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The Rotating Wave Approximation is
known (at least from numerical
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investigations) to be accurate as long as
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P (t) =
˛

˛

˛
〈n − 1; ↑| e−itHJC |n; ↓〉

˛

˛

˛

2

n photons Rabi frequency

ΩRabi(n) =
p

λ2n + ∆2

P (t) =

"

1 −

„

∆

ΩRabi(n)

«2
#

sin2 ΩRabi(n)t/2
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3. The one-atom maser

Repeated interaction scheme

H = Hcavity ⊗Hbeam, Hbeam =
O

n≥1

Hatom n

Hn = HJC acting on Hcavity ⊗Hatom n

Cavity state after n interactions

ρn = TrHbeam

"

e−iτHn · · · e−iτH1

 

ρ0 ⊗

n
O

k=1

ρatom k

!

eiτH1 · · · eiτHn

#
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3. The one-atom maser

Thermal beam: ρatom k = ρβ = Z−1e−βHatom

ρn = Lβ(ρn−1)

Reduced dynamics

Lβ(ρ) = TrHatom

h

e−iτHJC

“

ρ ⊗ ρβ
”

eiτHJC

i

Completely positive, trace preserving map on the trace ideal J 1(Hcavity)
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4. Rabi resonances

A resonance occurs when the interaction time τ is a multiple of the Rabi period

ΩRabi(n)τ ∈ 2πZ

Dimensionless parameters

η =

„

∆τ

2π

«2

, ξ =

„

λτ

2π

«2

R(η, ξ) = {n ∈ N∗|ξn + η is a perfect square}

Definition. The system is

• Non resonant: R(η, ξ) is empty.

• Simply resonant: R(η, ξ) = {n1}.

• Fully resonant: R(η, ξ) = {n1, n2, . . .} i.e. has ∞-many resonances.

• Degenerate: fully resonant and there exist n ∈ R(η, ξ)∪{0} and m ∈ R(η, ξ) such
that n + 1, m + 1 ∈ R(η, ξ).

CIRM–January 2009 – p. 7



4. Rabi resonances

Lemma. If η and ξ are

CIRM–January 2009 – p. 8



4. Rabi resonances

Lemma. If η and ξ are

• not both irrational or not both rational: non-resonant;

CIRM–January 2009 – p. 8



4. Rabi resonances

Lemma. If η and ξ are

• not both irrational or not both rational: non-resonant;
• both irrational: either simply resonant or non-resonant (the generic case);

CIRM–January 2009 – p. 8



4. Rabi resonances

Lemma. If η and ξ are

• not both irrational or not both rational: non-resonant;
• both irrational: either simply resonant or non-resonant (the generic case);

• both rational: η = a/b, ξ = c/d (irreducible) and m = LCM(b, d)

X = {x ∈ {0, . . . , ξm − 1} |x2m ≡ ηm (mod ξm)}

then non-resonant if X is empty or fully resonant

R(η, ξ) = {(k2 − η)/ξ | k = jmξ + x, j ∈ N∗, x ∈ X} ∩ N∗

CIRM–January 2009 – p. 8



4. Rabi resonances

Lemma. If η and ξ are

• not both irrational or not both rational: non-resonant;
• both irrational: either simply resonant or non-resonant (the generic case);

• both rational: η = a/b, ξ = c/d (irreducible) and m = LCM(b, d)

X = {x ∈ {0, . . . , ξm − 1} |x2m ≡ ηm (mod ξm)}

then non-resonant if X is empty or fully resonant

R(η, ξ) = {(k2 − η)/ξ | k = jmξ + x, j ∈ N∗, x ∈ X} ∩ N∗

Moreover, if degenerate then η and ξ are integers such that η > 0 is a quadratic residue
modulo ξ.

