Random repeated interaction quantum systems

Collaboration with A. Joye and M. Merkli

L. Bruneau

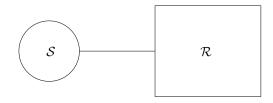
Univ. Cergy-Pontoise

January 2009

< ∃ →

Open Systems

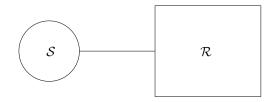
A "small" (or confined) system S interacts with an environment \mathcal{R} . Goal: understand the asymptotic $(t \to +\infty)$ behaviour of the system S (asymptotic state, thermodynamical properties).



< ∃ >

Open Systems

A "small" (or confined) system S interacts with an environment \mathcal{R} . Goal: understand the asymptotic $(t \to +\infty)$ behaviour of the system S (asymptotic state, thermodynamical properties).



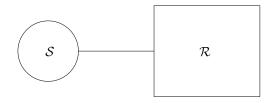
2 approaches: Hamiltonian / Markovian

- ∢ ≣ →

......

Open Systems

A "small" (or confined) system S interacts with an environment \mathcal{R} . Goal: understand the asymptotic $(t \to +\infty)$ behaviour of the system S (asymptotic state, thermodynamical properties).



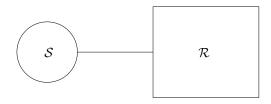
2 approaches: Hamiltonian / Markovian

• Hamiltonian: full description, spectral analysis, scattering theory.

- ∢ ⊒ ▶

Open Systems

A "small" (or confined) system S interacts with an environment \mathcal{R} . Goal: understand the asymptotic $(t \to +\infty)$ behaviour of the system S (asymptotic state, thermodynamical properties).



2 approaches: Hamiltonian / Markovian

- Hamiltonian: full description, spectral analysis, scattering theory.
- Markovian: effective description of S, obtained by weak-coupling type limits or if S undergoes stochastic forces (Langevin equation).

Repeated Interaction Quantum Systems (RIQS)

- A "small" system \mathcal{S} :
 - Quantum system governed by some hamiltonian H_S acting on H_S .

Repeated Interaction Quantum Systems (RIQS)

- A "small" system \mathcal{S} :
 - Quantum system governed by some hamiltonian H_S acting on \mathcal{H}_S .
- A chain C of quantum sub-systems \mathcal{E}_k (k = 1, 2, ...):
 - $\mathcal{C} = \mathcal{E}_1 + \mathcal{E}_2 + \cdots$
 - Each \mathcal{E}_k is governed by some hamiltonian $H_{\mathcal{E}_k}$ acting on $\mathcal{H}_{\mathcal{E}_k}$.

通 とう きょう うちょう しゅう

Repeated Interaction Quantum Systems (RIQS)

- A "small" system \mathcal{S} :
 - Quantum system governed by some hamiltonian $H_{\mathcal{S}}$ acting on $\mathcal{H}_{\mathcal{S}}$.
- A chain C of quantum sub-systems \mathcal{E}_k (k = 1, 2, ...):
 - $\mathcal{C} = \mathcal{E}_1 + \mathcal{E}_2 + \cdots$
 - Each \mathcal{E}_k is governed by some hamiltonian $H_{\mathcal{E}_k}$ acting on $\mathcal{H}_{\mathcal{E}_k}$.

Interactions:

• Interaction operators V_k acting on $\mathcal{H}_S \otimes \mathcal{H}_{\mathcal{E}_k}$.

通 とう きょう うちょう しゅう

Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times $\tau_k > 0$, for $t \in [\tau_1 + \cdots + \tau_{n-1}, \tau_1 + \cdots + \tau_n[$:

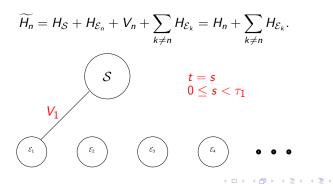
- S interacts with \mathcal{E}_n ,
- \mathcal{E}_k evolves freely for $k \neq n$,
- i.e. the full system is governed by

$$\widetilde{H_n} = H_{\mathcal{S}} + H_{\mathcal{E}_n} + V_n + \sum_{k \neq n} H_{\mathcal{E}_k} = H_n + \sum_{k \neq n} H_{\mathcal{E}_k}.$$

Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times $\tau_k > 0$, for $t \in [\tau_1 + \cdots + \tau_{n-1}, \tau_1 + \cdots + \tau_n[$:

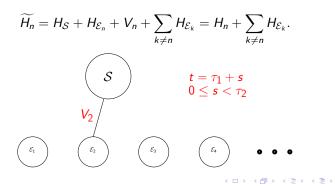
- S interacts with \mathcal{E}_n ,
- \mathcal{E}_k evolves freely for $k \neq n$,
- i.e. the full system is governed by



Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times $\tau_k > 0$, for $t \in [\tau_1 + \cdots + \tau_{n-1}, \tau_1 + \cdots + \tau_n[$:

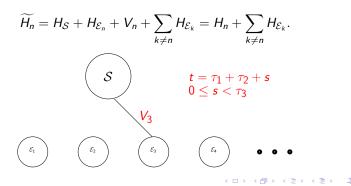
- S interacts with \mathcal{E}_n ,
- \mathcal{E}_k evolves freely for $k \neq n$,
- i.e. the full system is governed by



Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times $\tau_k > 0$, for $t \in [\tau_1 + \cdots + \tau_{n-1}, \tau_1 + \cdots + \tau_n]$:

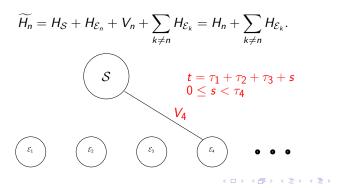
- S interacts with \mathcal{E}_n ,
- \mathcal{E}_k evolves freely for $k \neq n$,
- i.e. the full system is governed by



Repeated Interaction Quantum Systems (RIQS)

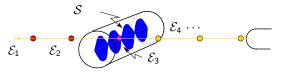
Given a sequence of interaction times $\tau_k > 0$, for $t \in [\tau_1 + \cdots + \tau_{n-1}, \tau_1 + \cdots + \tau_n[$:

- S interacts with \mathcal{E}_n ,
- \mathcal{E}_k evolves freely for $k \neq n$,
- i.e. the full system is governed by



Motivation

Physics: One-atom maser (Walther et al '85, Haroche et al '92)



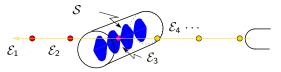
- $\mathcal{S}=$ one mode of the electromagnetic field in a cavity.
- $\mathcal{E}_k = k$ -th atom interacting with the field.
- \mathcal{C} : beam of atoms sent into the cavity.

