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Abstract

Uniformly hyperbolic dynamics (Axiom A) have "sensitivity to initial conditions"
and manifest "deterministic chaotic behavior", e.g. mixing, statistical properties etc.
In the 70', David Ruelle, Rufus Bowen and others have introduced a functional and
spectral approach in order to study these dynamics which consists in describing the
evolution not of individual trajectories but of functions, and observing the conver-
gence towards equilibrium in the sense of distribution. This approach has progressed
and these last years, it has been shown by V. Baladi, C. Liverani, M. Tsujii and oth-
ers that this evolution operator ("transfer operator") has a discrete spectrum, called
"Ruelle-Pollicott resonances" which describes the e�ective convergence and �uctua-
tions towards equilibrium.

Due to hyperbolicity, the chaotic dynamics sends the information towards small
scales (high Fourier modes) and technically it is convenient to use "semiclassical anal-
ysis" which permits to treat fast oscillating functions. More precisely it is appropriate
to consider the dynamics lifted in the cotangent space T ∗M of the initial manifoldM
(this is an Hamiltonian �ow). We observe that at �xed energy, this lifted dynamics
has a relatively compact non-wandering set called the trapped set and that this lifted
dynamics on T ∗M scatters on this trapped set. Then the existence and properties of
the Ruelle-Pollicott spectrum enters in a more general theory of semiclassical analysis
developed in the 80' by B. Hel�er and J. Sjöstrand called "quantum scattering on
phase space".

We will present di�erent models of hyperbolic dynamics and their Ruelle-Pollicott
spectrum using this semi-classical approach, in particular the geodesic �ow on (non
necessary constant) negative curvature surfaceM. In that case the �ow is on M =
T ∗1M, the unit cotangent bundle ofM. Using the trace formula of Atiyah-Bott, the
spectrum is related to the set of periodic orbits.

We will also explain some recent results, that in the case of Contact Anosov �ow,
the Ruelle-Pollicott spectrum of the generator has a structure in vertical bands. This
band spectrum gives an asymptotic expansion for dynamical correlation functions.
Physically the interpretation is the emergence of a quantum dynamics from the clas-
sical �uctuations. This makes a connection with the �eld of quantum chaos and
suggests many open questions.

Acknowledgement 0.1. These are lectures notes for the summer school 13-17 May 2013 at
ROMA, �Geometric, analytic and probabilistic approaches to dynamics in negative curva-
ture�, Rencontre INDAM/Platon Université la Sapienza. Comité Scienti�que: F.Ledrappier,
C.Liverani, G.Mondello Organisators: F.Dal'Bo, M.Peigné, A.Sambusetti. We thank
the organizers of the summer school F.Ledrappier, C.Liverani, G.Mondello, F.Dal'Bo,
M.Peigné, A.Sambusetti where these lectures were given by the �rst author.
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1 Introduction

These are lectures notes for the summer school 13-17 May 2013 at ROMA, �Geometric,
analytic and probabilistic approaches to dynamics in negative curvature�. We review and
present the main ideas of some results that have been presented in other papers given in
the references.

In these lecture notes, we present the use of semiclassical analysis for the study of
hyperbolic dynamics. This approach is particularly useful in the case where the dynamics
has neutral direction(s) like extensions of expanding maps, hyperbolic maps or Anosov
�ows.

In this approach we study the transfer operator associated to the dynamics and its
spectral properties. The objective is to describe the discrete spectrum of the transfer
operator, called �Ruelle-Pollicott resonances� and its importance to express the exponential
time decay of correlation functions. This discrete spectrum (together with eigenvectors)
is also useful to obtain further results for the dynamics as statistical results (central limit
theorem, large deviations, linear response theory...), and to obtain estimates for counting
of periodic orbits in the case of �ow.

The general idea behind the semiclassical approach

1. Consider a smooth di�eomorphism f : M → M on a smooth manifold M (or a
�ow f t = exp (tX) : M → M , t ∈ R generated by a vector �eld X). In the 70',
David Ruelle, Rufus Bowen and others have suggested to consider evoluimportion
of functions (respect. probability measures) with the pull back operator also called
the transfer operator Ltϕ = ϕ ◦ f−t (respect. its adjoint Lt∗) instead of evolution
of individual trajectories x(t) = f t (x). This functional approach is useful for
chaotic dynamical systems for which individual trajectories have unpredictable be-
havior, whereas a smooth density may converge towards equilibrium in a predictable
manner1. Remark that this description is not reductive because taking ϕ = δx a
Dirac measure at point x, one recovers the individual trajectory. See �gure 1.1.

2. By linearity of the transfer operator Lt, a function (or distribution) on M can
be decomposed as a superposition of �elementary wave packets�2 ϕx,ξ: this
is a function with parameters (x, ξ) which has small support around x ∈ M in
space and whose Fourier transform (in local chart) also decay very fast outside some
value ξ ∈ T ∗xM in Fourier space 3. Geometrically (x, ξ) ∈ T ∗M is a point on the
cotangent space. A fundamental observation is that the time evolution of this

1Rem: this is somehow the weather is �predicted� by computer simulations from di�erent initial condi-
tions

2In signal theory and analysis this decomposition corresponds to wavelet transform or F.B.I. transform.
In quantum physics an elementary wave packets is also called a �quantum�.

3Fourier transform of ϕ is written (Fϕ) (ξ) = 1
(2π)n

∫
e−iξ·xϕ (x) dx.
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Figure 1.1: An (hyperbolic) map f de�nes the evolution of a point x ∈ M by f t (x) and
evolution of a function ϕ (x) by Ltϕ = ϕ ◦ f−t. The support of Ltϕ spreads and folds after
large time t.
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Figure 1.2: Evolution of a wave packet.

wave packet Ltϕx,ξ after �nite time t, remains a wave packet with new parameters
(x (t) , ξ (t)) = F t (x, ξ) ∈ T ∗M which follow the canonical lift F : T ∗M → T ∗M of
the map f : M →M . See �gure 1.2.

3. We therefore study the dynamics of the lift map F t : T ∗M → T ∗M . In the case
of hyperbolic (Anosov) dynamics every point (x (t) , ξ (t)) escape towards in�nity
|ξ (t)| → ∞ as t→ ±∞, except if (x (0) , ξ (0)) ∈ K := {(x, ξ) , ξ = 0}, the zero sec-
tion, called the �trapped set�. A consequence is the decay of correlation func-
tions (ϕx′,ξ′ ,Ltϕx,ξ) as t → ∞ (intuitively only the constant function with ξ = 0
component survives). From the uncertainty principle in phase space T ∗M this also
implies that the transfer operator has discrete spectrum in some functional spaces
�adapted� to the dynamics (so called Ruelle-Pollicott resonances). Here �adapted�
means that the norm of this functional space has the ability to �truncate� the high
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frequencies. The limit of high frequencies |ξ| � 1 is called the semiclassical limit.
Technically we will use semiclassical analysis and �quantum scattering theory� devel-
oped by Hel�er-Sjöstrand and others in the 80's [HS86] with �escape functions� (or
Lyapounov function in phase space) in order to de�ne these �anisotropic Sobolev
spaces�.

4. In the case of partially hyperbolic dynamics, e.g. Anosov vector �eld, then |ξ (t)| →
∞ outside a �trapped set� K ⊂ T ∗M (or non wandering set) which is non compact.
Geometrical properties of the trapped set K gives some more re�ned properties of
the Ruelle-Pollicott spectrum of resonances, and also properties of the eigenspaces.
For example its fractal dimension gives an (upper bound) estimate for the density
of Ruelle resonances. If K ⊂ T ∗M is a symplectic submanifold this implies an
asymptotic spectral gap, a band structure for the Ruelle spectrum, etc.

In order to present this approach we will consider di�erent models. These models are very
similar and the elaboration is increasing from one to the next. In particular we will present
recent results for

1. �U(1) extension of Anosov di�eomorphism preserving a contact form�
[Fau07a, FT15]. This model is also called prequantum Anosov map. It can
be considered as a simpli�ed model of a contact Anosov �ow: there is a neutral di-
rection for the dynamics and a contact one form that is preserved. This allows to
obtain precise information on the Ruelle-Pollicott spectrum in the semiclassical limit
of high frequencies along the neutral direction. In particular we will show that the
spectrum has some band structures and obtain the �Weyl law� giving the number
of resonances in each band. We will also show that surprisingly the correlation func-
tions have some �quantum behavior�. We will discuss the fact that these results
propose a direct bridge between the study of Ruelle-Pollicott resonances in dynam-
ics and questions in �quantum chaos� or �wave chaos�. Using the Atiyah-Bott trace
formula, we will relate the spectrum with the periodic orbits.

2. �Contact Anosov �ow� [FS11, FT13, FT16]. This dynamical model can be consid-
ered as the analogous of the previous model in case of continuous time. This model is
interesting in geometry because it includes the case of geodesic �ow on a Riemannian
manifoldM with negative (sectional) curvature. In that case the �ow takes place on
the unit (co)tangent bundle M = T ∗1M. We will show that all the results obtained
for the previous model are also true here and concern the spectrum of the generator
of the �ow (the vector �eld). We will discuss the relation with the spectrum of the
Laplacian operator ∆ onM. We will express these results using zeta functions.

Sections or paragraphs marked with (*) can be skipped for a �rst lecture.

Some general references (books or reviews)

• On dynamical systems: [BS02, KH95, Bal00]
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• On semiclassical analysis: [Tay96b, ?, Mar02, GS94]

• On quantum chaos: [Gut91][Non08]
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Figure 2.1: An Anosov map f

2 Hyperbolic dynamics

2.1 Anosov maps

De�nition 2.1. On a C∞ closed connected manifold M , a C∞ di�eomorphism f : M →
M is Anosov if there exists a Riemannian metric g on M , an f−invariant continuous
decomposition of TM :

TxM = Eu (x)⊕ Es (x) , ∀x ∈M, (2.1)

a constant λ > 1 such that for every x ∈M ,

∀vs ∈ Es (x) , ‖Dxf (vs)‖g ≤
1

λ
‖vs‖g (2.2)

∀vu ∈ Eu (x) ,
∥∥Dxf

−1 (vu)
∥∥
g
≤ 1

λ
‖vu‖g .

We call Eu (x) the unstable subspace and Es (x) the stable subspace.

2.1.1 Example �Hyperbolic automorphism on the torus�.

f :

{
Td := Rd/Zd → Td

x →Mx mod Zd
(2.3)

with M ∈ SLd (Z) hyperbolic , i.e. every eigenvalues λ satisfy |λ| 6= 1, 0.

Remark 2.2.

• f in (2.3) is well de�ned because if n ∈ Zd, x ∈ Rd then

M (x+ n) = Mx+ Mn︸︷︷︸
∈Zd

= Mx mod Zd
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Figure 2.2: Trajectory of an initial point (−0.3, 0.6) under the cat map, on R2 (there the
trajectory is on an hyperbola) and on T2. After restriction by modulo 1, the trajectory is
�chaotic�.

• f is invertible on Td and f−1 (x) = M−1x with M−1 ∈ SLd (Z).

• The simplest example of (2.3) is the �cat map� on T2[AA67],

M =

(
2 1
1 1

)
, λ = λu =

3 +
√

5

2
' 2.6 > 1, λs = λ−1 < 1. (2.4)

2.1.2 General properties of Anosov di�eomorphism

• In general, the maps x ∈M → Eu (x) , Es (x) are not C∞ but only Hölder continuous
with some exponent 0 < β ≤ 1. (This is similar to the Weierstrass function).

• (*) It is conjectured that M is an infranil manifold. Ex: M = Td is a torus.

Proposition 2.3. [KH95](*) �Structural stability� . If f : M → M is Anosov there
exists ε > 0 such that for any g : M →M such that ‖g − Id‖C1 ≤ ε then

1. g ◦ f is Anosov.

2. There exists an homeomorphism h : M →M (Hölder continuous) such that we have
a commutative diagram:

M
g◦f−→ M

↑ h ↑ h
M

f−→ M

Proof. See [KH95]. The proof uses a description in terms on cones.
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Figure 2.3: The correlation function Cv,u (n) :=
∫
M
v. (u ◦ f−n) dx represents the evolved

function u ◦ f−n tested against an �observable� function v.

Theorem 2.4. (Anosov) If f : M → M is Anosov and preserves a smooth measure dx
on M then f is exponentially mixing: ∃α > 0,∀u, v ∈ C∞ (M), for n→ +∞,∣∣∣∣∣∣∣∣∣

∫
M

v.
(
u ◦ f−n

)
dx︸ ︷︷ ︸

Cv,u(n)

−
∫
vdx.

∫
udx

∣∣∣∣∣∣∣∣∣ = O
(
e−αn

)
(2.5)

In the last equation, the term

Cv,u (n) :=

∫
M

v.
(
u ◦ f−n

)
dx (2.6)

is called a correlation function.

Remark 2.5. Mixing means �loss of information� because for n → ∞, u ◦ f−n normalized

by
(∫

udx
)−1

converges in the sense of distribution towards the measure dx. See �gure 2.3.

Proof. This will be obtained in (3.27) as a consequence of Theorem 3.18, using semiclassical
analysis. (From [FRS08]).

Remark 2.6. For linear Anosov map on Td, Eq.(2.3), the proof of exponentially mixing is
easy and is true for any α > 0. Let k, l ∈ Zd, let ϕk (x) := exp (i2πk.x) be a Fourier
mode. Then∫

Td

(
ϕk ◦ f−n

)
.ϕldx =

∫
exp

(
i2π
(
k.M−nx− l.x

))
dx (2.7)

=

∫
exp

(
i2π
(
tM−nk − l

)
.x
)
dx = δtM−nk=l
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But if k 6= 0 then |tM−nk| → ∞ as n → +∞ because M is hyperbolic. So (2.7) vanishes
for n large enough. Finally smooth functions u, v have Fourier components which decay
fast and one deduces (2.5) for any α > 0.

Proposition 2.7. (*) f Anosov is ergodic: ∀u, v ∈ C∞ (M),

1

n

n−1∑
k=0

∫
v.
(
u ◦ f−k

)
dx −→

n→∞

∫
vdx.

∫
udx (2.8)

Proof. Using Cesaro's Theorem, one sees that mixing (2.5) implies ergodicity (2.8).

Remark 2.8. (*) Ergodicity means that the �time average� of v i.e 1
n

∑n−1
k=0

(
u ◦ f−k

)
nor-

malized by
(∫

udx
)−1

converges (in the sense of distribution) towards the measure dx.

Remark 2.9. Exponentially mixing (2.5) implies some statistical properties such as the
central limit theorem for time average of functions etc.

2.2 Prequantum Anosov maps

We introduce now �prequantum Anosov map�: it is a U (1) extension of an Anosov di�eo-
morphism f preserving a contact form. This corresponds to the �geometric prequanti-
zation� following Souriau-Kostant-Kirillov (70'), Zelditch (05)[Zel05].

We will suppose that (M,ω) is a symplectic manifold and f : M →M is an Anosov
map preserving ω:

f ∗ω = ω (2.9)

i.e. f is symplectic. Then dimM = 2d is even and f preserves the non degenerate volume
form dx = ω∧d of degree 2d.

Example 2.10. As (2.3) but with f ∈ Sp2d (Z) : T2d → T2d symplectic and hyperbolic.
The linear cat map (2.4) is symplectic for ω = dq ∧ dp with coordinates (q, p) ∈ R2.

Remark 2.11. For every x ∈ M , (TxM,ω) is a symplectic linear space (by de�nition) and
Eu (x) , Es (x) ⊂ TxM given by (2.1) are Lagrangian linear subspaces hence

dimEu (x) = dimEs (x) = d

Proof. If us, vs ∈ Es (x) then

ω (us, vs) =
(2.9)

ω (Dxf
n (us) , Dxf

n (vs)) →
n→∞,(2.2)

0

Similarly for Eu (x) with Dxf
−n.
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Assumption 1 : The cohomology class [ω] ∈ H2 (M,R) represented by the symplectic
form ω is integral, that is, [ω] ∈ H2 (M,Z).

Assumption 2 : (a): H1 (M,Z) ↪→ H1 (M,R) is injective (i.e. no torsion part) and
(b): 1 is not an eigenvalue of the linear map f∗ : H1 (M,R)→ H1 (M,R) induced
by f : M →M .

Remark 2.12. Assumption 1 is true for the cat map because
∫
T2 ω =

∫
T2 dq ∧ dp = 1 ∈ Z.

Assumption 2-(b) is conjectured to be true for every Anosov map.

Theorem 2.13. [FT15]With Assumption 1, there exists a U (1)−principal bundle π :
P → M with connection one form A ∈ C∞ (P ; Λ1 ⊗ iR)with curvature Θ = dA =
−i (2π) (π∗ω).
With Assumption 2, we can choose the connection A above such that there exists a map
f̃ : P → P called prequantum map such that

1. The following diagram commutes

P
f̃−→ P

↓ π ↓ π
M

f−→ M

(2.10)

2. �Equivariance� with respect to the action of eiθ ∈ U (1):

∀p ∈ P, ∀θ ∈ R, f̃
(
eiθp
)

= eiθf̃ (p) . (2.11)

3. f̃ preserves the connection
f̃ ∗A = A (2.12)

Proof of Theorem 2.13 . See [FT15].

