# Aspherical groups and manifolds with extreme properties 

Mark Sapir

Autrans, July 6, 2012

## Monster Groups

Tarski Monster (torsion-free).

## Monster Groups

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

## Monster Groups

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster

## Monster Groups

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster Let $G_{i}$ be the Ramanujan expanding sequence of finite graphs (Gromov, ...)

## Monster Groups

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster Let $G_{i}$ be the Ramanujan expanding sequence of finite graphs (Gromov, ...) i.e. the graphs are $k$-regular for some $k$, girth is increasing, the diameter is approximately the girth, the rank of the fundamental group of $G_{i}$ is not too large and the second eigenvalues of the incidence matrices are bounded away from the first eigenvalue.

## Monster Groups

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster Let $G_{i}$ be the Ramanujan expanding sequence of finite graphs (Gromov, ...) i.e. the graphs are $k$-regular for some $k$, girth is increasing, the diameter is approximately the girth, the rank of the fundamental group of $G_{i}$ is not too large and the second eigenvalues of the incidence matrices are bounded away from the first eigenvalue. Then there exists a finitely generated group whose Cayley graph contains a (coarse) copy of $\sqcup G_{i}$.

## Monster Groups

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster Let $G_{i}$ be the Ramanujan expanding sequence of finite graphs (Gromov, ...) i.e. the graphs are $k$-regular for some $k$, girth is increasing, the diameter is approximately the girth, the rank of the fundamental group of $G_{i}$ is not too large and the second eigenvalues of the incidence matrices are bounded away from the first eigenvalue. Then there exists a finitely generated group whose Cayley graph contains a (coarse) copy of $\sqcup G_{i}$.
The cross-bred Monster

## Monster Groups

Tarski Monster (torsion-free). A torsion-free finitely generated group with all proper subgroups cyclic (Olshanskii).

Gromov random Monster Let $G_{i}$ be the Ramanujan expanding sequence of finite graphs (Gromov, ...) i.e. the graphs are $k$-regular for some $k$, girth is increasing, the diameter is approximately the girth, the rank of the fundamental group of $G_{i}$ is not too large and the second eigenvalues of the incidence matrices are bounded away from the first eigenvalue. Then there exists a finitely generated group whose Cayley graph contains a (coarse) copy of $\sqcup G_{i}$.
The cross-bred Monster There exists a finitely generated group that is both Tarski monster and Gromov monster.

## Van Kampen diagrams

$G=\langle X \mid R\rangle$ is a group presentation, $R=R^{-1}$ closed under cyclic shifts

## Van Kampen diagrams

$G=\langle X \mid R\rangle$ is a group presentation, $R=R^{-1}$ closed under cyclic shifts Let $X$ be its presentation complex. Its universal cover is the Cayley 2-complex.

## Van Kampen diagrams

$G=\langle X \mid R\rangle$ is a group presentation, $R=R^{-1}$ closed under cyclic shifts Let $X$ be its presentation complex. Its universal cover is the Cayley 2-complex. Consider a map from the disk $D^{2}$ to $\tilde{X}$. The image of $\partial D^{2}$ is a loop labeled by a word $w=_{G} 1$. Pulling back the Cayley 1-complex, we get a labeled tessellation of $D^{2}$ into cells $C_{i}$, $\partial C_{i}$ is labeled by a word in $R$. It is a van Kampen diagram for $w$.

## Van Kampen diagrams

$G=\langle X \mid R\rangle$ is a group presentation, $R=R^{-1}$ closed under cyclic shifts Let $X$ be its presentation complex. Its universal cover is the Cayley 2-complex. Consider a map from the disk $D^{2}$ to $\tilde{X}$. The image of $\partial D^{2}$ is a loop labeled by a word $w=_{G} 1$. Pulling back the Cayley 1-complex, we get a labeled tessellation of $D^{2}$ into cells $C_{i}$, $\partial C_{i}$ is labeled by a word in $R$. It is a van Kampen diagram for $w$.


