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Abstract. We present a systematic effective method to construct coarse fundamental
domains for the action of the Picard modular groups PU(2, 1,Od) where Od has class
number one, i.e. d = 1, 2, 3, 7, 11, 19, 43, 67, 163. The computations can be performed
quickly up to the value d = 19. As an application of this method, we classify conjugacy
classes of torsion elements, deduce short presentations for the groups, and construct neat
subgroups of small index.

1. Introduction

The first goal of this paper is to study conjugacy classes of torsion elements in some
Picard modular groups, which we write as Γd = PU(2, 1,Od), where Od is the ring of

algebraic integers in Q(i
√
d), and d is a square-free positive integer. We will mainly treat

the cases where Od is a Euclidean domain, i.e. for d = 1, 2, 3, 7, 11; our methods are valid
more generally in cases where Od is a unique factorization domain, which is equivalent to
Γd having exactly one cusp. There are four value of d where Γd has one cusp but Od is not
Euclidean, namely d = 19, 43, 67 and 163; even though our code runs in principle for these
values, the computations tend to be very lengthy, and we only went through with the case
d = 19.

For d = 1 and 3, most of what we do can be found by gathering several papers in the
literature (see [13], [12], [8] and also [17]). For d = 1, 3, 7, presentations were obtained
by Mark-Paupert [21] using coarse fundamental domains coming from covering depth es-
timates. The first author explained in [10] how to push their method further in order to
study torsion in Γ7; at the time of that paper, we had not written computer code to handle
more general values of d, which is now settled for 1-cusped Picard modular groups.

For d = 2 and 11, presentations were worked out by Polletta [26] (without mention of
the classification of conjugacy classes of torsion elements).

Matthew Stover pointed out to us that (conjugacy classes of) torsion elements for all
Picard modular groups Γd were listed by Feustel (see [15], and also [14], [17]). Feustel’s
method is very different from ours, and at the time of his paper no explicit presentation for
these groups was known, so his work cannot be used directly for studying general torsion-
free subgroups. In particular, without our work, it would not at all be obvious to relate
Feustel’s work to the presentations worked out by Mark-Paupert and Polletta.

As far as we know, no explicit presentation for Γd has appeared in the literature for
d > 11, so our results for d = 19 are entirely new. For d = 43 and 67, we were unable to
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go through with all the computations, but we did obtain explicit presentations (see [9]).
For d = 163 even the covering depth is unknown at present.

We will give two applications of our classification of isotropy groups for the action of Γd

on the complex hyperbolic plane. One is the determination of short presentations for these
groups, using presentations for isotropy groups (see sections 9 and 10).

As a second application, we explain how to use group-theory software (GAP or Magma)
to find explicit neat subgroups of Γd of small index, see section 8. Recall that a neat lattice
in PU(2, 1) is a torsion-free subgroup whose cusps groups (maximal parabolic subgroups)
can be realized by unipotent groups. The “torsion-free” requirement is equivalent to the
fact that group acts without fixed points on the complex 2-ball (i.e. the quotient is a smooth
complex hyperbolic surface). The second requirement is equivalent to the existence of a
smooth compactification of the quotient by elliptic curves (see [3] for arithmetic lattices
and [22] for the general case).

Of course every lattice contains many neat subgroups. Indeed, by a classical result of
Selberg (see [28] or [1]), one can take subgroups obtained as the congruence kernel modulo
a suitable prime ideal (these are called principal congruence subgroups). Note however that
torsion-free/neat congruence subgroups in Γd tend to have fairly large index; we would like
to find neat subgroups of smallest possible index.

The basic method we use in order to obtain subgroups of “small” index is to start with a
given neat normal subgroup K ⊂ Γd, and to try and enlarge it by replacing it by φ−1(S) for
some non-trivial subgroup S ⊂ F = Γd/K (see section 8 for more details). In order to get
the initial normal subgroup, we use either computational group-theory software (Magma),
or congruence subgroups.

A basic lower bound for the index of a torsion-free subgroup is deduced from the fact
that the index of a torsion-free subgroup must be a multiple of the least common multiple
of the orders finite subgroups (see Proposition (2.1) in [11] for instance). We will refer to
this as the obvious lower bound.

Note that for subgroups of PSL2(R) = PU(1, 1), the obvious lower bound is essentially
(i.e. up to a factor of 2) the minimal index of a torsion-free subgroup, see [11]. For
PSL2(C) = Isom(H3

R) however, there are lattices where the ratio between the minimal
index and the obvious lower bound is aribitrarily large (see [19]). In general very little is
known about the minimal index of torsion-free subgroups of lattices.

The obvious lower bound is actually realized for d = 1 and 3 (at least for d = 3, this is
well-known to experts, see [24], [30]). For other values of d, we could only find subgroups
of index strictly larger than the obvious lower bound (see Table 15). In fact for d = 2 and
7, the index we found is twice the obvious lower bound, whereas for d = 11 and 19, the
index of the neat subgroups we found is quite a bit larger than the obvious lower bound
(note however that in these last cases, Γd seems to contain too many subgroups for our
methods to be efficient).
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for useful discussions related to this project. The second author is grateful for the support
of China Scholarship Council (CSC Grant No. 202006130069) and the encouragement from
Yueping Jiang. She also grateful for the hospitality of the Institut Fourier, where most of
this work was done. Finally, the authors thank the anonymous referees, whose suggestions
helped improving earlier versions of the manuscript.

Conflict of interest: The authors declare that they have no conflict of interest in pub-
lishing this work.

