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1. Introduction

The metric spaces (X, dX) and (Y, dY ) are quasi-isometric if there are constants λ, C and
continuous maps f : X → Y , g : Y → X (called (λ,C)-quasi-isometries) such that the following:

dY (f(x1), f(x2)) 6 λdX(x1, x2) + C, dX(g(y1), g(y2)) 6 λdY (y1, y2) + C,

dX(fg(x), x) 6 C, dY (gf(y), y) 6 C,

hold for all x, x1, x2 ∈ X, y, y1, y2 ∈ Y .

Definition 1. A connected locally compact topological space X with π1X = 0 is simply connected
at infinity (abbreviated sci and one writes also π∞

1 X = 0) if for each compact k ⊆ X there exists
a larger compact k ⊆ K ⊆ X such that any closed loop in X −K is null homotopic in X − k.

The sci is a fundamental tameness condition for non-compact spaces, as it singles out Euclidean
spaces among contractible manifolds, following classical results of Stallings and Siebenmann. This
notion was extended by Brick and Mihalik (see [4]) to a group-theoretical framework as follows:

Definition 2. A finitely presented group G is simply connected at infinity (abbreviated sci) if for

some (equivalently any) finite complex XG with π1XG = G its universal covering X̃G is sci.

It is known that not all finitely presented groups are sci, for example M. Davis (see e.g. [9])
constructed word hyperbolic groups G (of virtual cohomological dimension n ≥ 4 by the results of
Bestvina and Mess from [1]) which are not sci.

All groups considered in the sequel will be finitely generated and a system of generators de-
termines a word metric on the group. Although this depends on the chosen generating set the
different word metrics are quasi-isometric. In [10] we enhanced the topological sci notion in the
case of groups by taking advantage of this metric structure.

Definition 3. Let X be a sci non-compact metric space. The sci growth VX(r) (called rate of
vanishing of π∞

1 in [10]) is the infimal N(r) with the property that any loop in the complement of
the metric ball B(N(r)) of radius N(r) (centered at the identity) bounds a 2-disk outside B(r).

Remark 1. It is easy to construct examples of metric spaces with arbitrarily large VX .

It is customary to introduce the following (rough) equivalence relation on real valued functions:
the real functions f and g are equivalent f ∼ g if there exists constants ci, Cj (with c1, c2 > 0)
such that:

c1f(c2x) + c3 ≤ g(x) ≤ C1f(C2x) + C3, for all x.

The authors acknowledge partial support from Research Funding Program Heracleitus II of the University of
Athens and the European Union (M.G.), CMIRA Explora Pro 1200613701 (L.F.) and the European Commissions
Marie Curie Intra-European Fellowship (D.O.).
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It is proved in [10] that the (rough) equivalence class of VX(r) is a quasi-isometry invariant. In
particular, if G is sci, then the (rough) equivalence class of the real function VG = V

X̃G
is a quasi-

isometry invariant of the group G, where X̃G is the universal covering space of any finite complex
XG, with π1(XG) = G.

If G is sci and VG is a linear function we will say that G has linear sci. In contrast with the
abundance of equivalence classes of geometric invariants of finitely presented groups, (like group
growth, Dehn functions or isodiametric functions) the metric refinements of topological properties
seem highly constrained. We already found in [10] that many cocompact lattices in Lie groups
and in particular geometric 3-manifold groups have linear sci. The aim of this paper is to further
explore this phenomenon by considerably enlarging the class of groups with linear sci. Our first
result is:

Theorem 1. If G is a sci word hyperbolic group then VG is linear.

The sci and its refinement (the sci growth rough equivalence class) are 1-dimensional invariants at
infinity for a group G, in the sense that they take care of loops and disks. The 0-dimensional analog
of the simple connectivity at infinity is the connectivity at infinity, namely the one-endedness. One
could adapt the notion of sci growth to the growth of an end. This was already considered by
Cleary and Riley (see [6]). Let us recall that a group G is one-ended (or 0-connected at infinity)
if for any compact subset L of the Cayley graph X of G, there exists a compact subset K ⊃ L
such that any two points out of K can be joined by a path contained in X − L. This leads to the
following metric refinement which is the 0-dimensional counterpart of the sci growth:

Definition 4. Let X be a one-ended metric space. The end-depth V0(X) of X is the infimal N(r)
with the property that any two points which sit outside the ball B(N(r)) of radius N(r) can be
joined by a path outside B(r).

If G is a finitely generated one-ended group then the end-depth of G is the (rough) equivalence

class of the real function V0,G = V0(X̃), where X̃ is a Cayley graph of G associated to a finite
generating set.

One can define in the same way the end-depth of a specific end of a space or finitely generated
group which are not necessarily one-ended. In [21] one proved that the (rough) equivalence class
of V0,G is a well-defined quasi-isometry invariant of one-ended finitely presented groups. Examples
of groups whose Cayley graphs have dead-ends (i.e. end-depth functions strictly larger than x+ c,
for any c) were obtained in [6]. Our second result shows that the (rough) equivalence class of the
end-depth is not meaningful:

Theorem 2. Any finite type one-ended group has a linear end-depth. More precisely we have the
inequality:

V0(X)(r) ≤ 2r, for large enough r

where X denotes the Cayley graph X associated to a finite generating set of the group G.

This is a useful step in establishing:

Theorem 3. (1) If G1 and G2 are one-ended finitely presented groups with linear sci and the
finitely generated subgroup H has one end, then the amalgamated free product G = G1∗HG2

has linear sci.
(2) If the finitely presented group G1 has linear sci and the finitely generated subgroup H has

one end, then the HNN-extension G = G1∗H has linear sci.

Theorem 3 is similar to (but under stronger restrictions than) the results obtained by Mihalik
and Tschantz in [17, 18, 19] in the context of semistability. Notice that the sci is not preserved
under amalgamated products over multi-ended subgroups (see [12]).

Previous results of [10] dealt with all cocompact lattices in connected Lie groups but the solvable
ones. We now consider non-uniform lattices. Our main result in this direction is:

Theorem 4. (1) Let G be a semisimple Lie group for which the associated symmetric space
G/K is of dimension n ≥ 4 and of R-rank greater than or equal to 2. Let Γ be an irreducible,
non-uniform lattice in G of Q-rank one. Then Γ is sci with linear sci growth.

