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1. Introduction

1. Introduction

Non-self-adjoint spectral problems appear naturally e.g.:

Resonances, (scattering poles) for self-adjoint operators, like the
Schrödinger operator,

The Kramers–Fokker–Planck operator

y · h∂x − V ′(x) · h∂y +
γ

2
(y − h∂y ) · (y + h∂y ).

A major difficulty is that the resolvent may be very large even when the
spectral parameter is far from the spectrum:

‖(z − P)−1‖ � 1

dist (z , σ(P))
,

σ(P) = spectrum of P. This implies that σ(P) is unstable under small
perturbations of the operator. (Here P : H → H is a closed operator and H a

complex Hilbert space.)
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1. Introduction

In the case of (pseudo)differential operators, this follows from the
Hörmander (1960) – Davies – Zworski quasimode construction: Let

P = P(x , hDx) =
∑
|α|≤m

aα(x)(hDx)
α, Dx =

1

i

∂

∂x
,

be a differential operator with smooth coefficients on some open set in Rn,
with leading symbol

p(x , ξ) =
∑
|α|≤m

aα(x)ξα,

using standard multiindex notation. If z = p(x , ξ), i−1{p, p}(x , ξ) > 0,
then ∃u = uh ∈ C∞

0 (neigh (x ,Rn)) such that ‖u‖L2 = 1,
‖(P − z)u‖ = O(h∞), h → 0.
But z may be far from the spectrum! See examples below.
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1. Introduction

Related problems:

Numerical instability,

No spectral resolution theorem in general,

Difficult to study the distribution of eigenvalues.

In this talk we shall discuss the latter problem in the case of
(pseudo)differential operators, in the semi-classical limit (h → 0) and in
the high frequency limit (h = 1).
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1. Introduction

In the selfadjoint case, p will be real-valued (up to terms that are O(h) and we

neglect for brevity) and under suitable additional assumptions, P will have
discrete spectrum near some given interval I and we have the Weyl
asymptotic distribution of the eigenvalues in the semiclassical limit:

#(σ(P) ∩ I ) =
1

(2πh)n
(vol (p−1(I )) + o(1)), h → 0.

In the high frequency limit, we take h = 1 and look for the distribution of
large eigenvalues:

#(σ(P)∩]−∞, λ]) =
1

(2π)n
(vol (p−1

m (]−∞, λ])) + o(λ
n
m )), λ → +∞,

where pm is the classical principal symbol obtained by restricting the
summation in the formula for p to α ∈ Nn with |α| = m.
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1. Introduction

In the non-self-adjoint case, we do not always have Weyl asymptotics and
actually almost never when we are able to compute the eigenvalues “by
hand”. (Weyl asymptotics in the semi-classical case would be to replace
intervals in the formula above by more general sets in C, say with smooth
boundary.)
Example 1. P = hDx + g(x) on S1. The range of p(x , ξ) = ξ + g(x) is
the band {z ∈ C; min=g ≤ =z ≤ max=g} while

σ(P) ⊂ {z ; =z = (2π)−1
∫ 2π
0 =g(x)dx}.

Example 2. P = (hDx)
2 + ix2 with p(x , ξ) = ξ2 + ix2.

σ(P) ⊂ e iπ/4[0,∞[ while the range of p is the closed first quadrant.
Example 3. P = f (x)Dx gives a counter-example similar to the one in Ex
1, now for the high frequency limit.
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1. Introduction

For operators with analytic coefficients in two dimensions we
(Hitrik-Melin-Sj-VuNgoc) have several results where the asymptotic
distribution is determined by the extension of the symbol to the complex
domain, leading to other counter-examples.
In her thesis in 2005, M. Hager showed for a class of non-self-adjoint
semi-classical operators on R that if we add a small random perturbation,
then with probability tending to 1 very fast, when h → 0, we do have Weyl
asymptotics.
This was extended to higher dimensions by Hager–Sj, Sj.
W. Bordeaux Montrieux (thesis 08) showed for elliptic operators on S1

that we have almost sure Weyl asymptotics for the large eigenvalues after
adding a random perturbation.
Recently extended by Bordeaux M – Sj to the case of elliptic operators on
compact manifolds.
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2. Some results in higher dimensions

2. Some results in higher dimensions

The original 1D result of Hager was generalized in many ways by Hager–Sj
(Math Ann 2008), we were able to count eigenvalues also near the
boundary of the range of p. One weakness of this generalization was
however that the random perturbations were no more multiplicative so the
perturbed operator could not be a differential one but rather a
pseudodifferential operator.
To get further it seemed necessary to have a more general approach to the
random perturbations and get rid of the restriction to Gaussian random
variables. I got the following result, still a little technical to state.
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2. Some results in higher dimensions

Let X be a compact n-dimensional manifold,

P =
∑
|α|≤m

aα(x ; h)(hD)α, (1)

Assume

aα(x ; h) = a0
α(x) +O(h) in C∞, (2)

aα(x ; h) = aα(x) is independent of h for |α| = m.