CIRM–January 2009 – p. 8



4. Rabi resonances

Lemma. If η and ξ are

• not both irrational or not both rational: non-resonant;
• both irrational: either simply resonant or non-resonant (the generic case);

• both rational: η = a/b, ξ = c/d (irreducible) and m = LCM(b, d)

X = {x ∈ {0, . . . , ξm − 1} |x2m ≡ ηm (mod ξm)}

then non-resonant if X is empty or fully resonant

R(η, ξ) = {(k2 − η)/ξ | k = jmξ + x, j ∈ N∗, x ∈ X} ∩ N∗

Moreover, if degenerate then η and ξ are integers such that η > 0 is a quadratic residue
modulo ξ.

Remark. This lemma is elementary but characterizing integers η, ξ for which the system is
degenerate is a very hard (open) problem in Diophantine analysis.
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Decomposition into Rabi sectors
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r
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where H(k) = ℓ2(Ik) and

r = 1 I1 ≡ N if R(η, ξ) is empty,

r = 2 I1 ≡ {0, . . . , n1 − 1}, I2 ≡ {n1, n1 + 1, . . .} if R(η, ξ) = {n1},

r = ∞ I1 ≡ {0, . . . , n1 − 1}, I2 ≡ {n1, . . . , n2 − 1}, . . . if R(η, ξ) = {n1, n2, . . .}.

Pk denotes the orthogonal projection onto H(k)

Partial Gibbs state in H(k):

ρ
(k)β∗

cavity =
e−β∗HcavityPk

Tr e−β∗HcavityPk

, β∗ = β
ω0

ω
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X
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µ ≪ ρ means s(µ) ≤ s(ρ)

ρ is ergodic for the CP map L iff, for all µ ≪ ρ, A ∈ B(Hcavity)

lim
N→∞

1

N

N
X

n=1

(Ln(µ)) (A) = ρ(A)

ρ is mixing for L iff, for all µ ≪ ρ, A ∈ B(Hcavity)

lim
n→∞

(Ln(µ)) (A) = ρ(A),

and exponentially mixing iff

|(Ln(µ)) (A) − ρ(A)| ≤ CA,µ e−αn,

for some constants CA,µ and α > 0.
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7. Ergodic properties of the one-atom maser

Main Theorem. 1. If the system is non-resonant then Lβ has no invariant state for β ≤ 0

and a unique ergodic state

ρβ∗

cavity =
e−β∗Hcavity

Tr e−β∗Hcavity
, β∗ = β

ω0

ω

for β > 0. In the latter case any initial state relaxes in the mean to this thermal
equilibrium state

lim
N→∞

1

N

N
X

n=1

“

Ln
β(µ)

”

(A) = ρβ∗

cavity(A)

for any A ∈ B(Hcavity).
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7. Ergodic properties of the one-atom maser

Main Theorem. 2. If the system is simply resonant then Lβ has the unique ergodic state

ρ
(1) β∗

cavity if β ≤ 0 and two ergodic states ρ
(1) β∗

cavity, ρ
(2) β∗

cavity if β > 0. In the latter case, for any

state µ, one has

lim
N→∞

1

N

N
X

n=1

“

Ln
β(µ)

”

(A) = µ(P1) ρ
(1) β∗

cavity(A) + µ(P2) ρ
(2) β∗

cavity(A),

for any A ∈ B(Hcavity).
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7. Ergodic properties of the one-atom maser

Main Theorem. 3. If the system is fully resonant then for any β ∈ R, Lβ has infinitely

many ergodic states ρ
(k) β∗

cavity , k = 1, 2, . . . Moreover, if the system is non-degenerate,

lim
N→∞

1

N

N
X

n=1

“

Ln
β(µ)

”

(A) =

∞
X

k=1

µ(Pk) ρ
(k) β∗

cavity (A),

holds for any state µ and all A ∈ B(Hcavity).
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7. Ergodic properties of the one-atom maser

Main Theorem. 4. If the system is fully resonant and degenerate there exists a finite set
D(η, ξ) ⊂ Z such that the conclusions of 3. still hold provided the non-resonance
condition

(NR) ei(τω+ξπ)d 6= 1

is satisfied for all d ∈ D(η, ξ).