< ∃ →

......

Motivation

Physics: One-atom maser (Walther et al '85, Haroche et al '92)



- $\mathcal{S}=$ one mode of the electromagnetic field in a cavity.
- $\mathcal{E}_k = k$ -th atom interacting with the field.
- \mathcal{C} : beam of atoms sent into the cavity.

ideal RIQS as simple models (Vogel et al '93, Wellens et al '00) random RIQS: some fluctuation in the various parameters (temperature, interaction time, etc).

- ∢ ⊒ →

The repeated interaction dynamics.

Data:

• Full Hamiltonian: $H_n = H_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes H_{\mathcal{E}_n} + V_n$.

-2

Data:

- Full Hamiltonian: $H_n = H_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes H_{\mathcal{E}_n} + V_n$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.

프 (프)

Data:

- Full Hamiltonian: $H_n = H_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes H_{\mathcal{E}_n} + V_n$.
- Solution Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of *E_n*: *ρ_{E_n}* = invariant state for the free dynamics of *E_n*, e.g. Gibbs state at some inverse temperature *β_n*.

3)) (<u>3</u>)

......

Data:

- Full Hamiltonian: $H_n = H_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes H_{\mathcal{E}_n} + V_n$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of *E_n*: *ρ_{E_n}* = invariant state for the free dynamics of *E_n*, e.g. Gibbs state at some inverse temperature *β_n*.

After 0 interaction, the state of the total system is

$$\rho_0^{\text{tot}} := \rho \otimes \bigotimes_{k \ge 1} \rho_{\mathcal{E}}$$

Data:

- Full Hamiltonian: $H_n = H_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes H_{\mathcal{E}_n} + V_n$.
- Solution Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of *E_n*: *ρ_{E_n}* = invariant state for the free dynamics of *E_n*, e.g. Gibbs state at some inverse temperature *β_n*.

After 1 interaction, the state of the total system is

$$\rho_1^{\text{tot}} := \qquad \qquad e^{-i\tau_1 H_1} \left(\rho \otimes \bigotimes_{k \ge 1} \rho_{\mathcal{E}_k} \right) \, e^{i\tau_1 H_1}$$

Data:

- Full Hamiltonian: $H_n = H_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes H_{\mathcal{E}_n} + V_n$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of *E_n*: *ρ_{E_n}* = invariant state for the free dynamics of *E_n*, e.g. Gibbs state at some inverse temperature *β_n*.

After 2 interactions, the state of the total system is

$$\rho_2^{\text{tot}} := e^{-i\tau_2 H_2} e^{-i\tau_1 H_1} \left(\rho \otimes \bigotimes_{k \ge 1} \rho_{\mathcal{E}_k} \right) e^{i\tau_1 H_1} e^{i\tau_2 H_2}$$

3 × < 3 ×

Data:

- Full Hamiltonian: $H_n = H_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes H_{\mathcal{E}_n} + V_n$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of *E_n*: *ρ_{E_n}* = invariant state for the free dynamics of *E_n*, e.g. Gibbs state at some inverse temperature *β_n*.

After n interactions, the state of the total system is

$$\rho_n^{\text{tot}} := \mathrm{e}^{-i\tau_n H_n} \cdots \mathrm{e}^{-i\tau_2 H_2} \mathrm{e}^{-i\tau_1 H_1} \left(\rho \otimes \bigotimes_{k \ge 1} \rho_{\mathcal{E}_k} \right) \, \mathrm{e}^{i\tau_1 H_1} \mathrm{e}^{i\tau_2 H_2} \cdots \mathrm{e}^{i\tau_n H_n}.$$

3 × < 3 ×

Some questions about RIQS

Long time behaviour:

• Existence of the limit $\lim_{n \to +\infty} \operatorname{Tr}(\rho_n^{\mathrm{tot}}(A_{\mathcal{S}} \otimes \mathbb{1})) = \rho_+(A_{\mathcal{S}})?$

-2

Long time behaviour:

- Existence of the limit $\lim_{n \to +\infty} \operatorname{Tr}(\rho_n^{\text{tot}}(A_{\mathcal{S}} \otimes \mathbb{1})) = \rho_+(A_{\mathcal{S}})?$
- Does ρ_+ depend on ρ , the initial state of S?

A =
 A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Long time behaviour:

- Existence of the limit $\lim_{n \to +\infty} \operatorname{Tr}(\rho_n^{\mathrm{tot}}(A_{\mathcal{S}} \otimes \mathbb{1})) = \rho_+(A_{\mathcal{S}})?$
- Does ρ_+ depend on ρ , the initial state of \mathcal{S} ?

Thermodynamical properties: if ${\mathcal C}$ is initially in thermal equilibrium at temperature β^{-1}

• do we have
$$\rho_+(\cdot) = \frac{\operatorname{Tr}(e^{-\beta^* H_S} \cdot)}{\operatorname{Tr}(e^{-\beta^* H_S})}$$
, i.e. thermal relaxation?

A =
 A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Long time behaviour:

- Existence of the limit $\lim_{n \to +\infty} \operatorname{Tr}(\rho_n^{\text{tot}}(A_{\mathcal{S}} \otimes \mathbb{1})) = \rho_+(A_{\mathcal{S}})?$
- Does ρ_+ depend on ρ , the initial state of \mathcal{S} ?

Thermodynamical properties: if ${\mathcal C}$ is initially in thermal equilibrium at temperature β^{-1}

- do we have $\rho_+(\cdot) = \frac{\operatorname{Tr}(e^{-\beta^* H_S} \cdot)}{\operatorname{Tr}(e^{-\beta^* H_S})}$, i.e. thermal relaxation?
- energy variation? entropy production? 2nd law of thermodynamics?

Long time behaviour:

- Existence of the limit $\lim_{n \to +\infty} \operatorname{Tr}(\rho_n^{\text{tot}}(A_{\mathcal{S}} \otimes \mathbb{1})) = \rho_+(A_{\mathcal{S}})?$
- Does ρ_+ depend on ρ , the initial state of \mathcal{S} ?

Thermodynamical properties: if ${\mathcal C}$ is initially in thermal equilibrium at temperature β^{-1}

• do we have $\rho_+(\cdot) = \frac{\operatorname{Tr}(e^{-\beta^* H_S} \cdot)}{\operatorname{Tr}(e^{-\beta^* H_S})}$, i.e. thermal relaxation?

