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Two complementary viewpoints:

from ‘inside’

local Green′s function ∼ field
current

eigenmodes & eigenfunctions

from ‘outside’

S matrix ∼ outgoing wave
incoming wave

reflection & scattering phase

Unified description: scattering theory + non-Hermitian RMT

Main object: resonances = poles of S-matrix

• Universalities in open chaotic systems

• Mean resonance density, decay law & width fluctuations

• Spectral correlations

• Quasi-resonances

Application: uniform vs non-uniform absorption



Open wave-chaotic systems
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• microwave cavities / billiards

(non-integrable shape)

• ultrasonics on elastodynamic billiards

• light propagation in random media

(disorder / impurities)

• mesoscopic quantum dots

• compound nuclei (interactions)

energy

de
la

y
tim

e

Fluctuations in scattering observables

reflect statistics of resonance states.

Aim is to study their statistical properties

via distribution / correlation functions.



Resonance scattering
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SH
V open system! resonances

poles of the scattering matrix

Scattering matrix = outgoing amplitude
incoming amplitude : (dimS = M : #channels)

Sres(E) = 1 − iV † 1

E −Heff
V , with coupling amplitudes V c

n

Separation of energy scales: potential vs resonance scattering

Effective non-Hermitian Hamiltonian: (dimHeff = N : #resonances)

Heff = H − i
2V V

† , with H† = H  complex eigenvalues En − i
2Γn

Mahaux, Weidenmüller (1969); Livšic (1973)

Flux conservation (at zero absorption) = S matrix is unitary (at real E):

Sres(E) =
1 − iK(E)

1 + iK(E)
, with K(E) = 1

2V
† 1
E−HV – reaction matrix



Closed chaotic cavities
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Statistical approach: replace H with a random operator
Wigner, Dyson (∼’60); Bohigas, Giannoni, Schmidt (1984)

H taken from appropriate ensemble of random matrices ! RMT
+ symmetry constraints on H (e.g. HT = H for time-reversal systems)

H† = H = HT H† = H H† = H = HR

(GOE, β=1) (GUE, β=2) (GSE, β=4)

Universality of spectral correlations:

In the RMT limit N → ∞, local fluctuations at the scale of mean level
spacing ∆ are universal and described by those in Gaussian ensembles:

〈(· · ·)〉 = const

∫

dH (· · ·) exp{−Nβ
4

TrH2} , dH =
∏

dHnm

Examples: mean density (global, non-universal) and 2-point correlator (local, universal)

〈ρ(E)〉 = 〈
∑

n δ(E − En)〉 = − 1

π
ImTr〈 1

E−H
〉 = (N/π)

√

1 − (E/2)2

1 − ∆2〈ρ(E1)ρ(E2)〉 = Y2β(ω) with ω = (E2 − E1)/∆  enough considering E = E1+E2

2
= 0



Open chaotic cavities
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Heff = H − i
2V V

† requires statistical assumptions on coupling amplitudes

Fixed (‘f-case’)

with ‘orthogonality’ condition
∑N

n=1 V
a
n V

b
n = 2γaδ

ab

Verbaarschot, Weidenmüller, Zirnbauer (1984)

Random (‘r-case’)

gaussian, uncorrelated

〈V a
n V

b
m〉 = 2(γa/N)δabδnm

Sokolov, Zelevinsky (1988)

Direct reaction absent: 〈Sab(E)〉 = δab 1−γag(E)
1+γag(E) , a = 1, . . . ,M

Global E-dependence of g(E) not essential for local fluctuations at E = 0
Dependence of scattering observables via transmission coefficients:

Ta = 1 − |〈Saa〉|2 = 4γeff
(1+γeff)2

with γeff = γag(0)

Universality (model-independence): Lehmann, Saher, Sokolov, Sommers (1995)

⊲ ‘quantum’ case of finite M (γeff = γa)
⊲ ‘semiclassical’ case of M,N → ∞ with fixed m = M/N ≪ 1 (γeff ≈ γa)

