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Open Systems

A “small” (or confined) system S interacts with an environment R.
Goal: understand the asymptotic (t → +∞) behaviour of the system S
(asymptotic state, thermodynamical properties).

S R
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Goal: understand the asymptotic (t → +∞) behaviour of the system S
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2 approaches: Hamiltonian / Markovian
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Open Systems

A “small” (or confined) system S interacts with an environment R.
Goal: understand the asymptotic (t → +∞) behaviour of the system S
(asymptotic state, thermodynamical properties).

S R

2 approaches: Hamiltonian / Markovian

Hamiltonian: full description, spectral analysis, scattering theory.

Markovian: effective description of S, obtained by weak-coupling
type limits or if S undergoes stochastic forces (Langevin equation).
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Repeated Interaction Quantum Systems (RIQS)

A “small” system S:

Quantum system governed by some hamiltonian HS acting on HS .
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Repeated Interaction Quantum Systems (RIQS)

A “small” system S:

Quantum system governed by some hamiltonian HS acting on HS .

A chain C of quantum sub-systems Ek (k = 1, 2, . . .):

C = E1 + E2 + · · ·

Each Ek is governed by some hamiltonian HEk
acting on HEk

.
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Repeated Interaction Quantum Systems (RIQS)

A “small” system S:

Quantum system governed by some hamiltonian HS acting on HS .

A chain C of quantum sub-systems Ek (k = 1, 2, . . .):

C = E1 + E2 + · · ·

Each Ek is governed by some hamiltonian HEk
acting on HEk

.

Interactions:

Interaction operators Vk acting on HS ⊗HEk
.
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Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times τk > 0, for
t ∈ [τ1 + · · · + τn−1, τ1 + · · · + τn[ :

S interacts with En,

Ek evolves freely for k 6= n,

i.e. the full system is governed by

H̃n = HS + HEn
+ Vn +

∑

k 6=n

HEk
= Hn +

∑

k 6=n

HEk
.
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Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times τk > 0, for
t ∈ [τ1 + · · · + τn−1, τ1 + · · · + τn[ :

S interacts with En,

Ek evolves freely for k 6= n,

i.e. the full system is governed by

H̃n = HS + HEn
+ Vn +

∑

k 6=n

HEk
= Hn +

∑

k 6=n

HEk
.

E1 E2 E3 E4

S

V1

t = s

0 ≤ s < τ1
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Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times τk > 0, for
t ∈ [τ1 + · · · + τn−1, τ1 + · · · + τn[ :

S interacts with En,

Ek evolves freely for k 6= n,

i.e. the full system is governed by

H̃n = HS + HEn
+ Vn +

∑

k 6=n

HEk
= Hn +

∑

k 6=n

HEk
.

E1 E2 E3 E4

S t = τ1 + s

0 ≤ s < τ2

V2
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Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times τk > 0, for
t ∈ [τ1 + · · · + τn−1, τ1 + · · · + τn[ :

S interacts with En,

Ek evolves freely for k 6= n,

i.e. the full system is governed by

H̃n = HS + HEn
+ Vn +

∑

k 6=n

HEk
= Hn +

∑

k 6=n

HEk
.

E1 E2 E3 E4

S t = τ1 + τ2 + s

0 ≤ s < τ3

V3
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Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times τk > 0, for
t ∈ [τ1 + · · · + τn−1, τ1 + · · · + τn[ :

S interacts with En,

Ek evolves freely for k 6= n,

i.e. the full system is governed by

H̃n = HS + HEn
+ Vn +

∑

k 6=n

HEk
= Hn +

∑

k 6=n

HEk
.

E1 E2 E3 E4

S t = τ1 + τ2 + τ3 + s

0 ≤ s < τ4

V4
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Motivation

Physics: One-atom maser (Walther et al ’85, Haroche et al ’92)

E1 E2

E4 · · ·

S

E3

S= one mode of the electromagnetic field in a cavity.

Ek= k-th atom interacting with the field.

