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On power subgroups of mapping class groups

Louis Funar

Abstract. In the first part of this paper we prove that the mapping class subgroups
generated by the D-th powers of Dehn twists (with D ≥ 2) along a sparse collection
of simple closed curves on an orientable surface are right angled Artin groups. The
second part is devoted to power quotients, i.e., quotients by the normal subgroup
generated by the D-th powers of all elements of the mapping class groups. We show
first that for infinitely many values of D, the power quotient groups are non-trivial.
On the other hand, if 4g+ 2 does not divide D then the associated power quotient of
the mapping class group of the genus g ≥ 3 closed surface is trivial. Eventually, an
elementary argument shows that in genus 2 there are infinitely many power quotients
which are infinite torsion groups.

1. Introduction and statements

The aim of this paper is to give a sample of results concerning power subgroups of
mapping class groups. We denote by M(S) the mapping class group of the orientable
surface S, namely the group of isotopy classes of orientation-preserving homeomorphisms
that fix point-wise the boundary components. Let Σr

g,k denote the orientable surface of
genus g with k boundary components and r punctures. We will omit the indices k and r
in Σr

g,k when they are zero.

Definition 1.1. Let A be a collection of (isotopy classes of) simple closed curves on the
surface S. We denote by M(S)(A;D) the subgroup generated by D-th powers of Dehn
twists along curves in A.

When S is a surface, let SCC(S) be the set of representatives for all simple closed
curves up to homotopy on the surface S. The group M(S)(SCC(S);D) will be denoted
by M(S)[D]. We will omit the indices k and r in M(Σr

g,k)[D] and M(Σr
g,k)(A;D) when

they are zero. For simplicity, when we do not need to specify the surface Σr
g,k we will use

the notation M r
g,k for M(Σr

g,k) and respectively M r
g,k[D] for M(Σr

g,k)[D], with the same
convention concerning the indices k and r, which we omit when they are zero.

Observe that Mg[D] is a normal subgroup of Mg, whose definition is similar to that
of the congruence subgroups of the symplectic groups. In fact, let Ta denote the Dehn
twist along the simple closed curve a. Then for every h ∈ Mg we have hTD

a h−1 = TD
h(a) in
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Mg[D]. As Mg[D] is generated by the TD
a , for a running over the set of all simple closed

curves, it follows that Mg[D] is a normal subgroup.

The first results on Mg[D] were obtained by Humphries ([20]) who proved that Mg/Mg[2],
for each g ≥ 1, M2/M2[3] and M3/M3[3] are finite, while M2/M2[D] is infinite when
D ≥ 4.

On the other hand, using quantum topology techniques we proved in [14] that the groups
Mg[D] are of infinite index in Mg, if g ≥ 3, and D ̸∈ {1, 2, 3, 4, 6, 8, 12}.

Mapping class groups have interesting actions on various moduli spaces, for instance on
spaces of SU(2) representations of surface groups. It is known (see [16]) that the whole
mapping class group acts ergodically. Actually the same proof extends trivially to show
that Mg[D] still acts ergodically. This yields the first examples of infinite index subgroups
of the mapping class group acting ergodically.

Methods from quantum topology also show that:

∩D∈DMg[D] = 1

if g ≥ 2 and D is any infinite set of positive integers. In fact, the kernel of the SO(3)
quantum representation of level k ofMg containsMg[k]. Then the asymptotic faithfulness
theorem from [2, 13] yields the claim.

However, these results seem to exhaust our present knowledge about the groupsMg[D].
It is not known, for instance, whether the following holds:

Conjecture 1.2. The group H1(Mg[D]) is not finitely generated if D ≥ 3, g ≥ 4 or
D ≥ 4, g ∈ {2, 3}.

If true, this would imply that Mg/Mg[D] is infinite for the above values of D and g.

Remark 1.3. The groups Mg[2] have finite index in Mg (see [20]) and hence are finitely
generated. However the quantum representations at 4-th roots of unity (see [37, 43]) and
6-th roots of unity (see [44]) have finite image. Thus the quantum method used for large
D cannot decide whether Mg[4] and Mg[6] have finite index or not. It is likely that Mg[D]
is of infinite index for every D ≥ 4 and g ≥ 3. Notice also that a similar problem for pure
braid groups was considered in [21].

A question of Ivanov (see [25], Question 12) is particularly relevant for the structure of
the group Mg[D] by asking about the possible relations between powers of Dehn twists.
We formulate it here as a conjecture, under a slight restriction on D:

Conjecture 1.4. The group Mg[D] (for D ≥ 3, g ≥ 4 or D ≥ 4, g ∈ {2, 3}) has the
following presentation:

(1) Generators Za (standing for TD
a ), where a belongs to the (infinite) set SCC(Σg)

of simple closed curves on the surface;
(2) Relations of conjugacy type:

ZTD
a (b) = ZaZbZ

−1
a
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for each pair a, b ∈ SCC(Σg).

We denote by AΓ the right angled Artin group associated to the graph Γ, which is defined
by the following presentation:

(1) Generators Za, where a belongs to the set of vertices of Γ;
(2) Relations

ZaZb = ZbZa, if a and b are connected by an edge in Γ

A related (but much weaker) Conjecture is as follows:

Conjecture 1.5. Let CΣ,D ⊂ SCC(Σ) be a set of representatives of the orbits set
SCC(Σ)/M(Σ)[D]. Consider the associated intersection graph Γ(CΣ,D), whose vertex
set is CΣ,D and edges join vertices corresponding to disjoint curves on the surface. Then
the homomorphism AΓ(CΣ,D) → M(Σ)[D] which sends the generators Za into the elements
TD
a is an isomorphism on its image for D ≥ 3, g ≥ 4 or D ≥ 4, g ∈ {2, 3}. Here g denotes

the genus of the surface Σ.

Clay, Leininger and Margalit recently proved in [4] that M(Σ)[D] is not abstractly
commensurable with any right angled Artin group. In particular, the homomorphism
AΓ(CΣ,D) → M(Σ)[D] from above is not surjective.

Remark 1.6. According to Ishida (see [22]) the group generated by two Dehn twists is
either free abelian (if the curves are disjoint or coincide) or generate the braid group B3

in 3 strands (if the curves intersect in one point) or free (if the curves intersect in at least
two points). In particular the subgroup generated by two D-th powers of Dehn twists is
either free abelian or free, supporting the Conjecture 1.5. See also [8] or ([19], Thm. 3.5)
for the braid case. Relations between multi-twists are also given in [36].