• energy variation? entropy production? 2nd law of thermodynamics? Examples?

Long time behaviour:

- Existence of the limit $\lim_{n \to +\infty} \operatorname{Tr}(\rho_n^{\mathrm{tot}}(A_{\mathcal{S}} \otimes \mathbb{1})) = \rho_+(A_{\mathcal{S}})?$
- Does ρ_+ depend on ρ , the initial state of \mathcal{S} ?

Thermodynamical properties: if ${\mathcal C}$ is initially in thermal equilibrium at temperature β^{-1}

• do we have $\rho_+(\cdot) = \frac{\operatorname{Tr}(e^{-\beta^* H_S} \cdot)}{\operatorname{Tr}(e^{-\beta^* H_S})}$, i.e. thermal relaxation?

• energy variation? entropy production? 2nd law of thermodynamics? Examples?

2 situations: ideal (identical interactions)

Long time behaviour:

- Existence of the limit $\lim_{n \to +\infty} \operatorname{Tr}(\rho_n^{\text{tot}}(A_{\mathcal{S}} \otimes \mathbb{1})) = \rho_+(A_{\mathcal{S}})?$
- Does ρ_+ depend on ρ , the initial state of \mathcal{S} ?

Thermodynamical properties: if ${\mathcal C}$ is initially in thermal equilibrium at temperature β^{-1}

• do we have $\rho_+(\cdot) = \frac{\operatorname{Tr}(e^{-\beta^* H_S} \cdot)}{\operatorname{Tr}(e^{-\beta^* H_S})}$, i.e. thermal relaxation?

• energy variation? entropy production? 2nd law of thermodynamics? Examples?

2 situations: ideal (identical interactions), random.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● のへで

The reduced dynamics map

We are interested in the system \mathcal{S} (expactation values of observables of the form $\mathcal{A}_{\mathcal{S}}\otimes \mathbb{1}$).

< ∃ →

The reduced dynamics map

We are interested in the system S (expactation values of observables of the form $A_S \otimes 1$).At "time" *n* the state of S is given by

 $\rho_n = \operatorname{Tr}_{\mathcal{C}}(\rho_n^{\operatorname{tot}}),$

i.e. satisfies

 $\forall A \in \mathcal{B}(\mathcal{H}_{\mathcal{S}}), \quad \mathrm{Tr}\left(\rho_n^{\mathrm{tot}} \ A \otimes \mathbb{1}_{\mathcal{C}}\right) = \mathrm{Tr}_{\mathcal{H}_{\mathcal{S}}}\left(\rho_n A\right).$

The reduced dynamics map

We are interested in the system S (expactation values of observables of the form $A_S \otimes 1$).At "time" *n* the state of S is given by

 $\rho_n = \operatorname{Tr}_{\mathcal{C}}(\rho_n^{\operatorname{tot}}),$

i.e. satisfies

$$\forall A \in \mathcal{B}(\mathcal{H}_{\mathcal{S}}), \quad \mathrm{Tr}\left(\rho_n^{\mathrm{tot}} \ A \otimes \mathbb{1}_{\mathcal{C}}\right) = \mathrm{Tr}_{\mathcal{H}_{\mathcal{S}}}\left(\rho_n A\right).$$

If ${\mathcal S}$ is in the state ρ before the n-th interaction, right after it it is in the state

$$\mathcal{L}_n(\rho) := \operatorname{Tr}_{\mathcal{E}_n} \left(\mathrm{e}^{-i\tau_n H_n} \rho \otimes \rho_{\mathcal{E}_n} \, \mathrm{e}^{i\tau_n H_n} \right),$$

where $\operatorname{Tr}_{\mathcal{E}_n}$ denotes the partial trace over \mathcal{E}_n .

The reduced dynamics map

We are interested in the system S (expactation values of observables of the form $A_S \otimes 1$).At "time" *n* the state of S is given by

 $\rho_n = \operatorname{Tr}_{\mathcal{C}}(\rho_n^{\operatorname{tot}}),$

i.e. satisfies

$$\forall A \in \mathcal{B}(\mathcal{H}_{\mathcal{S}}), \quad \mathrm{Tr}\left(\rho_n^{\mathrm{tot}} \ A \otimes \mathbb{1}_{\mathcal{C}}\right) = \mathrm{Tr}_{\mathcal{H}_{\mathcal{S}}}\left(\rho_n A\right).$$

If ${\mathcal S}$ is in the state ρ before the $\mathit{n}\text{-th}$ interaction, right after it it is in the state

$$\mathcal{L}_n(\rho) := \operatorname{Tr}_{\mathcal{E}_n} \left(\mathrm{e}^{-i\tau_n H_n} \rho \otimes \rho_{\mathcal{E}_n} \, \mathrm{e}^{i\tau_n H_n} \right),$$

where $\operatorname{Tr}_{\mathcal{E}_n}$ denotes the partial trace over \mathcal{E}_n . The "repeated interaction" structure induces a markovian behaviour:

$$\forall n, \quad \rho_n = \mathcal{L}_n(\rho_{n-1}).$$

......

The reduced dynamics map

We are interested in the system S (expactation values of observables of the form $A_S \otimes 1$).At "time" *n* the state of S is given by

 $\rho_n = \operatorname{Tr}_{\mathcal{C}}(\rho_n^{\operatorname{tot}}),$

i.e. satisfies

$$\forall A \in \mathcal{B}(\mathcal{H}_{\mathcal{S}}), \quad \mathrm{Tr}\left(\rho_n^{\mathrm{tot}} \ A \otimes \mathbb{1}_{\mathcal{C}}\right) = \mathrm{Tr}_{\mathcal{H}_{\mathcal{S}}}\left(\rho_n A\right).$$

If ${\mathcal S}$ is in the state ρ before the $\mathit{n}\text{-th}$ interaction, right after it it is in the state

$$\mathcal{L}_n(\rho) := \operatorname{Tr}_{\mathcal{E}_n} \left(\mathrm{e}^{-i\tau_n H_n} \rho \otimes \rho_{\mathcal{E}_n} \, \mathrm{e}^{i\tau_n H_n} \right),$$

where $\operatorname{Tr}_{\mathcal{E}_n}$ denotes the partial trace over \mathcal{E}_n . The "repeated interaction" structure induces a markovian behaviour:

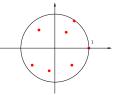
$$\forall n, \quad \rho_n = \mathcal{L}_n(\rho_{n-1}).$$

 \implies We shall understand $\mathcal{L}_n \circ \cdots \circ \mathcal{L}_1$ as $n \to \infty$.