C: beam of atoms sent into the cavity.
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Motivation

Physics: One-atom maser (Walther et al ’85, Haroche et al ’92)

E1 E2

E4 · · ·

S

E3

S= one mode of the electromagnetic field in a cavity.

Ek= k-th atom interacting with the field.

C: beam of atoms sent into the cavity.

ideal RIQS as simple models (Vogel et al ’93, Wellens et al ’00)
random RIQS: some fluctuation in the various parameters (temperature,
interaction time, etc).
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The repeated interaction dynamics.

Data:

1 Full Hamiltonian: Hn = HS ⊗ 1lEn
+ 1lS ⊗ HEn

+ Vn.
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The repeated interaction dynamics.

Data:

1 Full Hamiltonian: Hn = HS ⊗ 1lEn
+ 1lS ⊗ HEn

+ Vn.

2 Initial state of S: density matrix ρ ∈ J1(HS).
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The repeated interaction dynamics.

Data:

1 Full Hamiltonian: Hn = HS ⊗ 1lEn
+ 1lS ⊗ HEn

+ Vn.

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of En: ρEn
= invariant state for the free dynamics of En,

e.g. Gibbs state at some inverse temperature βn.
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The repeated interaction dynamics.

Data:

1 Full Hamiltonian: Hn = HS ⊗ 1lEn
+ 1lS ⊗ HEn

+ Vn.

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of En: ρEn
= invariant state for the free dynamics of En,

e.g. Gibbs state at some inverse temperature βn.

After 0 interaction, the state of the total system is

ρtot

0 := ρ ⊗
⊗

k≥1

ρEk
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The repeated interaction dynamics.

Data:

1 Full Hamiltonian: Hn = HS ⊗ 1lEn
+ 1lS ⊗ HEn

+ Vn.

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of En: ρEn
= invariant state for the free dynamics of En,

e.g. Gibbs state at some inverse temperature βn.

After 1 interaction, the state of the total system is

ρtot

1 := e−iτ1H1

(
ρ ⊗

⊗

k≥1

ρEk

)
eiτ1H1
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The repeated interaction dynamics.

Data:

1 Full Hamiltonian: Hn = HS ⊗ 1lEn
+ 1lS ⊗ HEn

+ Vn.

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of En: ρEn
= invariant state for the free dynamics of En,

e.g. Gibbs state at some inverse temperature βn.

After 2 interactions, the state of the total system is

ρtot

2 := e−iτ2H2e−iτ1H1

(
ρ ⊗

⊗

k≥1

ρEk

)
eiτ1H1eiτ2H2
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The repeated interaction dynamics.

Data:

1 Full Hamiltonian: Hn = HS ⊗ 1lEn
+ 1lS ⊗ HEn

+ Vn.

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of En: ρEn
= invariant state for the free dynamics of En,

e.g. Gibbs state at some inverse temperature βn.

After n interactions, the state of the total system is

ρtot

n
:= e−iτnHn · · · e−iτ2H2e−iτ1H1

(
ρ ⊗

⊗

k≥1

ρEk

)
eiτ1H1eiτ2H2 · · · eiτnHn .
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Some questions about RIQS

Long time behaviour:

Existence of the limit lim
n→+∞

Tr(ρtot

n
(AS ⊗ 1l)) = ρ+(AS)?
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Long time behaviour:

Existence of the limit lim
n→+∞

Tr(ρtot

n
(AS ⊗ 1l)) = ρ+(AS)?

Does ρ+ depend on ρ, the initial state of S?
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Some questions about RIQS

Long time behaviour:

Existence of the limit lim
n→+∞

Tr(ρtot

n
(AS ⊗ 1l)) = ρ+(AS)?

Does ρ+ depend on ρ, the initial state of S?

Thermodynamical properties: if C is initially in thermal equilibrium at
temperature β−1

do we have ρ+(·) = Tr(e−β∗
HS ·)

Tr(e−β∗HS )
, i.e. thermal relaxation?
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Some questions about RIQS

Long time behaviour:

Existence of the limit lim
n→+∞

Tr(ρtot

n
(AS ⊗ 1l)) = ρ+(AS)?