Proposition 1.7. The analogues of Conjecture 1.4 for D = 2 and any closed orientable
surface Σ of genus g ≥ 3 are false as stated, namely there are additional relations in a
presentation of Mg[2] with the given generators.

Proof. According to Humphries (see [20]) the subgroup Mg[2] can be identified to the
kernel of the homomorphism Mg → Sp(2g,Z/2Z). Hain proved in [18] (see also [35]) that
any finite index subgroup of Mg (for g ≥ 3) containing the Torelli subgroup (i.e., the
subgroup of mapping classes acting trivially in homology) has trivial first cohomology.
This implies that H1(Mg[2]) = 0, which was also proved by McCarthy in [35]. But the
abelianization of the group presented by the relations from Conjecture 1.4 is a free abelian
group of rank equal to the cardinal of SCC(Σg)/Mg[2]. This contradiction shows that in
Mg[2] there are additional relations. !

Remark 1.8. The referee pointed out explicit relations among squares of Dehn twists
along nonseparating curves. Choose for instance the nonseparating curves a1, a2, . . . , a7
on Σ3 such that ai intersects aj at one point if j = i+ 1 and they are disjoint otherwise.
Then we have the following relation in M3:

(Ta1
Ta2

Ta3
Ta4

Ta5
Ta6

Ta7
Ta7

Ta6
Ta5

Ta4
Ta3

Ta2
Ta1

)2 = 1
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Observe further that

Ta1
Ta2

Ta3
Ta4

Ta5
Ta6

Ta7
Ta7

Ta6
Ta5

Ta4
Ta3

Ta2
Ta1

=

= (T 2
a7
)A6(T 2

a6
)A5(T 2

a5
)A4(T 2

a4
)A3(T 2

a3
)A2(T 2

a2
)A1(T 2

a1
)

where we put Ai = Ta1
Ta2

· · ·Tai
, and xA = AxA−1. Now, we can express (T 2

ai
)Ai−1 =

T 2
Ai−1(ai)

as squares of Dehn twists. We obtain therefore the following relation

(T 2
A6(a7)

T 2
A5(a6)

T 2
A4(a5)

T 2
A3(a4)

T 2
A2(a3)

T 2
A1(a2)

T 2
a1
)2 = 1

which does not follow from those defining a right angled Artin group in these (square
Dehn twists) generators.

Remark also that the analogue of Conjecture 1.4 cannot hold when D = 1 either. In fact
the abelianization of Mg would be a nontrivial free abelian group, contradicting the fact
that Mg is perfect when g ≥ 3 and has torsion abelianization otherwise.

An important step towards a solution to Conjecture 1.5 was taken in the recent paper [30]
of Koberda, where the following is proven: For any irredundant (see [30] for the definition)
collection {f1, f2, . . . , fk} of mapping classes of homeomorphisms, each one being either
a Dehn twist or a pseudo-Anosov homeomorphism supported on a single connected sub-
surface, there exists N0 such that {fN

1 , fN
2 , . . . , fN

k } is a right angled generating system
for a right angled Artin subgroup of the mapping class group, for any N ≥ N0.

The first result of this paper supports further evidence for the last two conjectures.
Let A be a finite collection of simple closed curves on a surface S and denote by F (A)
the regular neighborhood of A in S. We assume that curves are isotoped so that for each
a, b ∈ A the number i(a, b) of intersection points between a and b is minimal. We pick up
a base point p on the surface S and a set of distinct points p0a ∈ a, for each a ∈ A.

Definition 1.9. The collection A of curves on the surface S is sparse if it is finite and for
some choice of paths γa joining p to p0a the free subgroup O(A) ⊂ π1(F (A), p) generated
by the homotopy classes of based loops γaaγ−1

a , a ∈ A, embeds into π1(S, p) under the
map induced by the inclusion F (A) ↪→ S. The collection A is nontrivial if the group O(A)
is nontrivial.

Theorem 1.10. Let D ≥ 2 and A be a nontrivial sparse collection of curves on Σg,d,
where d ≥ 1. Then the subgroup M(Σg,d)(A;D) is a right angled Artin group.

Remark 1.11. One can construct sparse sets A by considering free subgroups generated
by primitive elements in Σg,d.

Remark 1.12. J. Crisp and L. Paris considered before the question of finding presen-
tations of subgroups generated by non-trivial powers of the standard generators in Artin
groups. They established in [8] the Tits conjecture, which claimed that these subgroups
are right angled Artin groups. M. Lönne proved in [33] similar results in the braid group
setting, by showing that the subgroups generated by the powers of band generators are
again right angled Artin groups if the powers are at least 3.
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Remark 1.13. Recently, M. Kapovich proved in [28] (making use of our result above)
that all right angled Artin groups associated to finite graphs embed into the group of
Hamiltonian symplectomorphisms of any symplectic manifold.

The second part of this article is concerned with power subgroups and quotients. Recall
the following:

Definition 1.14. Let Xg[D] denote the D-th power subgroup of Mg, namely the sub-
group generated by powers hD of all elements of h ∈ Mg. Then Xg[D] is a normal
subgroup of Mg whose quotient is a torsion group.

Remark 1.15. Newman ([40]) proved that the D-th power subgroup of PSL(2,Z) (and
hence of SL(2,Z)) is of infinite index when D = 6m ≥ 48000. This was extended by Fine
and Spellman (see [12]) to the 2p-th power subgroups of Z/2Z ∗ Z/pZ (for odd prime p).

A natural question is whether power quotients of the mapping class group could be
non-trivial, or even infinite torsion groups. Our second result gives some answers in
particular cases:

Theorem 1.16. (1) Choose an ordered basis of H1(Σg,Z) and denote by P
the homomorphism Mg → Sp(2g,Z) which sends a mapping class into the matrix
describing its action in homology. Then, for every g ≥ 2 there exist infinitely
many integers D for which P (Xg[D]) is a proper subgroup of Sp(2g,Z). In par-
ticular Mg/Xg[D] are non-trivial torsion groups, for these values of D.

(2) If 4g + 2 does not divide D and g ≥ 3 then Mg = Xg[D].

The question concerning the existence of infinite torsion quotients of Mg (see the
question of Ivanov in [25]) has an elementary solution for genus g = 2. Using arguments
similar to those of Korkmaz in [31] we show that:

Theorem 1.17. The group M2/X2[360D] is an infinite torsion group (of exponent 360D)
for D ≥ 8000.