(2) Every lattice Γ ⊂ SO(n, 1), n ≥ 2 has a linear sci growth.
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We believe that the last result also holds for all R-rank 1 Lie groups, and for non-uniform lattices
of Q-rank > 1. Further any lattice in a simply connected solvable Lie group is uniform and it is a
polycyclic group which admits a strongly polycyclic subgroup of finite index. Thus it would suffice
to show that strongly polycyclic groups have linear sci in order to obtain the linear sci property
for all solvable Lie groups and hence by an easy argument for all uniform lattices in connected Lie
groups.

The results of this paper naturally lead to the question of the existence of sci groups with super-
linear sci growth. The next step is to understand whether CAT(0) groups which are sci have linear
sci.

Acknowledgements: The authors are indebted to Y. de Cornulier, F. Haglund, P. Papazoglou,
V. Poenaru, M. Sapir and A. Valette for useful discussions and advice.

2. Preliminaries on hyperbolic groups

Let (X, d) be a geodesic metric space, which in our case will be the Cayley graph of a finitely
generated group G. A geodesic triangle is δ-slim if every side is contained in the δ-neighbourhood
of the union of its other sides.

Given a geodesic triangle ∆ with vertices x, y, z in X , let ∆′ be a Euclidean comparison triangle
with vertices x′, y′, z′ and sides of the same lengths as those of ∆, and f : ∆ → ∆′ an identification
map. Suppose that the maximal inscribed circle C in ∆′ meets its sides at c′z ∈ [x′, y′], c′x ∈ [y′, z′]
and c′y ∈ [x′, z′]. There is a unique isometry f∆ of ∆′ into a metric tripod T (i.e. a tree with one
vertex w of degree 3 and three vertices x′′, y′′, z′′ of degree one), such that:

d(w, x′′) = d(x′, cz) = d(x′, cy)

d(w, y′′) = d(y′, cz) = d(y′, cx)

d(w, z′′) = d(z′, cx) = d(z′, cy)

Let F = f∆ ◦ f : ∆ → T . The triangle ∆ is δ-thin if for all p ∈ T , the diameter diam(F−1(p)) 6 δ.
Moreover, we call the points cx = F−1(w) ∩ [y, z], cy = F−1(w) ∩ [x, z], cz = F−1(w) ∩ [y, x], the
internal points of ∆.

The group G is δ-hyperbolic, for some δ > 0, if all geodesic triangles in X are δ-thin. Then, all
geodesic triangles are also δ-slim and there is z ∈ X so that the Gromov product based at z is
δ-hyperbolic ([5], ch. III-H). The group G is hyperbolic if it is δ-hyperbolic for some δ > 0. We
remark that the notion of hyperbolicity for a group is independent of the choice of the presentation.
It is clear that if G is δ-hyperbolic, for some δ > 0, then it is also δ′-hyperbolic, for any δ′ > δ.

Suppose from now on that G is a δ-hyperbolic group and X its Cayley graph associated with a
finite presentation 〈S | R〉.

Let γ : [0,∞) → X be a geodesic path, either finite or infinite. For any x, y ∈ γ, we denote by
[x, y]γ the subpath of γ that connects x to y.

Bestvina and Mess [1] proved the following:

Proposition 1 ([1]). Let G be a hyperbolic one-ended group. There is c > 0 so that for all x ∈ X
there exists an infinite geodesic ray starting at the identity of G which passes within c of x.

We say that two geodesic rays are asymptotic if their images inX are at finite Hausdorff distance.
This defines an equivalence relation on the collection of geodesic rays in X . The boundary ∂X of
X is the collection of equivalence classes, under this relation, of geodesic rays in X .

Lemma 1 ([5], III.H, Lemma 3.3). Let γ1, γ2 : [0,∞) → X be two asymptotic, unit speed geodesic
rays. Then

(1) If γ1(0) = γ2(0), then d(γ1(t), γ2(t)) 6 2δ for all t > 0.
(2) In general, there exist t1, t2 ∈ (0,∞) such that d(γ1(t1 + t), γ2(t2 + t)) 6 5δ for all t > 0.

Given a class γ(∞) ∈ ∂X of a geodesic ray γ, there is a unit speed geodesic ray starting
from the identity, 1, of G which is asymptotic to γ. Thus, we identify ∂X with the collection of
asymptotic classes of unit speed geodesic rays starting at 1 (see [5], [14]). We say that a geodesic
ray γ : [0,∞) → X connects the point γ(0) ∈ X to a point x ∈ ∂X if x is the equivalence class of γ,
i.e. x = γ(∞). Let γ : (−∞,∞) → X be a bi-infinite geodesic in X . We denote by γ− and γ+ the
geodesic rays whose image is equal to γ restricted to (−∞, 0] and [0,∞) respectively. Moreover,
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we say that γ connects two points x, y ∈ ∂X if {x, y} = {γ−(−∞), γ+(∞)}. We remark that any
two distinct points in ∂X are connected by a bi-infinite geodesic.

All geodesics considered will be assumed to be unit speed geodesics. Let γ1, γ2 : [0,∞) → X
be two geodesic rays starting from the identity. We say that γ1 and γ2 diverge if they are not
asymptotic, i.e. they correspond to different points on ∂X . Moreover, if t0 is the infimal t > 0
such that the distance from γ1(t) to γ2(t) is greater than δ, then we say that γ1 and γ2 diverge at
t0. The continuous function d(γ1(t), γ2(t)) goes from 0 to ∞, therefore d(γ1(t0), γ2(t0)) = δ.

Lemma 2 ([5], III.H, Lemma 3.2). Let γ1, γ2 : [0,∞) → X be two divergent geodesic rays in X,
issued from the identity that correspond to points x, y ∈ ∂X. There is a bi-infinite geodesic γ that
joins x to y and is contained in the δ-neighborhood of γ1 ∪ γ2.

There is a natural topology on X ∪ ∂X making it a compact metrizable space. Let α > 1 and
x ∈ X . We say that a metric dα on ∂X is a visual metric with base point x and visual parameter
α if there is c > 0, the constant of the visual metric, so that:

(1) The metric dα induces the natural boundary topology on ∂X .
(2) For any distinct points x, y ∈ ∂X and any bi-infinite geodesic γ connecting them we have:

1

c
· α−d(γ,x)

6 dα(x, y) 6 c · α−d(γ,x)

Since (X, d) is a proper δ-hyperbolic space, there is α0 > 1, called the global visual parameter of
X , such that for any base point x0 and any α ∈ (1, α0), the boundary ∂X admits a visual metric
dα with respect to x0 (see [5], [13]). For the purposes of this paper we will consider a visual
metric, d2α , on ∂X with base point the identity of G and visual parameter 2α ∈ (1, α0) for some
appropriate α ∈ R. If c is the constant of this visual metric, let c1 ∈ R be minimal such that
c 6 2c1 . Then, for all x, y ∈ ∂X and any bi-infinite geodesic γ that connects x and y, we have:

2−c1−α·d(1,γ) 6 d2α(x, y) 6 2c1−α·d(1,γ)

We say that α and c1 are the 2-visual parameters of the visual metric d2α . For sake of simplicity
we will use from now on d∂X for the aforementioned visual metric d2α on ∂X .