Does ρ+ depend on ρ, the initial state of S?

Thermodynamical properties: if C is initially in thermal equilibrium at
temperature β−1

do we have ρ+(·) = Tr(e−β∗
HS ·)

Tr(e−β∗HS )
, i.e. thermal relaxation?

energy variation? entropy production? 2nd law of thermodynamics?
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Some questions about RIQS

Long time behaviour:

Existence of the limit lim
n→+∞

Tr(ρtot

n
(AS ⊗ 1l)) = ρ+(AS)?

Does ρ+ depend on ρ, the initial state of S?

Thermodynamical properties: if C is initially in thermal equilibrium at
temperature β−1

do we have ρ+(·) = Tr(e−β∗
HS ·)

Tr(e−β∗HS )
, i.e. thermal relaxation?

energy variation? entropy production? 2nd law of thermodynamics?

Examples?
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Some questions about RIQS

Long time behaviour:

Existence of the limit lim
n→+∞

Tr(ρtot

n
(AS ⊗ 1l)) = ρ+(AS)?

Does ρ+ depend on ρ, the initial state of S?

Thermodynamical properties: if C is initially in thermal equilibrium at
temperature β−1

do we have ρ+(·) = Tr(e−β∗
HS ·)

Tr(e−β∗HS )
, i.e. thermal relaxation?

energy variation? entropy production? 2nd law of thermodynamics?

Examples?
2 situations: ideal (identical interactions)
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Some questions about RIQS

Long time behaviour:

Existence of the limit lim
n→+∞

Tr(ρtot

n
(AS ⊗ 1l)) = ρ+(AS)?

Does ρ+ depend on ρ, the initial state of S?

Thermodynamical properties: if C is initially in thermal equilibrium at
temperature β−1

do we have ρ+(·) = Tr(e−β∗
HS ·)

Tr(e−β∗HS )
, i.e. thermal relaxation?

energy variation? entropy production? 2nd law of thermodynamics?

Examples?
2 situations: ideal (identical interactions), random.

L. Bruneau Random repeated interaction quantum systems



Introduction
Study of the dynamics

Thermodynamics properties

The reduced dynamics map

We are interested in the system S (expactation values of observables of
the form AS ⊗ 1l).
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The reduced dynamics map

We are interested in the system S (expactation values of observables of
the form AS ⊗ 1l).At “time” n the state of S is given by

ρn = TrC(ρtot

n
),

i.e. satisfies

∀A ∈ B(HS), Tr
(
ρtot

n
A ⊗ 1lC

)
= TrHS

(ρnA) .
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The reduced dynamics map

We are interested in the system S (expactation values of observables of
the form AS ⊗ 1l).At “time” n the state of S is given by

ρn = TrC(ρtot

n
),

i.e. satisfies

∀A ∈ B(HS), Tr
(
ρtot

n
A ⊗ 1lC

)
= TrHS

(ρnA) .

If S is in the state ρ before the n-th interaction, right after it it is in the
state

Ln(ρ) := TrEn

(
e−iτnHnρ ⊗ ρEn

eiτnHn

)
,

where TrEn
denotes the partial trace over En.
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The reduced dynamics map

We are interested in the system S (expactation values of observables of
the form AS ⊗ 1l).At “time” n the state of S is given by

ρn = TrC(ρtot

n
),

i.e. satisfies

∀A ∈ B(HS), Tr
(
ρtot

n
A ⊗ 1lC

)
= TrHS

(ρnA) .

If S is in the state ρ before the n-th interaction, right after it it is in the
state

Ln(ρ) := TrEn

(
e−iτnHnρ ⊗ ρEn

eiτnHn

)
,

where TrEn
denotes the partial trace over En.

The “repeated interaction” structure induces a markovian behaviour:

∀n, ρn = Ln(ρn−1).
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The reduced dynamics map

We are interested in the system S (expactation values of observables of
the form AS ⊗ 1l).At “time” n the state of S is given by

ρn = TrC(ρtot

n
),

i.e. satisfies

∀A ∈ B(HS), Tr
(
ρtot

n
A ⊗ 1lC

)
= TrHS

(ρnA) .