Let
pm(x , ξ) =

∑
|α|=m

aα(x)ξα (3)

Assume that P is elliptic,

|pm(x , ξ)| ≥ 1

C
|ξ|m, (4)

and that pm(T ∗X ) 6= C.
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2. Some results in higher dimensions

Let p =
∑

|α|≤m a0
α(x)ξα be the semi-classical principal symbol. We make

the symmetry assumption
P∗ = ΓPΓ, (5)

where P∗ denotes the complex adjoint with respect to some fixed smooth
positive density of integration and Γ is the antilinear operator of complex
conjugation; Γu = u. Notice that this assumption implies that

p(x ,−ξ) = p(x , ξ). (6)

Let Vz(t) := vol ({ρ ∈ T ∗X ; |p(ρ)− z |2 ≤ t}). For κ ∈]0, 1], z ∈ C, we
consider the non-flatness property that

Vz(t) = O(tκ), 0 ≤ t � 1. (7)

We see that (7) holds with κ = 1/(2m).
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2. Some results in higher dimensions

Random potential:

qω(x) =
∑

0<hµk≤L

αk(ω)εk(x), |α|CD ≤ R, (8)

where εk is the orthonormal basis of eigenfunctions of R̃, where R̃ is an
h-independent positive elliptic 2nd order operator on X with smooth
coefficients. Moreover, R̃εk = µ2

kεk , µk > 0.
We choose L = L(h), R = R(h) in the interval

h
κ−3n

s− n
2−ε � L ≤ h−M , M ≥ 3n − κ

s − n
2 − ε

, (9)

1

C
h−( n

2
+ε)M+κ− 3n

2 ≤ R ≤ Ch−
eM , M̃ ≥ 3n

2
− κ + (

n

2
+ ε)M,

for some ε ∈]0, s − n
2 [, s > n

2 . Put δ = τ0h
N1+n, 0 < τ0 ≤

√
h, where

N1 := M̃ + sM +
n

2
. (10)
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2. Some results in higher dimensions

The randomly perturbed operator is

Pδ = P + δhN1qω =: P + δQω. (11)

The random variables αj(ω) will have a joint probability distribution

P(dα) = C (h)eΦ(α;h)L(dα), (12)

where for some N4 > 0,

|∇αΦ| = O(h−N4), (13)

and L(dα) is the Lebesgue measure. (C (h) is the normalizing constant,
assuring that the probability of BCD (0,R) is equal to 1.) We also need the
parameter

ε0(h) = (hκ + hn ln
1

h
)(ln

1

τ0
+ (ln

1

h
)2) (14)

and assume that τ0 = τ0(h) is not too small, so that ε0(h) is small.
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2. Some results in higher dimensions

Theorem (Sj 2008)

Let Γ b C have smooth boundary, let κ ∈]0, 1] be the parameter in (8),
(9), (14) and assume that (7) holds uniformly for z in a neighborhood of
∂Γ. Then, for C−1 ≥ r > 0, ε̃ ≥ Cε0(h) we have with probability

≥ 1− Cε0(h)

rhn+max(n(M+1),N5+ eM)
e
− eε

Cε0(h) (15)

that:

|#(σ(Pδ) ∩ Γ)− 1

(2πh)n
vol (p−1(Γ))| ≤ (16)

C

hn

(
ε̃

r
+ C

(
r + ln(

1

r
)vol (p−1(∂Γ + D(0, r)))

))
.

Here #(σ(Pδ) ∩ Γ) denotes the number of eigenvalues of Pδ in Γ, counted
with their algebraic multiplicity.

