Aspherical groups and manifolds with extreme properties

Mark Sapir

Autrans, July 6, 2012

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Tarski Monster (torsion-free).

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Gromov random Monster

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster Let G_i be the Ramanujan expanding sequence of finite graphs (Gromov, ...)

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster Let G_i be the Ramanujan expanding sequence of finite graphs (Gromov, ...) i.e. the graphs are *k*-regular for some *k*, girth is increasing, the diameter is approximately the girth, the rank of the fundamental group of G_i is not too large and the second eigenvalues of the incidence matrices are bounded away from the first eigenvalue.

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster Let G_i be the Ramanujan expanding sequence of finite graphs (Gromov, ...) i.e. the graphs are *k*-regular for some *k*, girth is increasing, the diameter is approximately the girth, the rank of the fundamental group of G_i is not too large and the second eigenvalues of the incidence matrices are bounded away from the first eigenvalue. Then there exists a finitely generated group whose Cayley graph contains a (coarse) copy of $\sqcup G_i$.

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster Let G_i be the Ramanujan expanding sequence of finite graphs (Gromov, ...) i.e. the graphs are *k*-regular for some *k*, girth is increasing, the diameter is approximately the girth, the rank of the fundamental group of G_i is not too large and the second eigenvalues of the incidence matrices are bounded away from the first eigenvalue. Then there exists a finitely generated group whose Cayley graph contains a (coarse) copy of $\sqcup G_i$.

The cross-bred Monster

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster Let G_i be the Ramanujan expanding sequence of finite graphs (Gromov, ...) i.e. the graphs are *k*-regular for some *k*, girth is increasing, the diameter is approximately the girth, the rank of the fundamental group of G_i is not too large and the second eigenvalues of the incidence matrices are bounded away from the first eigenvalue. Then there exists a finitely generated group whose Cayley graph contains a (coarse) copy of $\sqcup G_i$.

The cross-bred Monster There exists a finitely generated group that is both Tarski monster and Gromov monster.

 $G = \langle X \mid R \rangle$ is a group presentation, $R = R^{-1}$ closed under cyclic shifts

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

 $G = \langle X | R \rangle$ is a group presentation, $R = R^{-1}$ closed under cyclic shifts Let X be its presentation complex. Its universal cover is the Cayley 2-complex.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

 $G = \langle X \mid R \rangle$ is a group presentation, $R = R^{-1}$ closed under cyclic shifts Let X be its presentation complex. Its universal cover is the Cayley 2-complex. Consider a map from the disk D^2 to \tilde{X} . The image of ∂D^2 is a loop labeled by a word $w =_G 1$. Pulling back the Cayley 1-complex, we get a labeled tessellation of D^2 into cells C_i , ∂C_i is labeled by a word in R. It is a van Kampen diagram for w.

 $G = \langle X \mid R \rangle$ is a group presentation, $R = R^{-1}$ closed under cyclic shifts Let X be its presentation complex. Its universal cover is the Cayley 2-complex. Consider a map from the disk D^2 to \tilde{X} . The image of ∂D^2 is a loop labeled by a word $w =_G 1$. Pulling back the Cayley 1-complex, we get a labeled tessellation of D^2 into cells C_i , ∂C_i is labeled by a word in R. It is a van Kampen diagram for w.

Small cancellation, Greendlinger lemma, Cartan-Hadamar Definition of a piece: classical and modern

Small cancellation, Greendlinger lemma, Cartan-Hadamar Definition of a piece: classical and modern

Greendlinger lemma:

э

Hyperbolic bullion

▲ロト▲圖ト▲画ト▲画ト 画 のみぐ

Cartan-Hadamard, Coulon's theorem

Theorem (Remi Coulon)

Cartan-Hadamard, Coulon's theorem

Theorem (Remi Coulon)

Let $\delta \ge 0$. Let $\sigma > 10^{10}\delta$. Let X be a simply-connected length space. If every ball of radius σ is δ hyperbolic, then X is (globally) 500 δ -hyperbolic.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Use of small cancelation. Tarski monster.

To construct a Tarski monster,

Use of small cancelation. Tarski monster.

To construct a Tarski monster,

- Start with a free group F = ⟨x, y⟩. List all pairs of words (u_i, v_i) from F,
- ► Take the first pair (u₁, v₁). If they do not generate the whole group F or a cyclic group, impose two relations p₁(u₁, v₁) = x, q₁(u₁, v₁) = y. Produce a new group G₁.
- ► Take the second pair (u₂, v₂). If they do not generate the whole group G₁ or a cyclic group, impose two relations p₂(u₁, v₁) = x, q₂(u₁, v₁) = y. Produce a new group G₂. Make sure that G₂ is hyperbolic.

