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Deterministic Chaos

Deterministic dynamical system with sensitivity to initial conditions.
=⇒ A typical individual trajectory has unpredictable behavior, confused,
disordered (= chaotic).

Example in Sinaï billiard. Observe 1 ball: it has deterministic but
unpredictable behavior. Why?
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1 trajectory, small time. Motion on the cover is like a random walk.1 trajectory long time.
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Deterministic Chaos (2)
Heuristic explanation: observe one ball with initial uncertainty ∆y = 10−4: the
uncertainty increases exponentially, hence the behavior may differ after a short
time.
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Deterministic Chaos (3)

Observe N = 104 independent balls with similar initial conditions ∆y = 10−4: the
distribution converges towards equilibrium and diffuse in the lattice. We observe a
predictible but irreversible “effective evolution” of the probability distribution.

t=0 t=1.8 t=2.4 t=5 Diffusion in the lattice

See videos 1,2,3.
Questions: describe this “effective evolution of the probability distribution”:
convergence to equilibrium and fluctuations around it? Explain the limiting
Gaussian diffusion? How to express and prove this?
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Mathematical model of deterministic chaos
Definitions
A contact Anosov dynamics is a vector field X on a closed manifold M that
generates a flow φt : M→M, t ∈ R such that

TM = RX ⊕Estable⊕Eunstable

∃C > 0,λ > 0,∀t ≥ 0,∥∥∥(Dφt)|Es

∥∥∥≤ Ce−λ t ,
∥∥∥(Dφ−t)|Eu

∥∥∥≤ Ce−λ t ,

and the distribution Eu⊕Es is maximally non integrable (i.e. contact).

X

Eu(x)

Es(x)
Es

X

x

φt(x)

Eu

E0(x)



Mathematical model of deterministic chaos (2)

Theorem ([Anosov 1950])
If M is a closed Riemannian manifold with negative sectional curvature, the
geodesic flow on M = T ∗1M (:the energy shell) is a “contact Anosov flow”.

Remark:[Sinaï 1970] a Sinaï billiard is a “non smooth limit” of a geodesic flow:
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with

momentum

position

Billard

≡

Surface M with negative curvature

p = (p1,p2)
|p|= 1

x = (q,p) ∈M = T ∗1 M

q = (q1,q2)
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Dynamical correlation functions and mixing
For u ∈ C∞ (M), v ∈ C∞ (M), the correlation function at time t ∈ R is:

Cu,v (t) :=
∫
M
u (x) .v (φ−t (x))dx

Theorem (Anosov 60, Liverani 04. “Mixing”)
∃α > 0,∃C > 0,∀t ≥ 0∣∣∣∣∫M u (x) .v (φ−t (x))dx −

∫
u (x)dx .

∫
v (x)dx

∣∣∣∣≤ C .e−αt

means that v (φ−t (x))dx *-converges towards dx (equilibrium) as t→ ∞.
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(*) Central limit theorem
Question: in the Sinaï billiard, show that the distribution of positions q1 (t)
diffuse like a Gaussian with width ' D.

√
t?

Theorem ([Chernov 90’ and others] “C.L.T. for contact Anosov flow”)
If v ∈ C∞ (M) with 〈v〉M :=

∫
v (x)dx = 0, let

vt (x) :=
∫ t

0
v (φ−s (x))ds

then 1√
t vt (x) “distributes as a Gaussian” w.r.t. dx, i.e. ∀χ ∈ C∞

0 (R),

∫
χ

(
1√
t
vt (x)

)
dx −→

t→∞
C .
∫

χ (X )e−
X2
2D dX

with “diffusion coef.” D =
〈
v2
〉
M +2

∫
∞

0 〈v .v ◦φ−t〉M dt.

Example: in the Sinaï billiard, with v (x) = p1 = dq1
dt , then

vt (x) :=
∫ t
0

dq1
ds ds = q1 (x (t))−q1 (x) “diffuses” with this Gaussian law.
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Ruelle resonances
Objective: describe the “irreversible effective dynamics”, looking for the discrete spectrum of
the “transfer operator”.
Ideas of D. Ruelle, R. Bowen 70’ ... P. Cvitanovic, P.Gaspard and others in physics ..(using
Markov partitions).
... Kitaev, Baladi, Tsujii, Liverani , F.,Sjöstrand : recent functional and semiclassical approach.

Definition
If X is a contact Anosov vector field, V ∈ C∞ (M) is a “potential”, u ∈ C∞ (M), t ∈ R,

(Ltu)(x) : =
(
et(−X+V )u

)
(x) = eVt (x)u (φ−t (x)) : transfer operator

Theorem ((1):[Liverani 07, F.-Sjöstrand 08], (2):[F.-Tsujii 13] )

1 ∀C > 0, ∃ anisotropic Sobolev space HC , C∞ (M)⊂HC ⊂D ′ (M)

s.t. (−X +V ) has an intrinsic discrete spectrum on Re(z) >−C,
called Ruelle resonances.
Rem: an eigenvector behaves like Ltu = et(a+ib)u.