Explain the choice of parameters!
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2. Some results in higher dimensions

Almost sure Weyl distribution of large eigenvalues.

h = 1. Let P0 be an elliptic differential operator on X of order m ≥ 2 with
smooth coefficients and with principal symbol pm(x , ξ) = p(x , ξ). We
assume that

p(T ∗X ) 6= C. (17)

We keep the symmetry assumption

(P0)∗ = ΓP0Γ. (18)

Our randomly perturbed operator is

P0
ω = P0 + q0

ω(x), (19)

where ω is the random parameter and

q0
ω(x) =

∞∑
0

α0
j (ω)εj(x). (20)
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2. Some results in higher dimensions

Here εj , µj , R̃ are as before and we assume that α0
j (ω) are independent

complex Gaussian random variables of variance σ2
j and mean value 0:

σ0
j ∼ N (0, σ2

j ), (21)

where
σj � (µj)

−ρ, ρ > n (22)

Then almost surely: q0
ω ∈ L∞, so P0

ω has purely discrete spectrum.
Consider the function F (ω) = arg p(ω) on S∗X . For a given
θ0 ∈ S1 ' R/(2πZ), N0 ∈ Ṅ := N \ {0}, we introduce the property:

P(θ0,N0) :

N0∑
1

|∇kF (ω)| 6= 0 on {ω ∈ S∗X ; F (ω) = θ0}. (23)
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θ0 ∈ S1 ' R/(2πZ), N0 ∈ Ṅ := N \ {0}, we introduce the property:

P(θ0,N0) :

N0∑
1

|∇kF (ω)| 6= 0 on {ω ∈ S∗X ; F (ω) = θ0}. (23)
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2. Some results in higher dimensions

Theorem (Bordeaux M, Sj 2008)

Assume that m ≥ 2. Let 0 ≤ θ1 ≤ θ2 ≤ 2π and assume that P(θ1,N0)
and P(θ2,N0) hold for some N0 ∈ Ṅ. Let g ∈ C∞([θ1, θ2]; ]0,∞[) and put

Γ(0, λg) = {re iθ; θ1 ≤ θ ≤ θ2, 0 ≤ r ≤ λg(θ)}.

Then for every δ ∈]0, 1
2 [ there exists C > 0 such that almost surely:

∃C (ω) < ∞ such that for all λ ∈ [1,∞[:

|#(σ(P0
ω) ∩ Γ(0, λg))− 1

(2π)n
vol p−1(Γ(0, λg))| (24)

≤ C (ω) + Cλ
n
m
−( 1

2
−δ) 1

N0+1 .
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Some ideas in the proofs.

3. Some ideas in the proofs

In the proofs of the semi-classical theorems, a common feature is to
identify the eigenvalues of the operator with the zeros of a holomorphic
function with exponential growth and to show that with probability close
to 1 this function really is exponentially large at finitely many points
distributed nicely along the boundary of Γ, then apply a proposition about
the the number of zeros of such functions.
In the one dimensional results by Hager (and Bordeaux-Montrieux for
matrix-valued operators) this is done via a Grushin (Feschbach) problem
that makes use of the Davies-Hörmander quasimodes for P and P∗ and we
get quite a concrete holomorphic function.
In the higher dimensional results we have a more general approach that we
shall outline:
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that makes use of the Davies-Hörmander quasimodes for P and P∗ and we
get quite a concrete holomorphic function.
In the higher dimensional results we have a more general approach that we
shall outline:
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Some ideas in the proofs.

First we construct a symbol p̃, equal to p outside a compact set such that
p̃ − z 6= 0 for z ∈ neigh (Γ), and put on the operator level:
P̃ = P + (p̃ − p). Then P̃ − z has a bounded (pseudodifferential) inverse
for every z in some simply connected neighborhood of Γ. The eigenvalues
of P coincide with the zeros of the holomorphic function,

z 7→ det(P̃ − z)−1(P − z) = det(1− (P̃ − z)−1(P̃ − P)).

If Pδ = P + δQω, put P̃δ := P̃ + δQω which has no spectrum in near Γ.
The eigenvalues of Pδ in that region are the zeros of

z 7→ det(P̃δ,z),

where

P̃δ,z = (P̃δ − z)−1(Pδ − z) = 1− (P̃δ − z)−1(P̃ − P).

The general strategy is the following:
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Johannes Sjöstrand ( IMB, Université de Bourgogne, UMR 5584 CNRS)Weyl asymptotics for non-self-adjoint operators with small random perturbationsResonances CIRM, 23/1, 2009 18 / 22



Some ideas in the proofs.

