
ALGEBROGEOMETRIC SUBGROUPS OF MAPPING CLASS GROUPS

PHILIPPE EYSSIDIEUX AND LOUIS FUNAR

Abstract. We provide new constraints for algebrogeometric subgroups of mapping class
groups, namely images of fundamental groups of curves under complex algebraic maps to
the moduli space of smooth curves. Specifically, we prove that the restriction of an infi-
nite, finite rank unitary representation of the mapping class group to an algebrogeometric
subgroup should be infinite, when the genus is at least 3. In particular the restriction of
most Reshetikhin-Turaev representations of the mapping class group to such subgroups is
infinite. To this purpose we use deep work of Gibney, Keel and Morrison to constrain the
Shafarevich morphism associated to a linear representation of the fundamental group of the
compactifications of the moduli stack of smooth curves studied in our previous work. As
an application we prove that universal covers of most of these compactifications are Stein
manifolds.
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1. Introduction and statements

1.1. Motivation. Recall that the so-called AMU conjecture [1] claims that the image of a
pseudo-Anosov mapping class by a Reshetikhin-Turaev representation of large enough level
has infinite order. What we will show here is a strengthening of a consequence of this con-
jecture. Namely, such infiniteness statement holds uniformly for algebrogeometric subgroups
of the mapping class groups, i.e. subgroups which are images of surface groups, under the
condition that they are realized by algebraic maps between the corresponding spaces. In
particular, this extends results of Koberda and Santharoubane from [29]. The idea of the
proof is to use geometric tools such as Shafarevich morphisms [13] to promote the infiniteness
from mapping class groups to their subgroups. To this purpose we consider the uniformizable
stacky compactifications of the stack of smooth curves from [15] and build on classical results
about divisors on the moduli space of curves [20]. We originally conjectured the infinite-
ness result above since it can be applied to show that the universal covering space of these
compactifications are Stein manifolds with a few exceptions.

Our results can also be applied to provide restrictions on the fundamental groups of Kodaira
fibrations. Recall that a Kodaira fibration is a smooth projective surface X admitting a
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2 P. EYSSIDIEUX AND L. FUNAR

holomorphic map ϕ : X → C to a smooth algebraic curve C, which is a smooth fiber bundle
such that the fibres are connected. Kodaira and Kas showed that the genus of the base is
then g ≥ 2 and the genus of fiber is h ≥ 3 unless the fibration is isotrivial, i.e. isomorphic to
a product when pulled-back to a finite étale covering of C. Moreover, we have a short exact
sequence:

1 → π1(Σh) → π1(X) → π1(Σg) → 1,

where Σq denotes the closed orientable surface of genus q. Viewing ϕ as a nonisotrivial family
of smooth curves, it provides a nonconstant holomorphic map f : C → Mg into the moduli
space Mg of smooth genus g curves, whose induced homomorphism f∗ : π1(C) → π1(Mg)
coincides with the homomorphism π1(Σg) → Out+(π1(Σh)) associated to the short exact
sequence above. Note that the outer action f∗ determines uniquely the extension and thus a
surface bundle over a surface, up to diffeomorphism. Catanese ([7], Question 16) asked about
conditions needed to be satisfied by such group extensions in order to occur as the fundamental
group of a Kodaira fibration. The Torelli theorem yields that a Kodaira fibration for which
f∗(π1(C)) belongs to the Torelli subgroup of the mapping class group Mod(Σg) is isotrivial.
This was considerably strengthened by Arapura in [3], who used Hodge theory to show that
restrictions of certain Prym-type partial representations to algebrogeometric subgroups are
infinite unless ϕ is isotrivial. By our results, f∗(π1(C)) cannot likewise be virtually contained
in the normal subgroup generated by the p-th powers of Dehn twists for p ≥ 5 odd or in the
larger subgroup which is the kernel of the level p Reshetikhin-Turaev quantum representation,
unless ϕ is isotrivial.

1.2. Definitions. All algebraic varieties and stacks considered in these notes will be over C
and we will mainly think of them through their analytification as complex-analytic objects.
We use the same notations and conventions as in [15].

Let g, n ∈ N such that 2−2g−n < 0 and let p ∈ N∗ be a positive integer. We denote by Mn
g

the moduli stack of genus g stable curves with n marked points and by Mn
g its coarse moduli

space. We omit n in the notation when n = 0. Further Mn
g will denote the moduli stack of

smooth curves of genus g and n punctures and Mn
g ⊂Mn

g the Zariski open subset consisting of
isomorphism classes of smooth curves. These stacks are separated, smooth, Deligne-Mumford
and their moduli spaces are quasiprojective [26, 27], but non proper except in the trivial case
g = 0, n = 3.

Set Mod(Σn
g ) for the mapping class group of the genus g orientable surface Σn

g with n
punctures (or marked points) and PMod(Σn

g ) for the pure mapping class group consisting of
the isotopy classes which fix pointwise the punctures. Then PMod(Σn

g ) and Mod(Σn
g ) also

occur as the fundamental groups of the analytification Mn an
g of the moduli stack of curves

(see [12]) and [Sn\Mn an
g ], respectively, where Sn acts on Mn an

g by permuting the markings.
There are only finitely many, say Ng,n conjugacy classes of Dehn twists, or equivalently,

distinct orbits of essential simple closed curves on Σn
g under the mapping class group ac-

tion. For instance Ng = ⌊g2⌋ + 1, Ng,1 = g. Simple closed curves orbits are determined
by the homeomorphism type of the complementary subsurface, which might be either con-
nected for non-separating curves or disconnected and hence determined by the set/pair of
genera of its two components, for separating curves. Fix an enumeration of these homeo-
morphism types starting with the non-separating one. For each vector of positive integers
k = (k0, k1, k2, . . . , kNg,n−1) we define Mod(Σn

g )[k] as the (normal) subgroup generated by
k0-th powers of Dehn twist along non-separating simple closed curves and kj-th powers of
Dehn twists along simple closed curves of type j. As a shortcut we use Mod(Σn

g )[k;m] for
k = (k,m,m,m . . . ,m), Mod(Σn

g )[k] for k = (k, k, . . . , k) and Mod(Σn
g )[k;−] for k = (k; ),

where ki are absent for i > 0.
For every k ∈ NNg,n

>0 the quotient PMod(Σn
g )/Mod(Σn

g )[k] is the fundamental group of a
smooth proper Deligne-Mumford stack Mn an

g [k] compactifying Mn an
g whose coarse moduli
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space is the moduli space Mn an
g of stable n-punctured curves of genus g, hence is projective

by [27].
Let Ki denote the kernel of the homomorphism PMod(Σn

g ) → PMod(Σn−1
g ) induced by the

forgetful map Σn
g → Σn−1

g which omits the i-th puncture. By Birman’s exact sequence, Ki is
isomorphic to π1(Σn−1

g ), when n ≥ 1 and Σn−1
g is neither a sphere, a torus, a 1-punctured nor

a 2-punctured sphere. We call Ki the geometric surface subgroups of PMod(Σn
g ).

Recall that an algebraic family f : C → Mn
g is non-isotrivial if and only f∗(π1(C)) is

infinite.

1.3. Restricting unitary representations. The first result of this article is:

Theorem 1. Let g ≥ 3, ρ be a finite rank unitary representation of PMod(Σn
g ) with infinite

image. Assume furthermore that the restriction of ρ to every geometric surface subgroup is
also infinite, when n ≥ 1. Then for every non-isotrivial algebraic family f : C → Mn

g of
n-punctured smooth genus g curves the image ρ ◦ f∗(π1(C)) is infinite.

Remark 1.1. Actually the same result holds more generally for any semi-simple finite di-
mensional representation of PMod(Σn

g ) which factors through some quotient PMod(Σn
g )/

Mod(Σn
g )[p].