2. Background and notation

2.1. The complex hyperbolic plane. In this section we review basics of complex hy-
perbolic geometry, using notation close to [21], [10]. We refer to [16] for more detail.

On the complex vector space V = C3, we define the Hermitian form 〈v, w〉 = w∗Jv,
where

J =





0 0 1
0 1 0
1 0 0



 .

Note that this Hermitian form has signature (2, 1), so the unitary group U(J) = {A ∈
GL(V ) : A∗JA = J} is isomorphic to U(2, 1).

We write p : V \ {0} → P(V ) for projectivization, i.e. p(v) = Cv is the complex line
spanned by v, and write V− = {v ∈ V : 〈v, v〉 < 0}, V0 = {v ∈ V : 〈v, v〉 = 0}. Vectors in
V− (resp. V0) are called negative (resp. isotropic).

As a set the complex hyperbolic plane H2
C is given by p(V−), which clearly admits an

action of PU(J) (namely the one induced by the action of GL(V ) on V , which preserves
V−).

There is a unique (up to scaling) invariant Kähler metric on H2
C, and it has constant

negative holomorphic sectional curvature. In this paper, we will not need the expression
of that Kähler metric, but we will use the formula for the corresponding Riemannian
distance function. When the holomorphic sectional curvature is normalized to be −1, the
Riemannian distance ρ(x, t) between x = p(v) and y = p(w) is given by

cosh

(

1

2
ρ(x, y)

)

=
| 〈v, w〉 |

√

〈v, v〉 〈w,w〉
.

The set p(V0) is usually called the boundary of the complex hyperbolic plane, and we
denote it by ∂H2

C. The points of ∂H2
C are called ideal points.

For every v = (v1, v2, v3) ∈ V such that v3 6= 0, the complex line Cv is spanned by a
unique vector of the form (z1, z2, 1), namely (v1/v3, v2/v3, 1); the pair (z1, z2) then gives
affine coordinates such that the complex hyperbolic plane is described as the subset of
(z1, z2) ∈ C2 satisfying

2ℜ(z1) + |z2|2 < 0,

a region which is known as the Siegel half space.
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When v3 = 0, the only vectors v = (v1, v2, 0) that are in V− ∪ V0 are proportional to
q∞ = (1, 0, 0), and it is natural to call q∞ the ”point at infinity” for the above affine
coordinates. In what follows, with a slight abuse of notation, we will write q∞ instead of
p(q∞).

Another important set of coordinates are horospherical coordinates, obtained by studying
the stabilizer of (1, 0, 0) in U(J). It is easy to check that unipotent upper triangular
matrices preserve J if and only if they are of the form

(1) T (z, t) =





1 −z̄ −|z|2+it
2

0 1 z
0 0 1





for some z ∈ C, t ∈ R. Moreover, these matrices form a subgroup of U(J), in fact we have
T (z, t)T (z′, t′) = T (z + z′, t+ t′ + 2ℑ(zz̄′)).

The corresponding group law on C× R

(z, t) ⋆ (z′, t′) = (z + z′, t+ t′ + 2ℑ(zz̄′))
is often call the Heisenberg group law. The matrices T (z, t) are called Heisenberg trans-
lations. Note that the center of the Heisenberg group is given by {0} × R, and these are
sometimes called vertical translations.

The above group of unipotent matrices acts simply transitively on ∂H2
C \ {q∞}. This

suggests using (z, t) ∈ C × R as coordinates on ∂H2
C \ {q∞}. These in fact extend to

coordinates on H2
C, by writing (z1, z2) = (−|z|2+it−u

2
, z), where z ∈ C, t, u ∈ R. Note that

the point (−|z|2+it−u
2

, z) is in H2
C (resp. ∂H2

C) if and only if u > 0 (resp. u = 0). The
parameter u is called ”horospherical height”, and the level sets u = u0 (resp. the sup-level
sets u ≥ u0) are called horospheres (resp. horoballs) based at q∞.

The full parabolic stabilizer of q∞ = (1, 0, 0) is larger than the above unipotent subgroup,
it is generated by the unipotent stabilizer and the subgroup of Heisenberg rotations, which
are given by the diagonal matrices

Rw =





1 0 0
0 w 0
0 0 1





where w ∈ C, |w| = 1. The matrices of the form RwT (z, t) with w 6= 1 are called twist
parabolic elements.

Heisenberg translations and rotations preserve the Cygan metric, which is defined for
(z, t) and (z′, t′) ∈ C× R by:

(2)
dC((z, t), (z

′, t′)) =
∣

∣|z − z′|4 + |t− t′ + 2ℑ(zz′)|2
∣

∣

1/4

= |2〈ψ(z, t, 0), ψ(z′, t′, 0)〉|1/2,
where

ψ(z, t, u) =





(−|z|2 + it− u)/2
z
1



 .
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The Cygan metric is the restriction to C×R of the extended Cygan metric, which is defined
for (z, t, u) and (z′, t′, u′) ∈ C× R× R≥0 by

dCy((z, t, u), (z
′, t′, u′)) =

∣

∣(|z − z′|2 + |u− u′|)2 + |t− t′ + 2ℑ(zz′)|2
∣

∣

1/4
.

When at least one of u, u′ is 0, we get:

dCy((z, t, u), (z
′, t′, u′)) = |2〈ψ(z, t, u), ψ(z′, t′, u′)〉|1/2.