Qualitatively similar results for moderate m < 1



Isolated resonances

D V Savin: Statistics of quantum resonances and fluctuations in chaotic scattering 7/18

Porter-Thomas distribution appears at both γ ≪ 1 and γ ≫ 1 limits

Case γ ≪ 1: Heff = εnδnm − i
2(V V †)nm and treat V V † as a perturbation

→֒ En ≈ εn (GβE) and Γn ≈ (V V †)nn =
∑Mβ

i v2
i

Distribution of widths P(Γ) is a χ2
Mβ distribution

P(Γ) ∝
(

Γ
〈Γ〉

)Mβ/2−1
exp(−Mβ

2
Γ
〈Γ〉) with 〈Γ〉 = 2γM/N

→֒ noting 4γ ≈ T gives Weisskopf width ΓW = MT∆/2π

Case γ ≫ 1: ‘doorway’ representation in the eigenbasis of V V †

Dynamical reorganization of resonance states: Sokolov, Zelevinsky (1989)

⊲ M collective states Γcoll ∼ (1 − 1
γ2

)2γ ≫ ∆

⊲ N −M trapped states Γn ∼ 1
γ2

2γ M
N−M ≈ (2/γ)M/N ≪ ∆

‘Overlapping’ is weaker than ‘interference’!
Example: Absorption limit T → 0 and M → ∞ with fixed MT = 2πΓabs/∆



Mean resonance density
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Idea: electrostatic analogy Sommers, Crisanty, Somplinsky, Stein (1988)

→֒ average Green’s function as a 2D field Sokolov, Zelevinsky (1988)

g(z) =
1

N
〈Tr

1

z −Heff
〉 = ℜ g(x, y) + iℑ g(x, y)

• Maxwell eqs = Cauchy-Riemann for ρ(x, y) ≡ 0

• ‘charge’ density: ρ(E,Γ) = − 1
4π (∂2

x + ∂2
y)Φ(x, y)|x=E,y=−Γ/2

‘Electrostatic’ potential Φ(x, y) = 〈lnDet[(z −Heff)†(z −Heff) + δ2]〉
→֒ relation to a 2-point correlator problem

perturbative
‘strong’ non-Hermiticity

mean-field approach
〈ln(. . .)〉 = ln〈(. . .)〉

no ‘soft’ mode

non-perturbative
‘weak’ non-Hermiticity

SUSY calculation
Z = 〈det[...]

det[...]〉

saddle-point manifold appears



Strongly overlapping resonances
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Formation of the gap Γg in the spectrum Haake et al. (1992)

Nonzero density ρ(x, y) = ρr,f(y) (universal at m≪ 1):

Lehmann, Saher, Sokolov, Sommers (1995)

Redistribution of states at γ ∼ 1

γcr 1 = 1 − 1
2m

1/3, m≪ 1

γcr 2 = 1 + 3
2m

1/3, m≪ 1

density inside upper cloud

ρ(y) = 1
4π

m
y2

• Γg = Γcorr correlation length of fluctuations in scattering ( 6= ΓW !)

⊲ S-matrix correlator = | iΓ(ǫ)
ǫ+iΓ(ǫ)

T (ǫ)
T (γeff ) |2 = Γ2

corr

ǫ2+Γcorr
at ǫ≪ 1

⊲ time-delay correlator = Γ2
corr−ǫ2

(ǫ2+Γ2
corr)

2 Lehmann, Savin, Sokolov, Sommers (1995)



Width distribution
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Exact GUE result valid at any Ta, a = 1, . . . ,M Fyodorov, Sommers (1997)

Equivalent channels, g = 2/T − 1 ≥ 1:

P(y) =
(−1)M

Γ(M)
yM−1 d

M

dyM

(

e−gy
sinh y

y

)

, y = πΓ/∆

Limiting cases of isolated and many strongly overlapping resonances:

• T ≪ 1: then y ∼ T ≪ 1 so sinh y
y ≈ 1! χ2

2M (Porter-Thomas)

• M ≫ 1: P(Γ) = M/(2y2) only for 1
2MT < y < MT

2(1−T )

cloud ր with upper bound → ∞ at T = 1

• Moldauer-Simonius relation as a consequence of y−2 tail

〈Γ〉 = − ∆
2π

∑

a ln(1 − Ta)

GOE result is also known Sommers, Fyodorov, Titov (1999)



Decay law
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... is directly related to fluctuations of the widths!