This result can be effectively used to constrain monodromy groups of non-isotrivial holo-
morphic maps f : C → Mn

g of smooth n-pointed curves of genus g, defined on a hyperbolic
Riemann surface C. Shiga has proved in ([40], Thm. 1) that f∗(π1(C)) is irreducible and fur-
ther Daskalopoulos and Wentworth ([11], Thm. 5.7) improved this for n = 0 to the effect that
f∗(π1(C)) is a sufficiently large subgroup of PMod(Σg), namely it contains two pseudo-Anosov
mapping classes with distinct fixed points in the space of projective measured laminations.
This condition is sufficient to realize the monodromy homomorphism by a smooth equivariant
harmonic map between C̃ and the Teichmüller space ([11], Cor. 5.5) in the case when C is
compact.

1.4. Restricting Reshetikhin-Turaev representations. Quantum representations pro-
vide a large supply of linear representations which can be used to this purpose. Consider
the Reshetikhin-Turaev quantum representations ρg,p,(i) (in the version of [5], notation of [15,
Section 3.1]) for all possible colors of the boundary:

ρg,p :=
∏
i∈Cn

p

ρg,p,(i)

It is known that Mod(Σn
g )[p] is contained in the kernel of ρg,p and thus ρg,p are representations

of π1(Mn
g [p]) = PMod(Σn

g )/Mod(Σn
g )[p], for odd p ≥ 5. Moreover, images of Dehn twists have

orders dividing 2p so that Mod(Σn
g )[16p, 2p] is contained in the kernel of ρg,p and hence ρg,p

are representations of π1(Mn
g [16p, 2p]) = PMod(Σn

g )/Mod(Σn
g )[16p, 2p], for even p ≥ 10, see

[15] for details. The following statement is a consequence of Proposition 2.3 and was open to
the best of our knowledge:

Theorem 2. Let g, n with g ≥ 2. We assume that either p ≥ 5 is odd or p ≥ 10 is even and
(g, n, p) ̸= (2, 0, 12). Then for every non-isotrivial algebraic family f : C → Mn

g of smooth
n-pointed curves of genus g, the Reshetikhin-Turaev representation ρg,p restricted to the image
f∗(π1(C)) has infinite image. In particular, under the same assumptions on (g, p) the image of
the fundamental group of a positive-dimensional algebraic subvariety of Mg is infinite under
the Reshetikhin-Turaev representations ρg,p of the mapping class group.

The infiniteness result above was known for some particular curves C thanks to the series
of papers [16, 18, 29, 33, 35]. The strength of our result lies in that the surface group is not
required to be a normal subgroup of the mapping class group, as in the previous works.
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By Shiga’s result ([40], Cor. 1) we know that f∗(π1(C)) must contain a pseudo-Anosov
mapping class, because it is an irreducible subgroup. Thus, for p large enough depending
on the family f , the statement above is a consequence of the AMU conjecture (see [1]).
Although our conclusion is weaker than the AMU conjecture, it actually works uniformly for
every allowed value of the level p and for any algebraic family of curves.

Recently Godfard established the existence of complex variations of Hodge structures whose
monodromy is given by the Reshetikhin-Turaev representations ρg,p and for more general
modular tensor category whose associated representations are semi-simple (see [24]). Using
classical results of Corlette ([8]) and Simpson ([41]) we deduce:

Corollary 3. Under the assumptions of Theorem 2, the Zariski closure of ρg,p(f∗(π1(C))) is
a positive dimensional semi-simple group of Hodge type.

Whether the results above could be extended to all finite rank semi-simple representations of
PMod(Σn

g ) with infinite restrictions to geometric surface subgroups is still unknown. Moreover
the question to decide if ρg,p(f∗(π1(C))) is an arithmetic group is quite challenging.

Note that the algebraicity assumption is necessary here, since for any p there exist suffi-
ciently large subgroups of Mod(Σn

g )[p], which are therefore contained in the kernel of ρg,p.

Corollary 4. Let g, n with g ≥ 2. Assume that either p ≥ 5 is odd or p ≥ 10 is even and
(g, n, p) ̸= (2, 0, 12). Then for every non-isotrivial algebraic family f : C → Mn

g of smooth
n-pointed curves of genus g, the image of f∗(π1(C)) in PMod(Σn

g )/Mod(Σn
g )[p] is infinite.

1.5. The Stein property. Let T n
g [k] be the universal covering stack [38] of the analytifica-

tion of Mn
g [k]. As an application of the previous results we obtain the following:

Theorem 5. Let g, n with g ≥ 2.

(1) If p ≥ 7 is odd, then T n
g [p] is a Stein manifold.

(2) If p is even and p ≥ 14, p ̸∈ {20, 24} then T n
g [2p, p/g.c.d.(p, 4)] is a Stein manifold.

The theorem is proved in section 4 and improves on Theorem 2 above and the key Propo-
sition 2.3.

1.6. Teichmüller curves and Veech groups. The theorem above applies to the Teich-
müller curve attached to a Veech surface, as explained in section 5. We then obtain:

Corollary 6. Let Σg → Σ1, g ≥ 2, be a ramified covering which is branched over a single point
of the torus Σ1. Let G ⊂ Mod(Σg) be the subgroup of mapping classes of homeomorphisms of
Σg which lift homeomorphisms of Σ1. Then the image of ρg,p(G) is infinite for odd p ≥ 7 and
even p ≥ 14, p ̸∈ {20, 24}.

We now formulate a corollary in terms of groups generated by two multicurves to illustrate
this point. Recall that a multicurve c on the surface Σn

g is the union of disjoint, essential
simple closed curves. We allow a multicurve to contain several parallel copies of the same
curve. If c and d are two multicurves, we can isotope them in minimal position, namely such
that |c∩ d| = i(c, d), where i(c, d) denotes the minimal number of intersection points between
the two isotopy classes of multicurves. The configuration graph G(c∪d) has vertices associated
to connected components of c and of d and edges associated to intersection points between
the components. Leininger considered in [34] the classical Dynkin graphs An, Dn, E6, E7 and
E8, which he called recessive and the critical graphs P2n, Qn, R7, R8 and R9.

Corollary 7. Let G(c, d) be the subgroup of PMod(Σn
g ) generated by the Dehn multitwists Tc

and Td with connected c ∪ d and c and d in minimal position. Assume that the configuration
graph G(c ∪ d) is either critical or recessive. Then the image of ρg,p(G(c, d)) is infinite, for
odd p ≥ 7 and even p ≥ 14, p ̸∈ {20, 24}.
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1.7. Degree two cohomology classes. In a different direction, we use a recent theorem
due to Dahmani ([10]) to give some evidence towards the Toledo conjecture for the stacks
Mn

g [k].

Theorem 8. If g ≥ 2 and g.c.d(k0, . . . , kNg,n) is divisible enough then

H2(Mod(Σn
g )/Mod(Σn

g )[k],R) ̸= 0.

Remark 1.2. The results of [15] and of the present note extend to all TQFTs attached to a
Rational Conformal Field Theory, or modular functor as in [24], assuming their restrictions
to geometric surface subgroups are infinite.

Acknowledgements. We would like to thank Gavril Farkas for showing us the reference
[20] and Marco Boggi, Benoît Claudon, François Dahmani, Thomas Delzant, Pierre Godfard,
Henri Guénancia, Erwan Lanneau, Carl Lian, Julien Marché, Vasily Rogov and Yibo Zhang
for interesting discussions related to some topics discussed in this note.

2. Proof of Theorem 1

The key ingredient is the fact that the Shafarevich morphisms for the uniformizable stacky
compactifications of moduli spaces of curves endowed with a semi-simple representation of
the fundamental group is a birational morphism (see Proposition 2.3). This is a consequence
of deep results of Gibney, Keel and Morrison describing all fibrations of the Deligne-Mumford
compactifications of moduli space of curves (see Theorem 2.1). Therefore algebraic curves
in the moduli space cannot be contracted by the corresponding unitary representation of the
mapping class group.