If S is in the state ρ before the n-th interaction, right after it it is in the
state

Ln(ρ) := TrEn

(
e−iτnHnρ ⊗ ρEn

eiτnHn

)
,

where TrEn
denotes the partial trace over En.

The “repeated interaction” structure induces a markovian behaviour:

∀n, ρn = Ln(ρn−1).

=⇒ We shall understand Ln ◦ · · · ◦ L1 as n → ∞.
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Spectrum of a RDM

The Ln are completely positive and trace preserving maps on J1(HS).

General case:

Spec(Ln) ⊂ {z ∈ C | |z | ≤ 1},
1 is an eigenvalue.

1
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Spectrum of a RDM

The Ln are completely positive and trace preserving maps on J1(HS).

General case:

Spec(Ln) ⊂ {z ∈ C | |z | ≤ 1},
1 is an eigenvalue.

1

Uncoupled case:

If Vn = 0, Ln(·) = e−iτnHS · eiτnHS ,
⇒ Spec(Ln) = {eiτn(λk−λl )}, λk ∈ Spec(HS),

1 is degenerate (dim(HS) times).

1
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Ideal RIQS: Ln ≡ L

Assumption (E):

Spec(Ln) ∩ {z ∈ C | |z | = 1} = {1},
1 is a simple eigenvalue.

1
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Ideal RIQS: Ln ≡ L

Assumption (E):

Spec(Ln) ∩ {z ∈ C | |z | = 1} = {1},
1 is a simple eigenvalue.

1

Theorem

If (E) is satisfied, there exist C , α > 0 s.t. for any initial state ρ

‖Ln(ρ) − ρ+‖1 ≤ Ce−αn, ∀n ∈ N,

where ρ+ is the (unique) invariant state of L.

Note that ρ+ does not depend on the initial state of S.
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A simple example: spin-spin model

S and En are 2-level systems, i.e. HS = HEn
≡ HE = C

2, with

energy levels {0,ES}, resp. {0,EE}, i.e. H# =

(
0 0
0 E#

)
.
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A simple example: spin-spin model

S and En are 2-level systems, i.e. HS = HEn
≡ HE = C

2, with

energy levels {0,ES}, resp. {0,EE}, i.e. H# =

(
0 0
0 E#

)
.

Vn = λ(aS ⊗ a∗
n

+ a∗S ⊗ an) where a# =

(
0 1
0 0

)
.
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A simple example: spin-spin model

S and En are 2-level systems, i.e. HS = HEn
≡ HE = C

2, with

energy levels {0,ES}, resp. {0,EE}, i.e. H# =

(
0 0
0 E#

)
.

Vn = λ(aS ⊗ a∗
n

+ a∗S ⊗ an) where a# =

(
0 1
0 0

)
.

ρEn
is a Gibbs state, i.e. ρEn

= ρβn,E := e−βnHE/Tr(e−βnHE ) with
βn ≡ β.
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A simple example: spin-spin model

S and En are 2-level systems, i.e. HS = HEn
≡ HE = C

2, with

energy levels {0,ES}, resp. {0,EE}, i.e. H# =

(
0 0
0 E#

)
.

Vn = λ(aS ⊗ a∗
n

+ a∗S ⊗ an) where a# =

(
0 1
0 0

)
.

ρEn
is a Gibbs state, i.e. ρEn

= ρβn,E := e−βnHE/Tr(e−βnHE ) with
βn ≡ β.

Explicit computation: L satisfies (E) iff τ /∈ TN with
T = 2π/

√
(ES − EE)2 + 4λ2 (non-resonance condition).
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A simple example: spin-spin model

S and En are 2-level systems, i.e. HS = HEn
≡ HE = C

2, with

energy levels {0,ES}, resp. {0,EE}, i.e. H# =

(
0 0
0 E#

)
.

Vn = λ(aS ⊗ a∗
n

+ a∗S ⊗ an) where a# =

(
0 1
0 0

)
.

