The pentagon equation and mapping class group representations

Rinat Kashaev
University of Geneva

"Geometry, Topology and Group Theory" in honor of the 80th birthday of Valentin Poenaru

Autrans, July 1-6, 2012

Motivation: the Yang-Baxter Equation and braid group representations

Definition

An R-matrix is a solution of the Yang-Baxter Equation

$$
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23}
$$

$$
R \in \operatorname{End}\left(V^{\otimes 2}\right), \quad R_{12}:=R \otimes \operatorname{id}_{V}, \quad R_{23}:=\operatorname{id}_{V} \otimes R
$$

Theorem (Jones, Turaev)

Let $R \in \operatorname{Aut}\left(V^{\otimes 2}\right)$ be an invertible R-matrix. Then, for any $n \in \mathbb{Z}_{>0}$, there exists a canonical representation of the braid group $\rho_{n}: B_{n} \rightarrow \operatorname{Aut}\left(V^{\otimes n}\right)$ such that $\sigma_{1} \mapsto R \otimes \mathrm{id}_{V \otimes(n-2)}$.

Question: how about mapping class groups?

The Pentagon Equation

Definition

A T-matrix is a solution of the Pentagon Equation

$$
T_{12} T_{13} T_{23}=T_{23} T_{12}, \quad T \in \operatorname{End}\left(V^{\otimes 2}\right)
$$

Example

Let B be a bialgebra with product $m: B^{\otimes 2} \rightarrow B$ and coproduct $\Delta: B \rightarrow B^{\otimes 2}$. Then

$$
T^{(B)}:=\left(\operatorname{id}_{B} \otimes m\right)\left(\Delta \otimes \operatorname{id}_{B}\right) \in \operatorname{End}\left(B^{\otimes 2}\right)
$$

is a T-matrix.

Theorem (Militaru)

Let $T \in \operatorname{Aut}\left(V^{\otimes 2}\right)$ be a T-matrix with $\operatorname{dim}(V)<\infty$. Then, there exists a unique finite-dimensional Hopf algebra H such that T is essentially $T^{(H)}$.

Need for extra properties

Definition

A T-matrix $T \in \operatorname{End}\left(V^{\otimes 2}\right)$ is semisymmetric if there exists a symmetry $A \in \operatorname{Aut}(V)$ and a projective factor $\zeta \in \mathbb{C}_{\neq 0}$ such that $A^{3}=\mathrm{id}_{V}$ and $T\left(A \otimes \mathrm{id}_{V}\right) S T=\zeta A \otimes A$, where $S \in \operatorname{Aut}\left(V^{\otimes 2}\right)$, $x \otimes y \mapsto y \otimes x$.

Remark

No finite-dimensional T-matrix can be semisymmetric.

Theorem

Let $T \in \operatorname{Aut}\left(V^{\otimes 2}\right)$ be a semisymmetric T-matrix. Then, for any hyperbolic surface $S_{g, s}$ of genus g and s punctures, there exists a canonical projective representation of the mapping class group $\rho_{g, s}: \Gamma_{g, s} \rightarrow \operatorname{Aut}\left(V^{\otimes n_{g, s}}\right), n_{g, s}:=4 g-4+2 s$, such that the image of the Dehn twist along any non-separating simple closed curve is conjugated to $T \otimes \mathrm{id}_{V^{\otimes n g, s-2}}$.

Example from Quantum Teichmüller theory

Let p and q be the (normalized) Heisenberg operators

$$
p f(x):=\frac{1}{2 \pi i} f^{\prime}(x), \quad q f(x):=x f(x)
$$

For $\hbar \in \mathbb{R}_{>0}$, Faddeev's quantum dilogarithm function is defined by

$$
\Phi_{\hbar}(x)=\left(\Phi_{\hbar}(x)\right)^{-1}=\exp \left(\int_{\mathbb{R}+i \epsilon} \frac{e^{-i 2 x z}}{4 \sinh (z b) \sinh \left(z b^{-1}\right) z} d z\right)
$$

where $\hbar=4\left(b+b^{-1}\right)^{-2}$. Choosing $V=L^{2}(\mathbb{R})\left(V^{\otimes n}:=L^{2}\left(\mathbb{R}^{n}\right)\right)$,

$$
T=e^{i 2 \pi p_{1} q_{2}} \bar{\Phi}_{\hbar}\left(q_{1}+p_{2}-q_{2}\right) \in \operatorname{Aut}\left(V^{\otimes 2}\right)
$$

is a unitary semisymmetric T-matrix with
$A=e^{i \pi\left(\alpha^{2}-1\right) / 3} e^{i 3 \pi q^{2}} e^{i \pi(p+q)^{2}} e^{i 2 \pi \alpha p}, \quad \zeta=e^{-i \pi\left(\hbar^{-1}+\alpha^{2}\right) / 3}, \quad \alpha \in \mathbb{R}$

Set-theoretical solutions

Definition

Let X be a set.

- A map $t: X^{2} \rightarrow X^{2}$ is a set-theoretical T-matrix if $t_{23} \circ t_{13} \circ t_{12}=t_{12} \circ t_{23}$
- A set-theoretical T-matrix is semisymmetric if there exists a symmetry $a: X \rightarrow X$, such that $a^{3}=\operatorname{id}_{X}$ and and $t \circ s \circ\left(a \times \mathrm{id}_{X}\right) \circ t=a \times a$, where $s: X^{2} \ni(x, y) \mapsto(y, x) \in X^{2}$.

If $t: X^{2} \ni(x, y) \mapsto(x y, x * y) \in X^{2}$ is a set-theoretical T-matrix, then

- $(x, y) \mapsto x y$ is associative.
- t is semisymmetric with symmetry $a: X \rightarrow X$ iff $x * y=a^{-1}\left(a(y) a^{-1}(x)\right),(x * y) a(x y)=a(x)$, and $x *(y z)=(x * y)((x y) * z)$.

Set-theoretical solutions from groups with addition

Definition

A group G is called group with addition if it has a commutative and associative binary operation $(x, y) \mapsto x+y$ with respect to which the group product is distributive.

Examples

- $\mathbb{Q}>0$ or $\mathbb{R}_{>0}$
- \mathbb{Z}, \mathbb{Q} or \mathbb{R} with tropical addition $\max (x, y)$
- $\left\{\left.\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right) \right\rvert\, x, z \in \mathbb{R}_{>0}, y \in \mathbb{R}\right\}$

Theorem

Let G be a group with addition, $c \in G$ a central element, and $X=G^{2}$. Then, there exists a semisymmetric set-theoretical T-matrix t : $X^{2} \ni(x, y) \mapsto(x \cdot y, x * y) \in X^{2}$ with symmetry a: $X \ni\left(x_{1}, x_{2}\right) \mapsto\left(c x_{1}^{-1} x_{2}, x_{1}^{-1}\right) \in X$ and $x \cdot y=\left(x_{1} y_{1}, x_{1} y_{2}+x_{2}\right)$.