Given A ∈ U(2, 1), we define the isometric sphere of A to be given by

I(A) = {p(V ) ∈ H2
C : |〈V, q∞〉| = |〈V,A(q∞)〉|}.

Definition 2.1. Let Γ ⊂ PU(J) be a discrete subgroup. The Ford domain for Γ is defined
by

FΓ =
{

p(x) ∈ H2
C : | 〈x, q∞〉 | ≤ | 〈x,Aq∞〉 | for all A ∈ Γ

}

.

It is a standard fact that FΓ is a fundamental domain for the action of Γ modulo the
action of the stabilizer StabΓ(q∞), in the sense that its images under the group tile H2

C and
γFΓ ∩ FΓ has non-empty interior if and only if γ fixes q∞ (see [4] for instance). In order
to get an actual fundamental domain, we need to intersect FΓ with a fundamental domain
for the action of StabΓ(q∞).

Note that it can be delicate to determine the combinatorics of FΓ explicitly, and in
fact the point of the methods developed in [21] is to avoid working out the combinatorial
structure of the Ford domain.

It turns out (see Proposition 4.3 of [20]) that the isometric sphere of a group element is
actually a sphere for the Cygan metric, whose radius and center can be obtained from a
matrix representative, as stated in Lemma 2.1.

Lemma 2.1. Let A ∈ U(2, 1), and suppose q∞ is not fixed by A. Then I(A) is equal to

the extended Cygan sphere SA with center A(q∞) and radius
√

2/|A3,1|.
From this, it also follows that the Ford domain FΓ can also be thought of as the inter-

section of the exteriors of the Cygan spheres SA for all elements A ∈ Γ not fixing the point
at infinity.

2.2. Picard modular groups. In this section, we let d > 0 be a square-free integer, and
write Kd = Q(i

√
d), Od for the ring of algebraic integers in Kd. Recall that Od = {a+ bτd :

a, b ∈ Z}, where τd = 1+i
√
d

2
if d ≡ 3 mod 4, and τd = i

√
d otherwise.

Recall that for most values of d, the only units in Od are ±1; the only exceptions are
the cases d = 1 (where the units are the 4-th roots of unity) and d = 3 (where units are
the 6-th roots of unity).

We now consider U(J,Od) = U(J) ∩ GL3(Od), and write Γd = PU(J,Od). These are
often called Picard modular groups.

It follows from a very general result of Borel-Harish Chandra [6] that Γd is a lattice in
PU(J), i.e. the quotient Γd\H2

C has finite volume. It follows from thick-thin decomposition
that the quotient has finitely many ends, the ends corresponding to conjugacy classes of
maximal parabolic subgroups in Γd. Moreover these maximal parabolic subgroups are
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given by the stabilizers in Γd of Kd-rational points (see [5]), i.e. vectors in P(V ) that can
be represented by a vector in O3

d.
The following result is well known.

Theorem 2.1. (Feustel [18],Zink [31]) The number of ends of the quotient Γd\H2
C is given

by the class number of Kd.

From now on, we always assume that the class number of Kd is one, which is equivalent
to requiring that Od is a unique factorization domain. There are finitely many values of
d such that this happens, namely d = 1, 2, 3, 7, 11, 19, 43, 67, 163 (note that Od is in fact a
Euclidean ring if and only if = 1, 2, 3, 7, 11).

We briefly review some terminology from [21] (see also [10]). A vector v ∈ O3
d is called

primitive if for every 0 6= α ∈ Od,
1
α
v ∈ Od implies that α is a unit. Since we assume Od

is a unique factorization domain, this is equivalent to requiring that the greatest common
divisor of the standard coordinates v1, v2, v3 is 1. Moreover, every Kd-rational point in
P(V ) has a primitive representative, and that representative is unique up to multiplication
by a unit in Od.

This ensures that the following definition is meaningful.

Definition 2.2. The depth of an Od-rational point x is given by | 〈v, q∞〉 |2 = |v3|2, where
v is any primitive integral lift of x.

In fact the possible depths of rational points are precisely rational integers that are
norms in Od.

By extension, we will also talk about the depth of an element A ∈ U(J), defined to be
the depth of A(q∞). Note that A(q∞), which is the first column of A, is a primitive integral
vector (this can easily be seen from the fact that A∗JA = J).

Note in particular that, by Lemma 2.1, the depth N of an element A ∈ U(J) is closely
related to the radius of the Cygan sphere SA, which is given by (4/N)1/4.

The following result is easy to see from equation 2, we will use it throughout the paper
(see also Lemma 4 in [21]).

Proposition 2.2. Let A ∈ U(J) be an element of depth N . Then the maximum horo-

spherical height of the Cygan sphere SA is given by 2/
√
N .

2.3. Cusps of Picard modular groups. We write Γ
(∞)
d for the stabilizer of q∞ in Γd.

Explicit generators for Γ
(∞)
d as well as a fundamental domain for its action in C×R (hence

on any horosphere based at q∞) can be found in [25] (see also [21]), we simply state their
result without proof.

Note that the cases d = 1 and d = 3 are special because of the presence of non-trivial
units, and the case d = 2 is quite different from the cases d ≥ 7 because of the congruence
class of d mod 4.

The fundamental domain can be chosen to be a prism P = T × [0, 2
√
d] with base a

triangle T with vertices 0, λ, µ where λ ∈ R+. The values of λ, µ depend on d in the
following manner.
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d λ µ
1 1 1 + i

2 2 i
√
2

3 1 1+τ3
3

d=7,11,19,43,67,163 1 τd
Table 1. The base of the fundamental prism for the action is the triangle
with vertices 0, λ, µ.