## Small cancellation, Greendlinger lemma, Cartan-Hadamar

Definition of a piece: classical and modern


## Small cancellation, Greendlinger lemma, Cartan-Hadamar

 Definition of a piece: classical and modern

Greendlinger lemma:


Hyperbolic bullion


## Cartan-Hadamard, Coulon's theorem

Theorem (Remi Coulon)

## Cartan-Hadamard, Coulon's theorem

Theorem (Remi Coulon)
Let $\delta \geq 0$. Let $\sigma>10^{10} \delta$. Let $X$ be a simply-connected length space. If every ball of radius $\sigma$ is $\delta$ hyperbolic, then $X$ is (globally) 500 $\delta$-hyperbolic.

## Use of small cancelation. Tarski monster.

To construct a Tarski monster,

## Use of small cancelation. Tarski monster.

To construct a Tarski monster,

- Start with a free group $F=\langle x, y\rangle$. List all pairs of words $\left(u_{i}, v_{i}\right)$ from $F$,
- Take the first pair $\left(u_{1}, v_{1}\right)$. If they do not generate the whole group $F$ or a cyclic group, impose two relations $p_{1}\left(u_{1}, v_{1}\right)=x, q_{1}\left(u_{1}, v_{1}\right)=y$. Produce a new group $G_{1}$.
- Take the second pair $\left(u_{2}, v_{2}\right)$. If they do not generate the whole group $G_{1}$ or a cyclic group, impose two relations $p_{2}\left(u_{1}, v_{1}\right)=x, q_{2}\left(u_{1}, v_{1}\right)=y$. Produce a new group $G_{2}$. Make sure that $G_{2}$ is hyperbolic.
- Proceed by induction.


## Use of small cancelation. Tarski monster.

To construct a Tarski monster,

- Start with a free group $F=\langle x, y\rangle$. List all pairs of words $\left(u_{i}, v_{i}\right)$ from $F$,
- Take the first pair $\left(u_{1}, v_{1}\right)$. If they do not generate the whole group $F$ or a cyclic group, impose two relations $p_{1}\left(u_{1}, v_{1}\right)=x, q_{1}\left(u_{1}, v_{1}\right)=y$. Produce a new group $G_{1}$.
- Take the second pair $\left(u_{2}, v_{2}\right)$. If they do not generate the whole group $G_{1}$ or a cyclic group, impose two relations $p_{2}\left(u_{1}, v_{1}\right)=x, q_{2}\left(u_{1}, v_{1}\right)=y$. Produce a new group $G_{2}$. Make sure that $G_{2}$ is hyperbolic.
- Proceed by induction.

The inductive limit $\lim _{\longrightarrow} G_{i}=G$ is a Tarski monster.

## Use of small cancellation. Gromov monster.

## Use of small cancellation. Gromov monster.

To construct a Gromov monster,

- Start with the free group $F_{k}=\left\langle x_{1}, \ldots, x_{k}\right\rangle$.
- Pick the first graph in the expander sequence, $G_{1}$.
- Consider a random labeling of edges of $G_{1}$ by letters $x_{1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}$.
- For every loop $p$ of a generating set of the fundamental group $\pi_{1}\left(G_{1}\right)$ impose relation $\operatorname{label}(p)=1$.
- Make sure that the resulting group is hyperbolic (that is true with probability $>0$ ).
- Proceed by induction, choosing the next graph from the expanding sequence with large enough girth.


## Use of small cancellation. Gromov monster.

To construct a Gromov monster,

- Start with the free group $F_{k}=\left\langle x_{1}, \ldots, x_{k}\right\rangle$.
- Pick the first graph in the expander sequence, $G_{1}$.
- Consider a random labeling of edges of $G_{1}$ by letters $x_{1}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}$.
- For every loop $p$ of a generating set of the fundamental group $\pi_{1}\left(G_{1}\right)$ impose relation $\operatorname{label}(p)=1$.
- Make sure that the resulting group is hyperbolic (that is true with probability $>0$ ).
- Proceed by induction, choosing the next graph from the expanding sequence with large enough girth.
The inductive limit $\underset{\rightarrow}{\lim } G_{i}$ is a Gromov monster. Note that the presentation is recursive.