ρEn
is a Gibbs state, i.e. ρEn

= ρβn,E := e−βnHE/Tr(e−βnHE ) with
βn ≡ β.

Explicit computation: L satisfies (E) iff τ /∈ TN with
T = 2π/

√
(ES − EE)2 + 4λ2 (non-resonance condition).

Proposition

If τ /∈ TN, lim
n→∞

Tr(ρnAS) = ρβ∗,S(AS) (exponentially fast) where

β∗ = βEE/ES .

L. Bruneau Random repeated interaction quantum systems



Introduction
Study of the dynamics

Thermodynamics properties

Random RIQS: L = L(ω)

Fluctuations w.r.t. ideal situation: L = L(ω0) random variable with
values in RDM (CP, trace preserving maps on HS) over a probability
space (Ω0,F ,p).
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Random RIQS: L = L(ω)

Fluctuations w.r.t. ideal situation: L = L(ω0) random variable with
values in RDM (CP, trace preserving maps on HS) over a probability
space (Ω0,F ,p).

Product of i.i.d. RDMs: Ω = ΩN
∗

0 , dP =
∏

n≥1 dp and ω = (ωn)n≥1.
⇒ Understand Φ(n, ω) = L(ωn) ◦ · · · ◦ L(ω1).
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Random RIQS: L = L(ω)

Fluctuations w.r.t. ideal situation: L = L(ω0) random variable with
values in RDM (CP, trace preserving maps on HS) over a probability
space (Ω0,F ,p).

Product of i.i.d. RDMs: Ω = ΩN
∗

0 , dP =
∏

n≥1 dp and ω = (ωn)n≥1.
⇒ Understand Φ(n, ω) = L(ωn) ◦ · · · ◦ L(ω1).

A simple case: L(ω0) is a rank one projection, i.e. for any state ρ,

(L(ω0))(ρ) = ρ+(ω0).
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Random RIQS: L = L(ω)

Fluctuations w.r.t. ideal situation: L = L(ω0) random variable with
values in RDM (CP, trace preserving maps on HS) over a probability
space (Ω0,F ,p).

Product of i.i.d. RDMs: Ω = ΩN
∗

0 , dP =
∏

n≥1 dp and ω = (ωn)n≥1.
⇒ Understand Φ(n, ω) = L(ωn) ◦ · · · ◦ L(ω1).

A simple case: L(ω0) is a rank one projection, i.e. for any state ρ,

(L(ω0))(ρ) = ρ+(ω0).

⇒ For any n, ρω
n

= (Φ(n, ω))(ρ) = ρ+(ωn).
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Random RIQS: L = L(ω)

Fluctuations w.r.t. ideal situation: L = L(ω0) random variable with
values in RDM (CP, trace preserving maps on HS) over a probability
space (Ω0,F ,p).

Product of i.i.d. RDMs: Ω = ΩN
∗

0 , dP =
∏

n≥1 dp and ω = (ωn)n≥1.
⇒ Understand Φ(n, ω) = L(ωn) ◦ · · · ◦ L(ω1).

A simple case: L(ω0) is a rank one projection, i.e. for any state ρ,

(L(ω0))(ρ) = ρ+(ω0).

⇒ For any n, ρω
n

= (Φ(n, ω))(ρ) = ρ+(ωn).

Consequence: unless ρ+(ω0) ≡ ρ+, no convergence in the usual sense
(local fluctuations), but in the ergodic mean

lim
N→∞

1

N

N∑

n=1

ρω
n

= E(ρ+), a.e. ω.
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Random RIQS: L = L(ω)

Theorem

If p(L(ω0) satisfies (E)) > 0, then

1 E(L) satisfies (E),

2 For any ρ ∈ J1(HS), lim
N→∞

1

N

N∑

n=1

(Φ(n, ω))(ρ) = ρ+, a.e. ω ∈ Ω,

where ρ+ is the unique invariant state of E(L).
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Random RIQS: L = L(ω)

Theorem

If p(L(ω0) satisfies (E)) > 0, then

1 E(L) satisfies (E),

2 For any ρ ∈ J1(HS), lim
N→∞

1

N

N∑

n=1

(Φ(n, ω))(ρ) = ρ+, a.e. ω ∈ Ω,

where ρ+ is the unique invariant state of E(L).