Explicit generating sets for Γ
(∞)
d are described in [25]. The vertical generator is always

given by Tv = T (0, 2
√
d). We list non-vertical generators in Table 2, each generator being

given in the form T (z, t) for (z, t) ∈ C× R (see equation (1)). Note that these generating

d r Tr µ Tµ
1 2 T (2, 0) 1 + i T (1 + i, 0)

2 2 T (2, 0) i
√
2 T (i

√
2, 0)

3 1 T (1, i
√
3) τ3 T (τ3, i

√
3)

7 1 T (1, i
√
7) τ7 T (τ7, 0)

d = 11, 19, 43, 67, 163 1 T (1, i
√
d) τd T (τd, i

√
d)

Table 2. Non-vertical generators for Γ
(∞)
d .

sets do not give side-pairing maps for P , hence we briefly explain how to bring a given
point (z, t) ∈ C× R back to the fundamental prism P . In what follows, we refer to the C
(resp. R) factor as the horizontal (resp. vertical) factor.

The rough idea is to adjust the horizontal factor by using powers of Tr and Tµ, then
adjusting the vertical factor by using powers of Tv. We now briefly explain the details of
this procedure.

In order handle the horizontal factor, we write the parallelogram spanned by r and µ
as a union of explicit images of the triangular base T of P , as illustrated in Figure 1 for
various values of d. Write z = rα + βµ for some α, β ∈ R, and compute a = ⌊α⌋ and
b = ⌊β⌋ (note that we will only perform such floor/ceiling calculations when α, β are real
algebraic numbers, so the result can be certified with a computer).

By replacing (z, t) by the Heisenberg coordinates of T−b
µ T−a

r V (z, t), we may assume that

z is in the parallelogram spanned by r and µ. Applying a suitable element of Γ
(∞)
d if

necessary (see Figure 1), we may assume that z is in the triangle with vertices 0, λ, µ.

Finally, applying a suitable power of Tv, we can ensure that t is in the interval [0, 2
√
d].

Note that using the above method, we find one element of Γ
(∞)
d that brings our point to

P , but in general there can be several such elements. In fact, if the corresponding point
is in the interior of P , then the element is unique. If the image point is in the boundary

of P , even though there can be several choices of elements of Γ
(∞)
d , it is straightforward to

write a computer program that lists all possibilities.
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Id TµR
3

TrR TrTµR
2

0 r = 2λ = 1

µ = 1 + i

(a) d = 1

0 r = λ = 2

µ = i
√
2

Id

TrTµR

(b) d = 2

Id

TrR
2TµR

4

TµR
5 TrR

TrTµR
3

0 r = λ = 1

µ

(c) d = 3

Id

TrTτR

0 r = λ = 1

µ

(d) d ≥ 7

Figure 1. Cutting the basic parallelogram as a union of the triangle T ,
which is the base of the prism P .

Using the above, it is also easy to write code to check whether two points are equivalent

under the action of the standard cusp group Γ
(∞)
d , and if so, to list all elements of Γ

(∞)
d that

map one to the other. Note that this works for ideal points, but also for pairs of points
with the same horospherical height.

Finally, we mention that with the above method, we are able to list, for each depth N ,

a single representative of every Γ
(∞)
d -orbit of rational points of depth N (we will choose a

representative whose Heisenberg coordinates are inside the prism P ).

3. Estimates for cusp elements

As mentioned in [10], in order to make our methods effective, we will need a priori
bounds on the rational points that are useful to perform the computations. We will use
two basic bounds.

One is the list of Kd-rational points of depth ≤ N such that the corresponding Cygan
sphere intersects the prism P at a given horospherical height u0.

The other bound will be associated to pairs of Cygan spheres S1, S2 associated two
rational points p1, p2 in the prism P . Given two such points, we will need a bound on the
cusp elements α such that α(S1) intersects S2.

In both cases, rather than finding the precise list of cusp elements satisfying a property,
we will find an explicit finite set that contains all the cusp elements safisfying that property.



TORSION IN 1-CUSPED PICARD MODULAR GROUPS 9

Even though the precise list could in principle be deduced from that upper bound, this is
not efficient in practice, because it would take too much computation time.

We now sketch one way to get such bounds. We only explain the first bound, the second
one is similar; in fact, since we our methods only require to consider images of Cygan
spheres α(S1) that intersect both S2 and the prism P , we can use the first bound, and
then use a simple triangle inequality estimate for the second (if α(S1) ∩ S2 6= ∅, then
dCy(α(p1), p2) < r1 + r2, where rj is the Cygan radius of Sj).

For computational purposes, it is convenient to use slightly modified Heisenberg coor-
dinates, in order to get the Cygan spheres bounding the Ford domain to have equations
given by polynomials with Z-coefficients.

Accordingly, we scale the vertical Heisenberg coordinate by
√
d and use t̃ = t/

√
d. The

corresponding scaled Heisenberg coordinates (z, t̃) of v = (v0, v1, v2) then satisfy

(3)
v0
v2

= −|z|2+it̃
√
d

2
v1
v2

= z
.

In the following, we denote by SV the Cygan sphere corresponding to a given a primitive
integral vector V = (v0, v1, v2) ∈ Od. We wish to find restrictions on V under the hypothe-
ses that SV intersects the cone over P from q∞ at a given horospherical height u0. More
precisely, let u0 > 0 and consider the vertical translation Pu0 of P at horospherical height
u, i.e. the set of points in H2

C with horospherical coordinates (z, t, u0) such that (z, t) ∈ P .
Then we have the following.