Let x, y ∈ ∂X and t > 0. A t-chain from x to y is a sequence of points l1 = x, l2, . . . , lk = y
in ∂X , for some k > 1, such that, for all i ∈ {1, 2, . . . , k − 1}, d∂X(li, li+1) 6 t. The length of a
t-chain is the number of points it consists of.

The crucial point in the proof of Theorem 1, is the following result due to Bonk and Kleiner [2]:

Proposition 2 ([2]). Let G be a one-ended hyperbolic group and d∂X a visual metric on ∂X.
There are constants c,K > 0 so that for all x, y ∈ ∂X, t ∈ Z+ there is a 1

2t d(x, y)-chain of length
at most ct that connects x to y and whose diameter is at most Kd∂X(x, y).

We remark that Proposition 2 actually states that ∂X is linearly connected and derives from
a result of Bowditch, Svenson and Swarup [3, 23, 24] which states that ∂X has no global cut
points.

When X is the Cayley complex of a group G associated with a finite presentation P = 〈S | R〉,
we will only consider geodesics within the Cayley graph, namely the 1-skeleton X(1) of X . Notice
that while the Cayley complex may change when adding words equal to the identity to the relators
in P , the Cayley graph remains unchanged.

The following will be used in the proof of Theorem 1:

Lemma 3. Let G be a δ-hyperbolic group, X its Cayley complex associated with a presentation of
G that contains as relators all words of length less than 8δ which are equal to the identity in G.
Suppose that n > 0 and ∆ is a geodesic triangle in X outside the ball B(n+ 1.5δ). If one side of
∆ has length less than δ, then ∆ can be filled outside B(n) in X.

Proof. Let α, β, γ be the sides of the geodesic triangle ∆ and x = α ∩ γ, y = β ∩ γ, z = α ∩ β
its vertices. We may assume that the lengths of its sides satisfy ℓ(γ) 6 ℓ(α) 6 ℓ(β). We remark
that, since the triangle ∆ is δ-slim and ℓ(γ) < δ, for any x′ ∈ α, y′ ∈ β with d(x′, z) = d(y′, z) we
have that d(x′, y′) 6 3δ. For any i = 1, . . . , ℓ(α) we consider a geodesic segment wi that connects
α(i) to β(i) and define the polygon Ri to be one with sides [α(i − 1), α(i)]α, wi, [β(i − 1), β(i)]β
and wi−1, where w0 is trivially the point z. Each Ri is outside B(n) and corresponds to a word
in G of length less than 8δ which is equal to the identity. Thus, Ri can be filled by a disc Di in
X outside the ball B(n). If ℓ(α) = ℓ(β), let Rℓ(α)+1 = ∅, otherwise let Rℓ(α)+1 be the remaining
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triangle with sides wℓ(α), γ, [β(ℓ(α)), y]β . Then, Rℓ(α)+1 corresponds to a word in G of length less
than 8δ which is equal to the identity and thus can be filled by a disc Dℓ(α)+1 outside the ball

B(n). Therefore, ∆ can be filled outside the ball B(n) by D =
ℓ(α)+1⋃
i=1

Di. �

Lemma 4. Let G be a finitely presented group, X(1) its Cayley graph, x ∈ X(1) a vertex and β a
geodesic ray in X(1) starting from the identity. Let z ∈ β with d(z, x) = d(β, x). For any y ∈ β
with d(y, 1) ≥ d(z, 1), if η is a geodesic from x to y then,

d(1, η) > d(x, 1)− d(x, β)

Proof. We have d(y, z) = d(y, 1)− d(z, 1), and by the triangle inequality ℓ(η) 6 d(x, z) + d(y, 1)−
d(z, 1). Let v be a point on η which is closest to 1. The triangle inequalities applied in the
triangles of vertices 1, x, v and 1, y, v give ℓ(η) ≥ d(x, 1) + d(y, 1) − 2d(1, v). Therefore 2d(η, 1) ≥
d(x, 1)− d(x, z) + d(z, 1) ≥ 2d(x, 1)− 2d(x, z). �

Proposition 3. If γ1 and γ2 are two geodesic rays issued from 1 which diverge at t0 then there is
a bi-infinite geodesic γ, that connects γ1(∞) to γ2(∞) and:

t0 − 2.5δ ≤ d(1, γ) ≤ t0 + δ.

Proof. From Lemma 2, we have that there is a bi-infinite geodesic, γ, that joins γ1(∞) to γ2(∞)
and is contained in the δ-neighborhood of γ1, γ2. This implies that the ideal triangle, ∆, of vertices
1, γ1(∞), γ2(∞) is δ-slim. Suppose that w ∈ γ with d(w, 1) = d(γ, 1). For any t < d(w, 1) − δ,
we obviously have that d(γ1(t), γ), d(γ2(t), γ) > δ. The ideal triangle ∆ being δ-thin, it follows
that d(γ1(t), γ2(t)) ≤ δ. This yields that t0 ≥ d(1, w) − δ, which establishes the right hand side
inequality.

Now, suppose that d(1, w) < t0 − δ. We set γ− = [w, γ1(∞)]γ and γ+ = [w, γ2(∞)]γ . There are
w1 ∈ γ−, w2 ∈ γ+ so that d(w1, 1), d(w2, 1) = t0. It follows that w ∈ [w1, w2]γ , and therefore

(1) d(1, w) ≥ t0 −
d(w1, w2)

2

Since d(1, w) < t0 − δ, it follows from (1) that d(w1, w2) > δ. The fact that ∆ is δ-slim further
implies that there are u, z ∈ γ1 ∪ γ2 such that d(w1, u), d(w2, z) ≤ δ. By the triangle inequality
in the triangles of vertices 1, u, w1 and 1, z, w2 we derive that t0 − δ ≤ d(1, u) ≤ t0 + δ and
t0− δ ≤ d(1, z) ≤ t0+ δ. We distinguish two cases for u, z, either they belong to the same geodesic
ray or to different ones.