5. In all the previous cases any invariant state is diagonal and can be represented as a
convex linear combination of ergodic states, i.e., the set of invariant states is a simplex
whose extremal points are ergodic states.
In the remaining case, i.e., if condition (NR) fails, there are non-diagonal invariant states.

6. Whenever the state ρ
(k) β∗

cavity is ergodic it is also exponentially mixing if the Rabi sector

H
(k)
cavity is finite dimensional.
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• Degenerate fully resonant systems exist. If η = 241 and ξ = 720 then

720 + 241 = 292, 2 · 720 + 241 = 412, 3 · 720 + 241 = 492

so that 1 and 2 are successive Rabi resonances. In this case D(241, 720) = {1}.
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• For given η, ξ it is easy to compute the set D(η, ξ). However it is extremely hard
(and an open problem) to characterize those integers η and ξ for which D(η, ξ) is
non-empty.

• Degenerate fully resonant systems exist. If η = 241 and ξ = 720 then

720 + 241 = 292, 2 · 720 + 241 = 412, 3 · 720 + 241 = 492

so that 1 and 2 are successive Rabi resonances. In this case D(241, 720) = {1}.

• Another example is η = 1 and ξ = 840 for which 1, 2, 52 and 53 are Rabi
resonances

840 + 1 = 292, 2 · 840 + 1 = 412, 52 · 840 + 1 = 2092, 53 · 840 + 1 = 2112

and D(1, 840) = {51}.
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7. Ergodic properties of the one-atom maser

Remarks.
• Numerical experiments support the conjecture that all ergodic states are mixing.

• Mixing is very slow in infinite dimensional Rabi sectors due to the presence of
∞-many metastable states (1 ∈ spess(Lβ)).

• For given η, ξ it is easy to compute the set D(η, ξ). However it is extremely hard
(and an open problem) to characterize those integers η and ξ for which D(η, ξ) is
non-empty.

• Degenerate fully resonant systems exist. If η = 241 and ξ = 720 then

720 + 241 = 292, 2 · 720 + 241 = 412, 3 · 720 + 241 = 492

so that 1 and 2 are successive Rabi resonances. In this case D(241, 720) = {1}.

• Another example is η = 1 and ξ = 840 for which 1, 2, 52 and 53 are Rabi
resonances

840 + 1 = 292, 2 · 840 + 1 = 412, 52 · 840 + 1 = 2092, 53 · 840 + 1 = 2112

and D(1, 840) = {51}.

• We do not know of any example where D(η, ξ) contains more than one element.
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Lβ(ρ) = e−iτHcavityρ eiτHcavity

so that
sp(Lβ) = sppp(Lβ) = {eiτωd | d ∈ Z}

is either finite (if ωτ ∈ 2πQ) or dense on the unit circle, but always infinitely degenerate.

Main tools:

• Use gauge symmetry! It follows from [HJC, a∗a + b∗b] = [Hatom, ρβ
atom] = 0 that

Lβ(e−iθa∗aXeiθa∗a) = e−iθa∗aLβ(X)eiθa∗a
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Main idea: control the peripheral spectrum of Lβ .
Main difficulty: perturbation theory does’nt work! At zero coupling (λ = 0) one has

Lβ(ρ) = e−iτHcavityρ eiτHcavity

so that
sp(Lβ) = sppp(Lβ) = {eiτωd | d ∈ Z}

is either finite (if ωτ ∈ 2πQ) or dense on the unit circle, but always infinitely degenerate.

Main tools:

• Use gauge symmetry! It follows from [HJC, a∗a + b∗b] = [Hatom, ρβ
atom] = 0 that

Lβ(e−iθa∗aXeiθa∗a) = e−iθa∗aLβ(X)eiθa∗a

• Use the block structure induced by Rabi sectors.
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Main difficulty: perturbation theory does’nt work! At zero coupling (λ = 0) one has

Lβ(ρ) = e−iτHcavityρ eiτHcavity

so that
sp(Lβ) = sppp(Lβ) = {eiτωd | d ∈ Z}

is either finite (if ωτ ∈ 2πQ) or dense on the unit circle, but always infinitely degenerate.