2.1. Stacky compactifications of moduli space of smooth curves. For every k ∈ NNg,n

>0
the quotient PMod(Σn

g )/Mod(Σn
g )[k] is the fundamental group of a smooth proper Deligne-

Mumford stack Mn an
g [k] compactifying Mn an

g whose coarse moduli space is the moduli space
Mn an

g of stable n-punctured curves of genus g, hence is projective, see [15].
Recall that a smooth Deligne-Mumford stack X is uniformizable if X an ∼= [X/G] where

the finite group G acts on X a smooth complex manifold (the action need not be effective).
If X is uniformizable then its analytification is equivalent to a quotient stack of a properly
discontinuous action of its fundamental group on a simply connected complex manifold X an ∼=
X̃ univ/π1(X ), where X̃ univ is the universal covering space of X an.

The following facts were proved in [15]:

Proposition 2.1. (1) If p ≥ 5 is odd, Mn an
g [p] is uniformizable.

(2) If p ≥ 12 is even and (g, n, p) ̸= (2, 0, 12), Mn an
g [2p, p/g.c.d.(p, 4)] is uniformizable.

A key ingredient in the sequel is the notion of Shafarevich morphism:

Definition 2.2. Let X be a connected smooth proper Deligne-Mumford stack and ρ : π1(X ) →
GLN (C) be a finite rank semi-simple complex linear representation, namely which has a
Zariski dense image in a reductive subgroup of GLN (C). A Shafarevich morphism asso-
ciated to (X , ρ) is a surjective map of stacks sρ : X → Sρ with connected fibers, onto a
uniformizable normal proper Deligne-Mumford stack Sρ, with the following property: for any

map Z f→ X from a connected algebraic variety Z the image ρ(f∗π1(Z)) is finite if and only
if smod

ρ ◦ f(Z) = {pt}, where smod
ρ : Xmod → Smod

ρ denotes the moduli map.

Our main technical tool is the following result:

Proposition 2.3. Suppose that Mn
g [k] is uniformizable. Let g ≥ 2 and ρ be a semi-simple

finite rank complex linear representation of π1(Mn
g [k]) = PMod(Σn

g )/Mod(Σn
g )[k] with infinite

image. Assume that ρ restricts to infinite representations on all geometric surface subgroups,
when n ≥ 1.
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(1) Then the Shafarevich morphism smod
ρ : Mn

g → Smod
ρ is a birational contraction whose

exceptional locus lies in the boundary.
(2) If C is a curve, then for every non-isotrivial algebraic family f : C → Mn

g of n-
punctured smooth genus g curves the image ρ ◦ f∗(π1(C)) is infinite.

The proof, postponed at the end of this section, is a simple argument based on results
on the geometry of the moduli space of curves from [20] and the basic properties of the
Shafarevich morphism [13, 6]. We think that the uniformizability assumption is not essential
in Proposition 2.3, see Remark 2.9.

Note that the corollary does not apply to the homology representation in Sp(2g,Z/k0Z)
which has finite image since it takes value in a finite group and in this case k = [k0;−].

End of proof of Theorem 1. According to [2], when g ≥ 3 every finite rank unitary (or,
more generally, unipotent-free) representations of PMod(Σn

g ) factors through some quotient
PMod(Σn

g )/Mod(Σn
g )[p], for some positive integer p.

By passing to a tuple k such that p divides all its components, if needed, we can assume
that Mn

g [k] is uniformizable thanks to Proposition 2.1. Therefore we can apply the result of
Proposition 2.3 to complete the proof of Theorem 1. □

2.2. Shafarevich morphisms for stacks. Let X be a connected smooth proper Deligne-
Mumford stack. Let ρ : π1(X ) → GLN (C) be a semi-simple finite rank complex linear
representation.

Proposition 2.4. Assume that X is uniformizable. Then there exists a unique up to equiva-
lence Shafarevich morphism sρ : X → Sρ.

Remark 2.5. One could restrict in Definition 2.2 to the case Z is a smooth algebraic curve.

Proof. First of all if X is not a stack but a compact Kähler manifold this follows from the
existence of the Shafarevich morphism for ρ, see [6, Proposition 3.14], by the very definition of
the Shafarevich morphism. As the existence of the Shafarevich morphism is bimeromorphically
invariant, the same holds if X is bimeromorphic to a compact Kähler manifold, in particular
if it is Moishezon, hence if X is representable stack.

Choose ψ : X → X a finite uniformization so that X is a smooth complex algebraic space,
with an action of a finite group G, so that X ≃ [X/G]. Applying the previous remark, we
construct the Shafarevich morphism attached to the restriction ρ′ of ρ to π1(X), say Shρ′ :
X → Shρ′(X). The action of G descends and we get a map of stacks X → Sρ = [Shρ′(X)/G]
which has the required property. □

Remark 2.6. With notation from Definition 2.2, let us further assume that Z is smooth and
proper. Then f∗ρ is a finite rank semi-simple complex linear representation (see [8]).

Lemma 2.7. If X has a projective moduli space so has Sρ.

Proof. The projectivity of Sρ follows from the projectivity of Shρ(X) when X is a com-
plex projective manifold [6]. The details being omitted there, let us give the idea of the
proof. The normal complex space Shρ(X) comes equipped with a holomorphic line bundle
that satisfies the Nakai-Moishezon criterion for ampleness [13]. A compact complex space
having such a holomorphic line bundle is projective. Indeed by Siu’s solution of the Grauert-
Riemenschneider conjecture, it is Moishezon hence an algebraic space. One then applies [30,
Theorem 3.11]. One can alternatively adapt Kollár’s proof of the Nakai-Moishezon criterion
for algebraic spaces to the complex-analytic context. A somewhat delicate part is that a line
bundle on a compact complex space is ample if and only if its pull-back by a finite surjective
morphism is ample. □

Lemma 2.8. If ϕ : X ′ → X is a map of uniformizable connected smooth proper Deligne-
Mumford stacks and ρ is as above, there is a natural map Sϕ∗ρ → Sρ such that Smod

ϕ∗ρ → Smod
ρ

is a finite morphism.
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Proof. This functoriality of the Shafarevich morphism is an easy consequence of the definition,
see [13] for the case of compact projective manifolds. □

Remark 2.9. For smooth Deligne-Mumford orbifolds with a projective moduli space, one can
probably drop the uniformizability condition in Proposition 2.4 and Lemma 2.8. One has to
use [14, Prop. 1.16] and redo the construction of the Shafarevich morphism in [13] working on
the manifold X ′ which is endowed with a properly discontinuous action of π1(X ). However,
the existing litterature is restricted to a less general setting. Since we have no convincing
application to Theorem 2.3 when the uniformizability assumption is not satisfied, we leave it
to the interested reader.

2.3. Application to Mn
g [k]. In [20] Gibney, Keel and Morrison described all fibrations of

Mn
g to projective varieties. Recall that a fibration means a proper surjective morphism with

geometrically connected fibers. Specifically, they proved:

Theorem 2.1 ([20] Corollary 0.10, 0.11). If g ≥ 2 and n ≥ 1, then any fibration of Mn
g

to a projective variety factors through a projection to M j
g for some j < n, while Mg has no

fibrations. Moreover, if g ≥ 1, then any birational morphism from Mn
g to a projective variety

has exceptional locus contained in ∂Mn
g .

We now want to analyse the Shafarevich morphisms associated to X = Mn
g [k]. Hence-

forth we assume Mg[k] is uniformizable, and fix ρ : π1(Mn
g [k]) → GLN (C) a semi-simple

representation.
Let Ci ⊂ Mn

g be the algebraic curve which appears as a fiber of the (representable) i-th
forgetful map Mn

g → Mn−1
g . Recall that π1(Ci) identifies with Ki, when g ≥ 2, from the

Birman exact sequence.

Proposition 2.10. Whenever π1(Mn
g [k]), g ≥ 2, has a finite rank complex linear represen-

tation ρ with an infinite image on all π1(Ci) i = 1, . . . , n, then the Shafarevich morphism
smod
ρ :Mn

g → Smod
ρ is a birational contraction whose exceptional locus lies in the boundary.