2. Subgroups of mapping class groups generated by powers of
Dehn twists

2.1. Finitely generated subgroups generated by powers in braid groups

The analogues of the groups M(Σg)(A;D) in the case of braid groups have been con-
sidered long time ago by Coxeter. The braid group Bn in n strands has the usual presen-
tation, due to Artin:

Bn = ⟨σ1,σ2, ...,σn−1 | σiσj = σjσi, if | i−j |> 1, σi+1σiσi+1 = σiσi+1σi, 1 ≤ i ≤ n−2⟩

It is well-known that the quotient of Bn by the normal subgroup generated by σ2
i is the

permutation group Sn. Consider, after Coxeter (see [5]):
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Definition 2.1. The subgroup Bn{D} of Bn is the group generated by the powers σD
i

of the standard generators σi. Let also N(Bn{D}) denote the normal closure of Bn{D}
in Bn.

Coxeter gave in [5] the list of all those quotients Bn/N(Bn{D}) which are finite,
together with their respective description (see also [6, 7]), as follows:

Proposition 2.2 (Coxeter). The group N(Bn{D}) is of finite index in Bn if and only
if (D − 2)(n − 2) < 4. Away from the trivial cases D = 2 or n = 2 we have another five
groups:

(1) n=3
(a) For D = 3 the quotient B3/N(B3{3}) is isomorphic to SL(2,Z/3Z) and has

order 24;
(b) For D = 4 the quotient B3/N(B3{4}) is a non-split extension of the sym-

metric group S4 on a set of 4 elements by Z/4Z and has order 96;
(c) For D = 5 the quotient B3/N(B3{5}) is isomorphic to GL(2,Z/5Z) and has

order 600;
(2) For n = 4, D = 3 the factor group B4/N(B4{3}) has order 648 and is the central

extension of the Hessian group (Z/3Z)2 ! PSL(2,Z/3Z) by Z/3Z.
(3) For n = 5, D = 3 the factor group B5/N(B5{3}) has order 155 520 and is the

central extension of the simple group of order 25 920 by Z/6Z.

Remark 2.3. (1) There is an analogue of Conjecture 1.5 for the punctured disk Σn
0,1,

where we replace powers of Dehn twists by powers of half-twists (i.e., braids).
Notice that N(Bn{2D}) is a subgroup of Mn

0,1[D].
(2) J. Tits conjectured that Bn{D} and more generally the subgroups generated by

powers of the standard generators in Artin groups are right angled Artin groups.
The latter conjecture was settled in full generality by Crisp and Paris [8].

(3) It seems unknown whether the analogue of Conjecture 1.5 for N(Bn{D}) holds
for D ≥ 3. Notice that for D = 2 there exist nontrivial relations among squares
of band generators (which are Dehn twists) according to [33].

2.2. Proof of Theorem 1.10

Consider the regular neighborhood F (A) of A in Σg,d, which is a subsurface of genus
g(A) with k(A) boundary components. Then g(A) ≤ g, but the number k(A) of boundary
components of F (A) depends on the geometry ofA and can be arbitrarily large. We denote
by i(a, b) the minimal number of intersection points between curves in the isotopy classes
of a and b, respectively. We assume that curves in A are isotoped so that for each a, b ∈ A
the number of intersection points between a and b equals i(a, b) and there are no triple
intersections among curves in A.

We will adapt the proof of the Tits conjecture given in [8]. In the present situation
we will be concerned with an Artin group B(A) (to be defined later) associated to the
collection A and its representation into the mapping class group of F (A).
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We can obtain F (A) as the result of plumbing one annulus neighborhood Anna for each
curve a in A. In particular the core curves of the annuli are transverse to each other.
Pick-up one base point p0a in the boundary of Anna, for each a ∈ A. We can suppose
that all p0a belong to ∂F (A). Choose one distinguished boundary component a+ for each
annulus Anna. There is no loss of generality in assuming that each p0a belongs to a+ and
a small arc of a+ centered at p0a is contained within ∂F (A).

Give an orientation to every curve a ∈ A and a total order < on A.

If we travel along a+ in the direction given by the orientation and starting at p0a we will
meet a number of intersection points between a+ and the other curves b+, where b ∈ A.

We denote them in order p1a, p
2
a, . . . , p

d(a)
a . Denote then by S = ∪a∈A ∪0≤j≤d(a) {p

j
a} the

set of all these points. It is clear that S ⊂ ∂F (A).

The groupoid π1(F (A), S) is the fundamental groupoid of F (A) based at the points of S.
Since F (A) has boundary it follows that π1(F (A), S) is a free groupoid (see [9], p.7).

Furthermore the mapping class group M(F (A)) acts by automorphisms on the funda-
mental groupoid π1(F (A), S), because S ⊂ ∂F (A) and elements of M(F (A)) are classes
of homeomorphisms fixing point-wise the boundary.

Consider the following elements of π1(F (A), S):

(1) For every s ∈ A the elementary loop αs is s+ based at p0s, with its orientation.
Thus αs is parallel to the central curve s in the annulus Anns.

(2) For every s ∈ A and i ∈ {0, 1, . . . , d(s) − 1} consider the arc pisp
i+1
s of s+ which

joins pis to pi+1
s . We call them admissible arcs. Observe that the arc pd(s)s p0s is

not admissible.

The dual intersection graph of A is defined as the graph whose vertices are the elements
of A and two vertices are connected by an edge if the corresponding curves intersect.
Assume henceforth that the dual intersection graph of A is connected. Then admissible
arcs and elementary loops generate the groupoid F = π1(F (A), S).

Let then ΓA be the subgroup of M(F (A)) generated by the Dehn twists Ta, for all a ∈ A.

Set B for the sub-groupoid of F generated by the admissible arcs.

We will need some terminology and facts from [8]. Any element of F can uniquely be
written in the reduced form:

w = µ0α
k1
s1
µ1 · · ·α

km
sm

µm

where µi ∈ B, µi is non-trivial if i ̸= 0,m and ki ̸= 0.
We say that w has a square in αs if for some j we have sj = s and |kj | ≥ 2, and is

without squares in αs, otherwise. Moreover w is of type (µ,αp
t ) if its reduced form is

w = µ0α
k1p
t µ1 · · ·α

kmp
t µm, kj ∈ Z \ {0}, and µ = µ0µ1 · · ·µm
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By language abuse we will speak about Ta(w), where w is a word in F, using the action
of ΓA by automorphisms on F.

Lemma 2.4. Let s ∈ A and m ∈ Z \ {0}.

(1) If µ ∈ B then Tm
s (µ) is of type (µ,αm

s ).
(2) Let t ∈ A. If s = t or i(s, t) = 0 then Tm

s (αt) = αt.
(3) If i(s, t) ̸= 0 then Tm

t (αs) is uαs, where u is an element of type (1,αm
t ). Thus, if

|m| ≥ 2 and i(s, t) ̸= 0 then Tm
t (αs) has a square in αt.