Proposition 3.1. Let N ∈ N∗, and let u0 ∈ R, u0 > 0. Then there are only finitely many
primitive vectors V of depth N such that SV ∩Pu0 6= ∅. In fact, writing V = (v0, v1, v2) for
vj = aj + bjτd, the integers aj, bj ∈ Z must satisfy the bounds in equations (5), (6), (9).

Proof. The fact that |v2|2 = N gives a small list of possible values for v2 ∈ Od (note that
there are efficient algorithms for listing the numbers z ∈ Od such that |z|2 = N , even for
large N ; our computer code [9] uses the PARI command bnfintnorm).

In what follows, we fix one such value of v2 = a2+b2τd, and show how to find restrictions
on v1; then, given v2 and v1, we explain how to find restrictions on v0.

The general stream of arguments to show that there are finitely many possibilites for vj =
aj + bjτd, consists in first bounding bj , then bounding aj in terms of bj (the corresponding
bounds will also depend on vk for k < j).

Denote by c0 the center of the circumscribed circle of the base T of the prism P , which
has vertices 0, λ, µ (see Table 1). Note that

c0 =
λµ(λ̄− µ̄)

λ̄µ− λµ̄
,

and by definition any z ∈ T satisfies |z − c0| ≤ |c0|.
We write (z0, t̃0) for the (scaled) Heisenberg coordinates of the center of SV ; recall that

this Cygan sphere has radius (4/N)1/4. In particular, the equation of the corresponding
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Cygan ball can be written as

(4) (|z − z0|2 + u)2 + (
√
d(t̃− t̃0) + 2ℑ(zz̄0))2 ≤

4

N
,

with equality corresponding to the Cygan sphere.
If there is a point with horospherical coordinates (z, t̃, u) satisfying equation (4), then

|z − z0| ≤
√

2√
N

− u.

Moreover, if the point satisfies (z, t) ∈ P , then we have

|z0 − c0| ≤
√

2√
N

− u+ |c0|.

Equation (3) then gives

|v1 − c0v2| ≤ R,

where R =
√
N(
√

2√
N
− u+ |c0|).

Recall that v1 ∈ Od, so we can write v1 = a1 + b1τd for some a1, b1 ∈ Z. Writing
c0v2 = α1 + β1τd for α1, β1 ∈ Q, we have

|a1 − α1 + (b1 − β1)τd|2 = (a1 − α1 + (b1 − β1)ℜτd)2 + (b1 − β1)
2(ℑτd)2 ≤ R2,

in particular

(5) ⌈β1 −
R

ℑτd
⌉ ≤ b1 ≤ ⌊β1 +

R

ℑτd
⌋,

so we get a bound for b1. Given a b1 that satisfies this bound, we then have

(6) ⌈α1 − (b1 − β1)ℜτd −R⌉ ≤ a1 ≤ ⌊α1 − (b1 − β1)ℜτd +R⌋.
In particular there are finitely many possible values for v1. Now given v2, v1 ∈ Od

satisfying these bounds, we explain how to bound the possible values of v0. We wish to
use the fact that

(
√
d(t̃− t̃0) + 2ℑ(zz̄0))2 ≤

4

N
− u20,

for some z ∈ T .
We write z0 = x0λ+ y0µ, z = xλ + yµ for some x, y, x0, y0 ∈ R, and compute

ℑ(zz̄0) = (x0y − xy0)λℑµ.
Note that z is in T , which is the convex hull of 0, λ, µ so 0 ≤ x, y ≤ 1, hence we have

|ℑ(zz̄0)| ≤ (|x0|+ |y0|)λℑµ.
Now we get

−
√

4

N
− u20 − 2(|x0|+ |y0|)λℑµ ≤

√
d(t̃0 − t̃) ≤

√

4

N
− u20 + 2(|x0|+ |y0|)λℑµ,
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and t̃ ∈ [0, 2], so we get a bound

(7) t̃min
0 ≤ t̃0 ≤ t̃max

0 ,

where

t̃min
0 = −(

√

4
N
− u2 + 2(|x0|+ |y0|)λℑµ)/

√
d

t̃max
0 = 2 + (

√

4
N
− u2 + 2(|x0|+ |y0|)λℑµ)/

√
d

Note however that t̃0 is not an integer, so we need to work a little more to get an effective
method.

We now use equation (3), which relates t̃0 to v0 = a0 + b0τd (a0, b0 ∈ Z). Taking the real
and imaginary parts of both sides of the equation

a0 + b0τd = v2

(

−|z0|2 + it̃0
√
d

2

)

,

we get

(8)
a0 + b0ℜτd = −1

2
|z0|2ℜv2 − 1

2
t̃0
√
dℑv2

b0ℑτd = −1
2
|z0|2ℑv2 + 1

2
t̃0
√
dℜv2

If ℜv2 6= 0, the second line of equation (8) can be solved to t̃0, hence we get

(9) t̃min
0 ≤ b0ℑτd + 1

2
|z0|2ℑv2

1
2

√
dℜv2

≤ t̃max
0 ,

which in turn gives us a bound for b0.
Similarly, the first equation (8) can be solved for t̃0 (at least when ℑv2 6= 0), to get a

bound on a0.
The cases when ℜv2 and/or ℑv2 are 0 are actually easier, because equation (8) gives

more restrictive conditions on a0 and b0. �

Remark 3.2. (1) The bounds given in the proof of Proposition 3.1 are by no means
optimal, but they allow us to run a certified computer search in a finite amount of
time. For future reference, we refer to the bounds obtained in the proof as crude
bounds (they are the ones used in our computer code, see [9]).