Main tools:

• Use gauge symmetry! It follows from [HJC, a∗a + b∗b] = [Hatom, ρβ
atom] = 0 that

Lβ(e−iθa∗aXeiθa∗a) = e−iθa∗aLβ(X)eiθa∗a

• Use the block structure induced by Rabi sectors.

• Use Schrader’s version of Perron-Frobenius theory for trace preserving CP maps
on trace ideals [Fields Inst. Commun. 30 (2001)].
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9. Metastable states of the one-atom maser

By gauge symmetry, the subspace of diagonal states is invariant. The action of Lβ on
this subspace is conjugated to that of

L = I −∇∗D(N)e−βω0N∇eβω0N

on ℓ1(N) where

(Nx)n = nxn, (∇x)n =

(

x0 for n = 0;

xn − xn−1 for n ≥ 1;
(∇∗x)n = xn − xn+1

and

D(N) =
1

1 + e−βω0

ξN

ξN + η
sin2(π

p

ξN + η)
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9. Metastable states of the one-atom maser

By gauge symmetry, the subspace of diagonal states is invariant. The action of Lβ on
this subspace is conjugated to that of

L = I −∇∗D(N)e−βω0N∇eβω0N

on ℓ1(N) where

(Nx)n = nxn, (∇x)n =

(

x0 for n = 0;

xn − xn−1 for n ≥ 1;
(∇∗x)n = xn − xn+1

and

D(N) =
1

1 + e−βω0

ξN

ξN + η
sin2(π

p

ξN + η)

Rabi resonances are integers n such that D(n) = 0. They decouple L.
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9. Metastable states of the one-atom maser

There is an increasing sequence mk such that D(mk) = O(k−2). They almost
decouple L: Rabi quasi-resonances.
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9. Metastable states of the one-atom maser

There is an increasing sequence mk such that D(mk) = O(k−2). They almost
decouple L: Rabi quasi-resonances.

Setting L0 = I −∇∗D0(N)e−βω0N∇eβω0N with

D0(n) =

(

0 if n ∈ {m1, m2, . . .}

D(n) otherwise,

we get L = L0 + trace class.
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9. Metastable states of the one-atom maser

There is an increasing sequence mk such that D(mk) = O(k−2). They almost
decouple L: Rabi quasi-resonances.

Setting L0 = I −∇∗D0(N)e−βω0N∇eβω0N with

D0(n) =

(

0 if n ∈ {m1, m2, . . .}

D(n) otherwise,

we get L = L0 + trace class.

L0 has infinitely degenerate eigenvalue 1: eigenvectors are metastable states of L
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9. Metastable states of the one-atom maser

The metastable cascade

10
0

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

CIRM–January 2009 – p. 15



9. Metastable states of the one-atom maser

Local equilibrium after 5000 interactions
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9. Metastable states of the one-atom maser

Local equilibrium after 50000 interactions
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9. Metastable states of the one-atom maser

Mean photon number
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10. Open questions
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10. Open questions

• Beyond the rotating wave approximation.
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• Mixing in infinite Rabi sectors.
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• For number theorists and algebraic geometers: The Diophantine problem.
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10. Open questions

• Beyond the rotating wave approximation.

• What is the mathematical status of RWA ?
• Mixing in infinite Rabi sectors.

• Leaky cavities: coupling the full EM field.

• For number theorists and algebraic geometers: The Diophantine problem.

• For probabilitsts: Random interaction times.
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10. Open questions

• Beyond the rotating wave approximation.

• What is the mathematical status of RWA ?
• Mixing in infinite Rabi sectors.

• Leaky cavities: coupling the full EM field.

• For number theorists and algebraic geometers: The Diophantine problem.

• For probabilitsts: Random interaction times.

• ...
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