Proof. If s+, t+ intersect at p we define ε(s, t; p) ∈ {−1, 1} as follows. Assume that we
travel along s+ to meet p. At p we use the global orientation of the surface for turning
right along t+ and continue travelling this way. If the direction along t+ is the orientation
of t+ then we set ε(s, t; p) = 1 and otherwise ε(s, t; p) = −1.

Next, we will identify canonically π1(F (A), S) with π1(F (A), S′) where S′ is a copy
of S, each point pja being slightly moved in the positive direction along the arc a+ to
a point p̃ja.

Denote by αt(p
j
t ) the element p̃0t p̃

j
t αt p̃

j
t p̃

0
t , where p̃

0
t p̃

j
t is the unique arc of αt joining p̃0t to

p̃jt and consisting only of admissible sub-arcs. Also αt is considered as the loop t+ based
at p̃0t . Then by direct computation we find:

Tm
αt
(p̃isp̃

i+1
s ) =

⎧

⎨

⎩

p̃isp̃
i+1
s , if pisp

i+1
s ∩ αt = ∅, or s = t

p̃isp̃
i+1
s α

mε(s,t;pi+1
s )

t (pi+1
s ) if pi+1

s ∈ t+

p̃isp̃
i+1
s if pi+1

s ̸∈ t+

Notice that when the start-point pis belongs to t+ the action is trivial since the base-point
pis is slightly pushed out of t+ in S′.

Let now s, t ∈ A be two curves with i(s, t) ̸= 0. Suppose now that starting from p0s and
traveling along s+ we meet the circle t+ at the points pj1s , pj2s , . . . , pjrs , r > 0. By direct
inspection we find that

Tm
αt
(αs) = p̃0sp̃

j1
s α

mε(s,t;pj1
s )

t (pj1s ) p̃j1s p̃j2s α
mε(s,t;pj2

s )
t (pj2s ) · · ·αmε(s,t;p

jr−1
s )

t (pjr−1
s )(p̃0s p̃

jr
s )−1αs

It is immediate that Tm
αt
(αs) = uαs, where u is of type (1,αm

t ). !

Lemma 2.5. Let x ∈ F, |m| ≥ 2. If x is without squares in αt and Tm
αt
(x) has a square

in αs then either s = t or else i(s, t) = 0 and x has a square in αs.

Proof. Let x = µ0αk1
s1
µ1 · · ·αkr

sr
µr in reduced form. The previous lemma shows that:

(1) If si = t then vi = Tm
αt
(αki

si
) = αki

si
, where ki ∈ {−1, 1}, because x is without

squares in αt.
(2) If si and t are disjoint then Tm

αt
(αki

si
) = αki

si
.
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(3) If i(sj , t) ̸= 0 then

Tm
αt
(αkj

sj
) =

{

uj(αsjuj)kj−1αsj if kj > 0
α−1
sj (u−1

j α−1
sj )−kj−1u−1

j if kj < 0

where uj is a non-constant term of type (1,αm
t ).

(4) Tm
αt
(µj) has a reduced form yj of type (µ,αm

t ), for all j ≥ 0.

Therefore we can write in reduced form Tm
αt
(x) = x0v1x1v2 · · · vrxr as follows:

(1) If either si = t or si and t are disjoint then vi = Tm
αt
(αki

si
) = αki

si
.

(2) Assume that i(sj , t) ̸= 0.
(a) If kj > 0 then vj = (αsjuj)kj−1αsj . Absorb the extra factor uj into xj−1.

(b) If kj < 0 then vj = α−1
sj (u−1

j α−1
sj )−kj−1. Absorb the extra factor u−1

j into
xj .

(3) Eventually xj are Tm
αt
(µj), possibly corrected by the absorption of terms coming

from vj or vj+1. Thus xj are of reduced form of type (µj ,αm
t ).

In particular, if Tm
αt
(x) has a square in αs then either s = t or there exists j such that

sj = s and s and t are disjoint. !

To each set of curves A ⊂ Σg,d we can associate the Artin group B(A), with the following
presentation:

B(A) = ⟨za, a ∈ A | zazb = zbza, if a ∩ b = ∅, zazbza = zbzazb, if i(a, b) = 1⟩

There is a natural homomorphism τ : B(A) → M(F (A)) which sends za into the Dehn
twist Ta.

Consider now the right angled Artin group defined by the presentation:

H(A) = ⟨wa, a ∈ A | wawb = wbwa, if i(a, b) = 0⟩

There is a map ι : H(A) → B(A) given by ι(wa) = zDa . We will suppose that D ≥ 2
in the sequel. The word W = wnl

sl
w

nl−1
sl−1 · · ·wn2

s2 w
n1
s1 is called an M-reduced expression of

the element w ∈ H(A) (obtained by interpreting letters as the corresponding generators
of H(A)) if for any i < j such that si = sj there exists k such that i < k < j and
i(si, sk) ̸= 0. Then the M -reduced expression for w ends in s if, up to change the order
of commuting generators, we can arrange that sl = s.

Recall now that τ(ι(w)) is an automorphism of F, for each w ∈ H(A). We will write
simply w(x) or W (x) for τ(ι(w))(x), where w ∈ H(A), x ∈ F and W is an M -reduced
expression for w.

The following two lemmas are restatements of Propositions 9 and 10 from [8].

Lemma 2.6. Let W be an M -reduced expression for w ∈ H(A), x ∈ F and s ∈ A.
Suppose that x is without squares in αt for all t ∈ A, and that w(x) has a square in αs.
Then W ends in s.
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Proof. We will proceed by induction on the length l of the M -reduced expression
W = wnl

sl
wnl−1

sl−1
· · ·wn2

s2
wn1

s1
(see also [8], p.30). When l = 0, w is identity and thus

w(x) = x cannot have squares in αs, under our assumptions. For the induction step let
us now write W = wnl

sl
W ′, where l ≥ 1. If W ′(x) had a square in αsl then W ′ would end

in sl (by the induction hypothesis) and hence W would not be an M -reduced expression.
Hence W ′(x) is without squares in αsl .

Now W (x) = TDnl
αsl

(W ′(x)) has a square in αs. By Lemma 2.5 one has:

(1) either sl = s and so W ends in s;
(2) or else sl and s are disjoint and W ′(x) has a square in αs. By the induction

hypothesis W ′ ends in s. Since sl and s commute we switch the position of the
last two generators and find that W ends in s.

!