Theorem

If p(L(ω0) satisfies (E)) > 0 and there exists ρ+ s.t. L(ω0)(ρ+) = ρ+ for
a.e. ω0, i.e. there is a deterministic invariant state, then

1 E(L) satisfies (E),

2 There exists α > 0 s.t. for any ρ ∈ J1(HS) and for a.e. ω ∈ Ω,
there exists C (ω) > 0

‖(Φ(n, ω))(ρ) − ρ+‖1 ≤ C (ω)e−αn, ∀n ∈ N.
L. Bruneau Random repeated interaction quantum systems
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Back to the example

Recall:
1 L satisfies (E) iff τ /∈ TN with T = 2π/

√
(ES − EE)2 + 4λ2,

2 ρβ∗,S is an invariant state of L, with β∗ = βEE/ES .
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Recall:
1 L satisfies (E) iff τ /∈ TN with T = 2π/

√
(ES − EE)2 + 4λ2,

2 ρβ∗,S is an invariant state of L, with β∗ = βEE/ES .

We consider 2 situations:
1 the interaction time is random: τn = τ(ωn),
2 the temperature of the En is random: βn = β(ωn).
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Back to the example

Recall:
1 L satisfies (E) iff τ /∈ TN with T = 2π/

√
(ES − EE)2 + 4λ2,

2 ρβ∗,S is an invariant state of L, with β∗ = βEE/ES .

We consider 2 situations:
1 the interaction time is random: τn = τ(ωn),
2 the temperature of the En is random: βn = β(ωn).

Theorem

1) Suppose βn ≡ β and τ(ω0) > 0 is a random variable satisfying
p(τ(ω0) /∈ TN) > 0. Then there exists α > 0 s.t. for any ρ ∈ J1(HS)
and for a.e. ω ∈ Ω, there exists C (ω) > 0

‖ρω
n
− ρβ∗,S‖1 ≤ C (ω)e−αn, ∀n ∈ N.
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Back to the example

Recall:
1 L satisfies (E) iff τ /∈ TN with T = 2π/

√
(ES − EE)2 + 4λ2,

2 ρβ∗,S is an invariant state of L, with β∗ = βEE/ES .

We consider 2 situations:
1 the interaction time is random: τn = τ(ωn),
2 the temperature of the En is random: βn = β(ωn).

Theorem

1) Suppose βn ≡ β and τ(ω0) > 0 is a random variable satisfying
p(τ(ω0) /∈ TN) > 0. Then there exists α > 0 s.t. for any ρ ∈ J1(HS)
and for a.e. ω ∈ Ω, there exists C (ω) > 0

‖ρω
n
− ρβ∗,S‖1 ≤ C (ω)e−αn, ∀n ∈ N.

2) Suppose τn ≡ τ /∈ TN and β(ω) is a random variable. Then for any
ρ ∈ J1(HS),

lim
N→∞

N∑

n=1

ρω
n

= E(ρβ∗(ω),S).
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Energy variation

During the n-th interaction the energy is constant, formally given by

Tr
(
ρtot

n−1Hn

)
= Tr

(
ρtot

n
Hn

)
.
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Energy variation

During the n-th interaction the energy is constant, formally given by

Tr
(
ρtot

n−1Hn

)
= Tr

(
ρtot

n
Hn

)
.

When one switches from interaction n to interaction n + 1, there is an
energy jump:

δEn = Tr
(
ρtot

n
Hn+1

)
− Tr

(
ρtot

n
Hn

)
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During the n-th interaction the energy is constant, formally given by

Tr
(
ρtot

n−1Hn

)
= Tr

(
ρtot

n
Hn

)
.

When one switches from interaction n to interaction n + 1, there is an
energy jump:

δEn = Tr
(
ρtot

n
Hn+1

)
− Tr

(
ρtot

n
Hn

)
= Tr

(
ρtot

n
Vn+1

)
− Tr

(
ρtot

n
Vn

)
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Energy variation

During the n-th interaction the energy is constant, formally given by

Tr
(
ρtot

n−1Hn

)
= Tr

(
ρtot

n
Hn

)
.