## Use of small cancellaion. The cross-bred monster.

To produce a cross-bred monster, alternate steps of the two recipes.

## Small cancellation and asphericity

Every small cancellation group is aspherical, that is every map from the sphere $S^{2}$ to the presentation complex is homotopic to the constant map.

## Small cancellation and asphericity

Every small cancellation group is aspherical, that is every map from the sphere $S^{2}$ to the presentation complex is homotopic to the constant map. Indeed, sphere is a disc without boundary.

## Combinatorial definition of asphericity. Peiffer moves.



## Combinatorial definition of asphericity. Peiffer moves.



## The main result

Theorem. Every recursively presented finitely generated group with 2-dimensional $K(., 1)$ embeds into a finitely presented group with finite 2-dimensional $K(., 1)$.

## The main result

Theorem. Every recursively presented finitely generated group with 2-dimensional $K(., 1)$ embeds into a finitely presented group with finite 2-dimensional $K(., 1)$.
Corollary.

## The main result

Theorem. Every recursively presented finitely generated group with 2-dimensional $K(., 1)$ embeds into a finitely presented group with finite 2-dimensional $K(., 1)$.
Corollary. There exists a closed compact Riemannian aspherical 5-manifold $M^{5}$ such that the universal cover $\tilde{M}^{5}$

- contains an expander,
- has infinite asymptotic dimension,
- does not coarsely embed into a Hilbert space,
- does not satisfy the Baum-Connes conjecture with coefficients,
- admits a free action by a Tarski monster.

Note that we can also assume that the universal cover of $M^{5} \times T^{2}$ is homeomorphic to $\mathbb{R}^{7}$.

## Deducing corollary from the Theorem. Davis' trick

Consider a finite 2-dim. $K(G, 1)$.

## Deducing corollary from the Theorem. Davis' trick

Consider a finite 2-dim. $K(G, 1)$.Embed it to $\mathbb{R}^{5}$.

## Deducing corollary from the Theorem. Davis' trick

Consider a finite 2-dim. $K(G, 1)$.Embed it to $\mathbb{R}^{5}$. Let $M^{5}$ be its regular neighborhood in $\mathbb{R}^{5}$. Triangulate the boundary.

## Deducing corollary from the Theorem. Davis' trick

Consider a finite 2-dim. $K(G, 1)$.Embed it to $\mathbb{R}^{5}$. Let $M^{5}$ be its regular neighborhood in $\mathbb{R}^{5}$. Triangulate the boundary.

## Deducing corollary from the Theorem. Davis' trick

Consider a finite 2-dim. $K(G, 1)$.Embed it to $\mathbb{R}^{5}$. Let $M^{5}$ be its regular neighborhood in $\mathbb{R}^{5}$. Triangulate the boundary.


## Deducing corollary from the Theorem. Davis' trick

Consider a finite 2-dim. $K(G, 1)$.Embed it to $\mathbb{R}^{5}$. Let $M^{5}$ be its regular neighborhood in $\mathbb{R}^{5}$. Triangulate the boundary.


## Deducing corollary from the Theorem. Davis' trick

Consider a finite 2-dim. $K(G, 1)$.Embed it to $\mathbb{R}^{5}$. Let $M^{5}$ be its regular neighborhood in $\mathbb{R}^{5}$. Triangulate the boundary.