Proof. By Remark 2.6 Smod
ρ is a projective variety. According to Theorem 2.1 above every

fibration Mn
g → V to a projective variety V is the composition of a birational morphism

M j
g → V with the tautological projection Mn

g → M j
g for some j < n. Thus the morphism

smod
ρ : Mn

g → Smod
ρ is either a birational morphism whose exceptional locus lies in ∂Mn

g

or factors through one of the n natural forgetful maps Mn
g → Mn−1

g . Observe that smod
ρ

cannot be the constant morphism since ρ has an infinite image. When n ≥ 1 the curves
Ci are not contracted by smod

ρ because π1(Ci) have infinite images by ρ, according to our
assumptions. □

Proof of Proposition 2.3. It follows from Remark 2.5 and Proposition 2.10 that smod
ρ is a

birational morphism and an isomorphism on Mn
g . Therefore the curve C is not contracted by

smod
ρ and hence ρ(π1(C)) is infinite by the definition 2.4 of the Shafarevich morphism. □

3. Proof of Theorem 2

It suffices to show that (linearized versions of) Reshetikhin-Turaev representations satisfy
the assumptions of Proposition 2.3. To this purpose we need to prove some infiniteness
statements for the quantum representations considered. Specifically, we shall prove:

Proposition 3.1. Let g, n with 2g− 2+ n > 0 and p ̸∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 20, 24}. Then
there exists some quantum representation of the groups Mod(Σn

g )/Mod(Σn
g )[p], for odd p and

Mod(Σn
g )/Mod(Σn

g )[2p, p/g.c.d.(p, 4)] for even p, respectively, whose image is infinite.
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It is enough to consider the case when (g, n) ∈ {(1, 1), (0, 4)}. The case (0, 4) was treated
in [16, 35]. Assume from now on that (g, n) = (1, 1).

Let B3 denote the braid group on two strands, with the usual presentation in its standard
generators:

B3 = ⟨σ1, σ2 | σ1σ2σ1 = σ2σ1σ2⟩
There is a surjective homomorphism B3 → Mod(Σ1

1), sending the standard generators σ1 and
σ2 into the Dehn twists Ta and Tb respectively. Here a is a meridian and b a longitude of the
torus Σ1

1. By composing the quantum representation ρ1,p,(i) of Mod(Σ1
1) with this surjection

we obtain a projective representation of B3. As H2(B3) = 0, there is a linear lift of this
projective representation. However, this lift depends on the choice of the lifts t and t∗ of
ρ1,p,(i)(Ta) and ρ1,p,(i)(Tb), respectively. A particular lift was defined in ([22], Prop. 11.7),
although this was implicit in earlier work as [36].

For p ∈ N∗ we denote by v2(p) ∈ N∗ the 2-adic valuation, i.e. largest integer such that
p

2v2(p)
is an odd integer. We now prove the following lemma, which implies the claimed result

for odd p:

Lemma 3.2. If p

2v2(p)
≥ 7, then there exists (i) ∈ Cn

p such that ρ1, p

2v2(p)
,(i)(PMod(Σ1

1)) is
infinite.

Proof. The space W1,p,(i) has a basis given by p-admissible colorings of the tadpole graph with
one tail labeled i. Thus an element of this basis is determined by the color a on the loop edge.
Note that t and t∗ have the eigenvalues (−1)aAa(a+2), where a is belongs to the p-admissible
colorings (see [22, 36]).

Let first p be odd, p ≥ 7. The set of colors is then Cp = {0, 2, 4, . . . , p − 3}. We set the
color i = p− 5 > 0. Then the space of conformal blocks W1,p,(p−5) has dimension 2. Indeed,
when p = 4k + 1 the color a of the loop edge in a p-admissible coloring of the tadpole with
one tail labeled p− 5 takes the values a ∈ {2k− 2, 2k} and when p = 4k+1 the color a takes
the values a ∈ {2k, 2k + 2}.

By direct calculation, or using [17] and the fact that the image is not abelian, we derive
that the 2-dimensional linear representation of B3 is the Burau representation twisted by a
character. The eigenvalues of a Dehn twist along a nonseparating simple closed curve in the
linear lift of the quantum representation are Aa(a+2), where a is p-admissible. As the Burau
representation at the root of unity q has eigenvalues 1 and −q, it follows that the Burau
representation factor arising above is the one evaluated at q = −A−2, if p = 4k + 1 and
q = −A2 if q = 4k + 3. Since A is a primitive 2p-th root of unity we derive that −q is a
primitive p-th root of unity. According to [17] the image of the Burau representation at the
negative of a p-th root of unity is an infinite triangle group, as soon as p ̸∈ {2, 3, 4, 5}. This
implies the claim for odd p.

When p is even and q is the maximal odd divisor q = p

2v2(p)
we take i = q − 5. Then the

image of ρg,q,(i)(PMod(Σn
g )) is infinite, as soon as q ≥ 7. □

To deal with the even case, we first prove:

Lemma 3.3. If p ≡ 0 (mod 4) and p does not divide 120, then ρ1,p,(p−6)(PMod(Σ1
1)) is

infinite.

We improve the strategy used in [31], where the result is proved for particular families of
p. The key ingredient is the following lemma due to Coxeter:

Lemma 3.4. A group which admits an irreducible representation on a finite dimensional
vector space V preserving an indefinite Hermitian form should be infinite.

Proof of Lemma 3.3. Recall that for even p the set of colors Cp = {0, 2, 4, . . . , p−4
2 }. The

p-admissibility conditions implies that the boundary color is even, say i = 2c. Consider
p = 4k and i = 2k − 6. The space of conformal blocks W1,p,(2k−6) is then of dimension 5,
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with a basis us, s ∈ {0, 1, 2, 3, 4} where us corresponds to the colored tadpole graph whose
loop edge is labeled s + k − 3. The vectors us are eigenvectors for the matrix t. After
rescaling the B3 representation by a factor (−A)−k2+1, the eigenvalues of t are respectively
λ0 = −ζ4, λ1 = ζ, λ2 = 1, λ3 = −ζ and λ4 = −ζ4, where ζ = A2k+1 is also a primitive 2p-th
root of unity.

The Hermitian form ⟨ , ⟩ invariant by the linear lift of the quantum representation was
computed in [5] and we have:

⟨us+1, us+1⟩
⟨us, us⟩

=
[2k − 4 + s][s+ 1]

[k − 1 + s][k − 2 + s]
, s ∈ {0, 1, 2, 3},

where the quantum integer [n] is defined as

[n] =
A2n −A−2n

A2 −A−2

Let A = exp
(
2pi

√
−1ℓ

2p

)
, where ℓ is odd. By direct computation we have for any ℓ that:

⟨u1, u1⟩
⟨u0, u0⟩

> 0,
⟨u4, u4⟩
⟨u3, u3⟩

> 0.

On the other hand
⟨u2, u2⟩
⟨u1, u1⟩

= 4 sin

(
3πℓ

2k

)
cos

(
πℓ

2k

)
sin

(
πℓ

4k

)
,

⟨u3, u3⟩
⟨u2, u2⟩

= 2 sin

(
3πℓ

2k

)
cos

(
πℓ

2k

)
.

These quantities are both negative when 2k > ℓ > 4
3k. In this case the Hermitian form has

signature (+,+,−,+,+). Therefore, we can choose the primitive 2p-th root of unity A such
that the Hermitian form ⟨ , ⟩ is indefinite, when k ≥ 4.

Suppose from now on that p does not divide 120.
If the 5-dimensional representation of B3 on W1,p,(2k−6) is irreducible, then Coxeter’s lemma

3.4 permits to conclude that its image is infinite.
Assume that the representation above is not irreducible and let V ⊂ W1,p,(2k−6) be an

invariant subspace, of dimension r. By passing to the orthogonal of V if necessary, we can
assume that r ∈ {1, 2}.