Proceed by induction.

Use of small cancelation. Tarski monster.

To construct a Tarski monster,

- Start with a free group F = ⟨x, y⟩. List all pairs of words (u_i, v_i) from F,
- ► Take the first pair (u₁, v₁). If they do not generate the whole group F or a cyclic group, impose two relations p₁(u₁, v₁) = x, q₁(u₁, v₁) = y. Produce a new group G₁.
- ► Take the second pair (u₂, v₂). If they do not generate the whole group G₁ or a cyclic group, impose two relations p₂(u₁, v₁) = x, q₂(u₁, v₁) = y. Produce a new group G₂. Make sure that G₂ is hyperbolic.

Proceed by induction.

The inductive limit $\varinjlim G_i = G$ is a Tarski monster.

Use of small cancellation. Gromov monster.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□▶

Use of small cancellation. Gromov monster.

To construct a Gromov monster,

- Start with the free group $F_k = \langle x_1, ..., x_k \rangle$.
- Pick the first graph in the expander sequence, G_1 .
- Consider a random labeling of edges of G_1 by letters $x_1^{\pm 1}, ..., x_k^{\pm 1}$.
- For every loop p of a generating set of the fundamental group $\pi_1(G_1)$ impose relation label(p) = 1.
- Make sure that the resulting group is hyperbolic (that is true with probability > 0).

Proceed by induction, choosing the next graph from the expanding sequence with large enough girth. Use of small cancellation. Gromov monster.

To construct a Gromov monster,

- Start with the free group $F_k = \langle x_1, ..., x_k \rangle$.
- Pick the first graph in the expander sequence, G_1 .
- Consider a random labeling of edges of G_1 by letters $x_1^{\pm 1}, ..., x_k^{\pm 1}$.
- For every loop p of a generating set of the fundamental group $\pi_1(G_1)$ impose relation label(p) = 1.
- Make sure that the resulting group is hyperbolic (that is true with probability > 0).
- Proceed by induction, choosing the next graph from the expanding sequence with large enough girth.

The inductive limit $\varinjlim G_i$ is a Gromov monster. Note that the presentation is recursive.

Use of small cancellaion. The cross-bred monster.

To produce a cross-bred monster, alternate steps of the two recipes.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Small cancellation and asphericity

Every small cancellation group is aspherical, that is every map from the sphere S^2 to the presentation complex is homotopic to the constant map.

Small cancellation and asphericity

Every small cancellation group is aspherical, that is every map from the sphere S^2 to the presentation complex is homotopic to the constant map. Indeed, sphere is a disc without boundary.

Combinatorial definition of asphericity. Peiffer moves.

・ロト ・聞ト ・ヨト ・ヨト

æ

Combinatorial definition of asphericity. Peiffer moves.

The main result

Theorem. Every recursively presented finitely generated group with 2-dimensional K(., 1) embeds into a finitely presented group with finite 2-dimensional K(., 1).

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

The main result

Theorem. Every recursively presented finitely generated group with 2-dimensional K(., 1) embeds into a finitely presented group with finite 2-dimensional K(., 1). **Corollary.**

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The main result

•

Theorem. Every recursively presented finitely generated group with 2-dimensional K(., 1) embeds into a finitely presented group with finite 2-dimensional K(., 1).

Corollary. There exists a closed compact Riemannian aspherical 5-manifold M^5 such that the universal cover \tilde{M}^5

- contains an expander,
- has infinite asymptotic dimension,
- does not coarsely embed into a Hilbert space,
- does not satisfy the Baum-Connes conjecture with coefficients,
- admits a free action by a Tarski monster.
- Note that we can also assume that the universal cover of $M^5 \times T^2$ is homeomorphic to \mathbb{R}^7 .

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Consider a finite 2-dim. K(G, 1).

Consider a finite 2-dim. K(G, 1). Embed it to \mathbb{R}^5 .

Consider a finite 2-dim. K(G, 1). Embed it to \mathbb{R}^5 . Let M^5 be its regular neighborhood in \mathbb{R}^5 . Triangulate the boundary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Consider a finite 2-dim. K(G, 1). Embed it to \mathbb{R}^5 . Let M^5 be its regular neighborhood in \mathbb{R}^5 . Triangulate the boundary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Consider a finite 2-dim. K(G, 1). Embed it to \mathbb{R}^5 . Let M^5 be its regular neighborhood in \mathbb{R}^5 . Triangulate the boundary.