Remark 2.14. At every point p ∈ P , (KerA) (p) = Ẽu (p)⊕ Ẽs (p) is the strong distribution
of stable/unstable directions of the map f̃ . We recall the interpretation of the curvature
two form Θ as an in�nitesimal holonomy ([Tay96b, (6.22)p.506])). The fact that ω is
symplectic here means that the distribution Ẽu ⊕ Ẽs is maximally �non integrable�.

α = i
2π
A is a contact one form on P preserved by f̃ because

µP =
1

d!
α ∧ (dα)d =

1

d!

(
1

2π
dθ

)
∧ ωd
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P

0 q

x

π

Ker(A)

0

2π

f
M

dA ≡ −i(2π)dq ∧ dp

θ
p

A ≡ −i2πqdp+ idθ

= −i(2π)ωp

f̃

Figure 2.4: A picture of the prequantum bundle P → M in the case of M = T2, e.g. for
the �cat map� (2.4), with connection one form A and the prequantum map f̃ : P → P
which is a lift of f : M → M . A �ber Px ≡ U (1) over x ∈ M is represented here as a
segment θ ∈ [0, 2π[. The plane at a point p represents the horizontal space HpP = Ker (Ap)
which is preserved by f̃ . These plane form a non integrable distribution with curvature
given by the symplectic form ω.

is a non degenerate (2d+ 1) volume form on P preserved by f̃ .

Remark 2.15. f̃ is a �partially hyperbolic map� with neutral direction θ, preserving a
contact one form α = i

2π
A. Then f̃ is exponentially mixing (see De�nition (2.5)), but this

is not obvious. This is a result of D. Dolgopyat [Dol02]. We will obtain this in remark 3.39
page 42.

Remark 2.16. (*) If x = fn (x) with n ≥ 1, i.e. x is a periodic point of f , then for any
p ∈ Px = π−1 (x),

f̃n (p) = ei2πSn,xp (2.13)

with some phase Sn,x ∈ R/Z called the action of the periodic point. This will appear in
Trace formula in Section 4.

2.3 Anosov vector �eld
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X
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E0(x)

t� 1

φt(x)

Figure 2.6: Anosov �ow.

De�nition 2.17. On a C∞ manifold M , a smooth vector �eld X is Anosov if its �ow
φt = e−tX ,t ∈ R satis�es

1. ∀x ∈M , we have an φt invariant and continuous decomposition:

TxM = Eu (x)⊕ Es (u)⊕ E0 (x)︸ ︷︷ ︸
RX

(2.14)

2. There exists a metric g on M , ∃γ > 0, C > 0, ∀x ∈M ,∀t ≥ 0,

∀vs ∈ Es (x) , ‖Dxφt (vs)‖g ≤ Ce−tγ ‖vs‖g (2.15)

∀vu ∈ Eu (x) , ‖Dxφ−t (vu)‖g ≤ Ce−tγ ‖vu‖g .

Remark 2.18. In general the maps x ∈M → Eu (x) , Es (x) are not smooth. They are only

14



Hölder continuous with some exponent 0 < β ≤ 1.

De�nition 2.19. We de�ne the Anosov one form α on M by: ∀x ∈M ,

α (Eu (x)⊕ Es (x)) = 0, α (X) = 1. (2.16)

In general α (x) is Hölder continuous with respect to x ∈ M . It is preserved by the
�ow: its Lie derivative is (in the sense of distributions) LXα = 0. Conversely there is a
unique one form αsuch that LXα = 0 and α (X) = 1.

De�nition 2.20. (φt)t∈R is a contact Anosov �ow if α is C∞ and a contact one form,

i.e. if ω = dα|Eu(x)⊕Es(x) is non degenerate (i.e. symplectic) or equivalently dx = α∧ (dα)d

is an invariant smooth volume form on M , with d = dimEu (x) = dimEs (x) (Lagrangian
subspaces, see rem. 2.11 ). Then dimM = 2d+ 1.

Remark 2.21. That the �ow is contact means that the distribution of hyperspaces Eu (x)⊕
Es (x) is maximally non integrable, this is similar to �gure (2.4).

Example 2.22. �geodesic �ow with negative curvature�. LetM be a smooth com-
pact Riemannian manifold.

• The cotangent space T ∗M has a canonical one form called the Liouville one form
given by α = −

∑n
j=1 p

jdqj in canonical coordinates (qj are coordinates on M and

pj on T ∗qM) [Sal01]. The canonical symplectic form on T ∗M is given by

ω :=
∑
j

dqj ∧ dpj = dα

• On the cotangent space T ∗M, the Hamiltonian function H (q, p) := ‖p‖g (with p ∈
TqM) de�nes a Hamiltonian vector �eld X by ω (X, .) = dH whose �ow is called the
geodesic �ow. The energy level of energy 1 is the unit cotangent bundle H−1 (1) =
T ∗1M. The Hamiltonian �ow preserves ω but also the one form α because H (q, p)
is homogeneous4 in p. Therefore the geodesic �ow is a contact �ow on M = T ∗1M
preserving α. The Anosov one form is −α.

4

Proof. Let

E :=
∑
j

pj
∂

∂pj

15



• In the case where M has negative sectional curvature it is known that the
geodesic �ow is Anosov. This is therefore a contact Anosov �ow on M = T ∗1M.
One has dimM = 2dimM− 1 = 2d+ 1. Therefore n = dimM = d+ 1.

Example 2.23. A particular example is when M is a homogeneous manifold: M =
Γ\SO (1, n) /SO (n) = Γ\Hn where Γ is a discrete co-compact subgroup and Hn is the
hyperbolic space of dimension n. The simplest case is whenM is a surface (n = dimM =
2): one has SO (2, 1) ≡ SL2 (R). This case is explained in details below.

The following proposition shows how to obtain other contact (Anosov) vector �eld from
a given one by �re-parametrization�.

Proposition 2.24. (*) If X0 is a contact Anosov vector �eld with contact one form α0,
let β a closed one form on M such that|β (X0)| < α0 (X0) = 1 then

X =
1

1 + β (X0)
X0

is a also a contact Anosov vector �eld for the contact one form

α = α0 + β

Proof. We have dα = dα0 and

α (X) =
1

1 + β (X0)
(α0 (X0) + β (X0)) = 1

be the canonical Euler vector �eld on T ∗M (it preserves �bers, it is canonically de�ned in any vector
space). E generates the �ow of �scaling�:

Sλ : (q, p) ∈ T ∗M→
(
q, eλp

)
∈ T ∗M, λ ∈ R (2.17)

We have E (H) = H because H is homogeneous of degree 1 in p. We have ιEα = 0, ιEω = α and
LEα = α, LEω = ω. The Hamiltonian vector �eld XN is the associated Reeb vector �eld, i.e. it is
uniquely de�ned by

α (X) = −H = −1, (dα) (X) = 0. (2.18)

In particular X preserves α, i.e. LXα = 0, i.e. it is a contact vector �eld. Indeed: we have on T ∗EM

α (X) = ιXα = ιX (ιEω) = −ω (X,E ) = −E (H) = −H = −E

Also
(dα) (X) = ω (X, .) = dH = 0, on ΣE .

Then on T ∗M
LXα = d (ιXα) + ιXdα = −d (H) + dH = 0

16



geodesic flow

US

U − S = Θe−e −e

SL2(R)

y

x

D Poincaré disc

X

X

(0, 1)

Figure 2.7: Geodesic �ow the Poincaré disc is generated by X ∈ sl2R.

and

LXα = ιXdα + d (ιXα) =
1

1 + β (X0)
ιX0dα0 =

1

1 + β (X0)
LX0α0 = 0

Remark 2.25. (*) P. Foulon and B. Hasselblatt [FH13] have shown that even in 3 dimension
there are numerous contact Anosov �ow that are not topologically orbit equivalent to
geodesic �ows.

2.3.1 Example of a contact Anosov �ow: �geodesic �ow on a constant negative
curvature surface�.

We present here a standard example of contact Anosov �ow, the geodesic �ow on Riemann
surfaceM = Γ \ (SL2R/SO2) where Γ < SL2R is a co-compact discrete subgroup. This
example is a particular case of the example 2.22 above. We present it in details, because
we will use it later on in Section 3.5.1.

From Iwasawa decomposition, a matrix g ∈ SL2R can be written5

g =

(
y1/2 x

0 y−1/2

)(
cos θ sin θ
− sin θ cos θ

)
, x ∈ R, y > 0, θ ∈ SO2.

Hence with z = x + iy ∈ H2 in the Poincaré half plane, we have the homeomorphism
SL2R ≡ H2 × SO2.

A basis of the Lie algebra sl2R ≡ Te (SL2R) is6

X =
1

2

(
1 0
0 −1

)
, U =

(
0 1
0 0

)
, S =

(
0 0
1 0

)
5Recall that g ∈ SL2R⇔ detg = 1.
6Because a ∈ sl2R⇔ det (ea) = eTra = 1⇔ Tra = 0.
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and satis�es
[X,U ] = U, [X,S] = −S, [U, S] = 2X. (2.19)

These tangent vector X,U, S can be extended as left invariant vector �elds on SL2R
by X = g.Xe etc. . Then the vector �eld X generates the �ow φt = e−tX . It is given by
the right action7 of e−tXe : φt (g) := g.e−tXeand taking any left invariant metric g on SL2R
we have

‖Dφt (U)‖g =
∥∥U.e−tX∥∥

g
=︸︷︷︸

‖.‖gleft−inv.

∥∥etX .U.e−tX∥∥
g

=
∥∥et[X,.]U∥∥

g
=

(2.19)
et ‖U‖g (2.20)

According to (2.15), this shows that U spans the unstable direction Eu (g) with λ = e > 1.
Similarly we get ‖Dφt (S)‖g = e−t ‖S‖g and S spans Es (g). Therefore, if Γ < SL2R is
a discrete co-compact subgroup then M := Γ\SL2R is a compact manifold and X is a
smooth contact Anosov vector �eld on M with Eu = RU, Es = RS, E0 = RX. The
property of contact comes from the last commutator [U, S] = 2X. More precisely the
Anosov one form α, Eq. (2.16) is given by

α =
1

2
K (X, .)

where K = 2X∗ ⊗ X∗ + 4 (U∗ ⊗ S∗ + S∗ ⊗ U∗) is the Killing metric on SL2R. To show
this, observe that α (X) = 1 and

(dα) (S, U) = U (α (S)) + S (α (U))− α ([S, U ]) = −1

2
K (X, [S, U ])

= K (X,X) = 1

hence dα is symplectic on Eu ⊕ Es = Span (U, S).
If (−Id) ∈ Γ it is known that this �ow can be identi�ed with the geodesic �ow on the

Riemann surface M = Γ \ (SL2R/SO2) = Γ\H2 which has constant negative curvature
κ = −1 and that M ≡ T ∗1M.

Remark 2.26. In fact SL2R ≡ SO1,2 and similarly in higher dimension, some left invariant
vector �eld onM := Γ\SO1,n/SOn−1 are contact Anosov vector �eld and can be interpreted
as the geodesic �ow on a compact hyperbolic manifold N = Γ\Hn = M/SOn. The left
invariant vector �eld on Γ\SO1,n generates the frame �ow.

7indeed dφt

dt /t=0
= −g.Xe = −X.
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geodesic flow

M

e

SL2(R)

X

Γ

−e −e

D2

≡

fundamental domain

Figure 2.8: Geodesic �ow on a surfaceM with constant negative curvature.

x

u
...

v
"observable"

φt φt(x)

u ◦ φ−t

t� 1

u ◦ φ−t

φt(x)

Figure 2.9: Exponential mixing from the correlation function Cv,u (t) =
∫
M
v. (u ◦ φ−t) dx.

2.3.2 (*) General properties of contact Anosov �ows

Theorem 2.27. (*) A contact Anosov �ow is exponentially mixing: ∃α > 0, ∀u, v ∈
C∞ (M), for t→∞ one has∣∣∣∣∣∣∣∣∣

∫
M

v. (u ◦ φ−t) dx︸ ︷︷ ︸
Cv,u(t)

−
∫
vdx.

∫
udx

∣∣∣∣∣∣∣∣∣ = O
(
e−αt

)
(2.21)

The term Cv,u (t) above is called a correlation function.

See �gure 2.9.

Remark 2.28. (*) Mixing implies ergodicity. This is the same de�nition and same proof as
in (2.8).
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Usually the term �correlation function� is for the whole di�erence
∫
M
v. (u ◦ φ−t) dx −∫

vdx.
∫
udx.
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0 x λx
f

u

u ◦ f−n = u( x
λn

)

v

Figure 3.1: Illustration of the correlation function (3.2).

3 Transfer operators and their discrete Ruelle-Pollicott

spectrum

Before considering the Ruelle spectrum of Anosov dynamics, the following Section intro-
duces the techniques on a very simple example. This simple example (extended in Rd)
will also be important later on in the proof of th. 3.34 and 3.54 because it will serve as a
universal �normal form�.

3.1 Ruelle spectrum for a basic model of expanding map

Let λ > 1 and consider the expanding map:

f :

{
R → R
x → λx

(3.1)

3.1.1 Transfer operator

Let u, v ∈ S (R). The time correlation function (2.6) is for n ≥ 1,

Cv,u (n) :=

∫
R
v.
(
u ◦ f−n

)
dx =

∫
v (x).u

( x
λn

)
dx →

n→+∞

(∫
vdx

)
.u (0) (3.2)

See �gure 3.1.

Let us write 〈v|u〉L2 :=
∫
R v.udx for the L2scalar product. Let us de�ne the transfer

operator (
F̂ u
)

(x) :=
(
u ◦ f−1

)
(x) = u

(x
λ

)
(3.3)

which is useful to express the correlation function:

Cv,u (n) =

∫
R
v.u ◦ f−ndx = 〈v|F̂ nu〉L2
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Remark 3.1. The dual operator F̂ ∗ de�ned by 〈u|F̂ ∗v〉 = 〈F̂ u|v〉 is given by8(
F̂ ∗v

)
(y) = λ.v (λy) (3.4)

Taking u = 1 in 〈u|F̂ ∗v〉 = 〈F̂ u|v〉 gives that
∫ (

F̂ ∗v
)

(x) dx =
∫
v (x) dx. Hence F̂ ∗

preserves probability measures. It is called the Perron-Frobenius operator or Ruelle
operator.

3.1.2 Asymptotic expansion

In this subsection we perform heuristic (non rigorous) computation in order to motivate the
next Section where these computations will be put in rigorous statements. The objective
is to show the appearance and meaning of Ruelle spectrum of resonances. From Taylor
formula (we don't care about the reminder for the moment) one has

u
( x
λn

)
=
∑
k≥0

xk

k!λkn
u(k) (0)

Let δ(k) be the k-th derivative of the Dirac distribution. Then

Cv,u (n) =

∫
v (x).u

( x
λn

)
dx

=
∑
k≥0

1

k!λkn

(∫
xkv (x)dx

)
.u(k) (0)

=
∑
k≥0

1

λkn
〈v|xk〉〈 1

k!
δ(k)|u〉 (3.5)

=

(∫
vdx

)
.u (0) +O

(
1

λn

)
(3.6)

We have9 for k, l ≥ 0

〈 1

k!
δ(k)|xl〉 = δk=l. (3.7)

Let10

Πk := |xk〉〈 1

k!
δ(k)| (3.8)

be a rank one operator. Then (3.7) implies that

Πk ◦ Πl = δk=l.Πk

8proof: with the change of variable y = x
λ , we write 〈u|F̂ ∗v〉 = 〈F̂ u|v〉 =

∫
u
(
x
λ

)
v (x) dx =∫

u (y)v (λx)λdy hence
(
F̂ ∗v

)
(y) = λ.v (λy).

9Because
(
dkxl

dxk

)
(0) = 0 if k 6= l and = k! if k = l.

10|xk〉〈 1k!δ
(k)| is a notation (called �Dirac notation� in physics) for the rank one operator xk〈 1k!δ

(k)|.〉.
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i.e. (Πk)k is a family of rank one projectors and the Taylor expansion (3.5) writes:

Cv,u (n) = 〈v|F̂ nu〉 =
∑
k≥0

1

(λk)n
〈v|Πku〉 (3.9)

Question: Formally this suggests the following spectral decomposition for the transfer
operator F̂ :

”F̂ =
∑
k≥0

λ−kΠk”, F̂ xk = λ−kxk (3.10)

i.e. λk = λ−k should be �simple eigenvalues� and Πk associated �spectral projector�; but in
which space?

Notice that this statement can not be true in the Hilbert space L2 (R) because the
distributions xk, δ(k) do not belong to it. The aim is to �nd an Hilbert space of distributions
containing S (R) where the statement (3.10) holds true. We will have to consider Hilbert
spaces as subspace of distributions. Notice �rst that the operator F̂ de�ned in (3.3) can
be extended by duality11 to distributions F̂ : S ′ (R)→ S ′ (R).