The element (tt∗)3 acts as a scalar δ on W1,p,(2k−6), because it is a lift of the Dehn twist
along the curve encircling once the puncture (see [22], Cor. 11.10 for its exact value). Since
det(tt∗)3 = δ5 we derive the following equation:

δ5 = (λ0λ1λ2λ3λ4)
6.

Consider first r = 1 and let the eigenvalue of t and t∗ corresponding to the subspace V be
λi. Then (t|V t∗|V )3 acts as the scalar δ, so that

δ = λ6i .

Replacing this value of δ in the previous equation we obtain the identity:

(λ0λ1 · · ·λ4)6 = (λi)
30

This implies ζ60 = 1, which contradicts our assumptions on p.
Consider now that r = 2 and let that the eigenvalues of t and t∗ corresponding to the

subspace V be λi and λj , where i < j. By computing the determinant of the 2-by-2 scalar
matrix (tt∗)|V we derive that

δ2 = (λiλj)
6.

Replacing this value of δ in the first equation above we obtain the identity:

(λ0λ1 · · ·λ4)12 = (λiλj)
30

This relation implies that either ζ120 = 1, or else (i, j) ∈ {(0, 2), (2, 4), (1, 3)}.
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When (i, j) = (0, 2), the restriction of the representation of B3 to V = Cu0 ⊕ Cu2 is
irreducible and the restriction of the Hermitian form ⟨ , ⟩ to V is indefinite, for a suitable
choice of the root A. When (i, j) = (2, 4), the situation is symmetric.

Eventually, if (i, j) = (1, 3), the restriction of the representation of B3 to V ⊥ = Cu0⊕Cu2⊕
Cu4 is irreducible and the restriction of the Hermitian form ⟨ , ⟩ to V ⊥ is again indefinite,
for a suitable choice of the root A.

In all cases above the image of the representation should be infinite, again by the Coxeter
lemma 3.4. □

End of proof of Proposition 3.1. When p ≥ 7 is odd or p ≡ 2 (mod 4) we use lemma 3.2. If 4
divides p then the cases excluded by both lemmas 3.2 and 3.3 are those from the statement. □

Remark 3.5. Lemma 3.2 cannot be extended to p = 5. Indeed ρ1,5,(i)(Mod(Σ1
1)) is finite both

when i = 0 and i = 2. However ρg,5(Mod(Σg)) is infinite for all g ≥ 2. The kernel of ρg,5
therefore provides an infinite index subgroup of Modg whose intersection with any subgroup
Mod(Σ1,1) associated to a subsurface Σ1,1 of Σg is of finite index.

Remark 3.6. For p = 10, the image ρ1,10,(i)(Mod(Σ1
1)) is also finite, as ρ2,10(Mod(Σ2)) is

finite (see [16]). Note that ρg,10(Mod(Σg)) is infinite, when g ≥ 3.

Remark 3.7. For p = 6 and p = 8 the corresponding representations ρ1,p,(i)(Mod11) are also
finite, as ρ2,p,(i)(Mod2) are known to be finite. For p ∈ {12, 20, 24}, we know that ρ2,p(Modg)

are also infinite for g ≥ 2 while ρ1,5,(i)(Mod11) is finite, whenever i ≤ p− 6, as the Hermitian
form ⟨ , ⟩ is positive definite for all values of A.

Remark 3.8. When p ≡ 0 (mod 4) the image ρ1,p,(p−4)(PMod(Σ1
1)) of the 3-dimensional

representation of B3 is finite. Indeed the representation is actually integral for all p (see [22])
and the Hermitian form ⟨ , ⟩ is positive definite for all values of A, as it was noted in [31].

We further need the following result which is taking care of the images of geometric sub-
groups of mapping class groups:

Proposition 3.9. Let g, n with 2g − 2 + n > 0, n ≥ 1 and (g, n) ̸= (1, 1). Then the image
ρg,p(Ki) of a geometric surface subgroup is infinite, when p ̸∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 20, 24}.

Proof. In the situation at hand there exists some 1-punctured pair of pants embedded in Σn
g

which is essential, namely the homomorphisms between fundamental groups is injective. It
is known that the image of the fundamental group of the pair of pants by some quantum
representation of Σn

g is infinite non-abelian. This is shown in the proof of Prop. 3.2 in [18]
for odd p, and the same arguments work for even p in the given range. This implies that
the image of the fundamental group of Σn−1

g by the same representation is infinite as well, as
claimed. □

Note that for g ≥ 2 the mapping class group representations ρg,p are projective and cannot
be linearized. It is well-known that ρg,p lift to linear representations of a central extension
of the mapping class group by some finite cyclic group depending on p. By composing the
adjoint representation of the projective linear group with ρg,p we obtain linear representations
which have infinite images precisely when ρg,p have infinite images.

Eventually recall that ρg,p factors through π1(Mn
g [p]) for odd p and π1(Mn

g [16p, 2p]) for
even p, respectively. Indeed, it is known that the orders of the images of Dehn twists divide
2p for even p, see [15] for a precise computation of the orders.

Therefore the adjoint linear representations of ρg,p satisfy the hypothesis of Proposition
2.3. This completes the proof of Theorem 2.

4. Proof of Theorem 5

4.1. Idea of the proof and evidence from the F-Conjecture. This conjecture [20] claims
that a Q-divisor on Mn

g is ample if and only if D.Γ̄ > 0 for every Γ ⊂Mn
g a one-dimensional
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stratum of the Deligne-Mumford stratification of ∂Mn
g . The Deligne-Mumford stratification

is actually the stratification by the topological type of the stable curve.
We denote by Xp a complex projective manifold which is a finite Galois covering space

of Mn
g in such a way that if p ≥ 5 is odd, Xp = Mn an

g [p] (resp. if p ≥ 12 is even and
(g, n, p) ̸= (2, 0, 12), Xp = Mn an

g [2p, p/g.c.d.(p, 4)]) is a quotient stack of Xp by a finite group
action. We denote by Rp the absolute constructible subset on Xp (see [13]) generated by the
Galois conjugates of the pull back of the Reshetikhin-Turaev representations ρg,p,(i) where
(i) = (i1, . . . , in) ∈ Cn

p is a coloring of the n punctures. We look at shRp : Xp → shRp(Xp) its
Shafarevich morphism.

Lemma 4.1. shRp is a birational contraction. If it is trivial, namely shRp = idXp , then the
universal covering space of Xp is a Stein manifold.

Proof. The first statement follows from Proposition 2.10. If shRp is trivial, it follows from
[13] that the covering space of Xp attached to Rp is a Stein manifold. Hence its universal
covering space, which coincides with that of Xp, is Stein since the universal covering space of
a Stein manifold is Stein. □

Remark 4.2. Since the ρg,p,(i) are in Rp it is enough to show that shρg,p = idXp since we

have a factorisation shρg,p : Xp

shRp−→ shRp(Xp) → shρg,p(Xp).

Remark 4.3. It is tempting to conjecture that the absolute constructible set generated by the
Reshetikhin-Turaev representations is discrete and that:

Rp = {ρσg,p,(i), (i) ∈ Cn
p , σ ∈ GQ}

If it were true, then Simpson’s ubiquity theorem would imply that the Galois conjugates of the
Reshetikhin-Turaev representations are complex variations of Hodge structures. This would
also follow by [41] if we knew that the Reshetikhin-Turaev representations ρg,p were locally
rigid. At present we only know that the local rigidity holds when p = 5 and g ≥ 3 (see [23]).

Remark 4.4. Godfard ([24]) recently proved that the semi-simple Reshetikhin-Turaev repre-
sentations, in particular ρg,p, are complex variations of Hodge structures. From the results
of [13] it follows that shρg,p is the Stein factorisation of a Griffiths’ period mapping, whose
monodromy is integral (see [21]). Theorem 5 suggests they may satisfy an infinitesimal Torelli
theorem along each stratum.