Gap in spectrum shows up as classical (exponential) decay
When (and how) does quantum (power law) decay appear?

The ‘norm-leakage’ decay function: Savin, Sokolov (1997)

P (t) = 〈ψ(t)|ψ(t)〉 = 1
N 〈TreiH

†
eff
te−iHeff t〉

Pclosed(t) ≡ 1  time-dependence is due to the openness only

Consider the eigenbasis of Heff

Heff |n〉 = En|n〉 and 〈ñ|Heff = En〈ñ|
〈ñ|m〉 = δnm but 〈ñ| 6= |n〉† (bi-orthogonal)

→֒ Unm = 〈n|m〉 non-orthogonality matrix Bell, Steinberger (1959)

Express P (t) in terms of resonances:

P (t) = 1
N 〈∑U2

nne
−Γnt〉 + 1

N 〈∑′ U2
nme

i(En−Em)te−(Γn+Γm)t/2〉



Hierarchy of time scales
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Qualitative: diagonal approximation

Pd(t) = 1
N 〈∑ e−Γnt〉 =

∫ ∞
0 dΓe−ΓtP(Γ) (exact at t→ ∞)

= 1
T

∫ T/(1−T )
0

dξ
(1+ξ)2

exp[−M ln(1 + 1+ξ
M ΓW t)]

P(Γ)

formation of
the gap

Semiclassical regime of M ≫ 1
strongly overlapping resonances:

κ = MT ≫ 1

P (t)

exponential
decay

Sub-gap resonances slow down decay at tq =
√
Mtcl =

√

κ
T tcl = tH√

κT

Exact: SUSY calculation suggests



Spectral correlations
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Consider {εn} (GβE) and {γn} (Porter-Thomas). Then N complex
eigenvalues depend on (M − 1)(N − M

2 ) extra parameters (angles)

M = 1 case is special: Sokolov, Zelevinsky (1989)

P ({En}, {Γn}) = J(. . .)p({εn}, {γn}) Stöckmann, Šeba (1998)

∝
∏

m<n
(Em−En)2+ 1

4
(Γn−Γm)2

√

(Em+En)2+ 1

4
(Γn+Γm)2

∏

m
1√
Γm
e
−N

4
(
∑

E2
n+ 1

2

∑

ΓnΓm+ 1

γ

∑

Γn)

M > 1: Arbitrary correlators derived for GUE Fyodorov, Khoruzhenko (1999)

⊲ Determinantal structure: Rn(x+ z1
N , . . . , x+ zn

N ) = det[K(zi, z
∗
k)]

⊲ Example: mean density ρ(x, y) = |K(z, z∗)|

Universal regimes of ‘weak’ and ‘strong’ non-Hermiticity identified

⊲ M ≫ 1 and MT ≫ 1: Ginibre-like statistics

K(z1, z2) = ρ(z)e−(π/2)ρ(z)|z1−z2|2 with ρ(z) = M
4π(Im z)2



Quasi-resonances
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• Stroboscopic dynamics: map Ψ(n+ 1) = UΨ(n) with unitary U

Decay via sub-unitary contraction: Ψ(n+ 1) = AΨ(n), A = U
√

1 − ττ †

where τnm = δnm
√
Tm, 1 < n < N, 1 < m < M (M < N )

• Input-output signals at frequency ω related by

S(ω) =
√

1 − τ †τ − τ † 1
e−iω−AUτ , transmission coefficients Tm ≤ 1

Universal statistics of sub-unitary matrices Fyodorov, Sommers (2000/3)