Spectrum of a RDM

The \mathcal{L}_n are completely positive and trace preserving maps on $\mathcal{J}_1(\mathcal{H}_S)$. General case:

 $\operatorname{Spec}(\mathcal{L}_n) \subset \{z \in \mathbb{C} \mid |z| \leq 1\},\ 1 \text{ is an eigenvalue.}$



- ∢ ≣ →

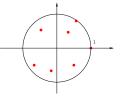
Spectrum of a RDM

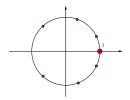
The \mathcal{L}_n are completely positive and trace preserving maps on $\mathcal{J}_1(\mathcal{H}_S)$. General case:

$${
m Spec}({\mathcal L}_n)\subset\{z\in{\mathbb C}\,|\,|z|\leq1\},\ 1\ ext{is an eigenvalue}.$$

Uncoupled case:

If
$$V_n = 0$$
, $\mathcal{L}_n(\cdot) = e^{-i\tau_n H_S} \cdot e^{i\tau_n H_S}$,
 $\Rightarrow \operatorname{Spec}(\mathcal{L}_n) = \{ e^{i\tau_n (\lambda_k - \lambda_l)} \}, \lambda_k \in \operatorname{Spec}(\mathcal{H}_S),$
1 is degenerate (dim(\mathcal{H}_S) times).



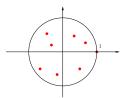


3 N 3

Ideal RIQS: $\mathcal{L}_n \equiv \mathcal{L}$

Assumption (E):

Spec $(\mathcal{L}_n) \cap \{z \in \mathbb{C} \mid |z| = 1\} = \{1\}, 1$ is a simple eigenvalue.



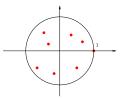
·문▶ ★ 문▶ ·

- 문

Ideal RIQS: $\mathcal{L}_n \equiv \mathcal{L}$

Assumption (E):

Spec $(\mathcal{L}_n) \cap \{z \in \mathbb{C} \mid |z| = 1\} = \{1\},\ 1 \text{ is a simple eigenvalue.}$



(E)

Theorem

If (E) is satisfied, there exist $C, \alpha > 0$ s.t. for any initial state ρ

$$\|\mathcal{L}^n(\rho) - \rho_+\|_1 \le C \mathrm{e}^{-\alpha n}, \qquad \forall n \in \mathbb{N},$$

where ρ_+ is the (unique) invariant state of \mathcal{L} .

Note that ρ_+ does not depend on the initial state of S.

• S and \mathcal{E}_n are 2-level systems, i.e. $\mathcal{H}_S = \mathcal{H}_{\mathcal{E}_n} \equiv \mathcal{H}_{\mathcal{E}} = \mathbb{C}^2$, with energy levels $\{0, E_S\}$, resp. $\{0, E_{\mathcal{E}}\}$, i.e. $H_{\#} = \begin{pmatrix} 0 & 0 \\ 0 & E_{\#} \end{pmatrix}$.

- S and \mathcal{E}_n are 2-level systems, i.e. $\mathcal{H}_S = \mathcal{H}_{\mathcal{E}_n} \equiv \mathcal{H}_{\mathcal{E}} = \mathbb{C}^2$, with energy levels $\{0, E_S\}$, resp. $\{0, E_{\mathcal{E}}\}$, i.e. $H_{\#} = \begin{pmatrix} 0 & 0 \\ 0 & E_{\#} \end{pmatrix}$.
- $V_n = \lambda (a_S \otimes a_n^* + a_S^* \otimes a_n)$ where $a_{\#} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- $\rho_{\mathcal{E}_n}$ is a Gibbs state, i.e. $\rho_{\mathcal{E}_n} = \rho_{\beta_n,\mathcal{E}} := e^{-\beta_n H_{\mathcal{E}}} / \text{Tr}(e^{-\beta_n H_{\mathcal{E}}})$ with $\beta_n \equiv \beta$.

• S and \mathcal{E}_n are 2-level systems, i.e. $\mathcal{H}_S = \mathcal{H}_{\mathcal{E}_n} \equiv \mathcal{H}_{\mathcal{E}} = \mathbb{C}^2$, with energy levels $\{0, E_S\}$, resp. $\{0, E_{\mathcal{E}}\}$, i.e. $\mathcal{H}_{\#} = \begin{pmatrix} 0 & 0 \\ 0 & E_{\#} \end{pmatrix}$.

•
$$V_n = \lambda (a_S \otimes a_n^* + a_S^* \otimes a_n)$$
 where $a_{\#} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

• $\rho_{\mathcal{E}_n}$ is a Gibbs state, i.e. $\rho_{\mathcal{E}_n} = \rho_{\beta_n,\mathcal{E}} := e^{-\beta_n H_{\mathcal{E}}} / \text{Tr}(e^{-\beta_n H_{\mathcal{E}}})$ with $\beta_n \equiv \beta$.

Explicit computation: \mathcal{L} satisfies (E) iff $\tau \notin T\mathbb{N}$ with $T = 2\pi/\sqrt{(E_{\mathcal{S}} - E_{\mathcal{E}})^2 + 4\lambda^2}$ (non-resonance condition).

• S and \mathcal{E}_n are 2-level systems, i.e. $\mathcal{H}_S = \mathcal{H}_{\mathcal{E}_n} \equiv \mathcal{H}_{\mathcal{E}} = \mathbb{C}^2$, with energy levels $\{0, E_S\}$, resp. $\{0, E_{\mathcal{E}}\}$, i.e. $\mathcal{H}_{\#} = \begin{pmatrix} 0 & 0 \\ 0 & E_{\#} \end{pmatrix}$.

•
$$V_n = \lambda (a_S \otimes a_n^* + a_S^* \otimes a_n)$$
 where $a_{\#} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

• $\rho_{\mathcal{E}_n}$ is a Gibbs state, i.e. $\rho_{\mathcal{E}_n} = \rho_{\beta_n,\mathcal{E}} := e^{-\beta_n H_{\mathcal{E}}} / \text{Tr}(e^{-\beta_n H_{\mathcal{E}}})$ with $\beta_n \equiv \beta$.

Explicit computation: \mathcal{L} satisfies (E) iff $\tau \notin T\mathbb{N}$ with $T = 2\pi/\sqrt{(E_{\mathcal{S}} - E_{\mathcal{E}})^2 + 4\lambda^2}$ (non-resonance condition).