In the first case, without loss of generality we assume that u, z ∈ γ1, so there are t1, t2 so
that u = γ1(t1) and z = γ1(t2). Hence |t1 − t2| ≤ 2δ and the triangle inequality shows that
d(w1, w2) ≤ d(w1, u) + d(u, z) + d(z, w2) ≤ 4δ.

In the second case, without loss of generality we assume that u ∈ γ1, z ∈ γ2, so there are t1, t2
so that u = γ1(t1) and z = γ2(t2). Hence |t0 − t1|, |t0 − t2| ≤ δ and the triangle inequality shows
that d(w1, w2) ≤ d(w1, u) + d(u, γ1(t0)) + d(γ1(t0), γ2(t0)) + d(γ2(t0), z) + d(z, w2) ≤ 5δ.

Hence, in any case, d(w1, w2) ≤ 5δ. Equation (1) then yields that d(1, w) ≥ t0 − 2.5δ, so our
left hand side inequality follows. �

Proposition 4. Let γ1 and γ2 be two geodesic rays issued from 1 which diverge at t0. If t ≥ 0
such that d(γ1(t), γ2(t)) < δ, then

t ≤ t0 + 3.5δ

Proof. Assume that d(γ1(t), γ2(t)) < δ for some t > t0 + δ, else there is nothing to prove. From
Proposition 3, we have that there is a bi-infinite geodesic γ, contained in the δ-neighborhood of
γ1 ∪ γ2 and such that d(1, γ) ≤ t0 + δ, so d(1, γ) < t. As in the previous proof, if w ∈ γ with
d(1, w) = d(1, γ), then there are w1, w2 ∈ γ such that d(w1, 1), d(w2, 1) = t, w ∈ [w1, w2]γ , and
therefore

(2) d(1, w) ≥ t−
d(w1, w2)

2

Again, the fact that the ideal triangle ∆ of vertices 1, γ1(∞), γ2(∞) is δ-slim, further implies that
there are u, z ∈ γ1 ∪ γ2 such that d(w1, u), d(w2, z) ≤ δ. By the triangle inequality in the triangles
of vertices 1, u, w1 and 1, z, w2 we derive that t − δ ≤ d(1, u) ≤ t + δ and t − δ ≤ d(1, z) ≤ t + δ.
We distinguish two cases for u, z, either they belong to the same geodesic ray or to different ones.
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In the first case, without loss of generality we assume that u, z ∈ γ1, so there are t1, t2 so
that u = γ1(t1) and z = γ1(t2). Hence |t1 − t2| ≤ 2δ and the triangle inequality shows that
d(w1, w2) ≤ d(w1, u) + d(u, z) + d(z, w2) ≤ 4δ.

In the second case, without loss of generality we assume that u ∈ γ1, z ∈ γ2, so there are t1, t2
so that u = γ1(t1) and z = γ2(t2). Hence |t − t1|, |t − t2| ≤ δ and the triangle inequality shows
that d(w1, w2) ≤ d(w1, u) + d(u, γ1(t0)) + d(γ1(t0), γ2(t0)) + d(γ2(t0), z) + d(z, w2) ≤ 5δ.

In any case, d(w1, w2) ≤ 5δ. Equation (2) then yields that d(1, w) ≥ t− 2.5δ, so our inequality
follows. �

Corollary 1. Let γ1 and γ2 be two geodesic rays issued from 1 which diverge at t0. If for p ∈ γ1,
q ∈ γ2 we have that d(p, q) < δ

2 , then p, q ∈ B(t0 + 3.5δ).

Proof. Let t1, t2 ≥ 0 with p = γ1(t1) and q = γ2(t2). Since d(p, q) < δ
2 , we get that |t1 − t2| <

δ
2

and the triangular inequality in the triangle of vertices p, q, γ2(t1) gives

d(γ1(t1), γ2(t1)) ≤ d(p, q) + d(q, γ2(t1)) ≤ δ

Therefore, Proposition 4 gives that t1 ≤ t0 + 3.5δ. Similarly, we derive that the same holds for
t2. �

3. Proof of Theorem 1

Lets consider first the case when G is a one-ended, sci hyperbolic group. If c1 is the constant
obtained in Proposition 1 we can assume that X is δ-hyperbolic and δ ∈ N with δ > 4c1 + 2.

We consider a visual metric on ∂X , denoted again by d∂X , with base point the identity of G
and 2-visual parameters α, c, for appropriate α, c ∈ R. Suppose that c2, K are the constants of
Proposition 2, we can further assume that δ > 2c+logK

α
.

Without loss of generality we can assume that the Cayley complex X is associated with a
presentation of G that contains as relators all words of length less that 8δ which are equal to the
identity in G.

Let n ∈ N, with n > 13δ. We will show that every loop f outside B(n+ 13δ) is null homotopic
outside B(n). Since G is sci, there is M > 0 so that every loop outside B(M) is null homotopic
outside B(n). Thus, it is enough to consider that f is inside B(M) and consequently that M >
n+ 13δ.

Let p, q be two vertices on f , with d(p, q) = 1. There are unit speed geodesic rays, γ1, γ2 issued
from the identity which pass within c1 of p, q, respectively. Denote by x, y the corresponding
points on ∂X . Moreover, denote by p′ a closest point on γ1 to p and q′ a closest point on γ2 to q.

Case 1. Suppose that x 6= y, and so γ1, γ2 diverge.

Lemma 5. There exist a bi-infinite geodesic γ that connects x to y and:

d(1, γ) > n+ 6.75δ.

Proof of Lemma 5. Suppose that γ1 and γ2 diverge at t0. As d(p, p′) ≤ c1 and d(q, q′) ≤ c1 we
have d(p′, q′) ≤ 2c1 + 1 < δ

2 . Then, according to Corollary 1 we should have d(p′, 1) ≤ t0 + 3.5δ.
But, d(1, p′) ≥ d(1, p)− c1 > n+ 12.75δ, so t0 > n+ 9.25δ. Proposition 3 then gives us that there
is a bi-infinite geodesic γ joining x and y that verifies the desired inequality. �

Therefore we have

d∂X(x, y) 6 2c−α·d(1,γ) < 2c−α·(n+6.75δ)

Lemma 6. There are k > 0 and a sequence of points (w1, . . . , wk) which are interpolated by the
path W (p, q) with the following properties:

(1) W (p, q) ⊂ X rB(M + δ);
(2) w1 ∈ γ1, wk ∈ γ2;
(3) For all i ∈ {1, . . . k}, d(wi, wi+1) < δ;
(4) For all i ∈ {1, . . . k}, if ηi is a geodesic path from p to wi, then d(1, ηi) > n+ 1.75δ.