ヘロト ヘヨト ヘヨト ヘヨト

Consider a finite 2-dim. K(G, 1). Embed it to \mathbb{R}^5 . Let M^5 be its regular neighborhood in \mathbb{R}^5 . Triangulate the boundary.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Consider a finite 2-dim. K(G, 1). Embed it to \mathbb{R}^5 . Let M^5 be its regular neighborhood in \mathbb{R}^5 . Triangulate the boundary.

・ロト ・聞ト ・ヨト ・ヨト

э

Consider the Coxeter group C with (right angled) Coxeter graph - the 1-skeleton of the triangulation

Consider the Coxeter group C with (right angled) Coxeter graph - the 1-skeleton of the triangulation

 $C = \langle a, b, c, d, x, y, z, t \mid a^2 = b^2 = c^2 = d^2 = x^2 = y^2 = z^2 = t^2 = 1,$

 $[a,b] = [b,c] = [c,d] = [d,a] = [x,y] = [y,z] = [z,t] = [t,x] = 1\rangle$

Consider the Coxeter group C with (right angled) Coxeter graph - the 1-skeleton of the triangulation

$$C = \langle a, b, c, d, x, y, z, t \mid a^2 = b^2 = c^2 = d^2 = x^2 = y^2 = z^2 = t^2 = 1,$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

[a,b] = [b,c] = [c,d] = [d,a] = [x,y] = [y,z] = [z,t] = [t,x] = 1

Consider the Coxeter group C with (right angled) Coxeter graph - the 1-skeleton of the triangulation

$$C = \langle a, b, c, d, x, y, z, t \mid a^2 = b^2 = c^2 = d^2 = x^2 = y^2 = z^2 = t^2 = 1,$$

Take the factor

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 $U = C \times M^5 / \sim$ where $(g, x) \sim (1, x)$ for a generator g if x is in the closed star of the vertex g in the barycentric subdivision.

Consider the Coxeter group C with (right angled) Coxeter graph - the 1-skeleton of the triangulation

$$C = \langle a, b, c, d, x, y, z, t \mid a^2 = b^2 = c^2 = d^2 = x^2 = y^2 = z^2 = t^2 = 1,$$

Take the factor

 $U = C \times M^5 / \sim$ where $(g, x) \sim (1, x)$ for a generator g if x is in the closed star of the vertex g in the barycentric subdivision. It is aspherical, open, admits a co-compact action of C.

Consider the Coxeter group C with (right angled) Coxeter graph - the 1-skeleton of the triangulation

$$C = \langle a, b, c, d, x, y, z, t \mid a^2 = b^2 = c^2 = d^2 = x^2 = y^2 = z^2 = t^2 = 1,$$

Take the factor

 $U = C \times M^5 / \sim$ where $(g, x) \sim (1, x)$ for a generator g if x is in the closed star of the vertex g in the barycentric subdivision. It is aspherical, open, admits a co-compact action of C. Take a torsion-free subgroup H < C of finite index. The manifold U/H is compact, closed and aspherical, $\pi_1(U/H)$ contains G.

Let $\Gamma = \langle X \mid R \rangle$, *R* recursive. Here is a computation of a Turing machine accepting a word $r \in R$. We are going to turn it into a tesselated disc.

*rq*₁*q*₂*q*₃

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Let $\Gamma = \langle X \mid R \rangle$, *R* recursive. Here is a computation of a Turing machine accepting a word $r \in R$. We are going to turn it into a tesselated disc.

aq ₁	bq ₂	<i>cq</i> ₃
		θ_2
q_1'	$q_2'b$	q_3
-		
	q_1	aq_1 bq_2 q'_1 q'_2b -

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $rq_1q_2q_3$

Let $\Gamma = \langle X \mid R \rangle$, *R* recursive. Here is a computation of a Turing machine accepting a word $r \in R$. We are going to turn it into a tesselated disc.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $rq_1q_2q_3$

Let $\Gamma = \langle X \mid R \rangle$, *R* recursive. Here is a computation of a Turing machine accepting a word $r \in R$. We are going to turn it into a tesselated disc.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $rq_1q_2q_3$

Let $\Gamma = \langle X \mid R \rangle$, *R* recursive. Here is a computation of a Turing machine accepting a word $r \in R$. We are going to turn it into a tesselated disc.