For a fixed a ∈ A the fundamental group π1(F (A), p0a) embeds into the groupoid
π1(F (A), S). It is also clear that π1(F (A)), p0a) is kept invariant by the action of any
element w ∈ H(A).

Lemma 2.7. Assume that the dual intersection graph of A (or, equivalently the surface
F (A)) is connected. If w has a nontrivial M -reduced expression then w acts non-trivially
on O(A).

Proof. It is known (see e.g. [8] and references therein) that an M -reduced expression
representing the identity in H(A) is trivial. Take then a non-trivial M -reduced expression
W , as above. Since the dual intersection graph of curves is connected there exists some t in
A such that i(sl, t) ̸= 0. We will show that W (αt) ̸= αt. Since αt ∈ O(A) ⊂ π1(F (A), p0t )
the action of W is nontrivial on O(A).

Suppose W (αt) = αt and write W = T nl
sl
W ′. Then

W ′(αt) = w−nl
sl

(αt) = T−Dnl
sl

(αt)

Lemma 2.4 shows that T−Dnl
sl

(αt) has a square in αsl and further from Lemma 2.5 W ′

ends in sl. But then W is not M -reduced, contradiction. This proves the claim. !

Proposition 2.8. Assume that the dual intersection graph of the finite collection A is
connected, A has at least two elements and D ≥ 2. Then the group M(F (A))(A;D) is a
right angled Artin group with presentation:

M(F (A))(A;D) = ⟨TD
a , a ∈ A | TD

a TD
b = TD

b TD
a , if a ∩ b = ∅⟩

Proof. Lemma 2.7 shows that the map τ ◦ ι : H(A) → M(F (A)) is injective, since
M(F (A)) is a subgroup of the group of automorphisms of F. Therefore M(F (A))(A;D)
is isomorphic to H(A), as claimed. !
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Corollary 2.9. If A is nontrivial and Σg,d \F (A) has neither disks nor cylinder compo-
nents joining two distinct boundary components of F (A) and D ≥ 2 then M(Σg,d)(A,D)
is a right angled Artin group with presentation:

M(Σg,d)(A;D) = ⟨TD
a , a ∈ A | TD

a TD
b = TD

b TD
a , if a ∩ b = ∅⟩

Proof. The embedding F (A) ⊂ Σg,d, with F (A) different from a disk or an inessential an-
nulus induces a group embedding M(F (A)) ↪→ M(Σg,d) according to ([41], Corollary 4.2)
if and only if Σg,d \ F (A) has neither disk nor cylinder components joining two distinct
boundary components of F (A). Now, since A is nontrivial F (A) is neither a disk nor an
inessential annulus. !

End of proof of Theorem 1.10. It suffices to consider the case when the dual intersection
graph of A is connected. The mapping class group M(Σg,d) embeds into Aut(π1(Σg,d, p)),
where the base point p is chosen on the boundary ∂Σg,d. By Lemma 2.7 for every non-
trivial element w ∈ H(A) there is some z ∈ O(A) such that τ(ι(w))(z) · z−1 ̸= 1. Since
the homomorphism j : O(A) → π1(Σg,d) was assumed to be injective it follows that
τ(ι(w))(j(z)) · j(z)−1 = j(ι(w)(z) · z−1) ̸= 1. Therefore τ(ι(w)) acts nontrivially on
π1(Σg,d, p) and thus τ(ι(w)) is not identity. This means that τ ◦ ι is injective and hence
the homomorphism of H(A) onto M(Σg,d)(A;D) is an isomorphism. This finishes the
proof of Theorem 1.10.

Let B = {c0, c1, . . . , c2g} and C = {c1, c2, . . . , c2g}, where cj are the curves from the
figure below.

c

c

c
c c c c

0

1 2 3 4
5 c 6 2g

Let Σg,2 and Σg,1 be the regular neighborhoods in Σg of the union of curves from B and
respectively C.

Corollary 2.10. The groups M(Σg,2)(B;D) and M(Σg,1)(C;D) are right angled Artin
groups with the presentations:

M(Σg,2)(B;D) = ⟨TD
cj
, j = 0, . . . , 2g;TD

cj
TD
ck

= TD
ck
TD
cj
, if j < k, k ̸= j + 1, (j, k) ̸= (0, 4)⟩

and respectively:

M(Σg,1)(C;D) = ⟨TD
cj
, j = 1, . . . , 2g;TD

cj
TD
ck

= TD
ck
TD
cj
, if j < k, k ̸= j + 1⟩

Proof. Here is a direct simpler proof which uses the proof given in [8] for small Artin
groups. Let E2g be the Artin group associated to the Dynkin graph of type E2g, which
is the tree whose vertices are in one-to-one correspondence with the curves c0, c1, . . . , c2g
from the figure above and whose edges join two vertices only if the respective curves have
one intersection point. Observe that A2g is the Dynkin subgraph associated to the curves
c1, c2, . . . , c2g.
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Let now E2g[D] denote the subgroup of E2g generated by TD
cj , j = 0, 1, . . . , 2g. Crisp

and Paris proved in [8] that the subgroup E2g[D] has the following right angled Artin
group presentation:

E2g[D] = ⟨TD
cj , j = 0, . . . , 2g | TD

cj T
D
ck

= TD
ck
TD
cj , if j < k, k ̸= j + 1, (j, k) ̸= (0, 4)⟩

The regular neighborhoods F (B) and F (C) are homeomorphic to Σg,2 and Σg,1, respec-
tively.

An essential ingredient of the proof in [8] is the natural representation of the Artin group
E2g into the mapping class group M(F (B)). Consequently E2g acts by automorphisms
on the fundamental groupoid π1(F (B);S), where S = {s0, . . . , s2g} is a set of boundary
base points, one base point for each annulus. Set τ : E2g → Aut(π1(F (B);S)) for this
representation.

Let then H(B) and H(C) be the right angled Artin group

H(B) = ⟨aj , j = 0, . . . , 2g | ajak = akaj, if j < k, k ̸= j + 1, (j, k) ̸= (0, 4)⟩

H(C) = ⟨aj , j = 1, . . . , 2g | ajak = akaj , if j < k, k ̸= j + 1, (j, k) ̸= (0, 4)⟩

There is a homomorphism ι : H(B) → E2g that sends each aj into TD
cj
.

The key point of the proof from [8] is that, given any non-trivial element w ∈ H(B),
the automorphism τ(ι(w)) acts non-trivially on some element of π1(F (B), S) and hence
τ(ι(w)) ̸= 1. This shows that ι injects H(B) into E2g.

However this proof also shows that the right angled Artin group H(B) injects into the
mapping class group M(F (B)). The corresponding map sends aj into the Dehn twist
TD
cj . As M(F (B)) is actually M(Σg,2)(B;D) the claim follows.