• Physical realisation: ‘Bloch particle’ in
a constant force with periodic driving Glück, Kolovsky, Korsch (1999)

T = 1: Truncation of random unitary matrices Zyczkowski, Sommers (2000)

mean density p(r) = 2r
N−M

(1−x)M−1

(M−1)
dM

dxM
1−xN

1−x x = r2 = |z|2

⊲ N → ∞ and fixed M
N = m: gap and Ginibre-like correlations

⊲ N → ∞ and fixed M : universal resonance-width statistics



Finite absorption
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Modelling absorption: dissipation, exponential in time

. . .

T
∆

γ 

SN >>1 levels uniform absorption = imaginary shift E → E + i
2Γ

absorption width ր

Justified here byE-dependence via Green’s function (E−Heff)−1only:
E −H + i

2 (V V † +
∑

wallW
wWw †) → E − (H − i

2V V
†) + i

2Γ

S matrix with absorption: S ≡ S(E + i
2Γ) = 1−iK

1+iK

R matrix (‘impedance’): K = ‖V ‖2
(

1
E+ i

2
Γ−H

)

11
 local Green’s function

coupling strength ր

• Obvious effect on correlations (acquire additional e−Γt in time domain)

• Nontrivial distributions of K = u− iv and S =
√
reiθ derived at arbitrary

absorption and coupling (generally in GOE-GUE crossover)
Fyodorov, Savin, Sommers (2005)



Reflection distribution: exact GOE result
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Explicit expression for the integrated probability of x = 1+r
1−r :

W (x) = −x2−1
2π

d
dxF (x) =

∫ ∞
x dx′ P0(x

′)

= x+1
4π

[

f1(w)g2(w) + f2(w)g1(w) + h1(w)j2(w) + h2(w)j1(w)
]

w= x−1

2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

r

γ =1

γ =2γ =5

γ =7

P
(r

)

f1(w) =
∫ ∞

w
dt

√

t|t−w| e−γt/2

(1+t)3/2
[1 − e−γ + 1

t
]

g1(w) =
∫ ∞

w
dt 1√

t|t−w|
e−γt/2

(1+t)3/2

h1(w) =
∫ ∞

w
dt

√
|t−w| e−γt/2

√
t(1+t)

[γ+(1−e−γ)(γt−2)]

j1(w) =
∫ ∞

w
dt 1√

t|t−w|
e−γt/2

√
1+t

and f2(w) =
∫ w

0
dt (. . .) etc.

Perfect agreement with impedance and reflection experiments found



Non-uniform absorption
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Experiment: Barthelemy, Legrand, Mortessagne (2005)

• microwave cavity at room temperature in tunneling regimes

• homogenous and inhomogeneous contribution to Γabs ≫ Γescape

• complexness of modes q2 = 〈Imψ2〉
〈Reψ2〉 ∼ Γ2

inh

Model: Savin, Legrand, Mortessagne (2006)

• coupling V = {Aan, Bb
n, C

c
n} to antennas, ‘bulk’ and ‘contour’ channels

Mb ∼ (Lλ )2 ≫ (Lλ ) ∼Mc  Heff = H − i
2(AA† + CC†) − i

2Γhom

• limit of weak coupling to antenna

S = 1 − iA† 1
E+ i

2
Γhom−H′

eff

A, H′
eff = H − i

2CC
†

• pole representation complex (biorthogonal) modes φan = Aa|n〉
q2 ∝ 1

Mc
Γ2

inh = var(Γinh) (Mc ≫ 1)



Open questions
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• Within RMT:

⊲ distribution of transmission amplitudes Sab

⊲ 4-point (and higher order) correlation functions (cross-sections)

⊲ statistics of bi-orthogonal resonance states

⊲ other symmetry classes (internal symmetries of H)

• Beyond RMT:

⊲ Disordered systems in d-D

⊲ Effects of Anderson localisation and absortion

• Semiclassics: access to the above

⊲ resonance density? wave functions? etc...
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