2 Spectrum in vertical bands. γ
±
0 = limt→∞maxx /minx

( 1
t Dt (x)

)
,

with “damping function”: D (x) = V (x)− 1
2divXEu . B2 B1 B0

0
γ
−
0 γ

+
0

(b)

γ
+
2 γ

−
1 γ

+
1

〈D〉

b = Im(z)

a = Re(z)
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Ruelle resonances (2)

The choice V (x) = 1
2divXEu(x) > 0 gives γ

±
0 = 0: Spectrum accumulates on

the axis iR.

Special case of constant negative curvature:
The Poincaré disk D := {z ∈ C, |z |< 1} has metric
ds2 = 1

(1−|z |2)

(
dx2 +dy2

)
giving constant negative

curvature.
On a compact surface Γ\D2 the geodesic flow is
Anosov and contact.
From Selberg formula (1950) and representation
theory of SL2R, the Ruelle resonances are

zk,l =−1
2 −k± i

√
µl −

1
4 , k ≥ 0

with
∆ϕl = µlϕl , µ0 = 0< µ1 ≤ µ2 . . .

1 2

2

≡

−1
2−5

2 −3
2

z0,lz1,l

0

B0B2 B1

Im(z)

Re(z)

z̄0,l

(a)
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Consequence for dynamical correlation functions

Theorem ([F.-Tsujii 13])
For a general contact Anosov vector field X, with Lt = exp(t (−X +V )), if
γ

+
1 < γ

−
0 , then ∀u,v ∈ C∞ (M),

〈v |Ltu〉= ∑
zj=aj+ibj ,aj≥γ

+
1 +ε

et(aj+ibj)〈v | Πj︸︷︷︸
spec.projec.

u〉+O
(
eRe(γ

+
1 +ε)t

)

−→
V=0,t→∞

∫
v (x)dx .

∫
u (x)dx +O

(
eRe(z1)t

)
:mixing

So the fluctuations around the equilibrium are given by an effective linear
dynamics or “emergent dynamics” governed by the Ruelle spectrum.

In case of constant curvature < 0, the emergent dynamics is (conjugated to)

the “damped wave equation” ϕ (t) = e−t/2eit
√

∆− 1
4 ϕ (0).

Question: is it true in general that the emergent dynamics is a model of
“quantum chaos”?
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Formula of Balian-Bloch-Gutzwiller [69]
Start from the Atiyah-Bott trace formula (66):

Tr[ (Lt) =
∫
M
e
∫ t V .δ (x −φ−t (x))dx = ∑

γ:o.p.
|γ|∑

n≥1

e
∫ t V .δ (t−n |γ|)∣∣det
(
1−Dγ φ

)∣∣
and get:

Theorem ([F.Tsujii 13])
”Gutzwiller trace formula”:

Tr[
(
Lt|1st band

)
= ∑

zj=aj+ibj ,aj≥γ
+
1 +ε

et(aj+ibj)

= ∑
γ:o.p.
|γ|∑

n≥1

δ (t−n |γ|)e
∫ t D∣∣det

(
1−Dγ φ

)∣∣1/2 +O
(
e(γ

+
1 +ε)t

)
which shows that the “emergent dynamics” is governed by “a quantum operator”
of “quantum chaos” (it gives Selberg trace formula in cste curvature).

This has been conjectured in physics in 90’ with “semiclassical zeta
functions” (Voros, Vattay, ...).



Geometric ideas of the proof
We study the transfer operator Lt = exp(t (V −X )) : C∞ (M)→ C∞ (M) in
phase space T ∗M (recall that M = T ∗1M ), using “semiclassical analysis”, and
“quantum scattering theory in phase space” of B. Helffer J.Sjöstrand 86. The
resonances states “live on the trapped set K” which is symplectic.

0

E ∗s (x)

E ∗0 (x) = K (x): Trapped Set

E ∗u (x)

KE (x) = Eα(x)

M

x Eu
Es

T ∗x M

Energy Shell ΣE (x) = H−1(E )



(*) Open systems

There are similar results for open systems with hyperbolic dynamics on the
trapped set, which is a cantor set:
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Experiments with microwaves [S.Barkhofen T.Weich et al. PRL 2013] . They
measure spectrum of “quantum resonances”, ∆ϕ = k2ϕ, k ∈ C.
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(*) Quantum resonances of the modular surface
S = SL2Z\H2
Quantum resonances of ∆ψ =−z (z + 1)ψ on the modular surface S = SL2Z\H2:

−1/2−3/4 0

The quantum resonances are zj = 1
2 sj −1 where sj are the “non trivial” zeroes of the

Riemann zeta function

ζ (s) = ∑
n≥1

1
ns = ∏

p prime

(
1−p−s

)−1
The Riemann hypothesis (1859) is that Re

(
sj
)

= 1
2 and implies that

∀ε > 0, ]{primes p ≤ x}=
∫ x

2

du
logu + O

(
x

1
2 +ε
)
, as x → ∞



Conclusion and open questions

For contact Anosov flows, the fluctuations of probability around the
equilibrium are governed by an “effective quantum dynamics”
(quantum chaos emerges). Is there a physical meaning?

Conjectures of Random Matrix Theory, Unique Quantum ergodicity and
scars, for the Ruelle resonances and Ruelle spectrum? may be more
tractable?

Ruelle spectrum for more general dynamical systems (than Anosov)? is
there still a relation with quantum spectrum or “effective quantum
operator”?

Thank you.
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