Proof of Lemma 6. Let

T = min{t ∈ Z+; t > (M − 3.75δ − n)α+ 2c}
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We recall that c2, K are the constants of Proposition 2, and so there is a 1
2T d∂X(x, y)-chain

L = {l1 = x, . . . , lk = y} in ∂X of length k = c2
T that joins x to y and diam(L) ≤ Kd∂X(x, y).

This means that for all i = 1, . . . , k − 1 we have:

0 < d∂X(li, li+1) ≤
1

2T
d∂X(x, y) < 2c−α·(n+6.75δ)−T

Moreover, if Li is a bi-infinite geodesic in X that connects the points li and li+1, then:

d∂X(li, li+1) ≥ 2−c−α·d(1,Li)

The last two inequalities and the choice of T imply that:

(3) d(1, Li) >
α(n+ 6.75δ) + T − 2c

α
> M + 3δ

Now, for all i = 1, . . . , k let βi be a geodesic ray joining 1 to li and let wi be a point of βi at
distance M + 2δ from 1. Without loss of generality we can assume that β1 = γ1 and βk = γ2,
respectively.

We claim that relation (3) implies that βi and βi+1 diverge outside B(M + 2δ). In fact, if βi

and βi+1 diverged at t0,i ≤ M +2δ, then Proposition 3 would provide us a geodesic Li connecting
li and li+1 such that d(1, Li) ≤ M + 3δ, therefore contradicting (3). This claim implies that
d(wi, wi+1) ≤ δ and thus we can join wi and wi+1 with a geodesic path w(i, i + 1) lying outside

B(M + δ). We then set W (p, q) to be the union of these paths: W (p, q) =
k−1⋃
i=1

w(i, i + 1).

From Proposition 2, we have that d∂X(x, li) ≤ Kd∂X(x, y). Hence, if Ei is a bi-infinite geodesic
joining x and li, as before, we get:

2−c−αd(1,Ei) ≤ d∂X(x, li) ≤ 2logK+c−α·(n+6.75δ)

so that, since δ > 2c+logK
α

,
d(1, Ei) ≥ n+ 5.75δ

We conclude as before, using Proposition 3, that γ1 and βi diverge outside the ball B(n+ 4.75δ).
Let then p′′ ∈ γ1 and zi ∈ βi be points at distance n + 4.75δ from 1. The divergence condition
implies that d(p′′, zi) ≤ δ. On the other hand the triangle inequality:

d(p, zi) ≤ d(p, p′) + d(p′, p′′) + d(p′′, zi)

implies that
d(p, βi) ≤ d(p, zi) ≤ d(p′, 1)− n− 2.75δ ≤ d(1, p)− n− 1.75δ

Suppose that ηi is a geodesic path from p to wi. Then Lemma 4 yields us

d(1, ηi) > d(p, 1)− d(p, βi) ≥ n+ 1.75δ

�

Let P , Q be geodesic paths that join p to p′ and q to q′ respectively. We set Φ(p, q) to be the
following closed loop:

Φ(p, q) = P ∪ [p′, w1]γ1
∪W (p, q) ∪ [wk, q

′]γ2
∪Q ∪ [p, q]f

Lemma 7. The loop Φ(p, q) is null homotopic outside B(n).

Proof of Lemma 7. Let Σ = {s1 = q′, . . . , sk′ = wk} be a set of points on [q′, wk]γ2
, such that for

all i = 1, . . . , k′ − 1 we have d(si, si+1) < δ. For any i = 1, . . . , k′ − 1, let ∆i be a geodesic triangle
of vertices p, si, si+1 and such that one of its sides is [si, si+1]γ2

. Also, let ∆0 be a geodesic triangle
of vertices p, q and q′ and such that two of its sides are [p, q]f and Q. From Lemma 4 it follows
that, if Si is a geodesic path from p to si, then:

d(Si, 1) > d(p, 1)− d(p, γ2) > n+ 12δ

Therefore, d(∆i, 1) > n + 12δ, and so, from Lemma 3 it follows that it can be filled by a disc
outside B(n+ 10.5δ).

We proceed similarly to join p to the points wi on W (p, q). Specifically, from the properties of
the path W (p, q) we get that the corresponding triangles are outside the ball B(n + 1.75δ) and
from Lemma 3 we get that these triangles can be filled outside B(n+ 0.25δ).

The union, D(p, q), of all the fillings (Van Kampen diagrams) of the triangles we have considered,
fills Φ(p, q) outside B(n). �



8 LOUIS FUNAR, MARTHA GIANNOUDOVARDI, AND DANIELE ETTORE OTERA

Case 2. Suppose that x = y, and so γ1 and γ2 are asymptotic.
By Lemma 1 we have that there are t1, t2 > 0 so that γ1([t1,∞]) and γ2([t2,∞]) travel within

5δ of each other. For i = 1, 2, there are wi ∈ γi([ti,∞]) with d(w1, 1), d(w2, 1) > M + 10δ and
d(w1, w2) ≤ 5δ. Let W (p, q) to be a geodesic path that joins them, so then its length is at most 5δ
and W (p, q) ⊂ X r B(M + 7.5δ). We proceed as in Case 1 to show that the corresponding loop
Φ(p, q) can be filled outside B(n).

In any case, we start with two points p, q on f at distance d(p, q) = 1 and create a closed
loop Φ(p, q) one part of which is [p, q]f and another is a path, W (p, q), that is outside B(M + δ).
The closed loop Φ(p, q) can be filled by D(p, q) outside B(n). Moreover, the paths W (p, q) can be
chosen in a way such that their union, over all points p, q of distance 1 on f , creates a closed loop
f1 outside B(M + δ):

f1 =
⋃

p,q∈f

d(p,q)=1

W (p, q)

The closed loop f1 can be filled by a disk A1 outside B(n). On the other hand we have filled
the ring between f and f1 with A2 outside B(n):

A2 =
⋃

p,q∈f

d(p,q)=1

D(p, q)

Thus, f is filled by A1 ∪ A2 outside B(n).
In conclusion, for all n > 12δ, any loop outside B(n+13δ) is null homotopic outside B(n), and

therefore G has linear sci.
If G is not one-ended, we work on the connected components of X rB(n+ 13δ).