The same proof works for the sub-family C. !

We can slightly generalize the previous results to subgroups generated by not necessarily
equal powers of Dehn twists.

Proposition 2.11. Let A be a nontrivial sparse collection of curves on Σg,d. Then the

subgroup of M(F (A)) generated by the powers TD(a)
a , where |D(a)| ≥ 2, a ∈ A is a right

angled Artin group.

Proof. The proof from above applies with only minor modifications. !

Remark 2.12. If D(a) = D, for a non-separating curve a and D(a) = 1, for all other

simple closed curves a, then the subgroup generated by all the powers TD(a)
a is the level D

subgroup of the mapping class group of Σg, namely the kernel ofM(Σg) → Sp(2g,Z/DZ).
This is proved by McCarthy in ([35], Theorem 2.8). In particular, in this case the subgroup
is of finite index.
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3. Power subgroups of the mapping class group

3.1. Mg[D] and symplectic groups

We fix once for all a symplectic basis {ai, bi}i=1,...,g in homology consisting of classes
of simple loops and denote by P : Mg → Sp(2g,Z) the natural homomorphism.

Proposition 3.1. If g ≥ 2 then P sends Mg[D] onto the special congruence subgroup

Sp(2g,Z)[D] = ker(Sp(2g,Z) → Sp(2g,Z/DZ))

Proof. The action of the Dehn twist Tb in homology is given by

TD
b a = a+D⟨a, b⟩b

where ⟨a, b⟩ is the algebraic intersection number on Σg. Therefore TD
b (a) − a belongs

to the submodule DH1(Sg,Z) of H1(Sg,Z), for any b ∈ H1(Sg,Z). This implies that
P (TD

b ) ∈ Sp(2g,Z)[D]) and hence P (Mg[D]) is a normal subgroup of Sp(2g,Z)[D].
Recall that Sp(2g,Z) is the group of matrices A with integer entries which satisfy

AJAT = J , where the almost complex structure matrix J is the direct sum of g blocks
(

0 1
−1 0

)

.

Consider the elementary matrices

SEiτ(i)[D] = I2g +DEiτ(i)

SEij [D] = I2g +DEij − (−1)i+jDEτ(j)τ(i)

where τ is the permutation τ(2j) = 2j − 1, τ(2j − 1) = 2j, for 1 ≤ j ≤ g and Eij denotes
the matrix having a single non-zero unit entry at position (ij). By direct computation
we find that:

SE12[D] = P (T−D
a1

)

SE13[D] = P (T−D
b2

T−D
a1

TD
c )

SE14[D] = P (TD
a2
TD
a1
T−D
f )

where c and f are simple closed curves whose homology classes are a1 + b2 and a1 + a2
respectively.

Therefore the elementary congruence subgroup of level D, which is defined as the
matrix group generated by the matrices SEij [D], is contained in P (Mg[D]). Now, a
deep result of Mennicke (see [38, 39, 3]) says that the elementary congruence subgroup
coincides with the congruence subgroup Sp(2g,Z)[D], if g ≥ 2. Therefore P (Mg[D])
equals Sp(2g,Z)[D], as claimed. !

Remark 3.2. If g = 1 then Mg[D] might be of infinite index in SL(2,Z) (see [40]).

Corollary 3.3. The group Mg[D] is torsion-free and consists of pure mapping classes
when D ≥ 3 and g ≥ 2.
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Proof. Serre’s Lemma tells us that torsion elements in the mapping class group act non-
trivially on the homology with Z/DZ coefficients for any D ≥ 3.

Recall that a mapping class h is pure if hn(γ) = γ implies that h(γ) = γ, for each
isotopy class of a simple closed curve γ. Then the second claim is a simple consequence
of Ivanov’s results (see [23, 24]) concerning pure classes. !

3.2. Power subgroups and symplectic groups

We start by analyzing the images of the power subgroups in the symplectic group. This
amounts to finding the power subgroups of the symplectic group. Let g ≥ 2 and recall
that P denotes the homomorphism Mg → Sp(2g,Z) induced by a homology basis. We
already saw in Section 3.1 that P (Mg[D]) = Sp(2g,Z)[D]. Moreover since P is surjective
P (Xg[D]) is a normal subgroup of Sp(2g,Z) containing Sp(2g,Z)[D]. We have then an
obvious surjective homomorphism:

L : Sp(2g,Z/DZ) = Sp(2g,Z)/Sp(2g,Z)[D] → Sp(2g,Z)/P (Xg[D])

Our first technical result is the following:

Lemma 3.4. For any integer D ̸≡ 0(mod 6) and any proper ideal J ⊂ Z/DZ there exists
an element in the kernel of L which is not central after reduction mod J .

Proof. It suffices to find a matrix in C ∈ Sp(2g,Z/DZ) whose power CD is neither the
identity 1 nor −1modulo the ideal J , since the center of Sp(2g,Z/DZ) consists of {1,−1}
(see [29], Prop. 2.1). Since CD belongs to kerL this will prove the lemma.

We look for C of the form A⊕A⊕ · · ·⊕A where A is a 2-by-2 matrix. We take a lift of
A with integer entries. Then CD has the form AD ⊕AD ⊕ · · ·⊕AD. Since A ∈ SL(2,Z)
we have

A2 = tA− 1

where t is the trace of A. It follows that

AD = QD−1(t)A−QD−2(t)1

whereQk(t) ∈ Z[t] are polynomials in the variable t determined by the recurrence relation:

Qn(t) = tQn−1(t)−Qn−2(t)

with initial values Q0 = 1, Q1(t) = t.

We obtain therefore, by induction on D, the following formulas:

QD−1(0) =

{

(−1)
D−1

2 , if D ≡ 1(mod 2),
0, if D ≡ 0(mod 2).

QD−1(−1) =

⎧

⎨

⎩

1, if D ≡ 1(mod 3),
−1, if D ≡ 2(mod 3),
0, if D ≡ 0(mod 3).
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If the reduction mod J of CD is trivial for all C as above then QD−1(t) ≡ 0(mod J) for
all t, since there exist matrices A of given trace t having some entry off-diagonal which is

congruent to 1 mod D, for instance A =

(

t 1
−1 0

)

. Now, either QD−1(−1) or QD−1(0)

is ±1 mod D, hence J is trivial. This proves the claim. !