When one switches from interaction n to interaction n + 1, there is an
energy jump:

δEn = Tr
(
ρtot

n
Hn+1

)
− Tr

(
ρtot

n
Hn

)
= Tr

(
ρtot

n
Vn+1

)
− Tr

(
ρtot

n
Vn

)

= TrS,En+1
((Ln ◦ · · · ◦ L1(ρ) ⊗ ρEn+1

)Vn+1) − Tr
(
ρtot

n−1(e
iτnHnVne

−iτnHn)
)

L. Bruneau Random repeated interaction quantum systems



Introduction
Study of the dynamics

Thermodynamics properties

Energy variation

During the n-th interaction the energy is constant, formally given by

Tr
(
ρtot

n−1Hn

)
= Tr

(
ρtot

n
Hn

)
.

When one switches from interaction n to interaction n + 1, there is an
energy jump:

δEn = Tr
(
ρtot

n
Hn+1

)
− Tr

(
ρtot

n
Hn

)
= Tr

(
ρtot

n
Vn+1

)
− Tr

(
ρtot

n
Vn

)

= TrS,En+1
((Ln ◦ · · · ◦ L1(ρ) ⊗ ρEn+1

)Vn+1) − Tr
(
ρtot

n−1(e
iτnHnVne

−iτnHn)
)

= TrS,En+1
((Ln ◦ · · · ◦ L1(ρ) ⊗ ρEn+1

)Vn+1)

−TrS,En

(
(Ln−1 ◦ · · · ◦ L1(ρ) ⊗ ρEn

)(eiτnHnVne
−iτnHn)

)
.
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Energy variation

During the n-th interaction the energy is constant, formally given by

Tr
(
ρtot

n−1Hn

)
= Tr

(
ρtot

n
Hn

)
.

When one switches from interaction n to interaction n + 1, there is an
energy jump:

δEn = Tr
(
ρtot

n
Hn+1

)
− Tr

(
ρtot

n
Hn

)
= Tr

(
ρtot

n
Vn+1

)
− Tr

(
ρtot

n
Vn

)

= TrS,En+1
((Ln ◦ · · · ◦ L1(ρ) ⊗ ρEn+1

)Vn+1) − Tr
(
ρtot

n−1(e
iτnHnVne

−iτnHn)
)

= TrS,En+1
((Ln ◦ · · · ◦ L1(ρ) ⊗ ρEn+1

)Vn+1)

−TrS,En

(
(Ln−1 ◦ · · · ◦ L1(ρ) ⊗ ρEn

)(eiτnHnVne
−iτnHn)

)
.

In the ideal case, this rewrites

δEn = TrS,E ((Ln(ρ) ⊗ ρE)V ) − TrS,E

(
(Ln−1(ρ) ⊗ ρE)(eiτHV e−iτH)

)
.
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Energy variation

In the ideal case, one easily gets

Proposition

If Assumption (E) is satisfied,

dE+ := lim
n→∞

δEn = TrS,E

(
ρ+ ⊗ ρE (V − eiτHV e−iτH)

)
.
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Energy variation

In the ideal case, one easily gets

Proposition

If Assumption (E) is satisfied,

dE+ := lim
n→∞

δEn = TrS,E

(
ρ+ ⊗ ρE (V − eiτHV e−iτH)

)
.

In the random case we have, using

δEn = TrS,En+1
((Ln ◦ · · · ◦ L1(ρ) ⊗ ρEn+1

)Vn+1)

−TrS,En

(
(Ln−1 ◦ · · · ◦ L1(ρ) ⊗ ρEn

)(eiτnHnVne
−iτnHn)

)
,

Proposition

If p(L(ω0) satisfies (E)) > 0, then

dE+ := lim
N→∞

1

N

N∑

n=1

δEn = E
(
TrS,E

(
ρ+ ⊗ ρE (V − eiτHV e−iτH)

))
,

where ρ+ is the unique invariant state of E(L).
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Entropy production

We assume that the ρEn
are Gibbs states at inverse temperature βn.
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Thermodynamics properties

Entropy production

We assume that the ρEn
are Gibbs states at inverse temperature βn.