Proposition

If $\tau \notin T\mathbb{N}$, $\lim_{n\to\infty} \operatorname{Tr}(\rho_n A_S) = \rho_{\beta^*,S}(A_S)$ (exponentially fast) where $\beta^* = \beta E_{\mathcal{E}} / E_S$.

ゆう イヨン イヨン

......

Random RIQS: $\mathcal{L} = \mathcal{L}(\omega)$

Fluctuations w.r.t. ideal situation: $\mathcal{L} = \mathcal{L}(\omega_0)$ random variable with values in RDM (CP, trace preserving maps on \mathcal{H}_S) over a probability space $(\Omega_0, \mathcal{F}, p)$.

A B > A B >

Random RIQS: $\mathcal{L} = \mathcal{L}(\omega)$

Fluctuations w.r.t. ideal situation: $\mathcal{L} = \mathcal{L}(\omega_0)$ random variable with values in RDM (CP, trace preserving maps on \mathcal{H}_S) over a probability space $(\Omega_0, \mathcal{F}, p)$.

Product of i.i.d. RDMs: $\Omega = \Omega_0^{\mathbb{N}^*}$, $d\mathbb{P} = \prod_{n \ge 1} dp$ and $\omega = (\omega_n)_{n \ge 1}$. \Rightarrow Understand $\Phi(n, \omega) = \mathcal{L}(\omega_n) \circ \cdots \circ \mathcal{L}(\omega_1)$.

< 3 > < 3 >

Random RIQS: $\mathcal{L} = \mathcal{L}(\omega)$

Fluctuations w.r.t. ideal situation: $\mathcal{L} = \mathcal{L}(\omega_0)$ random variable with values in RDM (CP, trace preserving maps on \mathcal{H}_S) over a probability space $(\Omega_0, \mathcal{F}, p)$.

Product of i.i.d. RDMs: $\Omega = \Omega_0^{\mathbb{N}^*}$, $d\mathbb{P} = \prod_{n \ge 1} dp$ and $\omega = (\omega_n)_{n \ge 1}$. \Rightarrow Understand $\Phi(n, \omega) = \mathcal{L}(\omega_n) \circ \cdots \circ \mathcal{L}(\omega_1)$.

A simple case: $\mathcal{L}(\omega_0)$ is a rank one projection, i.e. for any state ρ ,

$$(\mathcal{L}(\omega_0))(\rho) = \rho_+(\omega_0).$$

> < E > < E > _ E

Random RIQS: $\mathcal{L} = \mathcal{L}(\omega)$

Fluctuations w.r.t. ideal situation: $\mathcal{L} = \mathcal{L}(\omega_0)$ random variable with values in RDM (CP, trace preserving maps on \mathcal{H}_S) over a probability space $(\Omega_0, \mathcal{F}, p)$.

Product of i.i.d. RDMs: $\Omega = \Omega_0^{\mathbb{N}^*}$, $d\mathbb{P} = \prod_{n \ge 1} dp$ and $\omega = (\omega_n)_{n \ge 1}$. \Rightarrow Understand $\Phi(n, \omega) = \mathcal{L}(\omega_n) \circ \cdots \circ \mathcal{L}(\omega_1)$.

A simple case: $\mathcal{L}(\omega_0)$ is a rank one projection, i.e. for any state ρ ,

$$(\mathcal{L}(\omega_0))(\rho) = \rho_+(\omega_0).$$

 \Rightarrow For any n, $\rho_n^{\omega} = (\Phi(n, \omega))(\rho) = \rho_+(\omega_n)$.

Random RIQS: $\mathcal{L} = \mathcal{L}(\omega)$

Fluctuations w.r.t. ideal situation: $\mathcal{L} = \mathcal{L}(\omega_0)$ random variable with values in RDM (CP, trace preserving maps on \mathcal{H}_S) over a probability space $(\Omega_0, \mathcal{F}, p)$.

Product of i.i.d. RDMs: $\Omega = \Omega_0^{\mathbb{N}^*}$, $d\mathbb{P} = \prod_{n \ge 1} dp$ and $\omega = (\omega_n)_{n \ge 1}$. \Rightarrow Understand $\Phi(n, \omega) = \mathcal{L}(\omega_n) \circ \cdots \circ \mathcal{L}(\omega_1)$.

A simple case: $\mathcal{L}(\omega_0)$ is a rank one projection, i.e. for any state ρ ,

$$(\mathcal{L}(\omega_0))(\rho) = \rho_+(\omega_0).$$

 \Rightarrow For any *n*, $\rho_n^{\omega} = (\Phi(n, \omega))(\rho) = \rho_+(\omega_n).$

Consequence: unless $\rho_+(\omega_0) \equiv \rho_+$, no convergence in the usual sense (local fluctuations), but in the ergodic mean

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\rho_{n}^{\omega}=\mathbb{E}(\rho_{+}),\quad a.e.\ \omega.$$

ゆう くほう くほう 二日

Random RIQS: $\mathcal{L} = \mathcal{L}(\omega)$

Theorem

If $p(\mathcal{L}(\omega_0) \text{ satisfies } (E)) > 0$, then

• $\mathbb{E}(\mathcal{L})$ satisfies (E),

• For any
$$\rho \in \mathcal{J}_1(\mathcal{H}_S)$$
, $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (\Phi(n, \omega))(\rho) = \rho_+$, a.e. $\omega \in \Omega$,
where ρ_+ is the unique invariant state of $\mathbb{E}(\mathcal{L})$.

個 と く ヨ と く ヨ と …

Random RIQS: $\mathcal{L} = \mathcal{L}(\omega)$

Theorem

If $p(\mathcal{L}(\omega_0) \text{ satisfies } (E)) > 0$, then

Q $\mathbb{E}(\mathcal{L})$ satisfies (E),

• For any
$$\rho \in \mathcal{J}_1(\mathcal{H}_S)$$
, $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (\Phi(n, \omega))(\rho) = \rho_+$, a.e. $\omega \in \Omega$,
where ρ_+ is the unique invariant state of $\mathbb{E}(\mathcal{L})$.