## Davis' trick continued.

Consider the Coxeter group C with (right angled) Coxeter graph the 1 -skeleton of the triangulation

## Davis' trick continued.

Consider the Coxeter group $C$ with (right angled) Coxeter graph the 1 -skeleton of the triangulation

$$
\begin{aligned}
& C=\langle a, b, c, d, x, y, z, t| a^{2}=b^{2}=c^{2}=d^{2}=x^{2}=y^{2}=z^{2}=t^{2}=1 \\
& [a, b]=[b, c]=[c, d]=[d, a]=[x, y]=[y, z]=[z, t]=[t, x]=1\rangle
\end{aligned}
$$

## Davis' trick continued.

Consider the Coxeter group $C$ with (right angled) Coxeter graph the 1 -skeleton of the triangulation

$$
\begin{aligned}
& C=\langle a, b, c, d, x, y, z, t| a^{2}=b^{2}=c^{2}=d^{2}=x^{2}=y^{2}=z^{2}=t^{2}=1, \\
& [a, b]=[b, c]=[c, d]=[d, a]=[x, y]=[y, z]=[z, t]=[t, x]=1\rangle
\end{aligned}
$$

## Davis' trick continued.

Consider the Coxeter group C with (right angled) Coxeter graph the 1 -skeleton of the triangulation
$C=\langle a, b, c, d, x, y, z, t| a^{2}=b^{2}=c^{2}=d^{2}=x^{2}=y^{2}=z^{2}=t^{2}=1$,
$[a, b]=[b, c]=[c, d]=[d, a]=[x, y]=[y, z]=[z, t]=[t, x]=1\rangle$



Take the factor
$U=C \times M^{5} / \sim$ where $(g, x) \sim(1, x)$ for a generator $g$ if $x$ is in the closed star of the vertex $g$ in the barycentric subdivision.

## Davis' trick continued.

Consider the Coxeter group C with (right angled) Coxeter graph the 1 -skeleton of the triangulation

$$
\begin{aligned}
& C=\langle a, b, c, d, x, y, z, t| a^{2}=b^{2}=c^{2}=d^{2}=x^{2}=y^{2}=z^{2}=t^{2}=1, \\
& [a, b]=[b, c]=[c, d]=[d, a]=[x, y]=[y, z]=[z, t]=[t, x]=1\rangle \\
& U=C \times M^{5} / \sim \text { where }(g, x) \sim(1, x) \text { for a generator } g \text { if } x \text { is in } \\
& \text { the closed star of the vertex } g \text { in the barycentric subdivision.lt is } \\
& \text { aspherical, open, admits a co-compact action of } C \text {. }
\end{aligned}
$$

## Davis' trick continued.

Consider the Coxeter group C with (right angled) Coxeter graph the 1 -skeleton of the triangulation

$$
\begin{aligned}
& C=\langle a, b, c, d, x, y, z, t| a^{2}=b^{2}=c^{2}=d^{2}=x^{2}=y^{2}=z^{2}=t^{2}=1, \\
& [a, b]=[b, c]=[c, d]=[d, a]=[x, y]=[y, z]=[z, t]=[t, x]=1\rangle
\end{aligned}
$$ $U=C \times M^{5} / \sim$ where $(g, x) \sim(1, x)$ for a generator $g$ if $x$ is in the closed star of the vertex $g$ in the barycentric subdivision.It is aspherical, open, admits a co-compact action of $C$. Take a torsion-free subgroup $H<C$ of finite index. The manifold $U / H$ is compact, closed and aspherical, $\pi_{1}(U / H)$ contains $G$.

The proof of the Higman embedding theorem. 1
Let $\Gamma=\langle X \mid R\rangle, R$ recursive. Here is a computation of a Turing machine accepting a word $r \in R$. We are going to turn it into a tesselated disc.

$$
r q_{1} q_{2} q_{3}
$$

$\qquad$

$$
\overline{q_{1}^{0} q_{2}^{0} q_{3}^{0}}
$$

## The proof of the Higman embedding theorem. 1

Let $\Gamma=\langle X \mid R\rangle, R$ recursive. Here is a computation of a Turing machine accepting a word $r \in R$. We are going to turn it into a tesselated disc.

$$
r q_{1} q_{2} q_{3}
$$


$\overline{q_{1}^{0} q_{2}^{0} q_{3}^{0}}$

## The proof of the Higman embedding theorem. 1

Let $\Gamma=\langle X \mid R\rangle, R$ recursive. Here is a computation of a Turing machine accepting a word $r \in R$. We are going to turn it into a tesselated disc.