Fix a reference state ρS for S (e.g. the tracial state) and let

ρ0 = ρS ⊗
⊗

k≥1

ρEk
.

Relative entropy Ent(ρ|ρ0) = Tr(ρ log ρ − ρ log ρ0) ≥ 0.
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Entropy production

We assume that the ρEn
are Gibbs states at inverse temperature βn.

Fix a reference state ρS for S (e.g. the tracial state) and let

ρ0 = ρS ⊗
⊗

k≥1

ρEk
.

Relative entropy Ent(ρ|ρ0) = Tr(ρ log ρ − ρ log ρ0) ≥ 0.

Theorem

1) Ideal case: if (E) is satisfied, then

dS+ := lim
n→∞

Ent(ρtot

n+1|ρ0) − Ent(ρtot

n
|ρ0) = βdE+.
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Entropy production

We assume that the ρEn
are Gibbs states at inverse temperature βn.

Fix a reference state ρS for S (e.g. the tracial state) and let

ρ0 = ρS ⊗
⊗

k≥1

ρEk
.

Relative entropy Ent(ρ|ρ0) = Tr(ρ log ρ − ρ log ρ0) ≥ 0.

Theorem

1) Ideal case: if (E) is satisfied, then

dS+ := lim
n→∞

Ent(ρtot

n+1|ρ0) − Ent(ρtot

n
|ρ0) = βdE+.

2) Random case: if p(L(ω0) satisfies (E)) > 0, then

dS+ := lim
n→∞

Ent(ρtot

n
|ρ0) − Ent(ρ|ρ0)

n

= E
(
β TrS,E

(
ρ+ ⊗ ρE (V − eiτHV e−iτH)

))
.

In particular, if β is not random we still have dS+ = βdE+.
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Thermodynamics of the spin-spin example

Recall T = 2π/
√

(ES − EE)2 + 4λ2, and let κ :=
16π2λ2EE

T 2
sin2

(πτ

T

)
.
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Thermodynamics of the spin-spin example

Recall T = 2π/
√

(ES − EE)2 + 4λ2, and let κ :=
16π2λ2EE

T 2
sin2

(πτ

T

)
.

We compute explicitly

dE+ = E

(
1

1 + e−βEE

)−1

× Cov

(
κ,

1

1 + e−βEE

)
,

dS+ = E

(
1

1 + e−βEE

)−1

× Cov

(
βκ,

1

1 + e−βEE

)
.
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Thermodynamics of the spin-spin example

Recall T = 2π/
√

(ES − EE)2 + 4λ2, and let κ :=
16π2λ2EE

T 2
sin2

(πτ

T

)
.

We compute explicitly

dE+ = E

(
1

1 + e−βEE

)−1

× Cov

(
κ,

1

1 + e−βEE

)
,

dS+ = E

(
1

1 + e−βEE

)−1

× Cov

(
βκ,

1

1 + e−βEE

)
.

In particular,

1 if only τ is random, dE+ = dS+ = 0,
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Thermodynamics of the spin-spin example

Recall T = 2π/
√

(ES − EE)2 + 4λ2, and let κ :=
16π2λ2EE

T 2
sin2

(πτ

T

)
.

We compute explicitly

dE+ = E

(
1

1 + e−βEE

)−1

× Cov

(
κ,

1

1 + e−βEE

)
,

dS+ = E

(
1

1 + e−βEE

)−1

× Cov

(
βκ,

1

1 + e−βEE

)
.

In particular,

1 if only τ is random, dE+ = dS+ = 0,

2 if only β is random, dE+ = 0 while

dS+ = κE

(
1

1 + e−βEE

)−1

× Cov

(
β,

1

1 + e−βEE

)
≥ 0

and vanishes iff β(ω) ≡ β a.s.
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