(2) One can shorten the list of Cygan spheres that satisfy the crude bounds, by check-
ing whether each sphere in the list actually intersects the fundamental prism at
horospherical height u0. This can be done by using elementary calculus, and cer-
tifying the results by using some computational tool like the Rational Univariate
Representation (RUR), see [27]. In our computer program, we run an indermediate
refinement of the bound using the RUR as implemented in giac (see [23]), and re-
strict to Cygan spheres whose projection to all three coordinate axes intersect the
projection of the fundamental prism. This allows us to speed up the computation
for large values of d.
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4. Effective Feustel-Zink

We observe that the Feustel-Zink result (Theorem 2.1) can be rephrased as follows (recall
that q∞ = (1, 0, 0), and we assume throughout the paper that Kd has class number one).

Proposition 4.1. For every primitive integral vector v ∈ O3
d, there exists A ∈ Γd such

that A(q∞) = v.

As mentioned in [21], it is not obvious how to make this statement effective, we will
sketch how our computer code does this.

The first remark is that it is enough to find a matrix A as in Proposition 4.1 only for

v in a list of representatives for Γ
(∞)
d -orbits of rational points (we sketched in section 2.3

how such a list can be gathered).
The second observation is that rather than the mere existence of A as in the statement of

Proposition 4.1, we may be more restrictive and assume that A−1(q∞) is also in our list of

representatives for Γ
(∞)
d -orbits of rational points. Indeed, for any M ∈ Γ

(∞)
d , AM−1(q∞) =

Aq∞ (so we can replace A by AM−1), and (AM−1)−1(q∞) =MA−1(q∞).
Now recall that the inverse of an element A ∈ U(J) is given by A−1 = JA∗J , so the first

column of A and the last row of A−1 are obtained from one another by complex conjugation
and multiplication by J (the last one amounts to flipping the first and third entry of the
vector). Note in particular that A and A−1 have the same depth.

This means that when searching for A ∈ U(J) whose first column is v, we may assume
the last row of A is given up to a multiplication by a unit in Od by (Jw)∗ for some w in

the list of representatives for Γ
(∞)
d -orbits of rational points of depth given by |v2|2.

We then try to fill in the upper right 2×2 matrix (see Proposition 4.2); if this fails, we
try another of the finitely many possibilities for the last row of A. This method turns out
to be very efficient in practice, it allowed us to construct all necessary matrices in a fairly
short amount of computation time for d ≤ 19.

We are grateful for an anomymous referee for having communicated to us the result
of Proposition 4.2, which simplifies some clumsy computations that appeared in earlier
versions of the manuscript.

Proposition 4.2. Let A ∈ U(J) be written as

A =





a x y
b z w
c d e



 .

Assume c 6= 0 and let δ = det(A). Then we have x = 1
δc
(δad + b̄), z = 1

δc
(δbd − c̄),

w = 1
δc
(δbe+ d̄), and y = (aec̄− δ̄b̄d̄+ c)/|c|2. This matrix is in Γd if and only if its entries

are in Od, and in that case δ = det(A) is a unit in Od.

Proof: The fact that A∗JA = J can be rewritten as A−1 = JA∗J ; the proposition then
follows from easily by expressing the entries of A−1 in terms of cofactors of A. �
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5. Covering depths

The key to our computations is to obtain a bound on the radius of the Cygan spheres
that intersect the Ford domain for Γd (see Definition 2.1). More specifically, let us write
1 = n1 < n2 < n3 < . . . for the depths of Cygan spheres for elements of Γd (this is
equivalent to listing the norms in Od in increasing fashion).

Following [21], we define the covering depth of Γd to be the smallest nk such that the
spheres of depth nj for j > k do not intersect the Ford domain (note that this does not
necessarily mean that some spheres of depth nk are necessary to define the Ford domain).
If this is the case, then the Cygan spheres corresponding to rational points of depth nk for
k > j do not intersect the Ford domain, and in particular it is enough to use the rational
points of depth ≤ nj in order to study/describe the Ford domain (in most cases, the Ford
domain can actually be described with an even smaller set of depths, but we will not use
this).

The basic procedure gives us a way to answer the following :

Problem : For a given j ∈ N∗, determine whether or not the cross section at
horospherical height u = 2/

√
nj+1 of the fundamental domain for the standard cusp

group Γ
(∞)
d is covered by the interiors of the Cygan spheres of depth ≤ nj .

The covering depth is then the smallest nj such that the answer to our Problem is
YES.

In order to do this, we will

(1) reduce the verification to finitely many checks (note that the Ford domain has
infinitely many sides);

(2) subdivide the prism into convex pieces that are small enough for each piece to be
contained in a Cygan sphere centered at a rational point of depth ≤ nj .

The reduction to finitely many verifications (1) requires an explicit (finite) upper bound
on the set of rational points v ∈ O3

d of depth ≤ nj such that the Cygan sphere Sv cor-
responding to v (see Lemma 2.1) satisfies Sv ∩ CP 6= ∅. In fact, we can be a bit more
restrictive and require that Sv intersects CP at horospherical height 2/

√
nj+1. The details

of how this can be done were explained in section 3.
Part (2) was performed in [21] and [26] by a search “by hand” of a decomposition inspired

by visual analysis of pictures of Cygan spheres. We will give a more systematic method,
based on a dichotomy method in the prism. It is probably far from optimal (and runs
quite slowly for large values of d), but it has the advantage that it does not rely on human
intervention/visual inspection.