Let Y be a compact Kähler manifold, ρ : π1(Y ) → GL(N,C) a semisimple representation
and θ its Higgs field (see [8, 41]). Then the 1-form ωρ = tr(θ ∧ θ∗) is semi-positive. We have
the following result which appears in ([13], see section 3.3.1 and Prop 3.3.1):

Lemma 4.5. For every holomorphic map f : Z → Y , where Z is a complete Kähler manifold
and Y a compact Kähler manifold, the condition f∗ωρ ̸= 0 implies that ρ(f∗(π1(Z)) is infinite.

The preimage of a one dimension stratum Γ in Xp is a finite disjoint union of smooth curves
Ca
p (Γ) ⊂ Xp. As such it defines a family of stable curves Ca

p (Γ) → Mn
g . The general fiber is

either:
(1) A stable curve all of whose components but one are rational curves with 3 nodes or

punctures and the remaining one is a rational curve with l nodes and k punctures
with 2l + k = 4.

(2) A stable curve all of whose components but one are rational curves with 3 nodes or
punctures and the remaining one is an elliptic curve with 1 node (except if g = 1, n = 1

in which case M1
1 is its unique one-dimensional stratum).

The second case is called a family of elliptic tails.
As we will see, fusion rules in TQFT imply that ρg,p restricted to the fundamental group of

a stratum is essentially ρg,p of the corresponding punctured surface describing that stratum.
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The F -conjecture states that the cone generated by the algebraic classes in H2(Mn
g ;R) is a

polyhedral cone generated by the one-dimensional strata. If the F-conjecture holds, Lemma
2.8 along with Lemma 4.5 would reduce our claim to the critical cases (g, n) = (0, 4), (1, 1).

4.2. Fusion rules. Let Mod(S) be the mapping class group of the compact connected surface
S, possibly with boundary components and punctures. If Σ has several connected components
S1, . . . , Sk then Mod(S) states for the direct product

∏k
i=1Mod(Si). Furthermore we denote

by PMod(S) the pure mapping class group consisting of the isotopy classes which fix pointwise
the punctures and the boundary components.

We denote by Σn
g,b the genus g orientable surface with n punctures (or marked points) and

b boundary components. We follow the standard convention to omit b or n when they are
equal to 0.

Let S ⊂ Σ be a subsurface that need not be connected but has finitely many components
and no marked points on the boundary components. Then we have a natural morphism of
groups:

ιS
not.
= ιS⊂Σ : PMod(S) → PMod(Σ)

which associates to a mapping class on S its extension to Σ by the identity.
The Reshetikhin-Turaev representation ρ̄g+b : PMod(Σg+b) → PU has a projective ambi-

guity that can be removed by passing to a central extension:

1 → Z → ˜PMod(Σg+b) → PMod(Σg+b) → 1

whose class in H2(PMod(Σg+p),Z) is 12 times the generator of H2(PMod(Σg+p),Z) ∼= Z,
when g + p ≥ 4 (see [36]). Thus the class in H2(PMod(Σg+p),Q) ∼= H2(Mg+p,Q) is 12λ,
where λ is the first Chern class of the Hodge bundle. The later also holds for g + p = 3,
although H2(PMod(Σ3),Z) ∼= Z⊕ Z/2Z.

We may lift this extension under the natural map ιΣg,b⊂Σg+b
: PMod(Σg,b) → PMod(Σg+b)

obtained by gluing a Σ1,1 along each boundary component. This kills the projective ambiguity
of the Reshetikhin-Turaev representation of Σg,b, i.e. we obtain a central extension

1 → Z → ˜PMod(Σg,b) → PMod(Σg,b) → 1

and a linear representation ˜ρg,b,p,,(i) : ˜PMod(Σg,b) → U(Wg,p,(i)) where (i) is a coloring of the
boundary components and Wg,p,(i) is the space of conformal blocks.

If S ⊂ Σn
g,b is connected we denote by ˜PMod(S) the pullback of the extension along ιS and,

in the non connected case, we denote by ˜PMod(S) the product
∏

k∈π0(S)

˜PMod(Sk).

This gives natural morphisms

ι̃S : ˜PMod(S) → ˜PMod(Σg,b).

One has a natural central extension:

1 → Zn → PMod(Σg,n) → PMod(Σn
g ) → 1

and the projective ambiguity of ρg,p,(i) is resolved by ρ̃g,p,(i). Then on the natural basis of

ker( ˜PMod(Σg,n) → PMod(Σn
g )) ≃ Zn+1 the representation ρg,p,(i) acts by scalars which are

2p-th roots of unity and ρg,p,(i) has a finite image if and only if ρ̃g,p,(i) does.
The most remarkable property of the Reshetikhin-Turaev representation is the following

statement, see [5]:

Proposition 4.6. If S is obtained by cutting disjoint annuli surrounding a disjoint collection
of m pairwise non isotopic essential simple curves c
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ι̃S
∗ρ̃g,p,(i) =

⊕
j∈Cm

p

ρ̃S,(i⨿j)

where i⨿j is the coloring of S obtained by keeping i and coloring the 2m boundary components
of S in such a way that the two boundary components corresponding to the curve c receive the
color jc.

4.3. Analysis of the boundary. Denote also by M(S) the moduli stack of curves home-
omorphic to S and M(S) its Deligne-Mumford compactification. When S is not connected
M(S) and M(S) is the product of the corresponding stacks associated to the connected
components of S.

Let c be an essential multicurve on Σn
g . Strata of Mn

g are indexed by the topological type
of the corresponding stable curves, or equivalently by orbits of the multicurves c under Modng .
If S is a Riemann surface we denote by Sc the surface obtained by pinching curves in c to
points which will be considered as marked points (or punctures) on Sc. We also denote by
S \ c the open surface obtained by cutting S along the curves in c, which can be identified
with a punctured compact surface.

Let ∆c → Mn
g be the codimension e stratum of the Deligne-Mumford stratification asso-

ciated to the stable curve Sc. This map is an immersion of a locally closed smooth substack.
There exists a disjoint collection of pairwise non isotopic and disjoint essential simple curves
in Σn

g so that ∆c has an étale covering by M(S \ c) where S is as in Proposition 4.6.
Let us assume for notation simplicity p is odd, the modifications being immediate if p is

even.
The preimage of the stratum ∆c in Xp is a locally closed submanifold ip(∆c) : ∆c(Xp) →

Xp which is étale-covered by a stack (actually a quasi projective manifold) equivalent to
∆c ×Mn

g [p]
Xp.

If we divide by Gal(Xp/Mn
g [p]) we get a substack i(∆c[p]) : ∆c[p] → Mn

g [p] which is
actually ∆c[p] = ∆c ×Mn

g [p]
Mn

g and ∆c(Xp) is a finite uniformization of ∆c[p].

Lemma 4.7. The smooth Deligne-Mumford stack ∆c[p] is an étale gerbe over ∆c banded by
an étale sheaf of abelian groups which is locally equivalent to the constant sheaf with value
(Z/pZ)e.

Proof. This follows from the local description of Mn
g [p] given in [15]. □

Lemma 4.8. There exists a finite index subgroup H < π1(∆c[p]) which is identified to a
quotient of PMod(S \ c) by a subgroup contained in ker(ι∗S ρ̄g,p,(i)). This identification carries
i(∆c[p])

∗ρg,p,(i)|H to ι∗S\cρ̄g,p,(i).

Proof. The image of the homomorphism f : π1(M(S\c)) → π1(∆c) has finite index in π1(∆c).
Define H to be the preimage of f(PMod(S \ c)) within π1(∆c[p]). The inclusion map i(∆c[p])

induces a homomorphism π1(∆c[p]) → π1(Mn
g [p]), which is covered by the homomorphism

PMod(S \ c)/PMod(S \ c)[p] → Modng/Modng [p] induced by ιS\c. Then the fusion rules from
Proposition 4.6 prove the claim. □

Lemma 4.9. There is a finite central extension of H where the projective ambiguity of
η = i(∆c[p])

∗ρg,p,(i)|H is resolved by a representation η̃, which identifies to a quotient of
˜PMod(S \ c). The identification carries η̃ to ι∗S\cρ̃g,p,(i).