Remark 3.5. The conclusion of Lemma 3.4 does not hold when D ≡ 0(mod 6). For
instance Q5(t) = t(t − 1)(t + 1)(t2 − 3) and thus Q5(t) ≡ 0(mod 6) for every integer t.
More generally Q6k−1(t) ≡ 0(mod 6), for every integer k. It suffices to observe that:

QD−1(1) =

⎧

⎨

⎩

1, if D ≡ 1(mod 6), or D ≡ 2(mod 6),
−1, if D ≡ 4(mod 6), or D ≡ 5(mod 6),
0, if D ≡ 3(mod 6), or D ≡ 6(mod 6).

and use the previous computations for QD−1(0) and QD−1(1).

Remark 3.6. Observe that Qn is the n-th Chebyshev polynomial of the second kind

Qn(t) =
sin(n+ 1)arcos(t/2)

sin arcos(t/2)

which can be given by the explicit formula

Qn(t) =

[n+1
2 ]

∑

k=0

(−1)k
(n− k)!

k!(n− 2k)!
tn−2k

Notice that the usual definition for the Chebyshev polynomial uses the variable x, where
t = 2x (see [42] for more details).

Proposition 3.7. Suppose that g ≥ 2, D is of the form pm for a prime p, m ∈ Z+ and
additionally g ≥ 3, m ≥ 2 when p ∈ {2, 3}. Then P (Xg[D]) is all of Sp(2g,Z).

Proof. We want to prove that the image of L : Sp(2g,Z/DZ) → Sp(2g,Z)/P (Xg[D]),
(introduced at the beginning of Section 3.2) is trivial. Since the homomorphism L is
surjective, this will prove our claim. To this purpose we analyze its kernel kerL.

Now, the normal subgroups of symplectic groups over local rings were described by
Klingenberg (see [29], Lemma 3.2) and Jehne ([27]), in the case when D = pm, p prime
and p ̸∈ {2, 3}. The most general statement can be found in ([17], Thm. 9.1.7, p.517)
where one also considered p ∈ {2, 3} but g ≥ 3. The above cited result is that under these
conditions all normal subgroups of Sp(2g,Z/DZ) (where D = pm, such that Z/DZ is a
local ring) are congruence subgroups, namely they contain the kernel Sp(2g,Z/DZ)[J ] of
the homomorphism Sp(2g,Z/DZ) → Sp(2g, (Z/DZ)/J), for some ideal J . This implies
that there exists an ideal J ⊂ Z/DZ for which kerL contains Sp(2g,Z/DZ)[J ].

On the other hand, if J were a proper ideal of Z/DZ, Lemma 3.4 would provide
an element of kerL which does not belong to Sp(2g,Z/DZ)[J ]. Therefore J = Z/DZ,
whenever p ̸∈ {2, 3} or m ≥ 2, and hence the map L is trivial. !
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Remark 3.8. The projective symplectic group PSp(2g,Z/DZ) is simple when D is
prime, except when g = 1, D ∈ {2, 3} (where it coincides with the permutation group S3

and respectively the alternating group A4) and g = 2, D = 2 (when it coincides with the
permutation group S6).

Remark 3.9. When g = 2 and D = 2 the image of P (X2[2]) is of index 2 in Sp(4,Z/2Z).
The subgroup generated by squares of elements in S6 is the index 2 alternating subgroup
A6. In fact any square has even signature and A6 is also the commutator subgroup of S6.
Observe that [a, b] = (ab)2, if a2 = b2 = 1 and commutators of transpositions generate
A6. Finally we have the exact sequence:

1 → Z/2Z → P (X2[2]) → A6 → 1.

In the general case when D is not a power of a prime the image of Xg[D] might be
strictly smaller than Sp(2g,Z/DZ). This is clear when D ≡ 0(mod 6), since Remark 3.5
shows that the image of P (Xg(D)) ⊂ Sp(2g,Z/DZ) into Sp(2g,Z/6Z) must be central.
A similar result holds more generally. Let us set:

oc(D) = min{d;Ad ∈ Z(Sp(2g,Z/DZ)), for any A ∈ Sp(2g,Z/DZ)}

where Z(G) stands for the center of the group G. Write D as D = q1q2 · · · qmD′, where qj
are powers of distinct primes and D′ ∈ Z. Set V = {j; oc(qj) divides D} ⊂ {1, 2, . . . ,m}
and ν(D) =

∏

j∈V qj . Consider also the general congruence subgroup GSp(2g,Z/DZ)[F ]
which is the preimage of Z(Sp(2g,Z/FZ)) under the reduction mod F homomorphism
Sp(2g,Z/DZ) → Sp(2g,Z/FZ).

Proposition 3.10. The image P (Xg[D]) is contained in the general congruence subgroup
GSp(2g,Z)[ν(D)].

Proof. Consider the homomorphism pj : Sp(2g,Z/DZ) → Sp(2g,Z/qjZ) which reduces
entries modulo qj . If A ∈ Sp(2g,Z/DZ) then pj(AD) is central for any A ∈ Sp(2g,Z/DZ)
if oc(qj) divides D. Therefore the D-th power subgroup of Sp(2g,Z/DZ) is contained into
∩j∈V GSp(2g,Z/DZ)[qj ], which can be identified with GSp(2g,Z)[ν(D)]. !

3.3. Proof of Theorem 1.16

Theorem 1.16 (1) can be restated as follows:

Proposition 3.11. There exist infinitely many integers D for which P (Xg[D]) is a proper
subgroup of Sp(2g,Z), for g ≥ 2. In particular Mg/Xg[D] are non-trivial torsion groups,
for these values of D.

Proof. It is clear that oc(q) is a divisor of the order of Sp(2g,Z/qZ), although this upper
bound is far from being optimal. Let D = l.c.m.(oc(q), q). Thus we can write D = qD′

for some integer D′, and we know that oc(q) divides D. Therefore ν(D) is divisible by
q. Henceforth there exist infinitely many integers D for which P (Xg[D]) is a proper
subgroup of Sp(2g,Z), by Proposition 3.10. In particular Mg/Xg[D] is a non-trivial
torsion group. !
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Notice however that P (Xg[D]) is always of finite index in Sp(2g,Z) since it contains the
congruence subgroup P (Mg[D]). The second step in the study of Xg[D] is to understand
the interactions with the torsion subgroup of Mg. We restate here Theorem 1.16 (2) for
the sake of completeness.

Proposition 3.12. We have Xg[D] = Mg, for g ≥ 3, if 4g + 2 does not divide D.