Remark 3.2. The expanding map f in (3.1) is the time one �ow f = φt=1 generated by the
vector �eld

X = γx
d

dx
(3.12)

on R with eγ = λ > 1. The transfer operator can be written in terms of the generator X:

F̂ = e−X

Remark 3.3. In L2 (R) the operator 1√
λ
F̂ = 1√

λ
e−X is unitary and has continuous spectrum

on the unit circle. Correspondingly the operator i
(
X + γ

2

)
is selfadjoint in L2 (R) and

has continuous spectrum on R. But as said above, we will not consider the Hilbert space
L2 (R).

3.1.3 Ruelle spectrum

11if α ∈ S ′ (R), F̂α is de�ned by

∀u ∈ S (R) , F̂ (α) (u) = 〈u|F̂α〉 = 〈F̂ ∗u|α〉 = α
(
F̂ ∗ν (u)

)
. (3.11)
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1

Re(z)

Im(z)

0−γ−2γ−3γ0

(a) (b)

λ−2 = e−2γ

λ−1 = e−γ
−Cγ

Figure 3.2: (a) Spectrum of F̂ = e−X : HC → HC . (b) spectrum of its generator (−X) :
HC → HC .

Theorem 3.4. [FT15, Prop. 4.19]For any C > 0, there exists a Hilbert space HC (an
�anisotropic Sobolev space� de�ned below)

S (R) ⊂ HC ⊂ S ′ (R)

such that the operator (3.3): F̂ : HC → HC is bounded and has essential spectral radius
ress = cste · λ−C ( →

C→+∞
0). The eigenvalues outside ress are λk = λ−k with k ∈ N and

their spectral projector are Πk : HC → HC, given by Eq.(3.8). These eigenvalues (λk)k≥0

are called Ruelle-Pollicott resonances. The generator −X : HC → HC in (3.12) has
discrete spectrum on Re (z) > −Cγ + cste ( →

C→+∞
−∞) and has eigenvalues −kγ, k ∈ N.

A consequence is an expansion of correlation functions Cv,u (n) = 〈v|F̂ nu〉 as (3.5),(3.9)
but with a controlled remainder:

Corollary 3.5. For any K ≥ 0, there exists CK > 0, such that for any u, v ∈ S (R),∣∣∣∣∣〈v|F̂ nu〉 −
K∑
k=0

1

(λk)n
〈v|Πku〉

∣∣∣∣∣ ≤ CK ‖v‖H′C ‖u‖HC
1

(λK+1)n

Proof. (*) Let K ≥ 0. Let C large enough so that from Theorem 3.4 ress <
1

(λK+1)
. Let

F̂ = K̂ + R̂

be a spectral decomposition in the space HC with ress < rspec.

(
R̂
)
< 1

(λK+1)
and K̂ =∑K

k=0
1
λk

Πk. Then F̂
n = K̂n + R̂n and

〈v|F̂ nu〉 =
K∑
k=0

1

(λk)n
〈v|Πku〉+ 〈v|R̂nu〉
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We have
∣∣∣〈v|R̂nu〉

∣∣∣ ≤ ‖v‖H′C ‖u‖HC ∥∥∥R̂n
∥∥∥
HC

and
∥∥∥R̂n

∥∥∥1/n

HC
→
n→∞

rspec.

(
R̂
)
< 1

(λK+1)
so∥∥∥R̂n

∥∥∥
HC
≤ CK

1
(λK+1)n

.

3.1.4 Arguments of proof of Theorem 3.4

We will prove that F̂ : HC → HC has discrete spectrum. The proof presented below
relies on a semiclassical approach, and is close to the proof of Theorem 1 in [FRS08]. It
also similar in spirit to the �quantum scattering theory in phase space� of by B. Hel�er,
J. Sjöstrand 80' [HS86]. The same strategy will be used for Anosov maps in section 3.2,
3.3 and Anosov �ows in Section 3.4. The proof uses the �semiclassical theory of PDO�
(cf appendix) and the idea behind is decomposition in wavepackets as explained in the
introduction. The proof in [FT15] is closer to this idea.

Before let us give some important remarks.

Remark 3.6. The transfer operator is
(
F̂ u
)

(x) = u
(

1
λ
x
)
. Let us consider the Fourier

transform

ũ (ξ) :=
1√
2π

∫
e−iξxu (x) dx

Then12 (̃
F̂ u
)

(ξ) = λũ (λξ)

Geometrically (x, ξ) are coordinates on the cotangent space T ∗R ≡ R2. This shows that
u et ũ are �transported� by the following canonical map F : T ∗R→ T ∗R in the cotangent
space T ∗R:

F : (x, ξ)→
(
λx, λ−1ξ

)
(3.13)

The map F is the canonical lift of the map f : R→ R. See �gure 3.3.

We observe that the map F has a trapped set (or non wandering set) K = (0, 0)
compact in T ∗R, in the precise sense that

K := {(x, ξ) ,∃C b T ∗M compact,∀n ∈ Z, F n (x, ξ) ∈ C} = {(0, 0)}

Remark 3.7. The dynamics of the map F in R2 ≡ T ∗R looks like �scattering� on the
trapped set K.

Remark 3.8. In the cotangent space T ∗R, the wave front (see de�nition (A.13)) of the distri-
bution xk which enter in the spectral projector (3.8) is the line Eu = {(x, ξ) , x ∈ R, ξ = 0}
and the wavefront set of δ(k) is the line Es = {(x, ξ) , x = 0, ξ ∈ R}. They are respectively
the unstable/stable manifolds for the trapped set K of the canonical map F .

12proof:
(̃
F̂ u
)

(ξ) = 1√
2π

∫
e−iξxu

(
1
λx
)
dx = λ 1√

2π

∫
e−iξλyu (y) dy = λũ (λξ).
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λxx

λ−1ξ

F

(x, ξ)

F (x, ξ)

ξ

Trapped set K is (0, 0)

Figure 3.3: The canonical map F , eq.(3.13)

Write
z := (x, ξ) ∈ R2

Let C > 0 and the C∞ function
AC (z) := 〈z〉m(z) (3.14)

called Lyapounov function of escape function, where 〈z〉 :=
√

1 + |z|2 and m (z) ∈
C∞ (R2) called the order function is homogeneous of degree 0 on |z| ≥ 1 (that ism (λz) =
m (z) for |z| ≥ 1, λ ≥ 1) and such that m (z) = +C in a conical vicinity of the stable
axis x = 0 and m (z) = −C in a conical vicinity of the unstable axis ξ = 0. And m (z)
decreases between these two directions so that

m (F (z)) ≤ m (z) ,∀ |z| ≥ 1. (3.15)

Along the stable direction one has |z| ∼ |ξ| � 1 and from (3.14) and (3.13) one has

AC (z) ∼ |ξ|C , AC (F (z))

AC (z)
' |λ

−1ξ|C

|ξ|C
' λ−C � 1

Similarly along the unstable drection, one has |z| ∼ |x| � 1 and

AC (z) ∼ |x|−C , AC (F (z))

AC (z)
' |λx|

−C

|x|−C
' λ−C � 1

One can check in fact that in every direction and for |z| � 1 one has

AC (F (z))

AC (z)
. λ−C � 1 (3.16)

Remark 3.9. (*) The function m (z) ∈ S0 (R2) is a symbol according to (A.3) and the

function AC ∈ S
m(z)
ρ is a symbol with variable order m (z) according to (A.4), with any

0 < ρ < 1.
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Let us de�ne the pseudodi�erential operator (PDO) Op (AC) : S (R) → S (R) by
ordinary quantization (see Appendix A)

(Op (AC)u) (x) :=
1

2π

∫
eiξxAC (x, ξ) e−iξyu (y) dξdy

(it can be modi�ed by a subleading PDO, i.e. with lower order, so that it becomes selfad-
joint and invertible). Then in L2 (R), let us consider the operator obtained by conjugation:

Q̂ := Op (AC) ◦ F̂ ◦Op (AC)−1

From Egorov Theorem we have that

Op (AC) ◦ F̂ ◦Op (AC)−1 = F̂ ◦
(
Op (AC ◦ F ) +O

(
Op
(
Sm◦F−ρ

)))
◦Op (AC)−1

where (AC ◦ F ) ∈ Sm◦F , the notation O
(
Op
(
Sm

′))
means a term which belongs to

Op
(
Sm

′)
and for any 1/2 < ρ < 1. The Theorem of composition of PDO (see

Appendix A) gives that

Op (AC ◦ F ) ◦Op (AC)−1 = Op

(
AC ◦ F
AC

)
+O

(
Op
(
Sm◦F−m−ρ

))
where

AC ◦ F
AC

∈ Sm◦F−m ⊂ S0

The last inclusion is because m ◦ F −m ≤ 0 from (3.15). In conclusion we have that

Q̂ = F̂ ◦
(

Op

(
AC ◦ F
AC

)
+O

(
Op
(
S−ρ

)))
The theorem of L2-continuity gives that for norm operator∥∥∥∥Op

(
AC ◦ F
AC

)
+O

(
Op
(
S−∞

))∥∥∥∥ ≤ lim sup
(x,ξ)

∣∣∣∣AC ◦ FAC
(x, ξ)

∣∣∣∣ ≤
(3.16)

λ−C

Since F̂ is bounded on L2 (R) we have that
∥∥∥Q̂+O (Op (S−ρ))

∥∥∥ ≤ ∥∥∥F̂∥∥∥
L2(R)

·λ−C . Finally

an operator K̂ ∈ Op (S−ρ) with ρ > 0 is compact hence

Q̂ = K̂ + R̂

with
∥∥∥R̂∥∥∥ ≤ cste.λ−C and K̂ a compact operator. From the commutative diagram

L2 (R)
Q̂−→ L2 (R)

Op (AC) ↑ Op (AC) ↑
HC

F̂−→ HC

(3.17)
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one has the same result for F̂ in the space

HC := Op (AC)−1 (L2 (R)
)

with norm ‖u‖HC := ‖Op (AC)u‖L2 . The space HC is called13 anisotropic Sobolev
space. Notice that HC contains regular (smooth) functions but that may grows in x. So
xk ∈ HC for k ≤ C, but δ(k) /∈ HC . For the dual space H′C = Op (AC) (L2 (R)) = H−C this
is the opposite: δ(k) ∈ H−C . As a result, the operator Πk is bounded in HC → HC .

Remark 3.10. (*) The dual operator (3.4) (or Perron Frobenius operator)

F̂ ∗ :

{
H−C → H−C
v → λ.v (λx)

has the same spectrum λ−k, k ≥ 0. (conjugate spectrum, but the spectrum is real).

Remark 3.11. In a �nite dimensional vector space a conjugation like (3.17) does not change
the spectrum of the operator. In our case, with in�nite dimension, the essential spectrum
is moved away, and reveals discrete (Ruelle) spectrum that is �robust and intrinsic�.

3.1.5 Ruelle spectrum for expanding map in Rd

Theorem 3.4 can be easily generalized for an expanding linear map on Rd with any d ≥ 1.
We will use this later.

Let A : Rd → Rd be a linear invertible expanding map satisfying ‖A−1‖ ≤ 1/λ for some
λ > 1. Let

LA :

{
S
(
Rd
)
→ S

(
Rd
)

u → u ◦ A−1
(3.18)

be the associated transfer operator. For k ∈ N, let14 Polynom(k) := Span
{
xα, α ∈ Nd, |α| = k

}
be the space of homogeneous polynomial on Rd of degree k.

dim
(

Polynom(k)
)

=

(
d+ k − 1

d− 1

)
=

(d+ k − 1)!

(d− 1)!k!

Then we consider the �nite rank operator

Πk : S
(
Rd
)
→ Polynom(k), (Πku) (x) =

∑
α∈Nd,|α|=k

∂αu(0)

α!
· xα. (3.19)

13Recall that the usual Sobolev space with constant order m ∈ R is de�ned by[Tay96a] Hm (R) :=

(Op (〈ξ〉m))
−1 (

L2 (R)
)
.

14for a multi index α ∈ Nd, α = (α1, . . . αd), we write |α| = α1 + . . .+ αd.
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This is a projector which extracts the terms of degree k in the Taylor expansion.We have
the following relations

Πj ◦ Πk = δj=kΠk (3.20)

and
[Πk,LA] = 0. (3.21)

Let us prepare some notations. For a linear invertible map L we will use the notation

‖L‖max := ‖L‖ , ‖L‖min :=
∥∥L−1

∥∥−1
. (3.22)

Theorem 3.12. [FT15, Prop. 4.19]For any C > 0, there exists a Hilbert space HC (an
�anisotropic Sobolev space�)

S
(
Rd
)
⊂ HC ⊂ S ′

(
Rd
)

such that the operator (3.18): LA : HC → HC is bounded and has essential spectral radius
ress = cste.λ−C ( →

C→+∞
0). For K ≤ C − 2d, there is a decomposition preserved by LA:

HC =

(
K⊕
k=0

Polynom(k)

)
⊕ H̃

such that

1. ∃C0, for any 0 ≤ k ≤ K and 0 6= u ∈ Polynom(k), we have for any n ≥ 1,

C−1
0 ‖An‖−kmax ≤

‖LAnu‖HC
‖u‖HC

≤ C0‖An‖−kmin (3.23)

2. The operator norm of the restriction of LA to H̃ is bounded by

C0 max{‖An‖−(K+1)
min , ‖An‖−Cmin · | detAn|}. (3.24)

Remark 3.13. (*) Theorem 3.12 implies that the spectrum of the transfer operator LA
in the Hilbert space HC is discrete outside the radius ress. The eigenvalues outside this
radius are given by the action of LA in the �nite dimensional space Polynom(k). These
eigenvalues can be computed explicitly from the Jordan block decomposition of A. In
particular if A = Diag (a1, . . . ad) is diagonal then the monomials xα = xα1

1 . . . xαdd are

obviously eigenvectors of LA with respective eigenvalues
∏

j a
−αj
j .
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3.2 Ruelle Spectrum of Anosov map

Let f : M →M be an Anosov map as in De�nition (2.1).

De�nition 3.14. Let V ∈ C∞ (M) real valued, called potential. The transfer operator
is

F̂ :

{
C∞ (M) → C∞ (M)

u → eV · (u ◦ f−1)
(3.25)

Remark 3.15. The choice u◦f−1 instead of u◦f is such that f maps supp (u) to supp
(
F̂ u
)
.

Remark 3.16. (*)The L2 adjoint operator is given by(
F̂ ∗v

)
(y) =

eV ◦f

|detDf |
(v ◦ f)

and called Perron-Frobenius operator. It transports densities and preserves probabili-
ties if V = 0: ∫

M

(
F̂ ∗v

)
dy = 〈1|F̂ ∗v〉 = 〈F̂1|v〉 =

∫
vdy

Remark 3.17. By duality the transfer operator can be extended to distributions: F̂ :
D′ (M)→ D′ (M).

Let T ∗M = E∗s⊕E∗u be the decomposition dual to Eq.(2.1), i.e. E∗s (Es) = 0 and E∗u (Eu) =
0.

Theorem 3.18. [Rug92, BKL02, BT07, FRS08]�Discrete spectrum�. For any C > 0,
there exists an anisotropic Sobolev space HC:

C∞ (M) ⊂ HC ⊂ D′ (M)

with variable order function m ∈ C∞ (T ∗M) with m (x, ξ) = ±C along E∗u/ssuch that

F̂ : HC → HC

is bounded and has essential spectral radius ress = O (1) .λ−C ( →
C→+∞

0). The eigenvalues

(and eigenspaces) outside ress do not depend on m and are called Ruelle-Pollicott reso-
nances. The space HC does not depend on V . The wavefront set of the eigendistributions
is contained in E∗u.
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0 ress. Re(z)

Im(z)

λ2

λ1

λ0

Figure 3.4: Ruelle Pollicott resonances of F̂ .

See �gure 3.4.

Remark 3.19. We will denote Res
(
F̂
)
the set of Ruelle-Pollicott resonances (eigenvalues).

The only obvious eigenvalue is for the case V = 0: it is λ0 = 1 with eigenfunction u0 = 1.

Remark 3.20. For the hyperbolic automorphism on the torus (2.3), with V = 0, the Ruelle

spectrum is only Res
(
F̂
)

= {1}. To show this, use (2.7) and (3.26).

Remark 3.21. The Ruelle spectrum describes asymptotic of time correlation functions (2.6):
for V = 0 in (3.25), one has for u, v ∈ C∞ (M) and any ε > 0,

Cv,u (n) =
(2.6)

∫
v.u ◦ f−ndx =

(3.25)
〈v|F̂ nu〉

=
∑

λj∈Res(F̂),|λj |≥ε

〈v|
(
F̂ nΠj

)
u〉+ ‖u‖HC . ‖v‖H−C .O (εn) (3.26)

where Πj denotes the �nite rank spectral projector F̂ associated to the eigenvalue λj. H−C
is the space dual to HC (precisely de�ned with the order function −m (x, ξ) instead of
+m (x, ξ)).