The procedure will maintain a list of prisms that need to be studied (until we get an
answer to our question), initialized as containing just one prism, namely the fundamental
prism L0 = {P}.

We now explain how to construct the list Lk+1 from the list Lk (or stop the procedure
if we have reached an answer).
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For any u > 0, and for any prism Q in the Heisenberg group, we write Qu for the
translate of Q at horospherical height u. Now for every prism Q in Lk, we do the following:

• For each vertex v of the translate Q2/
√
nj+1

of Q, list the Cygan spheres of depth
≤ nj that contain v in their interior. If this list is empty, we know the prism is
NOT covered (answer reached).

• If every vertex of Q2/
√
nj+1

is covered by some Cygan sphere, check if there is a
single Cygan sphere that contains all of its vertices.

– If so, the prism Q2/
√
nj+1

is covered by a Cygan sphere, and we do not include
it in Lk+1.

– If not, subdivide Q into 23 = 8 smaller prisms, and include them in Lk+1.

If the answer to our PROBLEM is NO, then there exists a prism obtained from the
above dichotomy with at least one vertex not covered by any Cygan sphere, so the procedure
will stop and find that the answer is NO.

If the answer is YES, once again, this will be seen at the level of some fine enough
decomposition of the prism into prisms at scale 1/2k for some k, so after finitely many
stages we will get Lk = ∅.

Remark 5.1. As in [21], in order to certify the inequalities used to verify whether a given
vertex of a prism in the subdivision is covered by a Cygan sphere, in our computer program,
we replace the horospherical height 2/

√
nj+1 by a rational approximation, i.e. a number

uj ∈ Q that satisfies 2/
√
nj+1 < uj < 2/

√
nj , which we choose to be ”close” to 2/

√
nj+1.

This is inconsequential for our purpose, which is to determine a finite list of depths that
suffice to define the Ford domain for the corresponding Picard modular group.

Running this procedure, we find the covering depths given in Table 3. In each case, we
give the number of cusp orbits of rational points of depth at most equal to the covering
depth; in parentheses, we list the number of cusp orbits remaing after removing the centers
of Cygan spheres obviously contained in another one (using the triangle inequality, i.e.
comparing the Cygan distance with the sum of the radii of the spheres).

d Covering depth Size of smallest prism used Number of cusp orbits of rational points
1 4 1/22 4 (4)
2 16 1/25 46 (46)
3 4 1/2 4 (4)
7 7 1/25 8 (8)
11 36 1/219 226 (198)
19 64 1/27 540 (455)
43 269 1/214 ? (6184)
67 607 1/215 ? (26098)
163 ≥ 3053 ≤ 1/26 ?

Table 3. Covering depths for 1-cusped Picard modular groups.
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For d = 19, running all the computations (covering depth, presentation, classification of
isotropy groups) already takes several hours, and the computation time seems prohibitive
for larger values of d (at least in our implementation).

6. Computation times

In table 4, we gather rough computation time for various values of d, and various parts
of the computations. For d ≥ 43, our Sage implementation [9] of the method is inefficient
(both in computation time and memory usage), and it only allowed us to go through with
part of the computation (see the question marks in Tables 3 and 4). We hope that a better
implementation will allow us to treat d = 43, 67 and perhaps even 163.

d Covering depth (giac) Matrices (giac) Torsion Presentation Conversion
1 4 s 0 s 34 s 0.5 s 35 s
2 1 min 11 s 5 s 2 min 32 s 24 s 3 min 16 s
3 6 s 0 s 1 min 4 s 0.5 s 22 s
7 14 s 0 s 31 s 2 s 58 s
11 4 min 27 s 2 min 6 s 4 min 27 s 5 min 43 s 13 min 16s
19 14 min 51 s 6 min 0 s 9 min 11 s 16 min 15 s 54 min 10 s
43 19 h 26 min 44 s ? ? ? ?
67 8 d 18 h 37 min 33s ? ? ? ?
163 ? ? ? ? ?

Table 4. Approximate CPU time on an Intel 1.8GHz processor.

7. Isotropy groups

In the tables in this section, we describe the non-trivial (conjugacy classes of) isotropy
groups for the action on complex hyperbolic space of PU(2, 1,Od) for d = 1, 2, 3, 7, 11 and
19. These can also be thought of as being the non-trivial maximal finite subgroups of
PU(2, 1,Od).

The conjugacy classes of complex reflections are listed in Tables 5, 7, 9, 11 for various
values of d. Representatives for the conjugacy classes of isotropy groups with isolated fixed
points are listed in Tables 6, 8, 10, 12, 13 and 14.

For an isotropy group G with an isolated fixed point, we write RG for its complex
reflection subgroup, and describe RG by giving vectors polar to the mirrors of generators
(fifth column), as well as braid lengths of pairs of generators (fourth column). The order
of G (resp. RG) is given in the second (resp. third) column. The number of mirrors
(seventh column) in each group is written as j1, j2, j3 where jk is the number of mirrors in
the Γ-orbit of the k-th polar vector in the list of complex reflections (the latter vectors are
listed in Tables 5, 7, 9, etc.)

Almost all finite reflection groups that occur in this way are well-generated, i.e. can be
generated by 2 = dim(C2) generators. The only exception is one of the isotropy groups for
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Γ2, which is isomorphic to the Shepard-Todd [29] group G12, see [7] for a presentation of
that group.