Step 1. Show that with probability close to 1, we have for all z in a
neighborhood of ∂Γ with pz = (p̃ − z)−1(p − z):

ln | det Pδ,z | ≤
1

(2πh)n
(

∫
ln |pz(ρ)|dρ + o(1)). (25)

Step 2. Show that for each z in a neighborhood of ∂Γ we have with
probability close to one that

ln | det Pδ,z | ≥
1

(2πh)n
(

∫
ln |pz(ρ)|dρ + o(1)). (26)

Step 3. Apply results ([Ha, HaSj]) about counting zeros of
holomorphic functions: Roughly, if u(z) = u(z ; h̃) is holomorphic with
respect to z in a neighborhood of Γ, |u(z)| ≤ exp(φ(z)/h̃) near ∂Γ
and we have a reverse estimate |u(zj)| ≥ exp((φ(zj)− ”small”)/h̃) for
a finite set of points, distributed “densely” along the boundary, then
the number of zeros of u in Γ is equal to
(2πh̃)−1(

∫∫
Γ ∆φ(z)d<zd=z + ”small”). This is applied with

h̃ = (2πh)n, φ(z) =
∫

ln |pz(ρ)|dρ.
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Some ideas in the proofs.

Step 1 can be carried out using microlocal analysis for the unperturbed
operator (cf Melin–Sj) and the fact that the perturbation is small in a
suitable sense.

Step 2 is the delicate one. In the other results, (Hager, Bordeaux M.,
Hager–Sj) with the Gaussianity assumption we are lead to the problem of
finding lower bounds on the determinant of a random matrix which is close
to a Gaussian one, but in the case of multiplicative perturbations in higher
dimension, this does not seem to work. Instead, we forget about
Gaussianity, and make a complex analysis argument in the α-variables1.
Then we come down to the task of constructing (for each fixed z near ∂Γ)
at least one perturbation of the requested form for which we have a nice
lower bound on the determinant. This is again a delicate problem.

Step 3: Here is the most recent and still preliminary version of the zero
counting result:

1cf works of Tanya Christiansen
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Some ideas in the proofs.

Theorem

Let Γ b C open, γ := ∂Γ, r : γ →]0, 1[ Lipschitz: |r(x)− r(y)| ≤ 1
2 |x − y |

and assume that for each z ∈ γ, D(z , r(z)) ∩ γ is the graph of a Lipschitz
function after a translation and rotation, uniformly with respect to x. Let
z1, z2, ..., zN run through γ with cyclic convention; “N + 1 = 1” such that
C−1r(zk) ≤ |zk+1 − zk | ≤ 1

2 r(zk). Let φ be continuous and subharmonic
in a neighborhood of the closure of γr := ∪x∈γD(x , r(x)). Then ∃
z̃j ∈ D(zj ,

1
C r(zj)) such that:

If u = ueh, 0 < h̃ ≤ 1 is holomorphic in Γ ∪ γr such that h̃ ln |u| ≤ φ on γr ,

h̃ ln |u(z̃j)| ≥ φ(z̃j)− εj , j = 1, ...,N,
then with µ := ∆φ (where φ denotes any extension from γr to Γ ∪ γr ):

|#(u−1(0) ∪ Γ)− 1

2πh̃
µ(Γ)| ≤ C̃

h̃
(µ(γr ) +

∑
εj)
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Some ideas in the proofs.

Large eigenvalues

Put (with fixed values of θ1, θ2): Γλ1,λ2 = Γ(0, λ2g) \ Γ(0, λ1g) and make
the dyadic decomposition:

Γ(0, λg) = Γ(0, g) ∪ Γ1,2 ∪ Γ2,22 ... ∪ Γ2k−1,2k ∪ Γ2k ,λ,

where k is the largest integer such that 2k ≤ λ. Counting the eigenvalues
of Pω in Γ2j ,2j+1 amounts to counting the eigenvalues of 2−jPω in Γ1,2

which is a semi-classical problem when j is large. Similarly for Γ2k ,λ. In the
1D case, it then suffices to apply Hager (or Bordeaux M. in the case of
systems), together with the Borel-Cantelli lemma, and in the higher
dimensional case we use the corresponding semi-classical result (Sj)
instead of Hager – Bordeaux M.

Johannes Sjöstrand ( IMB, Université de Bourgogne, UMR 5584 CNRS)Weyl asymptotics for non-self-adjoint operators with small random perturbationsResonances CIRM, 23/1, 2009 22 / 22


	1. Introduction
	2. Some results in higher dimensions
	Some ideas in the proofs.