Proposition 3.22. (Anosov) If f : M → M is an Anosov di�eomorphism preserving
a smooth measure dx, then for any real valued potential V , there is a simple �leading�
eigenvalue λ0 > 0 in the sense that the other ones are λj ∈ C with |λj| < λ0 as in �gure
3.4.
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Remark 3.23. In the particular case V = 0 then λ0 = 1, Π0 = |1〉〈1| and |λ1| < 1. Then
(3.26) gives that for any ε > |λ1|:

Cv,u (n) =

∫
v.u ◦ f−ndx = 〈v|1〉〈1|u〉+O (εn)

=

∫
vdx.

∫
udx+O (εn) (3.27)

This proves the exponential mixing (2.5).

3.2.1 Proof of Theorem 3.18

This proof from [FRS08] uses Semiclassical analysis. The proof is very similar to the proof
of Theorem 3.4 given above.

The transfer operator (3.25) is a Fourier integral operator. Its canonical map is

F :

{
T ∗M → T ∗M

(x, ξ) → (x′, ξ′) = (f (x) ,tDf−1
x .ξ)

(3.28)

F is the canonical lift of f : M →M on the cotangent bundle T ∗M . See �gure 3.5.

Heuristic interpretation of the canonical map F from the expression of the
transfer operator F̂ (3.25):

• If u ∈ C∞ (M) with support supp (u) then F̂ u as support f (supp (u)). This explains
that x′ = f (x) in (3.28).

• If on some local chart u (x) = eiξ.x with some |ξ| � 1, i.e. u is a �fast oscillating

function�, then
(
F̂ u
)

(y) = eV eiξ.f
−1(y). Put y = f (x)+y′ with |y′| � 1, so f−1 (y) =

x+Df−1
y .y′ + o (|y′|) (by Taylor) so(

F̂ u
)

(y) ' eV eiξ.(x+Df−1
y .y) = C.ei(

tDf−1ξ).y = C.eiξ
′.y

with ξ′ = tDf−1ξ. We have obtained (3.28).

The trapped set (or non wandering set) of the map F : T ∗M → T ∗M is the zero section

K = {(x, ξ) ∈ T ∗M,x ∈M, ξ = 0} . (3.29)

For ρ ∈ K we let

E∗u (ρ) :=

{
v ∈ Tρ (T ∗M) ,

∣∣DF−nρ (v)
∣∣ →
n→+∞

0

}
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F

0

T ∗x′M

T ∗xM

x

M

0

ξ

x′ = f(x)

Eu(x)

Es(x)

f

ξ′

E∗u(x)

E∗s (x)

Figure 3.5: The canonical map F , eq.(3.28).

E∗s (ρ) :=

{
v ∈ Tρ (T ∗M) ,

∣∣DF n
ρ (v)

∣∣ →
n→+∞

0

}
We de�ne an escape function with variable order m ∈ C∞ (T ∗M) so that(

Am ◦ F
Am

)
(x, ξ) < C.λ−C � 1 for |ξ| � 1, (3.30)

and such that Am ∈ Smρ is a �good symbol� (see de�nition A.2). For this we choose

Am (x, ξ) := 〈ξ〉m(x,ξ) (3.31)

with

m (x, ξ) = C � 0 along E∗s
m (x, ξ) = −C � 0 along E∗u

De�ne the following pseudo-di�erential operator using local coordinates

Âmu := Op (Am)u :=
1

(2π)2d

∫
eiξ.xAm (x, ξ) e−iξ.yu (y) dydξ

and the anisotropic Sobolev space:

HC := Â−1
m

(
L2 (M)

)
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Then one has a commutative diagram:

L2 (R)
Q̂:=ÂmF̂ Â

−1
m−→ L2 (R)

Âm ↑ Âm ↑
HC

F̂−→ HC

Then

Q̂ := Op (Am)◦F̂◦Op (Am)−1 = F̂◦Op (Am ◦ F )◦Op (Am)−1+l.o.t. = F̂◦Op

(
Am ◦ F
Am

)
+l.o.t

From L2 continuity theorem and (3.30), on has

Op

(
Am ◦ F
Am

)
= K̂ + R̂

with
∥∥∥R̂∥∥∥ ≤ c.λ−C and K̂ a compact operator (smoothing). The same decomposition

holds for Q̂ : L2 → L2 and F̂ : HC → HC .

3.2.2 The Atiyah-Bott trace formula

De�nition 3.24. The �at trace of the transfer operator (3.25) is

Tr[F̂ :=

∫
M

K (x, x) dx (3.32)

where K (x, y) dy is the Schwartz kernel of F̂ .

Remark 3.25. We recall that the Schwartz kernel of F̂ is de�ned by
(
F̂ u
)

(x) =
∫
K (x, y)u (y) dy.

It is a current. More generally the �at trace can be de�ned for a vector bundle map
B : E → E lifting a di�eomorphism f : M →M on a vector bundle E →M , such that all
�xed points of f are hyperbolic.

Proposition 3.26. [AB67]For any n ≥ 1, the Atiyah-Bott trace formula is

Tr[
(
F̂ n
)

=
∑

x=fn(x)

eVn(x)

|det (1−Df−nx )|
(3.33)

where

Vn (x) =
n−1∑
k=0

V
(
f−k (x)

)
(3.34)
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Remark 3.27. In (3.33), this is a �nite sum over periodic points.

Proof. (*) (Atiyah-Bott 1965 [AB66, AB67]. From (3.25), and denoting δy (x) = δ (y − x)

the Dirac distribution at y, the Schwartz kernel of F̂ n is

Kn (x, y) =
(
F̂ δy

)
(x) = δy

(
f−n (x)

)
eVn(x)

= δ
(
y − f−n (x)

)
eVn(x)

From (3.32), one has (using the change of variable y = x− f−n (x) in the second line)

Tr[
(
F̂ n
)

=

∫
M

δ
(
x− f−n (x)

)
eVn(x)dx

=
∑

x=fn(x)

eVn(x)

|det (1−Df−nx )|

Remark 3.28. If f preserves dx then |det (Dfnx )| = 1 so

Tr[
(
F̂ n
)

=
∑

x=fn(x)

eVn(x)

|det (1−Dfnx )|

Lemma 3.29. [BT06]�Flat trace and spectrum�. For any ε > 0,

Tr[
(
F̂ n
)

=
∑

λj∈Res(F̂),|λj |≥ε

λnj +O (1) .εn (3.35)

=
(3.33)

∑
x=fn(x)

eVn(x)

|det (1−Df−nx )|
(3.36)

Proof. From [BT06] (see also [FT15, chap.11]) we decompose

F̂ n = F̂ n
0 + F̂ n

1

where F̂0 =
∑

λj ,|λj |≥ε F̂0Πj is the �nite rank spectral component of F̂ , F̂1 = F̂ − F̂0 so[
F̂0, F̂1

]
= 0. One has

∥∥∥F̂ n
1

∥∥∥ ≤ O (1) .εn and prove that∣∣∣Tr[
(
F̂ n

1

)∣∣∣ ≤ O (1) .
∥∥∥F̂ n

1

∥∥∥ ≤ O (1) εn
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Consequences As in Prop 3.22 let λ0 > 0 be the leading eigenvalue and |λ1| < λ0 the
next one. One has for any ε > 0,

Tr[
(
F̂ n
)

=
(3.35)

λn0 +O (1) (|λ1|+ ε)n

=
(3.33)

∑
x=fn(x)

eVn(x)

|det (1−Df−nx )|

so for n� 1,

log λ0 =
1

n
log

 ∑
x=fn(x)

eVn(x)

|det (1−Df−nx )|

+O (1)

(
(|λ1|+ ε)

λ0

)n
For a function ϕ ∈ C (M) let

Pr (ϕ) := lim
n→∞

1

n
log

 ∑
x=fn(x)

eϕn(x)

 (3.37)

called the topological pressure of ϕ with ϕn :=
∑n−1

k=0 ϕ
(
f−k (x)

)
. Using other transfer

operators and because∣∣det
(
1−Df−nx

)∣∣−1 ∼
n→∞

∣∣∣detDf−n|Es(x)

∣∣∣−1

= e−Jn(x)

with �the unstable Jacobian�15

J (x) := log
∣∣∣detDf−1

|Es(x)

∣∣∣ (3.38)

on can show that

Proposition 3.30. One has
log λ0 = Pr (V − J) (3.39)

• In particular in the case V = 0, we have λ0 = 1 from remark 3.23 so (3.39) gives
Pr (−J) = 0.

• In the particular case V = J , λ0 = Pr (0) =: htop is called the topological entropy.
From def. (3.37), htop gives the exponential rate for the number of periodic points:
] {x = fn (x)} ∼

n→∞
e(htop+o(1))n.

15Notice that if detDf = 1 then detDf−1|Es(x)
= detDf|Eu(x).
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3.3 Ruelle band spectrum for prequantum Anosov maps

Consider the prequantum map f̃ : P → P de�ned in (2.10). We follow Section 3.2.

De�nition 3.31. Let V ∈ C∞ (M) real valued, called potential. The prequantum
transfer operator is

F̂ :

{
C∞ (P ) → C∞ (P )

u → eV ◦π ·
(
u ◦ f̃−1

) (3.40)

It preserves the Fourier N−mode space for every N ∈ Z:

C∞N (P ) :=
{
u ∈ C∞ (P ) , ∀p ∈ P, ∀eiθ ∈ U (1) , u

(
eiθp
)

= eiNθu (p)
}

(3.41)

We denote
F̂N := F̂|C∞N (P ) (3.42)

and for N 6= 0 we put

~ :=
1

2πN
(3.43)

Remark 3.32. From (3.43) we have eiNθ = eiθ/(2π~). This notation is used in quantum
mechanics. So the space C∞N (P ) contains functions which oscillates fast along the direction
∂
∂θ

as N → ∞. For that reason, the limit N → ∞ or ~ → 0 is called the semiclassical
limit.

(*) In the theory of associated vector bundles it is shown that[Tay96b]

C∞N (P ) ≡ C∞
(
M,L⊗N

)
the space of sections of a complex line bundle power N , where L → M is the associ-
ated complex line bundle usually called �prequantum line bundle�. For simplicity it is
equivalent to work with (3.41).

Remark 3.33. Theorem 3.18 extends to transfer operators acting on vector bundles. So
it applies for the operator F̂N , for any N . Consequently the operator F̂N has discrete

spectrum of Ruelle resonances Res
(
F̂N

)
.

We de�ne the special �potential of reference�

V0 (x) :=
1

2
log
∣∣det Dff−1(x)|Eu(f−1(x))

∣∣ (3.44)

Notice that the unstable foliation Eu (x) is not smooth in x in general which implies that
the function V0 is Hölder continuous but not smooth in x. We then consider the di�erence

D := V − V0 ∈ Cβ (M) (3.45)
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which is also a Hölder continuous function on M and that will be called the �e�ective
damping function�. It will appear in many results below. Finally we denote by

Dn (x) :=
n∑
j=1

D
(
f j (x)

)
(3.46)

the Birkho� sum of the damping function. Recall (3.22) for the de�nition of ‖ · ‖max and
‖ · ‖min.
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Theorem 3.34. [FT15] �Band structure�. For any ε > 0, there exists Cε > 0, Nε ≥ 1
such that for any N ≥ Nε

1. the Ruelle-Pollicott resonances of F̂N is contained in a small neighborhood of the
union of annuli

(
Ak := {r−k ≤ |z| ≤ r+

k }
)
k≥0

:

Res
(
F̂N

)
⊂
⋃
k≥0

{
r−k − ε ≤ |z| ≤ r+

k + ε
}︸ ︷︷ ︸

ε-neighborhood of Ak

(3.47)

with

r−k := lim
n→∞

inf
x∈M

(
e

1
n
Dn(x) ‖Dfnx |Eu‖

−k/n
max

)
, (3.48)

r+
k := lim

n→∞ n→∞ sup
x∈M

(
e

1
n
Dn(x) ‖Dfnx |Eu‖

−k/n
min

)
2. Suppose that r+

k < r−k−1 for some k ≥ 1. For any z ∈ C such that r+
k + ε < |z| <

r−k−1 − ε, i.e. such that z is in a �gap�, the resolvent of F̂N on Hr
N (P ) is controlled

uniformly with respect to N : ∥∥∥∥(z − F̂N)−1
∥∥∥∥ ≤ Cε (3.49)

This is also true for |z| > r+
0 + ε.

3. If r+
1 < r−0 , i.e. if the outmost annulus A0 is isolated from other annuli, then

the number of resonances in its neighborhood satis�es the estimate called �Weyl
formula�

]
{
Res

(
F̂N

)⋂{
r−0 − ε ≤ |z| ≤ r+

0 + ε
}}

= NdVolω (M)
(
1 +O

(
N−1

))
. (3.50)

with Volω (M) :=
∫
M

1
d!
ω∧d being the symplectic volume of M and δ > 0. Moreover

in the limit N → ∞, most of these resonances concentrate and equidistribute
on the circle of radius

R := e〈D〉, with 〈D〉 :=
1

Volω (M)

∫
M

D (x) dx (3.51)

Remark 3.35.

1. Since ‖Dfnx |Eu‖
1/n
max ≥ ‖Dfnx |Eu‖

1/n
min > λ > 1, from (2.2), we have obviously r−k ≤ r+

k ,
r−k+1 < r−k and r+

k+1 < r+
k for every k ≥ 0. However we don't always have r+

k+1 < r−k
therefore the annuli Ak may intersect each other.
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R = e〈D〉

A1 A0

eγ
+
0eγ

+
1eγ
−
0eγ

−
1

εr

Figure 3.6: Figure for Theorem 3.34.

2. In the case V = 0, one has r+
0 < 1 so one can deduce exponential mixing for the

prequantum map f̃ , see remark 2.15.

3. It is tempting to take the potential V = V0 de�ned in (3.44) which would indeed give
D = 0 hence r+

0 = r−0 = 1 in (3.48). In that case the external band A0 would be the
unit circle, separated from the internal band A1 by a spectral gap r+

1 given by

r+
1 = lim

n→∞ n→∞ sup
x∈M

(
‖Dfnx |Eu‖

−1/n
min

)
<

1

λ
< 1

See �gure 3.7. However Theorem 3.34 does not apply in this case because the function
V0 is not smooth in x as required. In [FT15] it is shown how to generalize the result
to this case using an extension of the transfer operator to the Grassmanian bundle.

4. In the simple case of a linear hyperbolic map on the torus T2, i.e. example (2.4) with

V (x) = 0, then r+
k = r−k = λ−k−

1
2 , with λ = Df0/Eu = 3+

√
5

2
' 2.6 (constant), i.e.

each annulus Ak is a circle. In this case Theorem 3.34 has been obtained in [Fau07a,
�g.1-b]. If one chooses V (x) = 1

2
log |detDfx|Eu | = 1

2
log λ the external band A0 is

the unit circle and it is shown in [Fau07a] that the Ruelle-Pollicott resonances on the
external band coincide with the spectrum of the quantized map called the �quantum
cat map�.

5. There is a conjecture of Pollicott and Dolgopyat [DP98] for a better estimate of r+
0

in (3.47) in terms of the pressure (3.37) and J in (3.38):

log r+
0 =

1

2
Pr (2V − 2J)
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1r+
1

Figure 3.7: With the particular potential V0 = 1
2

log
∣∣det Dfx|Eu(x)

∣∣ the external spectrum
of the transfer operator F̂N concentrates uniformly on the unit circle asN = 1/ (2π~)→∞.
(We have not represented here the structure of the internal bands inside the disc of radius
r+

1 ).

De�nition 3.36. Suppose r+
1 < r−0 (isolated external band). Let ε > 0, and Nε ≥ 1

given by Theorem 3.34. Let Π~ be the spectral projector on the external band A0 which
is �nite rank from (3.50). Let

H~ := Im (Π~) (3.52)

that we call the �quantum space� which is �nite dimensional and let

F̂~ : H~ → H~ (3.53)

be the �nite dimensional spectral restriction of F̂N . We call F̂~ the �quantum operator�.

In fact, for every N we de�ne ΠN as the spectral projector |z| > r+
1 + ε and put

F̂N := F̂NΠN . In particular for N ≥ Nε ΠN = Π~ and F̂N = F̂~.
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Theorem 3.37. �correlation functions and interpretation�. [FT15] With the same
setting as in the previous de�nition, for any u, v ∈ C∞ (P ), and for n→∞, one has(

v, F̂ nu
)
L2︸ ︷︷ ︸

”classical”

=
∑
N

(
vN , F̂nNuN

)
︸ ︷︷ ︸

”quantum”

+O
((
r+

1 + ε
)n)

(3.54)

where uN , vN ∈ C∞N (P ) are the Fourier components of the functions u and v. In the right
hand side of (3.54), the sum is in�nite but convergent.

Remark 3.38. Eq.(3.54) has a nice interpretation: the classical correlation functions
(
v, F̂ nu

)
are governed by the quantum correlation functions

(
vN , F̂nNuN

)
for large time, or equiva-

lently the �quantum dynamics emerge dynamically from the classical dynamics� .