Proof. The chain relation (see e.g. [11], 4.4) shows that whenever c1, c2, . . . , ck are simple
closed curves forming a chain i.e., consecutive cj have a common point and are otherwise
disjoint, then:

(1) if k is even we have:

(Tc1Tc2 · · ·Tck)
2k+2 = Td

and also:

(T 2
c1
Tc2 · · ·Tck)

2k = Td

where d is the boundary of the regular neighborhood of the union of the cj .
(2) if k is odd we have:

(Tc1Tc2 · · ·Tck)
k+1 = Td1

Td2

and respectively:

(T 2
c1Tc2 · · ·Tck)

k = Td1
Td2

where d1, d2 are the boundary curves of the regular neighborhood of the union of
the cj .

As a consequence the element a = Tc1Tc2 · · ·Tc2g is of order 4g + 2 and the element
b = T 2

c1
Tc2 · · ·Tc2g is of order 4g, where c1, c2, . . . , c2g are the curves from the first figure.

Lemma 3.13. The normal subgroup generated by ak is Mg when k ≤ 2g and g ≥ 3 and
of index 2 when g = 2.

Proof. See ([32], Theorem 4). !

Let π : Mg → Mg/Xg[D] be the projection. We have then a4g+2 = 1. Let k denote
gcd(4g + 2, D) < 4g + 2. In the quotient Mg/Xg[D] we have also π(aD) = 1 and hence
π(ak) = 1. We have either k ≤ 2g or else k = 2g + 1.

If k < 2g + 1 Lemma 3.13 shows that the quotient Mg/Xg[D] is trivial.

If k = 2g + 1 recall that we have also b4g = 1 and hence π(b) = 1. This implies that
π(a) = π(Tc1Tc2 · · ·Tcg) = π(T−1

c1
).
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By recurrence on k we can show that ak(c1) = ck+1, if k ≤ 2g, where c2g+1 is the curve
from the figure below:

c2g+1

Thus
T−1
c1 akTc1a

−k = T−1
c1 Tak(c1) = T−1

c1 Tck+1

Therefore
π(T−1

c1 Tck+1
) = π(T−1

c1 akTc1a
−k) = 1

so that
π(Tc1) = π(Tc2) = · · · = π(Tc2g )

The braid relations in Mg read

Tc0Tc4Tc0 = Tc4Tc0Tc4

and
Tc1Tc0 = Tc0Tc1

from which one can find
π(Tc0) = π(Tc1)

Thus the images by π of all standard 2g+1 generators of Mg coincide and since H1(Mg)
is trivial, for g ≥ 3, we obtain:

π(Tci) = 1, for all i = 0, 1, . . . 2g

Thus the quotient group is trivial. !

Remark 3.14. One knows that Mg/Mg[2] is finite (see [20]), when g ≥ 2, and Mg/Xg[2]
is the further quotient obtained by adjoining all squares as relations. Thus the quotient is
a finite commutative 2-torsion group. But Mg is perfect (when g ≥ 3) and hence it does
not have surjective morphisms into nontrivial abelian groups. Thus Mg/Xg[2] should be
trivial, for g ≥ 3.

Remark 3.15. For every non-separating curve d we can find a chain c1, c2, . . . , c2g−1

whose boundary is made of two curves isotopic to d and hence

(T 2
c1
Tc2 · · ·Tc2g−1

)2g−1 = T 2
d

Since Td and Tci commute we have

((T 2
c1
Tc2 · · ·Tc2g−1

)1−gTd)
2g−1 = Td

Thus every Dehn twist along a non-separating curve is a (2g−1)-power. Since these Dehn
twists generate Mg it follows that Xg[2g − 1] = Mg, for g ≥ 3.
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Corollary 3.16. The index of a normal subgroup of Mg is a multiple of 4g + 2, when
g ≥ 3.

Proof. In fact Xg[N ] is contained in a normal subgroup of index N . Proposition 3.12
implies the claim. !

3.4. Proof of Theorem 1.17

For a group G denote by Q(G)[D] the quotient of G by its D-th power subgroup
X(G)[D]. The key ingredient we shall use is the deep result of Adian and Novikov
(see [1]), Lysënok ([34]) and Sergei Ivanov (see [26]) that the free Burnside groupQ(F2)[D]
is infinite for large D (e.g., D ≥ 8000).

Lemma 3.17. If G → H is surjective then Q(G)[D] → Q(H)[D] is also surjective.

Proof. It suffices to see that it is well-defined and thus surjective. !

Lemma 3.18. If G ⊂ H is a subgroup of index n and Q(G)[D] is infinite then Q(H)[n!D]
is infinite. When G is a normal subgroup then Q(H)[nD] is infinite.

Proof. If G is a normal subgroup of H then for every a ∈ H we have an ∈ G. If G is not
necessarily normal then we claim that for every a ∈ H we have an! ∈ G. In fact, by our
assumption there are only n distinct left cosets of G in H . Thus the following (n + 1)
left cosets G, aG, a2G, . . . , anG cannot be distinct. This means that there exists some
non-zero integer p ≤ n such that ap ∈ G. Since p divides n! it follows that an! ∈ G, as
claimed.

Therefore if G is normal we have X(H)[nD] ⊂ X(G)[D] ⊂ G ⊂ H and otherwise
X(H)[n!D] ⊂ X(G)[D] ⊂ G ⊂ H . The lemma follows from this. !

Lemma 3.19. We have Q(Mn
0 )[n(n−1)(n−2)(n−3)D] is infinite if n ≥ 4 and D ≥ 8000.

Proof. Observe that Mn
0 contains the index n(n − 1)(n − 2)(n − 3) subgroup U which

preserves point-wise four punctures. Let PMn
0 denote the subgroup of pure mapping

classes in Mn
0 which preserve point-wise all punctures. Then U surjects onto PM4

0 , by
forgetting all but the four fixed punctures. But PM4

0 is isomorphic to the free group F2.
Thus Lemmas 3.17 and 3.18 settle the claim. !

The proof of Theorem 1.17 follows now from the following exact sequence:

1 → Z/2Z → M2 → M6
0 → 1

and Lemmas 3.17 and 3.19.

Remark 3.20. The same proof shows that the group Q(CMg
(j)((2g + 2)!D) associated

to the centralizer CMg
(j) of the hyper-elliptic involution j is infinite as soon as D is large

enough.
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Remark 3.21. One might speculate that for large values of D the subgroup
Xg[g!(4g + 2)D] is of infinite index in Mg and the quotient is a finitely generated torsion
group of exponent g!(4g + 2)D. Moreover, in this case there would exist N(g), which di-
vides g!(4g+2), such that Q(Mg)[N(g)D] is infinite for large enough D, while Q(Mg)[D]
is finite for every D not divisible by N(g). This would follow if there exists a finite index
subgroup of Mg which surjects onto a free non-abelian group.
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