Theorem

If $p(\mathcal{L}(\omega_0) \text{ satisfies } (E)) > 0$ and there exists ρ_+ s.t. $\mathcal{L}(\omega_0)(\rho_+) = \rho_+$ for a.e. ω_0 , i.e. there is a deterministic invariant state, then

- $\mathbb{E}(\mathcal{L})$ satisfies (E),
- There exists α > 0 s.t. for any ρ ∈ J₁(H_S) and for a.e. ω ∈ Ω, there exists C(ω) > 0

 $\|(\Phi(n,\omega))(\rho)-\rho_+\|_1 \leq C(\omega)e^{-\alpha n}, \quad \forall n \in \mathbb{N}.$

Recall:

- \mathcal{L} satisfies (E) iff $\tau \notin T\mathbb{N}$ with $T = 2\pi/\sqrt{(E_S E_{\mathcal{E}})^2 + 4\lambda^2}$,
- $\rho_{\beta^*,S}$ is an invariant state of \mathcal{L} , with $\beta^* = \beta E_{\mathcal{E}}/E_{\mathcal{S}}$.

∋ na

Recall:

- \mathcal{L} satisfies (E) iff $\tau \notin T\mathbb{N}$ with $T = 2\pi/\sqrt{(E_{\mathcal{S}} E_{\mathcal{E}})^2 + 4\lambda^2}$,
- $\ \, {} \ \, {} \ \, \rho_{\beta^*,\mathcal{S}} \ \, \text{is an invariant state of } \mathcal{L}, \ \, \text{with } \ \, \beta^* = \beta E_{\mathcal{E}}/E_{\mathcal{S}}.$

We consider 2 situations:

- the interaction time is random: $\tau_n = \tau(\omega_n)$,
- **2** the temperature of the \mathcal{E}_n is random: $\beta_n = \beta(\omega_n)$.

Recall:

•
$$\mathcal{L}$$
 satisfies (E) iff $\tau \notin T\mathbb{N}$ with $T = 2\pi/\sqrt{(E_S - E_{\mathcal{E}})^2 + 4\lambda^2}$,

 $\rho_{\beta^*,S}$ is an invariant state of \mathcal{L} , with $\beta^* = \beta E_{\mathcal{E}} / E_{\mathcal{S}}$.

We consider 2 situations:

- the interaction time is random: $\tau_n = \tau(\omega_n)$,
- **2** the temperature of the \mathcal{E}_n is random: $\beta_n = \beta(\omega_n)$.

Theorem

1) Suppose $\beta_n \equiv \beta$ and $\tau(\omega_0) > 0$ is a random variable satisfying $p(\tau(\omega_0) \notin T\mathbb{N}) > 0$. Then there exists $\alpha > 0$ s.t. for any $\rho \in \mathcal{J}_1(\mathcal{H}_S)$ and for a.e. $\omega \in \Omega$, there exists $C(\omega) > 0$

$$\|\rho_n^{\omega}-\rho_{\beta^*,\mathcal{S}}\|_1\leq C(\omega)\mathrm{e}^{-\alpha n},\quad\forall n\in\mathbb{N}.$$

Recall:

•
$$\mathcal{L}$$
 satisfies (E) iff $\tau \notin T\mathbb{N}$ with $T = 2\pi/\sqrt{(E_S - E_{\mathcal{E}})^2 + 4\lambda^2}$,

 $\rho_{\beta^*,S}$ is an invariant state of \mathcal{L} , with $\beta^* = \beta E_{\mathcal{E}} / E_{\mathcal{S}}$.

We consider 2 situations:

- the interaction time is random: $\tau_n = \tau(\omega_n)$,
- **2** the temperature of the \mathcal{E}_n is random: $\beta_n = \beta(\omega_n)$.

Theorem

1) Suppose $\beta_n \equiv \beta$ and $\tau(\omega_0) > 0$ is a random variable satisfying $p(\tau(\omega_0) \notin T\mathbb{N}) > 0$. Then there exists $\alpha > 0$ s.t. for any $\rho \in \mathcal{J}_1(\mathcal{H}_S)$ and for a.e. $\omega \in \Omega$, there exists $C(\omega) > 0$

$$\|\rho_n^{\omega}-\rho_{\beta^*,\mathcal{S}}\|_1\leq C(\omega)\mathrm{e}^{-\alpha n},\quad\forall n\in\mathbb{N}.$$

2) Suppose $\tau_n \equiv \tau \notin T\mathbb{N}$ and $\beta(\omega)$ is a random variable. Then for any $\rho \in \mathcal{J}_1(\mathcal{H}_S)$,

$$\lim_{N\to\infty}\sum_{n=1}^N\rho_n^{\omega}=\mathbb{E}(\rho_{\beta^*(\omega),\mathcal{S}}).$$

During the *n*-th interaction the energy is constant, formally given by

$$\operatorname{Tr}\left(\rho_{n-1}^{\operatorname{tot}}H_{n}\right)=\operatorname{Tr}\left(\rho_{n}^{\operatorname{tot}}H_{n}\right).$$

·문▶ ★ 문▶

- 문

During the *n*-th interaction the energy is constant, formally given by

$$\operatorname{Tr}\left(\rho_{n-1}^{\operatorname{tot}}H_{n}\right)=\operatorname{Tr}\left(\rho_{n}^{\operatorname{tot}}H_{n}\right).$$

When one switches from interaction n to interaction n + 1, there is an energy jump:

$$\delta E_n = \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} H_{n+1} \right) - \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} H_n \right)$$

∃ ► < ∃ ►</p>

During the *n*-th interaction the energy is constant, formally given by

$$\operatorname{Tr}\left(\rho_{n-1}^{\operatorname{tot}}H_{n}\right)=\operatorname{Tr}\left(\rho_{n}^{\operatorname{tot}}H_{n}\right).$$

When one switches from interaction n to interaction n + 1, there is an energy jump:

$$\delta E_n = \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} H_{n+1} \right) - \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} H_n \right) = \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} V_{n+1} \right) - \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} V_n \right)$$

During the *n*-th interaction the energy is constant, formally given by

$$\operatorname{Tr}\left(\rho_{n-1}^{\operatorname{tot}}H_{n}\right)=\operatorname{Tr}\left(\rho_{n}^{\operatorname{tot}}H_{n}\right).$$

When one switches from interaction n to interaction n + 1, there is an energy jump:

$$\begin{split} \delta E_n &= \operatorname{Tr}\left(\rho_n^{\operatorname{tot}} H_{n+1}\right) - \operatorname{Tr}\left(\rho_n^{\operatorname{tot}} H_n\right) &= \operatorname{Tr}\left(\rho_n^{\operatorname{tot}} V_{n+1}\right) - \operatorname{Tr}\left(\rho_n^{\operatorname{tot}} V_n\right) \\ &= \operatorname{Tr}_{\mathcal{S}, \mathcal{E}_{n+1}}\left(\left(\mathcal{L}_n \circ \cdots \circ \mathcal{L}_1(\rho) \otimes \rho_{\mathcal{E}_{n+1}}\right) V_{n+1}\right) - \operatorname{Tr}\left(\rho_{n-1}^{\operatorname{tot}}(\mathrm{e}^{i\tau_n H_n} V_n \mathrm{e}^{-i\tau_n H_n})\right) \end{split}$$