Remark 3.39. It is known that for n→∞,(
v, F̂ nu

)
= λn0 (v,Πλ0u) +O (|λ1|n)

where λ0 > 0 is the leading and simple eigenvalue of F̃ (in the space Hr
N=0) and λ1 is the

second eigenvalue with |λ1| < λ0. The case V = 0 for which λ0 = 1 gives that the map
f̃ : P → P is mixing with exponential decay of correlations.

Remark 3.40. (*) In [FT15] we show that F̂~ is a valuable quantization of the symplectic
map f but di�erent from usual �geometric quantization�.

3.3.1 Proof of Theorem 3.34

The idea is the same as in the proof in Section 3.2.1 page 32, but we use now ~−semiclassical
analysis with ~ := 1/ (2πN)� 1.

We consider charts Uα ⊂M and local trivializations of the bundle P : τα : Uα ⊂M → P ,
i.e. di�eomorphism

Tα :

{
Uα ×U (1) → π−1 (Uα)(
x, eiθ

)
→ eiθτα (x)

(3.55)

Consequently the pull-back of the connection A on P by the trivialization map (3.55) is
written as

T ∗αA = idθ − i2πηα (3.56)

where ηα ∈ C∞ (Uα,Λ
1) is a one-form on Uα which depends on the choice of the local

section τα. We have
ω = dηα. (3.57)
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Uα Uβ
x f(x)

π
M

f̃
ei2πAβ,α

P

τα(x)
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Figure 3.8: Illustrates the expression (3.58) of the prequantum map f̃ with respect to local
trivialization. It is characterized by the action function Aβ,α (x).

Lemma 3.41. �Local expression of the prequantum map f̃�. Suppose that V ⊂
Uα ∩ f−1 (Uβ) is a simply connected open set. We have

f̃ (τα (x)) = ei2πAβ,α(x)τβ (f (x)) (3.58)

with the �action function� given by

Aβ,α (x) =

∫
f(γ)

ηβ −
∫
γ

ηα + c (x0) =

∫
γ

(f ∗ (ηβ)− ηα) + c (x0) . (3.59)

In the last integral, x0 ∈ V is any point of reference, γ ⊂ V is a path from x0 to x and
c (x0) does not depend on x. See �gure 3.8.

Lemma 3.42. �Local expression of F̂N � (37). Let u ∈ C∞N (P ) and u′ := F̂Nu ∈
C∞N (P ). Let the respective associated functions be uα = u ◦ τα and u′α = u′ ◦ τα for any
indices α. Then

u′β = eV · e−i2πNAβ,α◦f−1 (
uα ◦ f−1

)
(3.60)
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Proposition 3.43. F̂N is a ~-Fourier Integral Operator. Its local canonical map is

Fα,β :

{
T ∗Uα → T ∗Uβ

(x, ξ) → (x′, ξ′) =
(
f (x) , t

(
Df−1

x′

)
(ξ + ηα (x))− ηβ (x′)

) (3.61)

where x ∈ Uα, f (x) ∈ Uβ and ξ ∈ T ∗xUα. The map Fα,β preserves the canonical symplectic
structure

Ω :=
2d∑
j=1

dxj ∧ dξj (3.62)

Proof. This comes from (3.60). See explanation of (3.28). There is a new term in (3.60):
the multiplication operator by a �fast oscillating phase� (recall that ~� 1):

F̂2 : u (x)→ u′ (x) = eiS(x)/~u (x)

with S (x) = −Aβα ◦f−1 =
∫
f−1(γ)

ηα−
∫
γ
ηβ−c (x0). If u (x) = e

i
~ ξ.x then it is transformed

to
u′ (y) =

(
F̂2u

)
(y) = e

i
~ (ξ.y+S(y))

and for y = x+ y′ with |y′| � 1, we have

u′ (y) ' Ce
i
~ (ξ.y+dS·y) = Ce

i
~ ξ
′.y

with ξ′ = ξ + dS, C = e
i
~ (S(x)−dSx.x) and dS = f−1∗ηα − ηβ. This gives (3.61).

Lemma 3.44. With the following change of variable

(x, ξ) ∈ T ∗Uα → (x, ζ) = (x, ξ + ηα (x)) ∈ T ∗M, (3.63)

the canonical map (3.61) get the simpler and global expression

F :

{
T ∗M → T ∗M

(x, ζ) → (x′, ζ ′) =
(
f(x),t

(
Df−1

x′

)
ζ
) . (3.64)

similar to (3.28), but the symplectic form Ωin (3.62) preserved by F is:

Ω =
2d∑
j=1

(dxj ∧ dζj) + π̃∗ (ω) . (3.65)

with the canonical projection map π̃ : T ∗M →M .
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Figure 3.9: The decompositions of the tangent space Tρ(T
∗M).

So as in (3.29), the trapped set is the zero section

K = {(x, ξ) ∈ T ∗M,x ∈M, ξ = 0} ⊂ T ∗M (3.66)

Here (K,Ω) ≡ (M,ω) is a symplectic submanifold.
For every ρ ∈ K, we can decompose Ωorthogonally:

Tρ (T ∗M) = TρK

⊥Ω⊕
(TρK)⊥Ω (3.67)

Moreover
TρK = E(1)

u ⊕ E(1)
s︸ ︷︷ ︸

2d

, (TρK)⊥ = E(2)
u ⊕ E(2)

s︸ ︷︷ ︸
2d

with
E(1)
u := TρK ∩ E∗u (ρ)

etc

With respect to the decomposition (3.67), the canonical map F is within the linear
approximation
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Tρ (T ∗M) = E(1)
u (ρ)⊕ E(1)

s (ρ)︸ ︷︷ ︸
TρK

⊥
⊕E(2)

u (ρ)⊕ E(2)
s (ρ)︸ ︷︷ ︸

(TρK)⊥

DΦ ↓ ↓ ↓

T ∗R2d
(q,p) =

(
Rd
νq ⊕ Rd

νp

)
︸ ︷︷ ︸

T ∗Rdνq

⊥
⊕

(
Rd
ζp ⊕ Rd

ζq

)
︸ ︷︷ ︸

T ∗Rdζp

With respect to these coordinates the di�erential of the canonical map DFρ : Tρ (T ∗M)→
TF (ρ) (T ∗M) is expressed as

DΦ ◦DFρ ◦DΦ−1 = F (1) ⊕ F (2), F (1) ≡
(
Ax 0
0 tA−1

x

)
, F (2) ≡

(
Ax 0
0 tA−1

x

)
(3.68)

where
Ax ≡ Df |Eu(x): Rd → Rd (3.69)

is an expanding linear map. ‖Ax‖min ≥ λ > 1.
At the level of operators, we perform a decomposition similar to (3.67) and obtain

a microlocal decomposition of the transfer operator F̂N as a tensor product F̂N |TρK ⊗
F̂N |(TρK)⊥ . Precisely we obtain correspondingly to (3.68) above

F̂N ≡ eV · LA ⊗ LtA−1 (3.70)

with
LAu := u ◦ A−1 on C∞0

(
Rd
)

LtA−1u := u ◦t A on C∞0
(
Rd
)

We observe that

• |detA|−1/2 LA is unitary on L2
(
Rd
)

• From model in Theorem 3.12, we have shown that in an anisotropic Sobolev space,
LA has discrete Ruelle spectrum in bands indexed by k ≥ 0 and given by:

‖A‖−kmax ≤ |zk| ≤ ‖A‖
−k
min

and that corresponding eigenspace are homogeneous polynomials of degree k. We
observe that the adjoint operator is L∗A = |detA| .LA−1 . The spectrum of L∗A is the
conjugate of that of LA. We have LtA−1 = 1

|detA| · L
∗
tA and deduce that LtA−1 has a

discrete Ruelle spectrum in bands indexed by k ≥ 0 and given by:

|detA|−1 · ‖A‖−kmax ≤ |zk| ≤ |detA|−1 · ‖A‖−kmin (3.71)
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Therefore we prefer to write (3.70) as

F̂N = eV ·

|detA|−1/2 · LA︸ ︷︷ ︸
unitary

⊗
|detA|1/2 · LtA−1︸ ︷︷ ︸

discrete spectrum


and from (3.71) the discrete spectrum of |detA|1/2 · LtA−1 is

|detA|−1/2 · ‖A‖−kmax ≤ |zk| ≤ |detA|−1/2 · ‖A‖−kmin

From this microlocal description we obtain that for a given k (this will correspond to
the k-th band), the transfer operator F̂N has �local norm max/min� bounded by

eΓ±k (x) = eV · |detA|−1/2 · ‖A‖−kmax/min

From (3.69) and (3.45) this gives

Γ±k (x) = V + log |detA|−1/2 − k log ‖A‖max/min

= V − 1

2
log
∣∣det Dfx|Eu(x)

∣∣− k log
∥∥∥Df|Eu(x)

∥∥∥
max/min

= D (x)− k log
∥∥∥Df|Eu(x)

∥∥∥
max/min

(3.72)

For the operator F̂ n
N we have similarly that it has �local norm max/min� bounded by

eΓ±k (x,n) with
Γ±k (x, n) = Dn (x)− k log

∥∥∥Dfn|Eu(x)

∥∥∥
max/min

(3.73)

From the previous local description, we can construct explicitly some approximate local
spectral projectors Πk for every value of k, and patching these locals expression together
we get global spectral operators for each band (under pitching conditions). We deduce
that the spectrum is contained in bands Bk limited by γ−k ≤ log |z| ≤ γ+

k (image of the
projector Πk) with

γ+
k = lim sup

n→∞

(
sup
x

1

n
Γ+
k (x, n)

)
, γ+

k = lim inf
n→∞

(
inf
x

1

n
Γ−k (x, n)

)
Then (3.73) gives expressions (3.48) of the Theorem.

The proof of the Weyl law is similar to the proof of J.Sjöstrand about the damped wave
equation [Sjö00] but needs more arguments. The accumulation of resonances on the value
exp 〈D〉 uses the ergodicity property and is also similar to the spectral results obtained in
[Sjö00] for the damped wave equation.

In [FT15] the proof needs more arguments because one has to show that non linear
corrections are negligible.
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3.4 Ruelle spectrum for Anosov vector �elds

We suppose that X is an Anosov vector �eld on a smooth closed manifold M . Let V ∈
C∞ (M) be a smooth function called �potential function�.

De�nition 3.45. The transfer operator is the group of operators

F̂t :

{
C∞ (M) → C∞ (M)

v → etAv
, t ≥ 0

with the generator
A := −X + V (3.74)

which is a �rst order di�erential operator (in local coordinates A = −
∑

j X
j ∂
∂xj

+V (x)).

Remark 3.46.

• Since X generates the �ow φt we can write16 F̂tv =
(
e
∫ t
0 V ◦φ−sds

)
v (φ−t (x)), hence F̂t

acts as transport of functions by the �ow with multiplication by exponential of the
function V averaged along the trajectory.

• In the case V = 0, the operator F̂t is useful in order to express �time correlation
functions� between u, v ∈ C∞ (M), t ∈ R:

Cu,v (t) :=

∫
M

u · (v ◦ φ−t) dx = 〈u, F̂tv〉L2 (3.75)

The study of these time correlation functions permits to establish the mixing prop-
erties and other statistical properties of the dynamics of the Anosov �ow.

• In the particular case V = 0, u = cste is an obvious eigenfunction of A = −X with
eigenvalue z0 = 0.

• If dx is a smooth measure preserved by the �ow (this is the case for a contact
Anosov �ow) then divX = 0 and in the case V = 0, we have that F̂t is unitary in
L2 (M,dx) and iA = (iA)∗is self-adjoint and has essential spectrum on the imaginary
axis Rez = 0, that is useless. In the next theorem we consider more interesting
functional spaces where the operator A has discrete spectrum but is non self-adjoint.

By duality, we extend A : C∞ (M)→ C∞ (M) to A : D′ (M)→ D′ (M).

16to prove this we derive the right hand side B (x, t) =
(
e
∫ t
0
V ◦φ−sds

)
v (φ−t (x)) giving ∂B

∂t =

(V −X)B = AB. On the other hand ∂
∂t

(
F̂tv
)

= A
(
F̂tv
)

also. Unicity of the solution gives that

B = F̂tv.
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−Cλ

?

?

?

a=Re(z)

ω =Im(z)

z0 = Pr(V − J)

Figure 3.10: Illustration of Theorem 3.47. The spectrum of A = −X + V is discrete on
Re (z) > −Cλ in space HC (for any C > 0) but it does not give existence of eigenvalues.
That's why we put the sign �?�.

Theorem 3.47. �discrete spectrum�.[BL07][FS11]. If X is an Anosov vector �eld and
V ∈ C∞ (M) then for every C > 0, there exists a Hilbert space HC called �anisotropic
Sobolev space� with C∞ (M) ⊂ HC ⊂ D′ (M), such that

A = −X + V : HC → HC

has discrete spectrum on the domain Re (z) > −Cλ, called Ruelle-Pollicott reso-
nances, independent on the choice of HC.
We have an upper bound for the density of resonances : for every β > 0, in the limit
b→ +∞ we have

]{z ∈ Res(A), |Im(z)− b| ≤
√
b, Re(z) > −β} ≤ o(bn−1/2), (3.76)

with n = dimM .

Remark 3.48. Concerning the meaning of these eigenvalues, notice that with the choice
V = 0, if (−X) v = zv, v is an invariant distribution with eigenvalue z = −a + ib ∈ C,
then v ◦ φ−t = e−tXv = e−ateibtv, i.e. a = −Re (z) contributes as a damping factor and
b = Im (z) as a frequency in time correlation function (3.75). See Theorem 3.57 below for
a precise statement. Notice also the symmetry of the spectrum under complex conjugation
that Av = zv implies Av = zv.
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Remark 3.49. (*) The term �resonance� comes from quantum physics where an (ele-
mentary or composed) particle usually decay towards other particles. It is modeled by a
�resonance�, i.e. a quantum state which an eigenvector of the Hamiltonian operator and
an eigenvalue z = −a+ ib ∈ C which behaves as ezt = e−ateibt. The imaginary part of z is
written b = E

~ with the energy E = mc2 related to the mass m = ~
c2
b of the particle. The

real part gives e−at = e−t/τ with τ = 1/a the �mean life time� of the particle. For example
the neutron has τ ' 15mn (very long) and E = 940GeV. In nuclear physics, the mean life
time of resonances τ is usually of order 10−22s.

(*) See on a movie (http://www-fourier.ujf-grenoble.fr/~faure/articles): the
spectrum of the partially expanding map

(x, y)→ (2x mod 1, y + sin2πx) ∈ S1 × R.

In theorem 3.47 the last result gives an upper bound for the number of resonances.
The di�culty of giving a lower bound is common in problems which involves �non normal
operators� [TE05] (here A is non normal in HC). This is due to the fact that for non
normal operators, the spectrum may be very unstable with respect to perturbation. The
simplest example to have in mind is the following N ×N matrix with parameter ε ∈ R:

Mε =


0 1 0 0

0 0
. . .
. . . 1

ε 0


For ε = 0 the spectrum is 0 with multiplicity N . For ε > 0 is it easy to check that there
are N eigenvalues on the circle of radius rε,N = ε1/N . So for ε = 10−10, and N = 10 the
radius is r = 0.1.

3.4.1 Sketch of proof of Theorem 3.47

This proof (taken from [FS11]) uses semiclassical analysis. Let us consider the di�erential
operator

P := iA =
(3.74)

−iX + iV (3.77)

On the cotangent space T ∗M we denote x ∈M and ξ ∈ T ∗xM . The principal symbol of P
is the function p ∈ C∞ (T ∗M) given by (see (A.6) or [Tay96b, p.2])

p (x, ξ) = Xx (ξ) . (3.78)

The function p de�nes a Hamiltonian vector �eld X on T ∗M by

Ω (X, .) = dp
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with Ω =
∑

j dx
j ∧ dξj being the canonical symplectic form. In fact X is the canonical lift

of X on the cotangent space. Its �ow

Φt = e−tX (3.79)

is a lift of φt : M → M and acts lineary in the �bers Φt : T ∗xM → T ∗φt(x)M . It preserves
the decomposition of the cotangent bundle

T ∗xM = E∗u (x)⊕ E∗s (x)⊕ E∗0 (x)

de�ned as the dual decomposition of the tangent space (2.14) by

E∗u (Eu ⊕ E0) = 0, E∗s (Es ⊕ E0) = 0, E∗0 (Eu ⊕ Es) = 0.

From de�nition (2.16), we have that E∗0 = Rα. For a point (x, ξ) ∈ T ∗M we can consider
E = p (x, ξ) = Xx (ξ) as the component of ξ along the axis E∗0 (x), called the energy and
preserved by the �ow. The energy level is ΣE := p−1 (E). From (3.78) and (2.16), ΣE is an
a�ne subbundle of T ∗M given by

ΣE = p−1 (E) = (E · α) + (E∗u ⊕ E∗s ) .

By duality, for t > 0, the map Φt : E∗u (x) → E∗u (φt (x)) is expanding and Φt : E∗s (x) →
E∗s (φt (x)) is contracting. See �gure 3.11.