4. The proof of Theorem 2

The first step is the following lemma:

Lemma 8. In a homogenous locally finite one-ended graph, through any point p passes a discrete
geodesic, i.e. an isometrically embedded copy of the integers.

Proof. Since the graph is unbounded, for any n ∈ N there exist two vertices at distance 2n, joined
by a geodesic segment un, un−1, ..., u−n. By homogeneity, we can choose as u0 a fixed base point
u0 = x0. Now, this is true for any natural n ∈ N, and since the graph is locally finite, there exists,
by a compacity argument (e.g. diagonal extraction), the desired geodesic. �

Now, Theorem 2 follows from the following proposition.

Proposition 5. Let X be a graph as before. Let r ∈ N be a natural number and K be a finite
subset of X whose diameter is at most 2r. Denote by C a connected component of X −K. Then
for any point x in C, we have the following alternative:

• either x belongs to a geodesic ray (i.e. an embedded copy of the natural numbers) of X
within C (and this in particular implies that C is infinite),

• or else the distance from x to K is at most r and C is bounded.

Proof. Let x be a point of C. Then, by Lemma 8, there exists a discrete geodesic (un) with n ∈ Z

such that u0 = x. If x does not belong to any geodesic ray contained in C, then one can find n
and m > 0 (both minimal) such that un and u−m belong to K. Since the diameter of K is by
hypothesis ≤ 2r, then one has m+ n ≤ 2r. This means that the distance d(x,K) from x to K is
min{m,n} ≤ m+n

2 . Hence x is within r from K, and this ends the proof of the proposition. �

End of proof of Theorem 2. Whenever K is a ball B(r) of radius r centered at the neutral element
of the Cayley graph of the group G, then the previous proposition implies that any bounded
connected component of X −B(r) is included in the ball B(2r) having the same center and radius
2r. In particular one has that V0(r) ≤ 2r. �

An alternative proof of Theorem 2. Suppose that there is a positive integer r > 2, such that
V0(r) > 2r. Then, there is a bounded connected component A of X r B(r) and a ∈ A such that
d(a,B(r)) > r. As G is one-ended, there is an unbounded connected component C of X r B(r).
Consider the action of a on X by multiplication. Since d(a,B(r)) > r, clearly aB(r) = B(a, r) ⊂ A
and there are x ∈ A, y ∈ C so that ax, ay ∈ B(r). Here B(a, r) denotes the metric ball of radius r
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centered at a. Therefore, there is a path γ in B(r) that joins ax to ay. Then a−1γ is a path that
joins an element of A to an element of C, so it must pass through B(r). Thus, there is w on γ so
that a−1w ∈ B(r). This however implies that w ∈ B(r) ∩ aB(r) which is a contradiction. This
proves that V0(r) 6 2r and hence the end depth of G is linear. �

5. Proof of Theorem 3

Consider the amalgamated product G = G1 ∗H G2. Let X1 and X2 be the standard 2-complexes
associated to some finite presentations of G1 and G2, respectively. Let SH be a finite set of
generators of H which are represented by a wedge of loops Y in both X1 and X2. The space X
obtained by attaching X1 and X2 along Y has fundamental group G. Let CH be the Cayley graph

of H corresponding to the generators SH . The image of Ỹ in X̃i is then homeomorphic to CH .

Furthermore the universal covering X̃ is constructed from coset copies of the universal coverings

X̃1 and X̃2 which are attached along copies of CH .

We consider a metric ball B(r) of radius r in X̃ centered at a fixed point. By compactness B(r)

intersects only finitely many copies of X̃1 and X̃2. Since X̃1 and X̃2 have linear sci there exists

a constant c1 such that any loop lying in one copy of either X̃1 or X̃2 which is outside B(c1r) is
contractible by a nullhomotopy outside B(r).

Since the one-ended group H has linear end-depth by Theorem 2, one can find a constant c2
such that any two points of a copy of CH lying outside B(c2r) can be connected by a path within
that copy CH not intersecting B(c1r).

The proof that any loop of X̃ which lies outside B(c2r) bounds a disk outside B(r) is now
standard following [12]. Any edge loop L starting at g ∈ G can be written as a word ga1a2a3 · · · an,
with ai ∈ G1, when i is odd and ai ∈ G2, when i is even, such that the equality a1a2 · · · an = 1
holds in G. The structure theorem for amalgamated products implies that there exists some i so
that ai ∈ H (see [16]). Thus the edge subpath l corresponding to the element ai ∈ H starts and
ends in the same copy of CH .

We will show that l can be homotoped in X̃ rel end points into this copy of CH . As L lies
outside B(c2r), the end points of l are outside B(c2r) and by the above argument they can be
connected by some path p lying within the same copy of CH and which does not intersect B(c1r).
The resulting loop l∪p obtained by gluing together l and p at their common end points is therefore

contained in one copy of either X̃1 or else of X̃2. Moreover, l∪ p lies in the complement of B(c1r).
By hypothesis Gi have linear sci and thus l∪ p can be contracted out of B(r). This establishes the
claim. The word associated to the path p belongs to H and it can be absorbed into ai−1. Thus we
obtain a free homotopy of L outside B(r) to a loop L′ starting at g which corresponds to a word
strictly shorter than that of L. Then by induction on n we can decrease the length n until the
resulting loop has n = 1. This proves the first part of Theorem 3.

In order to prove the second part let us recall the HNN construction. If H is a finitely generated
subgroup of the finitely presented group G1 and f : H → G1 is a monomorphism from H into G1

we set K = f(H). Suppose that H is generated by a1, . . . , an and denote by ci the generators
f(a1), f(a2), . . . f(an) of K. Let

〈b1, . . . , bm, a1, . . . , an, c1, . . . , cn | p1 = 1, . . . , pk = 1〉

be a presentation for G1. Then the the HNN-extension G = G1∗H of G1 by f has the presentation

〈b1, . . . , bm, a1, . . . , an, c1, . . . , cn, t | p1 = 1, . . . , pk = 1, c1 = t−1a1t, . . . , cn = t−1ant〉.