∃ ► < ∃ ►</p>

During the *n*-th interaction the energy is constant, formally given by

$$\operatorname{Tr}\left(\rho_{n-1}^{\operatorname{tot}}H_{n}\right)=\operatorname{Tr}\left(\rho_{n}^{\operatorname{tot}}H_{n}\right).$$

When one switches from interaction n to interaction n + 1, there is an energy jump:

$$\begin{split} \delta E_n &= \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} H_{n+1} \right) - \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} H_n \right) &= \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} V_{n+1} \right) - \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} V_n \right) \\ &= \operatorname{Tr}_{\mathcal{S}, \mathcal{E}_{n+1}} \left(\left(\mathcal{L}_n \circ \cdots \circ \mathcal{L}_1(\rho) \otimes \rho_{\mathcal{E}_{n+1}} \right) V_{n+1} \right) - \operatorname{Tr} \left(\rho_{n-1}^{\operatorname{tot}} (\mathrm{e}^{i\tau_n H_n} V_n \mathrm{e}^{-i\tau_n H_n}) \right) \\ &= \operatorname{Tr}_{\mathcal{S}, \mathcal{E}_{n+1}} \left(\left(\mathcal{L}_n \circ \cdots \circ \mathcal{L}_1(\rho) \otimes \rho_{\mathcal{E}_{n+1}} \right) V_{n+1} \right) \\ &- \operatorname{Tr}_{\mathcal{S}, \mathcal{E}_n} \left(\left(\mathcal{L}_{n-1} \circ \cdots \circ \mathcal{L}_1(\rho) \otimes \rho_{\mathcal{E}_n} \right) (\mathrm{e}^{i\tau_n H_n} V_n \mathrm{e}^{-i\tau_n H_n}) \right) . \end{split}$$

∃ ► < ∃ ►</p>

During the *n*-th interaction the energy is constant, formally given by

$$\operatorname{Tr}\left(\rho_{n-1}^{\operatorname{tot}}H_{n}\right)=\operatorname{Tr}\left(\rho_{n}^{\operatorname{tot}}H_{n}\right).$$

When one switches from interaction n to interaction n + 1, there is an energy jump:

$$\begin{split} \delta E_n &= \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} H_{n+1} \right) - \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} H_n \right) &= \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} V_{n+1} \right) - \operatorname{Tr} \left(\rho_n^{\operatorname{tot}} V_n \right) \\ &= \operatorname{Tr}_{\mathcal{S}, \mathcal{E}_{n+1}} \left(\left(\mathcal{L}_n \circ \cdots \circ \mathcal{L}_1(\rho) \otimes \rho_{\mathcal{E}_{n+1}} \right) V_{n+1} \right) - \operatorname{Tr} \left(\rho_{n-1}^{\operatorname{tot}} (\mathrm{e}^{i\tau_n H_n} V_n \mathrm{e}^{-i\tau_n H_n}) \right) \\ &= \operatorname{Tr}_{\mathcal{S}, \mathcal{E}_{n+1}} \left(\left(\mathcal{L}_n \circ \cdots \circ \mathcal{L}_1(\rho) \otimes \rho_{\mathcal{E}_{n+1}} \right) V_{n+1} \right) \\ &- \operatorname{Tr}_{\mathcal{S}, \mathcal{E}_n} \left(\left(\mathcal{L}_{n-1} \circ \cdots \circ \mathcal{L}_1(\rho) \otimes \rho_{\mathcal{E}_n} \right) (\mathrm{e}^{i\tau_n H_n} V_n \mathrm{e}^{-i\tau_n H_n}) \right) . \end{split}$$

In the ideal case, this rewrites

$$\delta E_n = \operatorname{Tr}_{\mathcal{S},\mathcal{E}} \left((\mathcal{L}^n(\rho) \otimes \rho_{\mathcal{E}}) V \right) - \operatorname{Tr}_{\mathcal{S},\mathcal{E}} \left((\mathcal{L}^{n-1}(\rho) \otimes \rho_{\mathcal{E}}) (\mathrm{e}^{i\tau H} V \mathrm{e}^{-i\tau H}) \right).$$

프 > - * 프 >

In the ideal case, one easily gets

Proposition

If Assumption (E) is satisfied,

$$\mathrm{d} E_{+} := \lim_{n \to \infty} \delta E_{n} = \mathrm{Tr}_{\mathcal{S}, \mathcal{E}} \left(\rho_{+} \otimes \rho_{\mathcal{E}} \left(V - \mathrm{e}^{i\tau H} V \mathrm{e}^{-i\tau H} \right) \right)$$

- ∢ ⊒ →

In the ideal case, one easily gets

Proposition

If Assumption (E) is satisfied,

$$\mathrm{d} E_{+} := \lim_{n \to \infty} \delta E_{n} = \mathrm{Tr}_{\mathcal{S}, \mathcal{E}} \left(\rho_{+} \otimes \rho_{\mathcal{E}} \left(V - \mathrm{e}^{i\tau H} V \mathrm{e}^{-i\tau H} \right) \right).$$

In the random case we have, using

$$\begin{split} \delta E_n &= \operatorname{Tr}_{\mathcal{S}, \mathcal{E}_{n+1}} \left((\mathcal{L}_n \circ \cdots \circ \mathcal{L}_1(\rho) \otimes \rho_{\mathcal{E}_{n+1}}) V_{n+1} \right) \\ &- \operatorname{Tr}_{\mathcal{S}, \mathcal{E}_n} \left((\mathcal{L}_{n-1} \circ \cdots \circ \mathcal{L}_1(\rho) \otimes \rho_{\mathcal{E}_n}) (\mathrm{e}^{i\tau_n H_n} V_n \mathrm{e}^{-i\tau_n H_n}) \right), \end{split}$$

Proposition

If
$$p(\mathcal{L}(\omega_0) \text{ satisfies } (E)) > 0$$
, then
 $dE_+ := \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \delta E_n = \mathbb{E} \left(\operatorname{Tr}_{\mathcal{S},\mathcal{E}} \left(\rho_+ \otimes \rho_{\mathcal{E}} \left(V - e^{i\tau H} V e^{-i\tau H} \right) \right) \right),$
where ρ_+ is the unique invariant state of $\mathbb{E}(\mathcal{L})$.