The trapped set (or non wandering set) of the �ow Φt is de�ned as the set of point
who do not escape to in�nity in the past or future:

K := {(x, ξ) ∈ T ∗M,∃C b T ∗M compact,∀t ∈ R,Φt (x, ξ) ∈ C} ⊂ T ∗M

From the previous description we have that the trapped set is the rank one subundle E∗0 :

K = E∗0 , dimK = dimM + 1.

For an arbitrary large constant C > 0, we construct an escape function a (x, ξ) on
T ∗M such that17 far from the trapped set K one has:

X (a)� −C.λ

Then let us consider the conjugated operator

P̃ := eOp(a)Pe−Op(a) = P + [Op (a) , P ] + . . . (3.80)

From (A.10) its symbol is

p̃ (x, ξ) = p (x, ξ)− i {a, p}+ iV +O
(
S−1+0

)
= X (ξ) + iX (a) + iV +O

(
S−1+0

)
(3.81)

Let D ⊂ C a compact domain of the spectral plane. If C > 0 is large enough then p̃−1 (D)
is a compact subset of T ∗M . See �gure 3.12.
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Figure 3.11: Picture of the �ow Φt in the cotangent space T ∗M .

D Re(z)

Im(z)
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p̃−1 E∗0(x)

0

E1
E2

E2E1

p̃−1(D)

E∗s (x)

E∗u(x)

Figure 3.12: t p̃−1 (D) ⊂ T ∗M compact implies that P̃ = Op (p̃) has discrete spectrum on
D.
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As a consequence

P̃ : L2 (M)→ L2 (M) (3.82)

has discrete spectrum18 on the domain D. Let

HC := e−Op(a)L2 (M)

be the anisotropic Sobolev space. Equivalently, from (3.80) and (3.77), (3.82) gives

P : HC → HC , A = −iP : HC → HC

have discrete spectrum respectively on the domain D and −iD.
The Weyl upper bound is obtained by computing the symplectic volume of p̃−1 (D).

3.5 Ruelle band spectrum for contact Anosov vector �elds

We present here the result announced in [FT13].

Remark 3.50. Recently there appeared fews papers where the authors obtain results for
contact Anosov �ows using this semiclassical approach: spectral gap estimate and decay
of correlation [NZ15], Weyl law upper bound [DDZ12] and meromorphic properties of the
dynamical zeta function [DZ13]. We would like to mention also a closely related work: in
[Dya13], for a problem concerning decay of waves around black holes, S. Dyatlov show that
the spectrum of resonances has a band structure similar to what is observed for contact
Anosov �ows. In fact these two problems are very similar in the sense that in both cases
the trapped set is symplectic and normally hyperbolic. This geometric property is the
main reason for the existence of a band structure. However in [Dya13], some regularity of
the hyperbolic foliation is required and that regularity is not present for contact Anosov
�ows.

17Precisely we choose ea(x,ξ) = 〈ξ〉m(x,ξ)
i.e. a (x, ξ) = m (x, ξ) log 〈ξ〉 with m (x, ξ) = ±C along the

stable/unstable directions E∗s,u (x) respectively. Hyperbolicity assumption gives that X
(
ξs/u

)
= ∓λ.ξs/u

hence X (a) = m.X
(
log
(
ξs/u

))
= −Cλ.

18To show the general statement used here that p̃−1 (D) ⊂ T ∗M is compact implies that P̃ = Op (p̃) :
L2 (M) → L2 (M) has discrete spectrum on D we use the resolvent as follows: let z0 ∈ D. From

�semiclassical functional calculus�[GS94, DS99], RP̃ (z0) :=
(
z0 − P̃

)−1
is a PDO with symbol

rp̃ (z0) = (z0 − p̃)−1. From (3.81) on can write

rp̃ (z0) = rp̃−K (z0) + rp̃−K (z0)Krp̃ (z0)

where the �rst term of the right is bounded so that Op (rp̃−K (z0)) has a small norm and the second term

decay so that Op (//) is compact. With this kind of argument, we deduce that P̃ has discrete spectrum
in D.
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3.5.1 Case of geodesic �ow on constant curvature surface

In Section 2.3.1 we have observed that there is a contact Anosov �ow X on Γ\SL2R
corresponding to the geodesic �ow on Γ\H2.

Using representation theory, it is known that the Ruelle-Pollicott spectrum of the opera-
tor (−X) coincides with the zeros of the dynamical Fredholm determinant. This dynamical
Fredholm determinant is expressed as the product of the Selberg zeta functions and gives
the following result; see �gure 3.14(a). We refer to [FT16] for further details.

Proposition 3.51. If X is the geodesic �ow on an hyperbolic surface S = Γ\H2 then the
Ruelle-Pollicott eigenvalues z of (−X), i.e. giving (−X)u = z · u with u ∈ HC, are of
the form

zk,l = −1

2
− k ± i

√
µl −

1

4
(3.83)

where k ∈ N and (µl)l∈N ∈ R+ are the discrete eigenvalues of the hyperbolic Laplacian

∆ = −y2
(
∂2

∂x2 + ∂2

∂y2

)
on the surface S = Γ\H2. There are also zn = −n with n ∈ N∗.

Each set (zk,l)l with �xed k will be called the line Bk. The �Weyl law� for ∆ gives the
density of eigenvalues on each vertical line Bk, for b→∞,

] {zk,l, b < Im (zk,l) < b+ 1} ∼ |b| A
2π

(3.84)

where A is the area of S.

Proof. For the proof we can use representation theory: it is known that the Ruelle-Pollicott
spectrum of the operator (−X) coincides with the zeros of the dynamical Fredholm deter-
minant. This dynamical Fredholm determinant is expressed as the product of the Selberg
zeta functions.

Here is an argument that Ruelle resonances are related to the spectrum of the Laplacian
and comes by bands. Suppose that (−X)u = zu is a Ruelle-Pollicott eigenvector. From
(2.19) we deduce that:

(−X) (Uu) = (−UX + U)u = (z + 1) (Uu) ,

(−X) (Su) = (−SX − S)u = (z − 1) (Su)

This gives a family of other eigenvalues z+ k, k ∈ Z. But the condition that the spectrum
is in the domain Re (z) ≤ 0 implies that there exists k ≥ 0 such that Uk+1u = 0, Uku 6= 0.
We say that u ∈ Bk belongs to the band k. Notice also that if u ∈ B0 i.e. Uu = 0 then
using the Casimir operator 4 = −X2 − 1

2
SU − 1

2
US of SL2R we have

4u =

(
−X2 − 1

2
SU − 1

2
US

)
u =

(2.19)

(
−X2 +X − SU

)
u = −z (z + 1)u = µu
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Figure 3.13: Ruelle Pollicott resonances for the geodesic �ow on a hyperbolic surface.

Let 〈u〉SO2
∈ D′ (M) be the distribution u averaged by the action of SO2. We suppose

that 〈u〉SO2
6= 0. It is shown in [FS11] that the wavefront of u is included in the unstable

manifold E∗u ⊂ T ∗M . Using an argument of Hörmander, since E∗u is not contained in the
kernel of Θ = S−U the generator of SO2, then this wavefront is killed by the action of SO2

and 〈u〉SO2
∈ C∞ (M) is in fact a smooth function on the surfaceM = Γ \ (SL2R/SO2).

Moreover since ∆ commutes with the action of SO2, we still have that 4〈u〉SO2
= µ 〈u〉SO2

with ∆ ≡ −y2
(
∂2

∂x2 + ∂2

∂y2

)
being the hyperbolic Laplacian. ∆ being elliptic on M also

implies that 〈u〉SO2
is smooth. From spectral theory in L2 (M), ∆ is a positive self-adjoint

operator and has discrete real and positive eigenvalues µl = −z (z + 1) ≥ 0. Therefore the
Ruelle eigenvalue is

z = −1

2
± i
√
µl −

1

4

We deduce the other Ruelle eigenvalues by the shift z − k, k ∈ N. The Weyl law for the
Laplacian gives (3.84). Using Representation theory we can show that they are no other
eigenvalues; i.e. that Imz 6= 0 implies that 〈u〉SO2

6= 0 [FF03]. See �gure 3.13.

3.5.2 General case

Proposition 3.51 above shows that the Ruelle-Pollicott spectrum for the geodesic �ow on
constant negative surface has the structure of vertical lines Bk at Rez = −1

2
− k. In each

line the eigenvalues are in correspondence with the eigenvalues of the Laplacian ∆. We
address now the question if this structure persists somehow for geodesic �ow on manifolds
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with negative (variable) sectional curvature and more generally for any contact Anosov
�ow.

We consider here an contact Anosov vector �eld X on a smooth closed manifoldM and
a smooth potential function V ∈ C∞ (M).

Remark 3.52. �Concerning the leading eigenvalue�. Similarly to (3.39) above, we can show
that for contact Anosov �ow the Ruelle spectrum has a leading real eigenvalue z0 ∈ R (i.e.
other eigenvalues are Re (zj) < z0) given by

z0 = Pr (V − J)

where J = divX|Eu is the �unstable Jacobian�19 and for a function ϕ ∈ C (M),

Pr (ϕ) := lim
t→∞

1

t
log

 ∑
γ,|γ|≤t

exp

(∫ t

0

ϕ

)
(γ)


is called the topological pressure.

We introduce now the following function called �potential of reference� that will
play an important role

V0 (x) :=
1

2
divX|Eu =

1

2
J. (3.86)

Remark 3.53. From (2.15) we have V0 (x) ≥ 1
2
d · γ. Since Eu (x) is only Hölder in x so is

V0 (x).

We will also consider the di�erence

D (x) := V (x)− V0 (x) (3.87)

and called it the �e�ective damping function�. For simplicity we will write:(∫ t

0

D

)
(x) :=

∫ t

0

(D ◦ φ−s) (x) ds, x ∈M,

for the Birkho� sum of D along trajectories. Finally we recall the notation ‖L‖min,max
in (3.22) for an invertible linear operator. The following theorem is similar to Theorem
3.34 that was for prequantum maps.

19Let µg be the induced Riemann volume form on Eu (x) de�ned from the choice of a metric g on M .
As the usual de�nition in di�erential geometry [Tay96a, p.125], for tangent vectors u1, . . . ud ∈ Eu (x),
divX|Eu

measures the rate of change of the volume of Eu and is de�ned by(
divX|Eu

(x)
)
· µg (u1, . . . ud) = lim

t→0

1

t
(µg (Dφt (u1) , . . . , Dφt (ud))− µg (u1, . . . ud))

Equivalently we can write that

divX|Eu
(x) =

d

dt

(
det (Dφt)|Eu

)
t=0

(3.85)

.
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Theorem 3.54. [FT16]�asymptotic band structure�. If X is a contact Anosov vector
�eld on M and V ∈ C∞ (M) then for every C > 0, there exists an Hilbert space HC

with C∞ (M) ⊂ HC ⊂ D′ (M), such that for any ε > 0, the Ruelle-Pollicott eigenvalues
(zj)j ∈ C of the operator A = −X + V : HC → HC on the domain Re (z) > −Cλ are
contained, up to �nitely many exceptions, in the union of �nitely many bands

z ∈
⋃
k≥0

[
γ−k − ε, γ

+
k + ε

]
× iR︸ ︷︷ ︸

Band Bk

with for k ≥ 0,

γ+
k = lim

t→∞
sup
x

1

t

((∫ t

0

D

)
(x)− k log

∥∥∥Dφt (x)/Eu

∥∥∥
min

)
, (3.88)

γ−k = lim
t→∞

inf
x

1

t

((∫ t

0

D

)
(x)− k log

∥∥∥Dφt (x)/Eu

∥∥∥
max

)
(3.89)

and where D = V −V0 is the damping function (3.87). In the gaps (i.e. between the bands)
the norm of the resolvent is controlled: there exists c > 0 such that for every z /∈

⋃
k≥0 Bk

with |Im (z)| > c ∥∥(z − A)−1
∥∥ ≤ c. (3.90)

For some k ≥ 0, if the band Bk is �isolated�, i.e. γ+
k+1 < γ−k and γ+

k < γ−k−1 (this last
condition is for k ≥ 1) then the number of resonances in Bk obeys a �Weyl law�: ∀b > c,

1

c
|b|d < 1

|b|ε
· ] {zj ∈ Bk, b < Im (zj) < b+ bε} < c |b|d (3.91)

with dimM = 2d+ 1. The upper bound holds without the condition that Bk is isolated.
If the external band B0 is isolated i.e. γ+

1 < γ−0 , then most of the resonances accumulate
on the vertical line

Re (z) = 〈D〉 :=
1

Vol (M)

∫
M

D (x) dx

in the precise sense that

1

]Bb

∑
zi∈Bb

|Re (zi)− 〈D〉| −→ 0
b→∞

, with Bb := {zi ∈ B0, |Im (zi)| < b} . (3.92)

Remark 3.55. In 2009 M. Tsujii has obtained γ+
0 in [Tsu10, Tsu12]. He also obtained the

estimate (3.90) for Re (z) ≥ γ+
0 + ε.
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a = Re(z)
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Figure 3.14: (a) For an hyperbolic surface S = Γ\H2, the Ruelle-Pollicott spectrum of the
geodesic vector �eld −X given by Proposition 3.51. It is related to the eigenvalues of the
Laplacian by (3.83). (b) For a general contact Anosov �ow, the spectrum of A = −X + V
and its asymptotic band structure given by Theorems 3.54.

Remark 3.56. For a general contact Anosov vector �eld it is possible to choose the potential
V = V0 (although it is non smooth)[FT16], giving γ+

0 = γ−0 = 0, i.e. the �rst band is
reduced to the imaginary axis and is isolated from the second band by a gap, γ+

1 < 0.

3.5.3 Consequence for correlation functions expansion

We mentioned the usefulness of dynamical correlation functions in (3.75). Let Πj denotes
the �nite rank spectral projector associated to the eigenvalue zj. The following Theorem
provides an expansion of correlation functions over the spectrum of resonances of the �rst
band B0. This is an in�nite sum.
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Re(z)

Im(z)

asymptotic
spectral gap

γ−0 = γ+
0 = 0

γ+
1

Figure 3.15: Ruelle-Pollicott spectrum for a general Contact Anosov �ow and with potential
V0 = 1

2
divX|Eu .

Theorem 3.57. [FT13]Suppose that γ+
1 < γ−0 . Then for any ε > 0,∃Cε > 0, any

u, v ∈ C∞ (M) and t ≥ 0,∣∣∣∣∣∣〈u, F̂tv〉L2 −
∑

zj ,Re(zj)≥γ+
1 +ε

〈u, F̂tΠjv〉

∣∣∣∣∣∣ ≤ Cε · ‖u‖H′C ‖v‖HC e
(γ+

1 +ε)t. (3.93)

The in�nite sum above converges because for arbitrary large m ≥ 0 there exists

Cm,ε (u, v) ≥ 0 such that
∣∣∣〈u, F̂tΠjv〉

∣∣∣ ≤ Cm,ε (u, v) · |Im (zj)|−m · e(γ
+
0 +ε)t.

Remark 3.58. Eq.(3.93) is a re�nement of decay of correlation results of Dolgopyat [Dol98],
Liverani [Liv04], Tsujii [Tsu10, Tsu12, Cor.1.2] and Nonnenmacher-Zworski [NZ15, Cor.5]
where their expansion is a �nite sum over one or a �nite number of leading resonances.

Remark 3.59. In the case of simple eigenvalues zj = −aj + ibj then Πj is a rank one

projector and 〈u, F̂tΠjv〉 = e−ajteibjt〈u,Πjv〉.

Remark 3.60. As we did in (3.54), we call the second term of (3.93), the quantum cor-
relation function.
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3.5.4 Proof of Theorem 3.54

The band structure and all related results presented in Theorem 3.54 have already been
proven for the spectrum of Anosov prequantum map in [FT15] and presented in Theorem
3.34. An Anosov prequantum map f̃ : P → P is an equivariant lift of an Anosov di�eo-
morphism f : M → M on a principal bundle U (1) → P → M such that f̃ preserves a
contact one form α (a connection on P ). Therefore f̃ : P → P is very similar to the contact
Anosov �ow φt : M → M considered here, that also preserves a contact one form α. Our
proof of Theorem 3.54 is directly adapted from the proof given in [FT15] and presented in
Section 3.3.1. We refer to this paper for more precisions on the proof and we use the same
notations below. The techniques rely on semiclassical analysis adapted to the geometry
of the contact Anosov �ow lifted in the cotangent space T ∗M . In the limit |Imz| → ∞
of large frequencies under study, the semiclassical parameter is written ~ := 1/ |Imz|. We
now sketch the main steps of the proof.

The proof is very similar to that of Theorem 3.34. Recall that dimM = 2d + 1, so
dimT ∗M = 2 (2d+ 1).