Proof. Clear. □

Corollary 4.10. Assume C → ∆c[p] is a curve which is mapped to a point by shρg,p . Then
there exists a connected component S′ of S \c and a curve D → M(S′) such that D is mapped
to a point by shρg(k),p .
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4.4. Conclusion of the proof. Thanks to Proposition 2.10, Theorem 5 follows by induction
from Lemma 4.1 and the subsequent remark, from Corollary 4.10 and from Proposition 3.1.

4.5. A contraction. In case p = 5, families of elliptic tails are contracted by shM5 , in
particular it is a non trivial birational contraction. If n = 0 the morphism s5 :Mg → S given
by the descent of shM5 contracts precisely the divisor δ1 and factors through the divisorial
contraction given by the big semiample class 11λ− δ constructed by [9].

In particular our statement is optimal for p odd. It is easy to see Mn
g [5] satisfies the

Shafarevich conjecture if 2g − 2 + n > 0.

5. Proofs of Corollaries 6 and 7

5.1. Flat surfaces. We seek for applications of previous results to the affine diffeomorphism
group of a Veech surface. A punctured surface endowed with a geometric structure modeled
on the complex plane and the group of its translations along with the −1C is usually called
a flat (or half-translation) surface if around the punctures the chart maps are of the form
z → zk, k ∈ N∗. It corresponds to the space obtained by identifying pairwise the edges of
a collection of planar polygons by means of translations and −1C, where vertices give raise
to punctures. A flat surface has an induced Riemann surface structure X and the squared
differentials of chart maps glue together to a well-defined holomorphic quadratic differential
q, whose zero-set is the set of punctures. As it is well-known, conversely (X, q) also defines a
translation surface by means of the polygon associated to the periods of √q. Two flat surfaces
are the same if there exists a holomorphic diffeomorphism between them which identifies the
quadratic differentials. If the flat surface (X, q) is obtained by the identification of pairs of
parallel edges in a planar polygon P , and h ∈ SL(2,R), then define the translation surface
h · (X, q) as the result of the same identification in the polygon h(P ). This is a well-defined
action of SL(2,R) on the space Hg of translation surfaces of genus g. When q = ω2, where ω
is a holomorphic 1-form we retrieve a translation surface, namely one for which we only need
translations and one can dispose of −1C.

5.2. Veech surfaces. The Veech group PSL(X, q) of (X, q) is the image in PSL(2,R) of its
stabilizer SL(X, q) with respect to the SL(2,R) action on Hg. It is well-known that Veech
groups are discrete subgroups in PSL(2,R) which are not cocompact. A flat surface is a
Veech surface if its Veech group is a lattice in PSL(2,R).

Branched coverings of the flat torus with ramification above a single point are square-tiled
surfaces, which provide the simplest examples of translation surface, also called origamis. As
their Veech groups are commensurable with PSL(2,Z) all origamis are Veech surfaces. More
generally, the SL(2,R) orbit of (X, q) contains a square-tiled surface if and only if SL(X, q)
is SL(2,R)-conjugate to a finite index subgroup of PSL(2,Z), by a result of Gutkin-Judge
([25]).

5.3. Teichmüller curves. The map sending SL(2,R) into the orbit of (X, q) in Hg induces
a natural map:

ϕ(X,q) : H → T n
g

where H is the upper half-plane and the number of punctures n is the number of zeroes of
q. As it is now well-known, see e.g. [43], ϕ(X,q) is injective, isometric with respect to the
hyperbolic metric on H and the Teichmüller metric on T n

g and also holomorphic with respect
to the natural complex structure on T n

g . Its image is called a Teichmüller disk centered at
(X, q). Then ϕ(X,q) induces a holomorphic map:

Φ(X,q) : H/PSL(X, q) → Mn
g

called a Teichmüller curve. If (X, q) is a Veech surface, then image of Φ(X,q) is an algebraic
curve, whose lift to the moduli space of abelian differentials is affine for the natural affine
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structure, which is normalized by H/PSL(X, q). In this case ϕ(X,q) is proper and generically
injective.

Let Aff+(X, q) denote the group of orientation preserving affine diffeomorphisms of (X, q),
which coincides with the stabilizer of the Teichmüller disk in T n

g with respect to the natural
Modng -action. The derivative map D of an affine diffeomorphism provides us a surjective
homomorphism encoded in an exact sequence:

1 → Aut(X, q) → Aff+(X, q)
D→ SL(X, q) → 1.

The kernel Aut(X, q) consists of the pointwise stabilizer of the Teichmüller disk. It follows
that Aut(X, q) is finite, when g > 1.

Proposition 5.1. Let (X, q) be a Veech surface. Then ρg,p(Aff
+(X, q)) is infinite for odd

p ≥ 7 and even p ≥ 14, p ̸∈ {20, 24}.

Proof. The image of the fundamental group of the Veech surface under the algebraic map
Φ(X,q) which sends it into the Teichmüller curve is the group of affine diffeomorphisms of
(X, q). Then Theorem 2 implies the claim. □

Proof of Corollary 6. Let (X, q) be the origami Veech surface associated to the ramified cover-
ing Σg → Σ1 of the torus Σ1 branched over a single point p ∈ Σ1. The corresponding unrami-
fied covering over Σ∗

1 = Σ1−{p} is characterized by a finite index subgroup H ◁π1(Σ
∗
1)

∼= F2.
The Veech group SL(X, q) of the origami was described by Schmithüsen ([39]) as the im-
age of the stabilizer of H in Aut+(π1(Σ

∗
1)) into Out+(π1(Σ

∗
1))

∼= SL(2,Z). It follows that
Aff+(X, q) coincides with the subgroup of mapping classes of those homeomorphisms of Σg

which lift homeomorphisms of Σ1, namely the group G from the statement. Then Proposition
5.1 permits to conclude. □

5.4. Thurston’s construction and proof of Corollary 7. Consider multicurves c and d in
minimal position on Σn

g such that c∪d is connected. They are filling a subsurface S if they are
contained in S and the complement S\(c∪d) consists of a simply connected polygonal regions
with at least 4 sides. Let us index components of c = (γi)1≤i≤m and d = (γj)m+1≤j≤m+k.

We will outline below a classical construction of Thurston ([42, section 6], see also [43]) of
a flat surface (X, q) such that the corresponding Veech group contains G(c, d).

If curves in c and d have parallel copies, let us assume they are associated the multiplicities
di ∈ N, for 1 ≤ i ≤ m + k. Let N be the associated geometric intersection matrix N =
(dii(γi, γj)1≤i,j≤m+k, where Nii = 0. Then N is a Perron-Frobenius matrix and there exists
an unique positive unit eigenvector v such that Nv = µv, for some positive µ.

Consider the rectangles Rp = [0, vi] × [0, vj ] ⊂ C for every intersection point p ∈ γi ∩ γj .
We glue together Rp to Rq along the vertical or horizontal side whenever p and q are joined
by an edge in c and d, respectively, in the graph c∪ d. The differentials dz2 on each rectangle
glue together to a well-defined quadratic differential on the resulting surface X.

Note that q has a square root if and only if we can orient the curves γi such that their
geometric and algebraic intersection numbers coincide.

Define the multitwists Tc =
∏m

i=1 T
di
γi and Td =

∏m+k
i=m+1 T

di
γi . Then, Thurston proved in

[42, section 6] that ⟨Tc, Td⟩ is a subgroup of Aff+(X, q). Moreover,

DTc =

(
1 µ
0 1

)
, DTd =

(
1 0
−µ 1

)
.

Furthermore Dϕ is elliptic, parabolic or Anosov if and only if ϕ is finite order, reducible (and
actually a root of a positive multitwist) or pseudo-Anosov, respectively.