Consider the 2-complex X1 associated to the given presentation of G1. It contains two wedges
of circles YH , YK associated to finite set of generators of H and K. Consider the space X obtained
from a copy of X1 and a copy of YH × [0, 1] where YH × {0} is identified with the copy of YH in
X1 and YH × {1} is identified with the copy of YK in X1 by means of f . The universal covering

space X̃ of X can be constructed from coset copies of X̃1 and CH × [0, 1], where CH denotes the

Cayley graph of H . As above CH is the image of ỸH inside X̃1.
As in the case of an amalgamated product above the key tool is Britton’s lemma giving the

structure of an HNN extension which we state as follows. If we have the equality g0t
i1g1t

i · · · tingn =
1 in G, where gi ∈ G1, then for some k, either ik > 0, ik+1 < 0, and gk is in K or else ik < 0,
ik+1 > 0, and gk is in H .
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We denote by B(r) the metric ball at the identity in X̃. Since each copy of X̃1 has linear sci

there is c such that any loop in X̃1 outside the metric ball B(cr) contained in one copy of X̃1

bounds a disk not intersecting B(r). The metric ball B(cr) intersects only finitely many copies of

ỸH × [0, 1]. By Theorem 2 since H is one-ended, one can choose c large enough such that any two

points of one copy of ỸH × [0, 1] which lie outside B(cr) can be joined by a path within this copy,
not intersecting B(r).

Let L be an edge loop in X̃−B(c2r). This loop can be represented by a word g0t
i1g1t

i2 · · · tingn,
where gi ∈ G1 and which is equal to 1 in G. If

∑n
j=1 |ij | = 0 then the loop is contained in one copy

of X̃1 and thus is contractible out of B(r), by hypothesis. When
∑n

j=1 |ij| > 0, let k be the one
provided by Britton’s lemma in the form stated above. Then the edge path corresponding to the
word tsgn(ik)gkt

sgn(ik+1) can be closed in either CH (or CK) by means of a path with the same end
points which does not intersect B(cr). Here sgn(i) denotes the sign of the non-zero i. We obtain a

loop lying in a copy of X̃1 outside of B(cr) which can therefore be contracted outside B(r). Thus
the loop L is homotopic outside B(r) to a new loop for which the quantity

∑n
j=1 |ij| dropped-off

by two units. The claim follows by induction.

Remark 2. If Gi are one-ended sci and H is finitely generated multi-ended then G1 ∗H G2 is
one-ended but not sci according to Jackson (see [12]).

6. Proof of Theorem 4

Let G be a connected, semisimple Lie group with trivial center and without compact factors.
Unlike uniform lattices, nonuniform lattices Γ in G are not quasi-isometric to the symmetric space
X = G/K since they do not act co-compactly on X . But one can consider the following construc-
tion: chop off every cusp of the quotient X/Γ and look at the lifts of each cusp to X , giving a
Γ-equivariant union of horoballs in X . These horoballs are not disjoint in general; these can be
made disjoint by cutting the cusps far enough out precisely when Γ has Q-rank one. The resulting
space is called the neutered space X0 associated to Γ, and Γ acts co-compactly on it. The natural
metric on X0 is the path metric induced from X , given by the infimal length in X of paths con-
tained in X0 that join the two points. Then Γ endowed with the word metric is quasi-isometric to
X0 endowed with the path metric. However, sometimes the path metric on X0 might be distorted
with respect to the original metric on X . In order to circumvent this difficulty we consider first
only higher rank groups.

Proof of Theorem 4. Since G has higher rank a result due to Lubotzky, Mozes and Raghunathan
(see [15]) states that the embedding of Γ endowed with the word metric into G endowed with a left
invariant metric is Lipschitz and hence a quasi-isometric embedding. The projection G → G/K is
a quasi-isometry and hence Γ is quasi-isometric to an orbit Γ ·x0 ⊂ X endowed with the restriction
of the Riemannian metric dX on X . Finally the embedding of an orbit of Γ into the neutered space
X0 is a quasi-isometry when we consider the metric dX |X0

on X0.
By the quasi-isometry invariance of the sci growth, it will be sufficient to prove that X0 endowed

with the metric dX |X0
has a linear VX0

. The metric balls B(X0,dX |X0
)(x0, r) of radius r centered

at x0 ∈ X0 for this non-geodesic metric are easy to describe, namely:

B(X0,dX |X0
)(x0, r) = B(X,dX )(x0, r) ∩X0

in terms of the Riemannian metric balls B(X,dX )(x0, r).
Now, the neutered space X0 is obtained from X by removing a collection of disjoint horoballs,

as the Q-rank of Γ is at least 2. Then any ball B(X,dX)(x0, r) of X intersects only finitely many
such horoballs.

This implies that the metric sphere S(X0,dX |X0
)(x0, r) ⊂ ∂B(X0,dX |X0

)(x0, r) is obtained from

the usual metric sphere ∂B(X,dX)(x0, r) in X by removing from it the intersection with a disjoint
union of finitely many horoballs.

We need now a lemma which explains the geometry of such intersections:

Lemma 9. Let X be a proper CAT(0) manifold, H be a horoball, and B be a sphere of X. If the
center c of B does not belong to H, then B ∩H is convex (i.e. topologically a ball).
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Proof. Let fc(x) = d(x, c) be the distance function to a fixed point c 6∈ H . Then fc restricted
to H has only a critical point in H , namely the projection p(c) of c on H , where it achieves a
nondegenerate minimum. Since fc is proper, the level sets on H retract onto p(c). �

From Lemma 9 we derive that the metric spheres in (X0, dX |X0
) are obtained from Sn−1 by

removing finitely many disjoint disks Dn−1. This means that, whenever the dimension n of X is
n ≥ 4, the metric spheres in X0 are simply connected. This implies that V(X0,dX |X0

)(r) = r is
linear and hence Γ has linear sci.