Global geometrical description. A = −X + V is a di�erential operator. Its principal
symbol is the function σ (A) (x, ξ) = Xx (ξ) on phase space T ∗M (the cotangent bundle).
It generates an Hamiltonian �ow which is simply the canonical lift of the �ow φt onM . See
�gure 3.11. Due to Anosov hypothesis on the �ow, the non-wandering set of the Hamilto-
nian �ow is the continuous sub-bundle K = Rα ⊂ T ∗M where α is the Anosov one form.
K is normally hyperbolic. This analysis has already been used in [FS11] for the semi-
classical analysis of Anosov �ow (not necessary contact). With the additional hypothesis
that α is a smooth contact one form, the following Lemma shows that the trapped set
K\ {0} is a smooth symplectic submanifold of T ∗M (usually called the symplectization of
the contact one form α).

Lemma 3.61. [Arn76]The trapped set K\ {0} = (Rα) \ {0} is a symplectic submanifold
of T ∗M of dimension dim = 2 (d+ 1), called the symplectization of the contact one
form α.

Proof. Denote π : T ∗M → M the projection map. A point on the trapped set K ⊂ T ∗M
can be written ξ = ω · α (x) with ω ∈ R and x ∈ M . The Liouville one form on T ∗M at
point ξ = ω · α (x) ∈ K is

2d+1∑
j=1

ξjdxj ≡ ω · π∗ (α)

For simplicity we write the previous equation ξdx = ω · α. Then d (ξdx) = d (ωα) =
dω ∧ α + ωdα is a 2 form on K giving the following volume form on K\ {0}:

(d (ωα))d+1 = (d+ 1)ωd · dω ∧ α ∧ (dα)d
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which is non degenerate on K\ {0} since α ∧ (dα)d is supposed to be non degenerated on
M . In other words the canonical two form Ω =

∑2d+1
j=1 dxj ∧ dξj = −d (ξdx) restricted to

K\ {0} is symplectic.

Di�erential of the �ow on the trapped set. Let ρ = (x, ξ) ∈ K be a point on the
trapped set. We suppose Xx (ξ) > 0 and we let ω := ~−1 := Xx (ξ) be its �energy�. Let
Ω =

∑
j dx

j ∧dξj be the canonical symplectic form on T ∗M and consider the Ω-orthogonal
splitting of the tangent space at ρ ∈ K:

Tρ (T ∗M) = TρK
⊥⊕

(TρK)⊥ (3.94)

that we can decompose further according to their (un)stability:

TρK =

E(1)
u ⊕ E(1)

s︸ ︷︷ ︸
E(1),dim=2d

 ⊥⊕E0 ⊕ E∗0︸ ︷︷ ︸
E(0),dim=2

 (3.95)

(TρK)⊥ = E(2)
u ⊕ E(2)

s︸ ︷︷ ︸
E(2),dim=2d

(3.96)

with E
(1)
u,s := (Dπ)−1 (Eu,s)∩TρK, E

(2)
u,s := (Dπ)−1 (Eu,s)∩(TρK)⊥ and E0 := (Dπ)−1 (RX)∩

TρK, E∗0 = Rα. We have written their dimension below. Notice that in the obtained
decomposition

Tρ (T ∗M) = E(1)

⊥⊕
E(0)

⊥⊕
E(2)

each component is symplectic and each subcomponent E
(j)
u,s is Lagrangian. This decompo-

sition is preserved by the di�erential of the lifted �ow (3.79), Φt = e−tX : T ∗M → T ∗M so
we write accordingly

DΦt ≡ DΦ
(1)
t

⊥⊕
DΦ

(0)
t

⊥⊕
DΦ

(2)
t . (3.97)

with

DΦ
(1)
t ≡ DΦ

(2)
t ≡

(
Lx 0
0 tL−1

x

)
: R2d → R2d

is linear symplectic and hyperbolic with

Lx := (Dφt)|Eu(x) (3.98)

being a linear expanding map: we have ‖Lx‖min > etγ > 1. concerning the neutral part we

have DΦ
(0)
t = Id|R2 .
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Partition of unity. We choose an energy E = 1
~ � 1. We decompose functions on

the manifold using a microlocal partition of unity of size ~1/2−ε with some 1/2 > ε > 0,
that is re�ned as ~ → 0. In each chart we use a canonical change of variables adapted to
the decomposition (3.94) and construct an escape function adapted to the local splitting

E
(2)
u ⊕ E

(2)
s above. This escape function has �strong damping e�ect� outside a vicinity

of size O
(
~1/2

)
of the trapped set K. We use this to de�ne the anisotropic Sobolev

space HC . At the level of operators, we perform a decomposition similar to (3.94) and
obtain a microlocal decomposition of the transfer operator F̂t = etA as a tensor product
F̂t|TρK ⊗ F̂t|(TρK)⊥ . Precisely we obtain correspondingly to (3.97) above

F̂t = etA ≡
microloc.

e
∫ t
0 V · LL ⊗ e−iEtIdR ⊗ LtL−1 (3.99)

with
LLu := u ◦ L−1 on C∞0

(
Rd
)

LtL−1u := u ◦t L on C∞0
(
Rd
)

and ≡
microloc.

means after multiplication of some cuto� function de�ning a partition of

unity, and up to conjugation by some unitary (Fourier integral operators, F.I.O) operators.
We observe that

• |detL|−1/2 LL is unitary on L2
(
Rd
)

• From model in Theorem 3.12, we have shown that in some anisotropic Sobolev space,
LL has discrete Ruelle spectrum in bands indexed by k ≥ 0 and that:

C−1
0 ‖L‖

−k
max ≤

‖LLu‖HC
‖u‖HC

≤ C0 ‖L‖−kmin (3.100)

and the corresponding group of eigenspaces are homogeneous polynomials on Rd

of degree k. We observe that the adjoint operator is L∗L = |detL| .LL−1 . For the
adjoint L∗L we have similar bounds. We have LtL−1 = 1

|detL| · L
∗
tL and deduce that

LtL−1 has also a discrete Ruelle spectrum in bands indexed by k ≥ 0 and similar
bounds but with the additional factor |detL|−1. Therefore we prefer to write (3.99)
as

etA = e
∫ t
0 V ·

|detL|−1/2 · LL︸ ︷︷ ︸
unitary

⊗ e−iEtIdR ⊗

|detL|1/2 · LtL−1︸ ︷︷ ︸
discrete bands


and from (3.100) the discrete spectrum of |detL|1/2 ·LtL−1 is in bands with the bounds

C−1
0 |detL|−1/2 · ‖L‖−kmax ≤

‖ |detL|1/2 · LtL−1u‖HC
‖u‖HC

≤ C0 |detL|−1/2 · ‖L‖−kmin
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From this microlocal description we obtain that for given k, the transfer operator etA has
�local norm max/min� bounded by

eΓ±k (x,t) � e
∫ t
0 V · |detL|−1/2 · ‖L‖−kmax/min

From (3.98) and (3.45) this gives

Γ±k (x, t) =

∫ t

0

V − 1

2
log
∣∣∣detφt|Eu(x)

∣∣∣−1/2

− k log
∥∥∥Dφt|Eu(x)

∥∥∥
max/min

+O (1)

=

∫ t

0

D − k log
∥∥∥Dφt|Eu(x)

∥∥∥
max/min

+O (1) (3.101)

From the previous local description, we can construct explicitly some approximate local
spectral projectors Πk for every value of k, and patching these locals expressions together we
get global spectral operators for each band (under pitching conditions). For the generator
A of etA we deduce that the spectrum is contained in bandsBk limited by γ−k ≤ Re (z) ≤ γ+

k

(image of the projector Πk) with

γ+
k = lim sup

t→∞

(
sup
x

1

t
Γ+
k (x, t)

)
, γ+

k = lim inf
t→∞

(
inf
x

1

t
Γ−k (x, t)

)
Then (3.101) gives expressions (3.88) of the Theorem.

The proof of the Weyl law (3.91) is similar to the proof of J.Sjöstrand about the damped
wave equation [Sjö00] but needs more arguments. The accumulation of resonances on
the value 〈D〉 given by the spatial average of the damping function, Eq.(3.92), uses the
ergodicity property of the Anosov �ow and is also similar to the spectral results obtained
in [Sjö00] for the damped wave equation.
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4 Trace formula and zeta functions

We have already presented the Atiyah Bott trace formula in Section 3.2.2. This �simple
formula� is at the basis for exact relations between the Ruelle spectrum and periodic orbits
of the dynamics. We have saw such a relation in (3.35) for Anosov maps.

In this Section we want to present more precisely what this relation gives when there
is a band structure in the Ruelle spectrum. This is the case for prequantum Anosov maps
or contact Anosov �ows. A consequence of this will be some re�ned counting formula for
periodic orbits.

4.1 Gutzwiller trace formula for Anosov prequantum map

In this Section we consider the prequantum transfer operators F̂N de�ned in (3.42). We
assume the condition r+

1 < r−0 . (This condition holds if we consider the potential of
reference V = V0) As in (3.52), let Π~ : Hr

N → Hr
N be the spectral projector for the

external band and let H~ be its image called quantum space. Let F̂~ : H~ → H~ be the
restriction of F̂N to H~.

Theorem 4.1. [FT15]�Gutzwiller trace formula for large time�. Let ε > 0. For
any ~ = 1/ (2πN) small enough, in the limit n→∞, we have∣∣∣∣∣∣Tr

(
F̂n~
)
−

∑
x=fn(x)

eDn(x)eiSn,x/~√
|Det (1−Dfnx )|

∣∣∣∣∣∣ < CNd(r+
1 + ε)n (4.1)

where ei2πSn,x is the action of a periodic point de�ned in (2.13) and Dn is the Birkho�
sum (3.46) of the e�ective damping function D (x) = V (x)− V0 (x).

4.1.1 The question of existence of a �natural quantization�

The following problem is a recurrent question in mathematics and physics in the �eld of
quantum chaos, since the discovery of the Gutzwiller trace formula. For simplicity of the
discussion we consider V = V0 i.e. no e�ective damping, as in Figure 3.7.
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Problem 4.2. Does there exists a sequence ~j > 0, ~j → 0 with j → ∞, such that for
every ~ = ~j,

1. there exists a space H~ of �nite dimension, an operator F̂~ : H~ → H~ which is
quasi unitary in the sense that there exists ε~ ≥ 0 with ε~j → 0, with j →∞ and

∀u ∈ H~, (1− ε~) ‖u‖ ≤
∥∥∥F̂~u

∥∥∥ ≤ (1 + ε~) ‖u‖ (4.2)

2. The operator F̂~ satis�es the asymptotic Gutzwiller Trace formula for large
time; i.e. there exists 0 < θ < 1 independent on ~ and some C~ > 0 which may
depend on ~, such that for ~ small enough (such that θ < 1− ε~):

∀n ∈ N,

∣∣∣∣∣∣Tr
(
F̂n~
)
−

∑
x=fn(x)

eiSx,n/~√
|det (1−Dfnx )|

∣∣∣∣∣∣ ≤ C~θ
n (4.3)

Let us notice �rst that Theorem 4.1 (for the case V = V0) provides a solution to Problem
4.2: this is the quantum operator F̂h : Hh → Hh de�ned in (3.53) obtained with the choice
of potential Ṽ = Ṽ0, giving V = V0. Indeed (4.2) holds true and (4.3) holds true from (4.1)
and because θ := r+

1 + ε < 1.
Some importance of the Gutzwiller trace formula (4.3) comes from the following prop-

erty which shows uniqueness of the solution to the problem:

Proposition 4.3. If F̂~ : H~ → H~ is a solution of Problem 4.2 then the spectrum of F̂~
is uniquely de�ned (with multiplicities). In particular dim (H~) is uniquely de�ned.

Proof. This is consequence of the following lemma.

Lemma 4.4. If A,B are matrices and for any n ∈ N, |Tr (An)− Tr (Bn)| < Cθn with
some C > 0, θ ≥ 0 then A and B have the same spectrum with same multiplicities on the
spectral domain |z| > θ.

Proof of Lemma 4.4. From the formula20:

det (1− µA) = exp

(
−
∑
n≥1

µn

n
Tr (An)

)
20This formula is easily proved by using eigenvalues λj of A and the Taylor series of log (1− x) =
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The sum on the right is convergent if 1/ |µ| > ‖A‖. Notice that we have (with multiplici-
ties): µ is a zero of dA (µ) = det (1− µA) if and only if z = 1

µ
is a (generalized) eigenvalue

of A. Using the formula we get that if 1/ |µ| > θ then∣∣∣∣det (1− µA)

det (1− µB)

∣∣∣∣ ≤ exp

(∑
n≥1

|µ|n

n
|Tr (An)− Tr (Bn)|

)

< exp

(
C
∑
n≥1

(|µ| θ)n

n

)
= (1− θ |µ|)−C =: B

Similarly
∣∣∣ det(1−µA)

det(1−µB)

∣∣∣ > 1
B , hence dA (µ) and dB (µ) have the same zeroes on 1/ |µ| > θ.

Equivalently A and B have the same spectrum on |z| > θ.

If Ĝ~ is another solution of the problem 4.2 then (4.3) implies that
∣∣∣Tr(F̂n~ )− Tr

(
Ĝn

~

)∣∣∣ ≤
2Cθn and Lemma 4.4 tells us that Ĝ~ and F̂~ have the same spectrum on |z| > θ. But
by hypothesis (4.2) their spectrum is in |z| > 1 − ε~ > θ. Therefore all their spectrum
coincides. This �nishes the proof of Proposition 4.3.

Remark 4.5. Previous results in the literature concerning the �semiclassical Gutzwiller
formula� for �quantum maps� do not provide an answer to the problem 4.2 above. We
explain why. For any reasonable quantization of the Anosov map f : M → M , e.g. the
Weyl quantization or geometric quantization, one obtains a family of unitary operators
F̂~ : H~ → H~ acting in some �nite dimensional (family of) Hilbert spaces. So this answer
to (4.2). Using semiclassical analysis it is possible to show a Gutzwiller formula like (4.3)
but with an error term on the right hand side of the formO (~θn) with θ = ehtop/2 > 1 where
htop > 0 is the topological entropy which represents the exponential growing number of
periodic orbits ([Fau07b] and references therein). Using more re�ned semiclassical analysis
at higher orders, the error can be made

O
(
~Mθn

)
(4.4)

with any M > 0 [Fau07b], but nevertheless one has a total error which gets large after

the so-called Ehrenfest time: n � M log(1/~)
λ0

. So all these results obtained from any
quantization scheme do not provide an answer to the problem 4.2. We may regard the
operator in (3.53) as the only �quantization procedure� for which (4.3) holds true. For that
reason we may call it a natural quantization of the Anosov map f .

−
∑
n≥1

xn

n which converges for |x| < 1:

det (1− µA) =
∏
j

(1− µλj) = exp

∑
j

log (1− µλj)


= exp

−∑
j

∑
n≥1

(µλj)
n

n

 = exp

−∑
n≥1

µn

n
Tr (An)
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x

y
y = φ−t(x)

Figure 4.1: Graph of the �ow.

4.2 Gutzwiller trace formula for contact Anosov �ows

These results are in a work in preparation [FT16]. These results are transposition of the
results of Section 4.1 in the case of contact Anosov �ow.

We write the transfer operator as(
F̂tv
)

(x) =
(
etAv

)
(x) = e(

∫ t V )(x). (v (φ−t (x)))

=

∫
M

Kt (x, y) v (y) dy

with the distributional Schwartz kernel given by Kt (x, y) = e(
∫ t V )(x)δ (y − φ−t (x)) (this

is the �graph of the �ow�). For t > 0, the ��at trace� is:

Tr[
(
F̂t

)
:=

∫
M

Kt (x, x) dx =

∫
M

e
∫ t V .δ (x− φ−t (x)) dx

See �gure 4.1.

As in Proposition 3.26 we obtain21 the �Atiyah-Bott trace formula� as a sum over
periodic orbits of the �ow φt:

Tr[
(
F̂t

)
=
∑
γ:o.p.

|γ|
∑
n≥1

e
∫ t V .δ (t− n |γ|)∣∣det
(
1−D(u,s)φ−t (γ)

)∣∣ (4.5)

with |γ| > 0 : period of γ and n: number of repetitions. This is a distribution in D′ (Rt).

Question: relation between the periodic orbits γ and the Ruelle spectrum of A =
−X + V , generator of F̂t = etA?

21For this we use that if f : Rn → Rn with �xed point f (0) = 0, with the change of variable y = f (x),
we write

∫
δ (f (x)) dx = 1

|detDf(0)|
∫
δ (y) dy = 1

|detDf(0)| .
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4.2.1 Zeta function

• Observation: in linear algebra, the eigenvalues of a matrix A are zeroes of the holo-
morphic function22

d (z) := det (z −A) = d (z0) . exp

(
lim
ε→0

[
−
∫ ∞
ε

1

t
e−ztTr

(
etA
)
dt

]z
z0

)
, z0 /∈ Spec (A).

For Re (z)� 1 we de�ne the �spectral determinant� or zeta function:

d (z) : = exp

(
−
∫ ∞
|γ|min

1

t
e−ztTr[

(
etA
)
dt

)

=
(4.5)

exp

(
−
∑
γ

∑
n≥1

e
∫ t V .e−zn|γ|

n
∣∣det

(
1−D(u,s)φn|γ| (γ)

)∣∣
)

Theorem 4.6. [GLP13]For an Anosov vector �eld X, d (z) has an analytic extension on
C. Its zeroes are Ruelle resonances with multiplicities.

