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Monster Groups

Tarski Monster (torsion-free). A torsion-free finitely generated
group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster Let Gi be the Ramanujan expanding
sequence of finite graphs (Gromov, ...) i.e. the graphs are k-regular
for some k , girth is increasing, the diameter is approximately the
girth, the rank of the fundamental group of Gi is not too large and
the second eigenvalues of the incidence matrices are bounded away
from the first eigenvalue. Then there exists a finitely generated
group whose Cayley graph contains a (coarse) copy of ⊔Gi .

The cross-bred Monster There exists a finitely generated group
that is both Tarski monster and Gromov monster.
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Theorem (Remi Coulon)
Let δ ≥ 0. Let σ > 1010δ. Let X be a simply-connected length
space. If every ball of radius σ is δ hyperbolic, then X is (globally)
500δ-hyperbolic.
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◮ Take the first pair (u1, v1). If they do not generate the whole
group F or a cyclic group, impose two relations
p1(u1, v1) = x , q1(u1, v1) = y . Produce a new group G1.

◮ Take the second pair (u2, v2). If they do not generate the
whole group G1 or a cyclic group, impose two relations
p2(u1, v1) = x , q2(u1, v1) = y . Produce a new group G2.
Make sure that G2 is hyperbolic.

◮ Proceed by induction.

The inductive limit lim
−→

Gi = G is a Tarski monster.
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To construct a Gromov monster,

◮ Start with the free group Fk = 〈x1, ..., xk 〉.

◮ Pick the first graph in the expander sequence, G1.

◮ Consider a random labeling of edges of G1 by letters
x±1
1 , ..., x±1

k
.

◮ For every loop p of a generating set of the fundamental group
π1(G1) impose relation label(p) = 1.

◮ Make sure that the resulting group is hyperbolic (that is true
with probability > 0).

◮ Proceed by induction, choosing the next graph from the
expanding sequence with large enough girth.
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To construct a Gromov monster,

◮ Start with the free group Fk = 〈x1, ..., xk 〉.

◮ Pick the first graph in the expander sequence, G1.

◮ Consider a random labeling of edges of G1 by letters
x±1
1 , ..., x±1

k
.

◮ For every loop p of a generating set of the fundamental group
π1(G1) impose relation label(p) = 1.

◮ Make sure that the resulting group is hyperbolic (that is true
with probability > 0).

◮ Proceed by induction, choosing the next graph from the
expanding sequence with large enough girth.

The inductive limit lim
−→

Gi is a Gromov monster. Note that the
presentation is recursive.



Use of small cancellaion. The cross-bred monster.

To produce a cross-bred monster, alternate steps of the two
recipes.
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Every small cancellation group is aspherical, that is every map
from the sphere S2 to the presentation complex is homotopic to
the constant map. Indeed, sphere is a disc without boundary.
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The main result

Theorem. Every recursively presented finitely generated group
with 2-dimensional K (., 1) embeds into a finitely presented group
with finite 2-dimensional K (., 1).
Corollary.There exists a closed compact Riemannian aspherical
5-manifold M5 such that the universal cover M̃5

◮ contains an expander,

◮ has infinite asymptotic dimension,

◮ does not coarsely embed into a Hilbert space,

◮ does not satisfy the Baum-Connes conjecture with coefficients,

◮ admits a free action by a Tarski monster.

◮ ...

Note that we can also assume that the universal cover of M5 × T 2

is homeomorphic to R
7.
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Take the factor
U = C ×M5/ ∼ where (g , x) ∼ (1, x) for a generator g if x is in
the closed star of the vertex g in the barycentric subdivision.It is
aspherical, open, admits a co-compact action of C . Take a
torsion-free subgroup H < C of finite index. The manifold U/H is
compact, closed and aspherical, π1(U/H) contains G .
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Let Γ = 〈X | R〉, R recursive. Here is a computation of a Turing
machine accepting a word r ∈ R . We are going to turn it into a
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r is accepted if and only if rq1q2q3 is conjugated to q01q
0
2q

0
3 . The

conjugator is the history of computation.



The proof of the Higman embedding theorem. 2
We need to hide the history. Apply the Davis’ idea. Consecutive
petals of the flower are mirror images of each other, glued by
k-strips.



The proof of the Higman embedding theorem. 2
We need to hide the history. Apply the Davis’ idea. Consecutive
petals of the flower are mirror images of each other, glued by
k-strips. Add the heart of the flower, called the hub, to the set of
relations. Note that 4 = 12 here for the small cancellation reasons.'
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1 in the group G given by all the relations in two flowers if an only
if r is accepted by the Turing machine.
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The proof of the Higman embedding theorem. 4

Thus is r is accepted by the Turing machine (i.e. is the defining
relator of a group Γ), then r = r (1) = 1 in the constructed group
G . Hence there is a homomorphism from Γ to G .This
homomorphism is injective.

Problem. The group G is almost never aspherical

Indeed, the letters of r commute with θ. Consider the closed
cylinder with top and bottom circle containing the diagram for
r = 1 in G , the side tesselated by the commutativity cells. It is a
map from the sphere S2 into the representation complex.



The real embedding

Replace a sunflower with a rose:

����

r

U(r)

V (r)

k1
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How to prove asphericity of G

Take any map φ : S2 → G , homotop it to φ′ : S2 → Γ. More
concretely, consider any diagram on S2 over G .Look for hubs.
They are connected by k-strips. You get a graph on S2 of degree
12. There must be two hubs connected by two consecutive
k-strips. The diagram between these two strips is “standard”
(corresponds to some computation). Complete it to a composition
of a rose and a sunflower with 11 petals tessellating a Γ-cell. Now
you need to consider diagrams with extra cells, Γ-cells. If there are
still hubs, proceed as before. If not, prove that there are no G -cells
left as well.
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