For the second part of the Theorem 4 consider Γ a non-uniform lattice in SO(n, 1). A non-
uniform lattice Γ acts properly and co-compactly by isometries on X0 = Hn − F where F is a
finite union of disjoint open horoballs. The result does not follow from Lemma 9, as the metric
on this truncated hyperbolic metric space is the path metric, which is exponentially distorted.
Nevertheless this space is CAT(0) (by [5], Cor. 11.28 p.362 and [22]). Metric balls are therefore
homeomorphic to balls and their boundaries are spheres. In order to understand the topology of
the metric spheres it suffices to consider a neighborhood of one horoball H . Given c ∈ X0 consider
the cone in Hn with vertex c which is tangent to the horoball H along an equidistant (n−1)-sphere
Sn−1(c) ⊂ ∂H . If p belongs to the visible n-disk bounded by Sn−1 on ∂H the geodesics segments
joining p and c for the hyperbolic metric dHn and the path metric on X0 coincide. When p ∈ ∂H
is outside the visible disk a geodesic segment in the path metric consists of a spherical segment pq
joining p to q ∈ Sn−1(c) followed by a geodesic segment qc. It follows that metric spheres in the
path metric are obtained from a sphere by deleting a number of disjoint disks corresponding to
visible disks at distance smaller than the radius. For n ≥ 4 these are simply connected and this
shows that X0 with its path metric has linear sci. �

7. Other classes of groups with linear sci

Recall now that a Coxeter group is a group W with presentation of the following form:

〈s1, s2, . . . , sn|s
2
i = 1 for i ∈ {1, 2, . . . , n}, (sisj)

mij = 1〉

where i < j ranges over some subset of {1, 2, . . . , n} × {1, 2, . . . , n} and mij ≥ 2. Let W be a
Coxeter group and C be its Cayley graph.

Proposition 6. Coxeter groups which are sci have linear sci.

Proof. The Davis complex (see [7]) DW of a finitely-generated Coxeter group W is a CAT(0)
cell complex DW on which W acts on cellularly, properly, and with finite quotient. The links of
vertices of DW are all isomorphic to a fixed finite simplicial complex L, where L can be described
combinatorially in term of subsets of the generating set of W .

It has been proved in [8] that a Coxeter group is sci if and only if its nerve L and all its punctured
links L− σ are simply connected (where σ is any simplex of L). The boundary of a metric ball in
DW is a connected sum of various punctured links L− σ, and hence it is simply connected.

Now any loop outside the metric ball of radius r can be contracted onto the boundary of the
metric ball and there contracted to a point. This implies that VDW

(r) = r.
The action of the Coxeter group on the Davis complex is not free but has finite stabilizers.

Moreover there exists a finite index subgroup which acts freely on the Davis complex. This finite
index subgroup is still sci and quasi-isometric to DW and hence by the previous arguments it has
linear sci. This implies that the W has linear sci. �

Remark 3. The same proof works for the right-angled Artin groups, namely a sci right-angled
Artin group has a linear sci growth.

Remark 4. The connectivity of the punctured links determines the connectivity at infinity of W .
However in [9] the authors constructed a CAT(0) cell complex acted properly and cocompactly by
W whose nerve and punctured links are not simply connected, though as W is sci. In some sense
the geometric property of groups which is closest to the simple connectivity of large spheres is the
linear sci.

Proposition 7. If 1 → H → G → K → 1 is an exact sequence of finitely presented infinite groups
where either H or K has one end then G has a linear sci growth.

Proof. The proof in [12] that G is sci actually furnishes the estimate VG(n) ≤ n + C for some
constant c. �
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8. Semistability and simple connectivity at infinity

The aim of this section is to put the sci growth into a more general context. Recall that a ray in
a noncompact topological space X is a proper map γ : [0,∞) → X . Two rays γ1 and γ2 converge
to the same end of X if for any compact C ⊂ X there exists R such that γ1([R,∞)) and γ2([R,∞))
lie in the same component of X − C. The set of rays under this equivalence relation is the same
as the set of ends of X .

Definition 5. An end of X is semistable if any two rays of X converging to this end are properly
homotopic. This is equivalent (see e.g. [20]) to the following: for any ray γ converging to the end
and for any n there exists a N ≥ n such that any loop based on a point of γ with image outside
the metric ball B(N) of radius N and fixed center can be pushed (rel γ) to infinity by a homotopy
in X −B(n).

A topological space is semistable if all its ends are semistable. This definition was extended to
groups, as follows:

Definition 6. A finitely presented group G is semistable if for some (equivalently any) finite

complex XG with π1XG = G its universal covering X̃G is semistable.

There are many classes of groups known to be semistable (see e.g. [20, 17, 18] and also
[3, 23, 24] for the case of hyperbolic groups). There are presently not known examples of
finitely presented groups which are not semistable. There is a well-defined notion of topological
fundamental group at infinity associated to a semistable end of a group (see [11]). Now, following
[10] we consider the following metric refinement of the semistability:

Definition 7. Let X be a non-compact metric space, e an end of X and γ a ray converging to
e. The semistability growth function Se(r) is the infimal N with the following property: for any
R ≥ N and any loop l based on γ which lies in X −B(N) there exists a homotopy rel γ supported
in X −B(n) which moves l to a loop in X −B(R).

Set SG for S
X̃G

, where XG is a finite complex with fundamental group G, whenever this is

defined. It is not difficult to see that the equivalence class of SG is a well-defined quasi-isometry
invariant of the finitely presented group G.

The principal result of this section is the following connection between sci growth and semista-
bility growth:

Proposition 8. Assume that G is finitely presented sci group. Then VG = SG.

Proof. For given r as the space X̃G is sci there exists some large enough N(r) so that any loop

within X̃G−B(N(r)) bounds a disk outside B(r). Let l be a loop not intersecting B(SG(r)). By the

semistability assumption one can homotope l in X̃G−B(r) to a loop l′ lying within X −B(N(r)).
But l′ bounds a disk outside B(r) and hence l bounds a disk outside B(r), as claimed. This proves
that VG(r) ≤ SG(r).

For the reverse inequality let l be a loop based at γ(VG(r) + ε) (for arbitrarily small ε) outside
B(VG(r)), where γ is a given ray. Then l bounds a disk outside B(r), which yields a nullhomotopy
of the based loop l to the base point p. We push then p along γ as far as we want. This proves
that SG(r) ≤ VG(r). �

Remark 5. Some of the present results could be extended to cover the semistability growth as well.
For instance, word hyperbolic groups have linear semistability by minor modification of our proof.

Remark 6. Mihalik and Tschantz have proved (see [17, 18, 19]) that amalgamated products and
HNN extensions of semistable groups over arbitrary finitely generated subgroups are semistable.
Our theorem 3 is similar in spirit (but less general). We don’t know whether Theorem 3 can be
extended to multi-ended subgroups and linear semistability. This construction might be a source
of groups with nonlinear semistability. On the opposite if this were true in the same generality
as Mihalik-Tschantz theorem cited above then finitely generated one relator group would also have
linear semistability by the argument used in [18] and Coxeter groups would have linear semistability.
Notice that the proof from [20] yields the linearity of the semistability growth only in the case of
irreducible Coxeter groups. The general case depends on the behavior of semistability growth under
amalgamated products over multi-ended subgroups.
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