c) Montrer que $|G| = \exp(G)$ si et seulement si G est cyclique.

2 DOCUMENTS, TÉLÉPHONES PORTABLES ET CALCULATRICES INTERDITS

5) Les résultats de 4)b) et 4 c) sont-ils vrais si G n'est pas supposé abélien?

Exercice 3. Soit E un ensemble à n éléments, avec $n \geq 3$, et soit $a \in E$. Soit $F = E \setminus \{a\}$.

1) Soit $H_a = \{ \sigma \in S(E) \mid \sigma(a) = a \}$. Montrer que l'on a des isomorphismes

$$H_a \simeq S(F) \simeq S_{n-1}$$
.

- 2) On suppose que $n \geq 5$. Soit H un sous-groupe de S(E) d'indice n.
- a) On fait agir S(E) sur X = S(E)/H par translation. Montrer que le morphisme $\varphi : S(E) \longrightarrow S(X)$ est non trivial, et que son image contient au moins n éléments distincts (utiliser la transitivité de cette action).
- b) En étudiant l'indice de $\ker(\varphi)$ dans S(E), montrer que $|\ker(\varphi)| < \frac{n!}{2}$. En déduire que φ est injectif.
- c) Montrer que pour tout $h \in H$, $\varphi(h)$ fixe $\overline{\mathrm{Id}}_E \in X$.
- d) Déduire des questions précédentes que $H \simeq S_{n-1}$.
- 3) Résumer le résultat obtenu dans cet exercice.

Exercice 4.

Notation. Si G est un groupe et H un sous-groupe, pour tout $g \in G$, on note

$$gHg^{-1} = \{ghg^{-1} \mid h \in H\},\$$

ainsi que

$$HgH = \{h_1gh_2 \mid h_1, h_2 \in H\}.$$

Soit G un groupe agissant sur un ensemble X non vide.

1) Montrer que pour tout $x_0 \in X$, et tout $g \in G$, on a $\operatorname{Stab}_G(g \cdot x_0) = g \operatorname{Stab}_G(x_0) g^{-1}$.

Dans la suite, on suppose que $|X| \geq 2$ et que G agit doublement transitivement sur X, c'est-à-dire que pour tous couples (x_1, x_2) et (y_1, y_2) de points de X tels que $x_1 \neq x_2$ et $y_1 \neq y_2$, il existe $g \in G$ tel que $g \cdot x_1 = y_1$ et $g \cdot x_2 = y_2$.

Soit $x_0 \in X$ fixé. Dans toute la suite, on note $H = \operatorname{Stab}_G(x_0)$.

2)

- a) Montrer que G agit transitivement sur X. Expliciter une bijection entre les ensembles G/H et X.
- b) Montrer que H agit transitivement sur $X \setminus \{x_0\}$.

- c) Soient g, a dans $G \setminus H$. En considérant les points $g \cdot x_0$ et $a \cdot x_0$ de X, déduire de b) que $a \in HgH$.
- d) En déduire que pour tout $g \in G \setminus H$, on a $G = H \sqcup HgH$ (où $\ll \sqcup \gg$ désigne l'union disjointe).
- 3) En déduire que tout sous-groupe de G contenant strictement H est égal à G.
- 4) Soit N un sous-groupe distingué de G.
- a) Montrer que l'ensemble $NH = \{nh | n \in N, h \in H\}$ est un sous-groupe de G.
- b) Déduire de ce qui précède que NH est égal à H ou G.
- 5)
- a) Déduire de 1) que le noyau du morphisme $\varphi\colon G\longrightarrow S(X)$ induit par l'action de G est $\bigcap_{g\in G}gHg^{-1}.$
- b) En déduire que soit N fixe chaque point de X, soit N agit transitivement sur X.