Remark 4.7. in 2008, Baladi-Tsujii [BT08] have a similar result for Anosov di�eomorphisms.

4.2.2 Application: counting periodic orbits

The objective is to express in term of Ruelle spectrum the counting function:

π (T ) := ] {γ : periodic− orbit, |γ| ≤ T} =
∑

γ,|γ|≤T

1

Observe that
∣∣det

(
1−D(u,s)φt (γ)

)∣∣−1 '
t∞

det
(
Dφt/Eu

)−1
. The choice of potential V =

divX/Eu gives e
∫ t V = det

(
Dφt/Eu

)
and e

∫ t V ∣∣det
(
1−D(u,s)φt (γ)

)∣∣−1 ' 1.

Theorem 4.8. [GLP13](with pinching hypothesis) there exists δ > 0 s.t.

π (T ) = Ei (htopT ) +O
(
e(htop−δ)T

)
∼

T→∞

ehtopT

htopT

with Ei (x) :=
∫ x
x0

ey

y
dy and htop dominant eigenvalue of A = −X + divX/Eu(x) called

topological entropy.

22Write (z −A)
−1

=
∫∞
0
e−(z−A)tdt, and d (z) = det (z −A) = exp (Tr (log (z −A))) hence d

dz log d (z) =

Tr (z −A)
−1

=
∫∞
0
e−ztTr

(
etA
)
dt.
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4.2.3 Semiclassical zeta function

Observe that we have
∣∣det

(
1−D(u,s)φt (γ)

)∣∣−1 '
t∞

det
(
Dφt/Eu

)−1/2 ∣∣det
(
1−D(u,s)φt (γ)

)∣∣−1/2

and det
(
Dφt/Eu

)−1/2
= e−

1
2

∫ t divX/Eue−
1
2

∫ t V0 so in (4.5) we have

e
∫ t V ∣∣det

(
1−D(u,s)φt (γ)

)∣∣−1 '
t∞
e
∫ tD ∣∣det

(
1−D(u,s)φt (γ)

)∣∣−1/2
.

We de�ne the �Gutzwiller-Voros zeta function� or �semi-classical zeta function�
by

dG−V (z) := exp

(
−
∑
γ

∑
n≥1

e−zn|γ|e
∫ tD

n
∣∣det

(
1−D(u,s)φn|γ| (γ)

)∣∣1/2
)

(4.6)

Theorem 4.9. [FT16]The semiclassical zeta function dG−V (z) has an meromorphic ex-
tension on C. On Re (z) > γ+

1 , dG−V (z) has �nite number of poles and its zeroes coincide
(up to �nite number) with the Ruelle eigenvalues of A.

See �gure 3.15. The motivation for studying dG−V (z) comes from the Gutzwiller
semiclassical trace formula in quantum chaos. Also in the case of surface with constant

curvature, and V = V0 = 1
2
, we have D(u,s)φn|γ| (γ) =

(
e|γ|n 0

0 e−|γ|n

)
. This gives

dG−V (z) =
(4.6)

exp

(
−
∑
γ

∑
n≥1

∑
m≥0

1

n
e−n|γ|(z+

1
2

+m)

)

=
∏
γ

∏
m≥0

(
1− e−(z+ 1

2
+m)|γ|

)
=: ζSelberg

(
z +

1

2

)

Proof. Put x = e−|γ|n and use that

∣∣∣∣det

(
1−

(
1− x−1 0

0 1− x

))∣∣∣∣−1/2

= x1/2 (1− x)−1 =

x1/2
∑

m≥0 x
m.

Therefore dG−V (z) �generalizes� the Selberg zeta function ζSelberg for case of vari-
able curvature (or contact Anosov �ows). Compare �gure 4.2 with �gure 3.15.
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1
Re(z)

0−1

zeroes of
ζSelberg(z)

Im(z)

Figure 4.2: Zeroes of ζSelberg.

A Some de�nitions and theorems of semiclassical anal-

ysis

A.1 Class of symbols

Notations: For x ∈ Rn, 〈x〉 :=
√

1 + |x|2 and we use the standard multi-indices

notation ∂αx f := ∂αif

∂x
αi
i

...∂
αnf
∂xαnn

.

A.1.1 Symbols with constant order

The folloing classes of symbols have been introduced by Hörmander [Hör83]. Let M be a
smooth compact manifold.

De�nition A.1. Let µ ∈ R called the order. Let 0 ≤ δ < 1
2
< ρ ≤ 1. The class

of symbols Sµρ,δ contains smooth functions p ∈ C∞ (T ∗M) such that on any charts of
U ⊂ M with coordinates x = (x1, . . . xn) and associated dual coordinates ξ = (ξ1, . . . ξn)
on T ∗xU , any multi-index α, β ∈ Nn, there is a constant Cα,β such that∣∣∂αξ ∂βxp (x, ξ)

∣∣ ≤ Cα,β 〈ξ〉µ−ρ|α|+δ|β| (A.1)

The case ρ = 1,δ = 0 is very common. We denote Sµ := Sµ1,0.

For example on a chart, p (x, ξ) = 〈ξ〉µ is a symbol p ∈ Sµ.
If µ ≤ µ′ then Sµ ⊂ Sµ

′
. We have S−∞ :=

⋂
µ∈R S

µ = S (T ∗M).
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A.1.2 Symbols with variable order in T ∗M

We refer to [FRS08, Section A.2.2] for a precise description of theorems related to symbols
with variable orders. This class of symbols is useful for Anosov di�eomorphisms and Anosov
�ows on a manifold. Let M be a smooth compact manifold.

De�nition A.2. Let m (x, ξ) ∈ S0
1,0 be a real-valued called variable order and let 0 ≤

δ < 1
2
< ρ ≤ 1. The class of symbols S

m(x,ξ)
ρ,δ contains smooth functions p ∈ C∞ (T ∗M)

such that on any charts of U ⊂ M with coordinates x = (x1, . . . xn) and associated dual
coordinates ξ = (ξ1, . . . ξn) on T ∗xU , any multi-index α, β ∈ Nn, there is a constant Cα,β
such that

|∂αξ ∂βxp (x, ξ) | ≤ Cα,β〈ξ〉m(x,ξ)−ρ|α|+δ|β| (A.2)

Example A.3. For example A (x, ξ) = 〈ξ〉m(x,ξ) in (3.31) belongs to S
m(x,ξ)
ρ,δ with any

0 < δ < 1
2
< ρ < 1.

A.1.3 Symbols with variable order in R2d

Here we introduce a class of symbol speci�cally for application to Section 3.1 on R2d. We
denote z = (x, ξ) ∈ R2d.

De�nition A.4. Let µ ∈ R and 0 < ρ ≤ 1. A symbol p (z) ∈ Sµρ is a function p ∈
C∞

(
R2d
)
such that ∀α ∈ N2d,∃Cα > 0,

|∂αz p (z)| ≤ Cα 〈z〉µ−ρ|α| (A.3)

Example: m (z) after eq.(3.14) belongs to S0 := S0
1 .

De�nition A.5. Let m (z) ∈ S0. The class of symbols S
m(z)
ρ with variable order

m (z) contains smooth functions p ∈ C∞
(
R2d
)
such that ∀α ∈ N2d,∃Cα > 0,

|∂αz p (z) | ≤ Cα〈z〉m(z)−ρ|α| (A.4)

Example: AC (z) in eq.(3.14) belongs to S
m(z)
ρ with any 0 < ρ < 1.
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Proof. Let us observe: we have ∂xA = (∂xm) log 〈ξ〉 .A but (∂xm) ∈ S0 and log 〈ξ〉 ∈ Sε
for every ε > 0 so ∂xA ∈ Sε. We have

∂ξA =

(
(∂ξm) log 〈ξ〉+m.

∂ξ 〈ξ〉
〈ξ〉

)
.A

but (∂ξm) ∈ S−1, log 〈ξ〉 ∈ Sε for any ε > 0, m ∈ S0, ∂ξ 〈ξ〉 ∈ S0, 〈ξ〉−1 ∈ S−1 so
∂ξA ∈ Sm−ρ with ρ = 1− ε.

A.2 Pseudo-di�erential operators (PDO)

A.2.1 Quantization

�Quantization� is a map Op which maps a symbol p to an operator Op (p) with speci�c
properties. For example, its inverse maps the algebra of operators (for the composition) to
an algebra on the symbols which coincide with the ordinary product of functions at �rst
order.

De�nition A.6. If p ∈ Smρ,δ (T ∗M) is a symbol with orderm, its standard quantization
is the operator Op (p) :D′(M)→ D′(M), C∞(M)→ C∞(M) whose distribution kernel is
smooth outside the diagonal and such that on a local coordinate chart U ⊂ Rn,it is given
up to a smoothing operator by

(Op (p)u) (x) :=
1

(2π)n

∫∫
ei(x−y)·ξp(x, ξ)u(y)dydξ (A.5)

We say that Op (p) is a pseudo-di�erential operator or PDO with ordinary symbol
p.

• For example if X is a vector �eld on M , the operator p̂ = Op (p) = −iX is a PDO
with ordinary symbol

p (x, ξ) = X (ξ) (A.6)

• For example onM = Rd, if p (x, ξ) =
∑

α∈Nd pα (x) ξα (with a �nite number of terms)
then Op (p) is the di�erential operator:

Op (p)u =
∑
α∈Nd

pα (x) (−i∂x)α u
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De�nition A.7. For Weyl quantization, (A.5) is replaced by [Tay96b, (14.5) p.60]:

(OpW (p)u) (x) :=
1

(2π)n

∫∫
ei(x−y)·ξp

(
x+ y

2
, ξ

)
u (y) dydξ (A.7)

We say that OpW (p) is a pseudo-di�erential operator or PDO with Weyl symbol p.

Remark A.8. Weyl quantization is often prefered other standard quantization because it
has speci�c interesting properties. First a real symbol p ∈ Sm (M),m ∈ R, is quantized
in a formally self-adjoint operator P̂ = Op (p). Secondly, a change of coordinate systems
preserving the volume form changes the symbol at a subleading order Sµ−2 only. In other
words, on a manifold with a �xed smooth density dx, the Weyl symbol p of a given
pseudodi�erential operator P̂ is well de�ned modulo terms in Sµ−2.

For example if X is a vector �eld on M , the operator p̂ = −iX is a PDO with Weyl
symbol

pW (x, ξ) = X (ξ) +
i

2
div (X) (A.8)

Indeed from [Tay96b, (14.7) p.60], in a given chart where X =
∑
Xj (x) ∂

∂xj
≡ X (x) ∂x,

pW (x, ξ) = exp

(
i

2
∂x∂ξ

)
(X (x) .ξ) = X (x) .ξ +

i

2
∂xX = X (ξ) +

i

2
div (X)

and div (X) depends only on the choice of the volume form, see [Tay96a, p.125]. Notice
that this symbol does not depend on the choice of coordinates systems provided the volume
form is expressed by dx = dx1 . . . ˙dxn. The �rst term p0 (x, ξ) = X (ξ) in (A.8) belongs to
S1 is called the principal symbol of p̂. The second term i

2
div (X) in (A.8) belongs to S0

and is called the subprincipal symbol of p̂.

A.2.2 Composition

Theorem A.9. [Tay96b, Prop.(3.3) p.11]�Composition of PDO�. If A ∈ Sm1
ρ,δ and

B ∈ Sm2
ρ,δ then

Op (A) Op (B) = Op (AB) +O
(

Op(S
m1+m2−(ρ−δ)
ρ,δ )

)
i.e. the symbol of Op (A) Op (B) is the product AB and belongs to Sm1+m2

ρ,δ modulo terms

in S
m1+m2−(ρ−δ)
ρ,δ .

We also have:
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Theorem A.10. [Tay96b, Eq.(3.24)(3.25) p.13]The symbol of the commutator

[Op (A) ,Op (B)] is the Poisson bracket −i {A,B} modulo S
m1+m2−2(ρ−δ)
ρ,δ . The sym-

bol −i {A,B} belongs to S
m1+m2−(ρ−δ)
ρ,δ . We also recall [Tay96a, (10.8) p.43] that

{A,B} = −XB (A) where XB is the Hamiltonian vector �eld generated by B.

A.2.3 Bounded and compact PDO

For PDO with order zero we have:

Theorem A.11. �L2 continuity theorem�. Let p ∈ S0
ρ . Then Op (p) is a bounded

operator and for any ε > 0 there is a decomposition

Op (p) = p̂ε + K̂ε

with K̂ε ∈ Op (S−∞) smoothing operator, ‖p̂ε‖ ≤ L+ ε and

L = lim sup
(x,ξ)∈T ∗M

|p (x, ξ)| .

For PDO with negative order we have:

Theorem A.12. Let p ∈ Sµρ with µ < 0 then Op (p) is a compact operator. If µ < −d
so that

∫
T ∗M
|p (x, ξ)| dxdξ <∞, then Op (p) is a trace class operator and

Tr (Op (p)) =
1

(2π)d

∫
p (x, ξ) dxdξ

A.3 Wavefront

The wavefront set of a distribution has been introduced by Hörmander. The wavefront
set corresponds to the directions in T ∗X where the distribution is not C∞ (i.e. the local
Fourier transform is not rapidly decreasing). The wavefront set of a PDO is the directions
in T ∗X where the symbol is not rapidly decreasing:
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De�nition A.13. ([GS94, p.77][Tay96b, p.27]) If (x0, ξ0) ∈ T ∗M\0, we say that A ∈ Sm
is non characteristic (or elliptic) at (x0, ξ0) if

∣∣A (x, ξ)−1
∣∣ ≤ C |ξ|−m for (x, ξ) in a

small conic neighborhood of (x0, ξ0) and |ξ| large. If u ∈ D′ (M) is a distribution, we say
that u is C∞ at (x0, ξ0) ∈ T ∗X\0 if there exists A ∈ Sm non characteristic (or elliptic) at
(x0, ξ0) such that (Op (A)u) ∈ C∞ (M). The wavefront set of the distribution u is

WF (u) := {(x0, ξ0) ∈ T ∗M\0, u is not C∞ at (x0, ξ0)}

The wavefront set of the operator Op (A) is the smallest closed cone Γ ⊂ T ∗M\0
such that A/{Γ ∈ S−∞

(
{Γ
)
.
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A
action, 13, 64
anisotropic Sobolev space, 28, 33, 49, 53
Anosov, 8, 14
Anosov one form, 15
Atiyah-Bott trace formula, 34, 67

B
Band structure, 39
Birkho� sum, 56

C
canonical Euler vector �eld, 16
canonical map, 44
Casimir operator, 54
cat map, 9
central limit theorem, 11
class of symbols, 70, 71
Composition of PDO, 73
connection one form, 12
contact Anosov �ow, 15, 16
contact one form, 12
contact vector �eld, 16
correlation function, 10, 19, 21
cotangent space, 4
counting function, 68
curvature, 12

D
damping function, 38, 56
decay of correlation, 5

E
Egorov Theorem, 27
Ehrenfest time, 66
ergodic, 11
escape function, 26, 33, 51
evolution of functions, 4
exponentially mixing, 10, 19

F
�at trace, 34, 67

Fourier integral operators, 62
Fourier mode, 10

G
geodesic �ow, 15
geodesic �ow with negative curvature, 15
geometric prequantization, 11
geometric quantization, 42
Gutzwiller trace formula, 64
Gutzwiller-Voros zeta function, 69

H
Hyperbolic automorphism on the torus, 8

L
L2 continuity Theorem, 74
Lagrangian, 11
Liouville one form, 15
Lyapounov function, 26

N
natural quantization, 64
negative sectional curvature, 16
non characteristic (or elliptic), 75
non wandering set, 25

O
order, 70
order function, 26

P
Perron Frobenius operator, 28
Perron-Frobenius operator, 22, 30
potential, 37
potential function, 48
prequantum line bundle, 37
prequantum map, 12
pseudo-di�erential operator, 33
pseudo-di�erential operator or PDO, 72

Q
quantum correlation function, 59
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quantum operator, 41
quantum space, 41

R
Reeb vector �eld, 16
resonance, 50
Ruelle operator, 22
Ruelle spectrum, 23
Ruelle-Pollicott resonances, 24, 30, 49

S
scattering on the trapped set, 25
Selberg zeta function, 69
semiclassical functional calculus, 53
semi-classical zeta function, 69
spectral determinant, 68
stable subspace, 8
standard quantization, 72
statistical properties, 11
Structural stability, 9
symplectic manifold, 11
symplectization, 60

T
Theorem of composition of PDO, 27
theorem of L^{2} -continuity, 27
topological entropy, 68
topological pressure, 36, 56
transfer operator, 21, 48
trapped set, 5, 25, 51

U
unstable Jacobian, 36, 56
unstable subspace, 8

V
variable order, 33, 71

W
wave packet, 5
wavefront set of the distribution, 75
wavefront set of the operator, 75
Weyl formula, 39
Weyl law, 57
Weyl quantization, 73

Z
zeta function, 68
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