$$
r q_{1} q_{2} q_{3}
$$



$$
\overline{q_{1}^{0} q_{2}^{0} q_{3}^{0}}
$$

## The proof of the Higman embedding theorem. 1

Let $\Gamma=\langle X \mid R\rangle, R$ recursive. Here is a computation of a Turing machine accepting a word $r \in R$. We are going to turn it into a tesselated disc.

$$
r q_{1} q_{2} q_{3}
$$



## The proof of the Higman embedding theorem. 1

Let $\Gamma=\langle X \mid R\rangle, R$ recursive. Here is a computation of a Turing machine accepting a word $r \in R$. We are going to turn it into a tesselated disc.

$$
r q_{1} q_{2} q_{3}
$$


$r$ is accepted if and only if $r q_{1} q_{2} q_{3}$ is conjugated to $q_{1}^{0} q_{2}^{0} q_{3}^{0}$. The conjugator is the history of computation.

## The proof of the Higman embedding theorem. 2

We need to hide the history. Apply the Davis' idea. Consecutive petals of the flower are mirror images of each other, glued by $k$-strips.

The proof of the Higman embedding theorem. 2
We need to hide the history. Apply the Davis' idea. Consecutive petals of the flower are mirror images of each other, glued by $k$-strips. Add the heart of the flower, called the hub, to the set of relations. Note that $4=12$ here for the small cancellation reasons.
$r q_{1} q_{2} q_{3}$


## The proof of the Higman embedding theorem. 3

The word $\left(r^{(1)} q_{1}^{(1)} q_{2}^{(1)} q_{3}^{(1)}\right)\left(r^{(2)} q_{1}^{(2)} q_{2}^{(2)} q_{3}^{(2)}\right) \ldots\left(\overline{\left.\left.r^{(12)} q_{1}^{(12}\right) q_{2}^{(12)} q_{3}^{(12)}\right)}\right.$ is 1 in the group if an only if $r$ is accepted by the Turing machine.

The proof of the Higman embedding theorem. 3
The word $\left.\left(r^{(1)} q_{1}^{(1)} q_{2}^{(1)} q_{3}^{(1)}\right)\left(r^{(2)} q_{1}^{(2)} q_{2}^{(2)} q_{3}^{(2)}\right) \ldots\left(r^{(12)} q_{1}^{(12}\right) q_{2}^{(12)} q_{3}^{(12)}\right)$ is 1 in the group if an only if $r$ is accepted by the Turing machine.


The proof of the Higman embedding theorem. 3
The word $\left(r^{(1)} q_{1}^{(1)} q_{2}^{(1)} q_{3}^{(1)}\right)\left(r^{(2)} q_{1}^{(2)} q_{2}^{(2)} q_{3}^{(2)}\right) \ldots\left(r^{(12)} q_{1}^{(12)} q_{2}^{(12)} q_{3}^{(12)}\right)$ is 1 in the group if an only if $r$ is accepted by the Turing machine.


The word $\left(q_{1}^{(1)} q_{2}^{(1)} q_{3}^{(1)}\right)\left(\overline{r^{(2)} q_{1}^{(2)} q_{2}^{(2)} q_{3}^{(2)}}\right) \ldots\left(\overline{\left(r^{(12)} q_{1}^{(12}\right) q_{2}^{(12)} q_{3}^{(12)}}\right)$ is 1 in the group $G$ given by all the relations in two flowers if an only if $r$ is accepted by the Turing machine.

## The proof of the Higman embedding theorem. 4

Thus is $r$ is accepted by the Turing machine (i.e. is the defining relator of a group $\Gamma$ ), then $r=r^{(1)}=1$ in the constructed group G.

## The proof of the Higman embedding theorem. 4

Thus is $r$ is accepted by the Turing machine (i.e. is the defining relator of a group $\Gamma$ ), then $r=r^{(1)}=1$ in the constructed group $G$. Hence there is a homomorphism from $\Gamma$ to $G$.