 $rq_1q_2q_3$

r is accepted if and only if $rq_1q_2q_3$ is conjugated to $q_1^0q_2^0q_3^0$. The conjugator is the history of computation.

The proof of the Higman embedding theorem. 2 We need to hide the history. Apply the Davis' idea. Consecutive petals of the flower are mirror images of each other, glued by *k*-strips.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We need to hide the history. Apply the Davis' idea. Consecutive petals of the flower are mirror images of each other, glued by *k*-strips. Add the heart of the flower, called the hub, to the set of relations. Note that 4 = 12 here for the small cancellation reasons. $rq_1q_2q_3$

The word $(r^{(1)}q_1^{(1)}q_2^{(1)}q_3^{(1)})(r^{(2)}q_1^{(2)}q_2^{(2)}q_3^{(2)})...(r^{(12)}q_1^{(12)}q_2^{(12)}q_3^{(12)})$ is 1 in the group if an only if *r* is accepted by the Turing machine.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

The word $(q_1^{(1)}q_2^{(1)}q_3^{(1)})(r^{(2)}q_1^{(2)}q_2^{(2)}q_3^{(2)})...(\overline{r^{(12)}q_1^{(12)}q_2^{(12)}q_3^{(12)}})$ is 1 in the group G given by all the relations in two flowers if an only if r is accepted by the Turing machine.

Thus is r is accepted by the Turing machine (i.e. is the defining relator of a group Γ), then $r = r^{(1)} = 1$ in the constructed group G.

Thus is r is accepted by the Turing machine (i.e. is the defining relator of a group Γ), then $r = r^{(1)} = 1$ in the constructed group G. Hence there is a homomorphism from Γ to G.

Thus is r is accepted by the Turing machine (i.e. is the defining relator of a group Γ), then $r = r^{(1)} = 1$ in the constructed group G. Hence there is a homomorphism from Γ to G. This homomorphism is injective.

Thus is r is accepted by the Turing machine (i.e. is the defining relator of a group Γ), then $r = r^{(1)} = 1$ in the constructed group G. Hence there is a homomorphism from Γ to G. This homomorphism is injective.

Problem. The group *G* is almost never aspherical

Indeed, the letters of r commute with θ . Consider the closed cylinder with top and bottom circle containing the diagram for r = 1 in G, the side tesselated by the commutativity cells. It is a map from the sphere S^2 into the representation complex.

The real embedding

Replace a sunflower with a rose:

Take any map $\phi: S^2 \to G$, homotop it to $\phi': S^2 \to \Gamma$.

Take any map $\phi: S^2 \to G$, homotop it to $\phi': S^2 \to \Gamma$. More concretely, consider any diagram on S^2 over *G*.Look for hubs. They are connected by *k*-strips.

Take any map $\phi: S^2 \to G$, homotop it to $\phi': S^2 \to \Gamma$. More concretely, consider any diagram on S^2 over G.Look for hubs. They are connected by k-strips.

Take any map $\phi: S^2 \to G$, homotop it to $\phi': S^2 \to \Gamma$. More concretely, consider any diagram on S^2 over G.Look for hubs. They are connected by k-strips. You get a graph on S^2 of degree 12. There must be two hubs connected by two consecutive k-strips.

Take any map $\phi: S^2 \to G$, homotop it to $\phi': S^2 \to \Gamma$. More concretely, consider any diagram on S^2 over G.Look for hubs. They are connected by k-strips. You get a graph on S^2 of degree 12. There must be two hubs connected by two consecutive k-strips. The diagram between these two strips is "standard" (corresponds to some computation).

Take any map $\phi: S^2 \to G$, homotop it to $\phi': S^2 \to \Gamma$. More concretely, consider any diagram on S^2 over G.Look for hubs. They are connected by k-strips. You get a graph on S^2 of degree 12. There must be two hubs connected by two consecutive k-strips. The diagram between these two strips is "standard" (corresponds to some computation). Complete it to a composition of a rose and a sunflower with 11 petals tessellating a Γ -cell.

Take any map $\phi: S^2 \to G$, homotop it to $\phi': S^2 \to \Gamma$. More concretely, consider any diagram on S^2 over G.Look for hubs. They are connected by k-strips. You get a graph on S^2 of degree 12. There must be two hubs connected by two consecutive k-strips. The diagram between these two strips is "standard" (corresponds to some computation). Complete it to a composition of a rose and a sunflower with 11 petals tessellating a Γ -cell. Now you need to consider diagrams with extra cells, Γ -cells. If there are still hubs, proceed as before. If not, prove that there are no G-cells left as well.