Entropy production

We assume that the $\rho_{\mathcal{E}_n}$ are Gibbs states at inverse temperature β_n .

- ∢ ≣ ▶

-

Entropy production

We assume that the $\rho_{\mathcal{E}_n}$ are Gibbs states at inverse temperature β_n . Fix a reference state ρ_S for S (e.g. the tracial state) and let $\rho_0 = \rho_S \otimes \bigotimes \rho_{\mathcal{E}_k}$.

Relative entropy $\operatorname{Ent}(\rho|\rho_0) = \operatorname{Tr}(\rho \log \rho - \rho \log \rho_0) \ge 0.$

......

Entropy production

We assume that the $\rho_{\mathcal{E}_n}$ are Gibbs states at inverse temperature β_n . Fix a reference state $\rho_{\mathcal{S}}$ for \mathcal{S} (e.g. the tracial state) and let

$$\rho_{0} = \rho_{S} \otimes \bigotimes_{k \ge 1} \rho_{\mathcal{E}_{k}}.$$

Relative entropy $\operatorname{Ent}(\rho|\rho_{0}) = \operatorname{Tr}(\rho \log \rho - \rho \log \rho_{0}) \ge 0.$

Theorem

1) Ideal case: if (E) is satisfied, then

$$\mathrm{d}S_{+} := \lim_{n \to \infty} \mathrm{Ent}(\rho_{n+1}^{\mathrm{tot}} | \rho_{0}) - \mathrm{Ent}(\rho_{n}^{\mathrm{tot}} | \rho_{0}) = \beta \mathrm{d}E_{+}$$

Entropy production

We assume that the $\rho_{\mathcal{E}_n}$ are Gibbs states at inverse temperature β_n . Fix a reference state ρ_S for S (e.g. the tracial state) and let $\rho_0 = \rho_S \otimes \bigotimes_{k>1} \rho_{\mathcal{E}_k}$.

Relative entropy $\operatorname{Ent}(\rho|\rho_0) = \operatorname{Tr}(\rho\log\rho - \rho\log\rho_0) \ge 0.$

Theorem

1) Ideal case: if (E) is satisfied, then

$$\mathrm{d}S_{+} := \lim_{n \to \infty} \mathrm{Ent}(\rho_{n+1}^{\mathrm{tot}} | \rho_{0}) - \mathrm{Ent}(\rho_{n}^{\mathrm{tot}} | \rho_{0}) = \beta \mathrm{d}E_{+}.$$

2) Random case: if $p(\mathcal{L}(\omega_0) \text{ satisfies } (E)) > 0$, then

$$\begin{split} \mathrm{d}S_{+} &:= \lim_{n \to \infty} \frac{\mathrm{Ent}(\rho_{n}^{\mathrm{tot}} | \rho_{0}) - \mathrm{Ent}(\rho | \rho_{0})}{n} \\ &= \mathbb{E}\left(\beta \operatorname{Tr}_{\mathcal{S},\mathcal{E}}\left(\rho_{+} \otimes \rho_{\mathcal{E}}\left(V - \mathrm{e}^{i\tau H} V \mathrm{e}^{-i\tau H}\right)\right)\right). \end{split}$$

In particular, if β is not random we still have $dS_+ = \beta dE_+$.

Thermodynamics of the spin-spin example

Recall
$$T = 2\pi/\sqrt{(E_S - E_E)^2 + 4\lambda^2}$$
, and let $\kappa := \frac{16\pi^2\lambda^2 E_E}{T^2}\sin^2\left(\frac{\pi\tau}{T}\right)$.

□ > < E > < E > -

Thermodynamics of the spin-spin example

Recall $T = 2\pi/\sqrt{(E_S - E_E)^2 + 4\lambda^2}$, and let $\kappa := \frac{16\pi^2\lambda^2 E_E}{T^2} \sin^2\left(\frac{\pi\tau}{T}\right)$. We compute explicitly

$$dE_{+} = \mathbb{E}\left(\frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right)^{-1} \times \operatorname{Cov}\left(\kappa, \frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right),$$
$$dS_{+} = \mathbb{E}\left(\frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right)^{-1} \times \operatorname{Cov}\left(\beta\kappa, \frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right).$$

向下 イヨト イヨト 三日

Thermodynamics of the spin-spin example

Recall $T = 2\pi/\sqrt{(E_S - E_E)^2 + 4\lambda^2}$, and let $\kappa := \frac{16\pi^2\lambda^2 E_E}{T^2} \sin^2\left(\frac{\pi\tau}{T}\right)$. We compute explicitly

$$dE_{+} = \mathbb{E}\left(\frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right)^{-1} \times \operatorname{Cov}\left(\kappa, \frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right),$$
$$dS_{+} = \mathbb{E}\left(\frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right)^{-1} \times \operatorname{Cov}\left(\beta\kappa, \frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right).$$

In particular,

(

) if only
$$au$$
 is random, $\mathrm{d} {\it E}_+ = \mathrm{d} {\it S}_+ =$ 0,

Thermodynamics of the spin-spin example

Recall $T = 2\pi/\sqrt{(E_S - E_E)^2 + 4\lambda^2}$, and let $\kappa := \frac{16\pi^2\lambda^2 E_E}{T^2} \sin^2\left(\frac{\pi\tau}{T}\right)$. We compute explicitly

$$dE_{+} = \mathbb{E}\left(\frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right)^{-1} \times \operatorname{Cov}\left(\kappa, \frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right),$$
$$dS_{+} = \mathbb{E}\left(\frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right)^{-1} \times \operatorname{Cov}\left(\beta\kappa, \frac{1}{1 + e^{-\beta E_{\mathcal{E}}}}\right).$$

In particular,

- if only au is random, $dE_+ = dS_+ = 0$,
- **2** if only β is random, $dE_+ = 0$ while

$$\mathrm{d}S_{+} = \kappa \mathbb{E}\left(\frac{1}{1 + \mathrm{e}^{-\beta E_{\mathcal{E}}}}\right)^{-1} \times \mathrm{Cov}\left(\beta, \frac{1}{1 + \mathrm{e}^{-\beta E_{\mathcal{E}}}}\right) \geq 0$$

and vanishes iff $\beta(\omega) \equiv \beta$ a.s.