## The proof of the Higman embedding theorem. 4

Thus is $r$ is accepted by the Turing machine (i.e. is the defining relator of a group $\Gamma$ ), then $r=r^{(1)}=1$ in the constructed group $G$. Hence there is a homomorphism from $\Gamma$ to $G$.This homomorphism is injective.

## The proof of the Higman embedding theorem. 4

Thus is $r$ is accepted by the Turing machine (i.e. is the defining relator of a group $\Gamma$ ), then $r=r^{(1)}=1$ in the constructed group $G$. Hence there is a homomorphism from $\Gamma$ to $G$.This homomorphism is injective.

Problem. The group $G$ is almost never aspherical
Indeed, the letters of $r$ commute with $\theta$. Consider the closed cylinder with top and bottom circle containing the diagram for $r=1$ in $G$, the side tesselated by the commutativity cells. It is a map from the sphere $S^{2}$ into the representation complex.

## The real embedding

Replace a sunflower with a rose:


## How to prove asphericity of $G$

Take any $\operatorname{map} \phi: S^{2} \rightarrow G$, homotop it to $\phi^{\prime}: S^{2} \rightarrow \Gamma$.

## How to prove asphericity of $G$

Take any map $\phi: S^{2} \rightarrow G$, homotop it to $\phi^{\prime}: S^{2} \rightarrow \Gamma$. More concretely, consider any diagram on $S^{2}$ over $G$. Look for hubs. They are connected by $k$-strips.

## How to prove asphericity of $G$

Take any map $\phi: S^{2} \rightarrow G$, homotop it to $\phi^{\prime}: S^{2} \rightarrow \Gamma$. More concretely, consider any diagram on $S^{2}$ over $G$.Look for hubs. They are connected by $k$-strips.

## How to prove asphericity of $G$

Take any map $\phi: S^{2} \rightarrow G$, homotop it to $\phi^{\prime}: S^{2} \rightarrow \Gamma$. More concretely, consider any diagram on $S^{2}$ over G.Look for hubs. They are connected by $k$-strips. You get a graph on $S^{2}$ of degree 12. There must be two hubs connected by two consecutive $k$-strips.

## How to prove asphericity of $G$

Take any map $\phi: S^{2} \rightarrow G$, homotop it to $\phi^{\prime}: S^{2} \rightarrow \Gamma$. More concretely, consider any diagram on $S^{2}$ over G.Look for hubs. They are connected by $k$-strips. You get a graph on $S^{2}$ of degree 12. There must be two hubs connected by two consecutive $k$-strips. The diagram between these two strips is "standard" (corresponds to some computation).

## How to prove asphericity of $G$

Take any map $\phi: S^{2} \rightarrow G$, homotop it to $\phi^{\prime}: S^{2} \rightarrow \Gamma$. More concretely, consider any diagram on $S^{2}$ over G.Look for hubs. They are connected by $k$-strips. You get a graph on $S^{2}$ of degree 12. There must be two hubs connected by two consecutive $k$-strips. The diagram between these two strips is "standard" (corresponds to some computation). Complete it to a composition of a rose and a sunflower with 11 petals tessellating a $\Gamma$-cell.

## How to prove asphericity of $G$

Take any map $\phi: S^{2} \rightarrow G$, homotop it to $\phi^{\prime}: S^{2} \rightarrow \Gamma$. More concretely, consider any diagram on $S^{2}$ over G.Look for hubs. They are connected by $k$-strips. You get a graph on $S^{2}$ of degree 12. There must be two hubs connected by two consecutive $k$-strips. The diagram between these two strips is "standard" (corresponds to some computation). Complete it to a composition of a rose and a sunflower with 11 petals tessellating a 「-cell. Now you need to consider diagrams with extra cells, Г-cells. If there are still hubs, proceed as before. If not, prove that there are no $G$-cells left as well.