By a theorem of Bers and Kra (see [4, Thm.6] and [28, Thm.1]) for any pseudo-Anosov
mapping class ϕ there exists an unique Teichmüller disk which is stabilized by ϕ. If (X, q) is
any flat surface, then the multicurve systems for two different decompositions in cylinders and
their moduli define by the construction above an affine equivalent flat surface. Thus every
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Teichmüller curve is associated to a pair of multicurves c and d along with multiplicities di.
Conversely if µ ≤ 2 then (X, q) generates a Teichmüler curve, namely its Veech group is a
lattice.

Nevertheless, it might happen that the subgroup generate by the Dehn twists ⟨Tc, Td⟩ be
of infinite index in the Veech group SL(X, q). Specifically Leininger showed in [34, Thm. 7.1]
that:

Theorem 5.1. Let c, d be multicurves filling the surface S. The group G(c, d) has finite index
within the Veech group of the flat surface (X, q) if and only if its configuration graph G(c∪ d)
is critical or recessive.

Proof of Corollary 7. Consider the subsurface S′ of genus g′ which is filled by the curves in
c∪ d. We shall prove that the restriction ρg,p to the image of PMod(S′) within PMod(S) has
infinite image. It is enough to show that ρg′,p(G(c, d)) is infinite, by applying the fusion rules.
But this follows from proposition 5.1 and Leininger’s theorem 5.1 above. □

6. Proof of Theorem 8

6.1. Relative cohomological classifying maps. For a connected paracompact space X,
the universal covering X̃ → X is a principal π1(X)-bundle whose isomorphism class defines
a classifying map fX : X → Bπ1(X), which is unique up to homotopy. Then fX induces
well-defined homomorphisms fX : H∗(X) → H∗(π1(X)) and their duals f∗X : H∗(π1(X)) →
H∗(X).

Lemma 6.1. The homomorphisms fX : H2(X) → H2(π1(X)) and f∗X : H2(π1(X)) → H2(X)
are natural.

Proof. The Hurewicz homomorphisms hX : π∗(X) → H∗(X) are natural, i.e. a continuous
map ϕ : Y → X provides a commutative diagram:

π2(Y )
ϕ∗→ π2(X)

hX ↓ ↓ hY
H2(Y )

ϕ∗→ H2(X)

Now, a classical result of Hopf states that there exists an exact sequence:

π2(X)
hX→ H2(X)

fX→ H2(π1(X)) → 0

This implies that fX are natural:

H2(Y )
ϕ∗→ H2(X)

fX ↓ ↓ fY
H2(π1(Y ))

ϕ∗→ H2(π1(X))

Dually f∗X are also natural. □

Our next goal is to define the analog of maps fX in a relative context. Let now X be
a manifold of dimension at least 3 and D ⊂ X be a polyhedron of codimension at least 2.
We denote its complement by Y = X − D. The inclusion ϕ : Y → X induces therefore
an epimorphism ϕ : π1(Y ) → π1(X) whose kernel we denote by K. We have the following
diagram with exact rows:

0 → H1(π1(X)) → H1(π1(Y )) → H1(K)π1(Y ) δ→ H2(π1(X))
ϕ∗
→ H2(π1(Y ))

↓ f∗X ↓ f∗Y f∗X ↓ ↓ f∗Y
H1(X,Y ) → H1(X) → H1(Y )

∂→ H2(X,Y )
i→ H2(X)

ϕ∗
→ H2(Y )

The top row is the five term exact sequence in cohomology associated to the exact sequence

1 → K → π1(Y ) → π1(X) → 1
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and the bottom row is the long exact sequence in cohomology associated to the pair (X,Y ).

Lemma 6.2. Assume that i is injective. Then there is a natural map

f∗X,Y : H1(K)π1(Y ) → H2(X,Y )

so that all squares in the diagram above are commutative. In particular this is so if H1(Y ) = 0.

Proof. If x ∈ H1(K)π1(Y ) we define

f∗X,Y (x) = i−1(f∗X(δ(x)))

This is a well-defined homomorphism making the diagram above commutative if f∗X(δ(x)))
belongs to i(H2(X,Y )). As the top row is exact we have:

δ(H1(K)π1(Y )) = ker(H2(π1(X))
ϕ∗
→ H2(π1(Y )))

The functoriality of f∗X implies that

ϕ∗(f∗X(δ(H1(K)π1(Y )))) = 0

and the exactness of the bottom row implies that

f∗X(δ(H1(K)π1(Y ))) ⊆ i(H2(X,Y ))

as needed. □

6.2. Hochschild-Serre exact sequence. We now apply the previous construction to the
moduli stack of curves.

Observe that Ng,n is also the minimal number of normal generators of Modng [p] within
Modng . We now follow the idea used in [19] to analyse the image of the quantum representation.
Specifically, we have a general upper bound:

Lemma 6.3. Let {a1, a2, . . . , aNg,n} be a minimal system of normal generators for Modng [p]
within Modng . Then the evaluation homomorphism

E : Hom(Modng [p],R)Modng → RNg,n ,

given by E(f) = (f(a1), f(a2), . . . , f(aNg,n)) is injective.

Proof. Any element x ∈ Modng [p] is a product x =
∏

i giaig
−1
i , for some gi ∈ Modng . Since

f ∈ Hom(Modng [p],R)Modng is conjugacy invariant we have f(x) =
∑

i f(giaig
−1
i ) =

∑
i f(ai)

and the Lemma follows. □

We can now compare the second cohomology to a module of invariants:

Proposition 6.4. We have an exact sequence

0 → Hom(Modng [p],R)Modng ∂→ H2(Modng/Modng [p],R) → H2(Modng ,R).

In particular dimH2(Modng/Modng [p],R)) ≤ n+ 1 +Ng,n, if g ≥ 4.

Proof. The 5-term exact sequence in cohomology associated to the exact sequence

1 → Modng [p] → Modng → Modng/Modng [p] → 1,

gives us:

H1(Modng ,R) → Hom(Modng [p],R)Modng ∂→ H2(Modng/Modng [p],R) → H2(Modng ,R).

Now H1(Modng ,R) = 0 and H2(Modng ,R) = Rn+1. Therefore

dimHom(Modng [p],R)Modng ≤ dimH2(Modng/Modng [p],R)) ≤ n+1+dimHom(Modng [p],R)Modng .

Then lemma 6.3 shows that dimHom(Modng [p],R)Modng ≤ n + 1 + Ng,n and Proposition 6.4
follows. □
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6.3. Presentations for Modng [p]. Before going further recall that the geometric intersection
i(γ, γ′) ∈ N of two isotopy classes of simple closed curves γ and γ′ is the minimal number of
intersection points between curves in the given classes.

We shall use now the following result of Dahmani from [10]:

Theorem 6.1. There exists some p0 (depending on g and n) such that if p is divisible by p0,
then the group Modng [p] has an infinite presentation as follows:

(1) the generators are xγ, where γ belongs to a set Ωp(Σ
n
g ) of representatives for the isotopy

classes of simple closed curve on the surface Σn
g modulo Modng [p];

(2) the relations are
[xγ , xγ′ ] = 1, if i(γ, γ′) = 0

Corollary 6.5. When p is sufficiently divisible Hom(Modng [p],R)Modng is isomorphic to RNg,n,
where Ng,n is the number of orbits of Modng on the set of isotopy classes of simple closed curves
on Σn

g .

Proof. The free abelian group Hom(Modng [p],R) is freely generated by Ωp(Σ
n
g ). Since the ac-

tion of Modng on Hom(Modng [p],R) is by conjugacy, the invariant module Hom(Modng [p],R)Modng

is the free abelian group generated by Ωp(Σ
n
g )/Modng . As Ωp(Σ

n
g )/Modng is finite of cardinal

Nn
g , the claim follows. □

This already implies that:

Corollary 6.6. If g ≥ 4 and p is divisible by p0, then H2(Modng/Modng [p],R) ̸= 0.
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