The isotropy groups that are not generated by reflections are all cyclic; for such groups,
we list a (regular elliptic) generator in the last column of the table.

In the tables below, for any positive integer k, we write ζk = e2πi/k.

Order w ||w||2
4 (0, 1, 0) 1
4 (1,−1, 0) 1
2 (1, 0, 1) 2

Table 5. Conjugacy classes of complex reflections for d = 1.

8. Neat subgroups

The general method we use to find torsion-free subgroups in G = Γd is the following.
We assume we are given a list T of non-trivial isotropy groups that contains all isotropy
groups up to conjugation in G, and generators for the standard cusp G∞.

• Find a normal subgroup K, and consider ϕ : G→ F = G/K;
• Check that ϕ|t is injective for every t in T (if so, K is torsion-free);
• List subgroups S of F that intersect all conjugates of subgroups in T trivially; then
ϕ−1(S) is torsion-free and [G : ϕ−1(S)] = [F : S].

v |G| |RG| br w ||w||2 # mirrors Extra generators

(1 + i,−i,−1− i) 6 6 3 (0, 1 + i, 1) 2 0, 0, 3
(1, 0, 1) 2

(1, 0,−1) 8 8 2 (0, 1, 0) 1 1, 0, 1
(1, 0, 1) 2

(1,−1,−1) 32 32 4 (0, 1, 1) 1 0, 2, 4
(1, 0, 1) 2

(1, i(ζ8 − 1), i(ζ8 − 1)) 8 4 (1,−1, 0) 1 0, 1, 0





−i −i− 1 i
i− 1 i 0
i− 1 i− 1 1





(1, 0,−ζ12) 12 4 (0, 1, 0) 1 1, 0, 0





i 0 1
0 −1 0
1 0 0





Table 6. List of isolated fixed point isotropy groups for d = 1.

Order w ||w||2
2 (0, 1, 0) 1
2 (1,−1, 0) 1
2 (1, 0, 1) 2

Table 7. Conjugacy classes of complex reflections for d = 2.
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v |G| |RG| br w ||w||2 # mirrors Extra generators

(1, 0,−1) 4 4 2 (0, 1, 0) 1 0, 1, 1
(1, 0, 1) 2

(−1− α, α, α) 4 4 2 (1,−1, 0) 1 0, 1, 1
(1,−α,−α) 2

(−2− α,−1, α) 6 6 3 (1,−α, 0) 2 0, 0, 3
(1 + α, 0, 1) 2

(1,−1,−1) 8 8 4 (0, 1, 1) 1 0, 2, 2
(1, 0, 1) 2

(−2− α,−1 + α, α) 48 48 6 (0, α, 1) 2 0, 0, 12
(1 + α, 2, 1− α) 2
(1 + α, 2− α,−α) 2

/∈ K3
d

8 2 (α, 1, 0) 1 1, 0, 0





1− α −2 α
−α −1 0
1 α 1





/∈ K3
d

4 2 (α, 1, 1) 1 0, 1, 0





1 2 −2− 2α
−α −1− 2α −2 + 2α

−1− α −2− α −1 + 2α





Table 8. List of isolated fixed point isotropy groups for d = 2 (we write
α = i

√
2).

Order w ||w||2
6 (0, 1, 0) 1
2 (1, 0, 1) 2

Table 9. Conjugacy classes of complex reflections for d = 3.

v |G| |RG| br w ||w||2 # mirrors Extra generators

(1, 0,−1) 12 12 2 (0, 1, 0) 1 1, 1
(1, 0, 1) 2

(1, 0, ω̄) 72 72 4 (0, 1, 0) 1 2, 6
(1,−1,−ω) 2

/∈ K3
d

3 1





ω ω 1
1 −ω 0
1 0 0





/∈ K3
d

4 2 (1, 1,−ω) 2 0, 1





ω −1 ω + 3

1 1 −i
√
3

1 0 −i
√
3





Table 10. List of isolated fixed point isotropy groups for d = 3 (we write
ω = e2πi/3).

Order w ||w||2
2 (0, 1, 0) 1
2 (1, 0, 1) 2

Table 11. Conjugacy classes of complex reflections for d = 7, 11, 19.
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v |G| |RG| br w ||w||2 # mirrors Extra generators

(1, 0,−1) 4 4 2 (0, 1, 0) 1 1, 1
(1, 0, 1) 2

(3 + i
√
7, 1, τ̄) 6 6 3 (1,−τ, 0) 2 0, 3

(1 + i
√
7, 0, 1) 2

(−1− τ,−τ̄ , τ) 6 6 3 (0, τ, 1) 2 0, 3
(τ, τ̄ , 0) 2

(τ̄ , 0,−1) 8 8 4 (0, 1, 0) 1 2, 2

(τ, 1, 1) 2

(4, τ̄ ,−τ) 8 8 4 (1 + i
√
7, 0, 1) 2 0, 4

(τ, τ̄ , 0) 2

/∈ K3
d

6 2 (−τ̄ , τ, 1) 1 1, 0





−2 τ − 2 1 + 2i
√
7

τ − 1 τ + 1 3
τ 1 3− τ





/∈ K3
d

7 1





−2− τ τ − 3 3τ − 2
−1 0 −τ̄
−τ̄ τ 2





Table 12. List of isolated fixed point isotropy groups for d = 7 (we write

τ = 1+i
√
7

2
)

v |G| |RG| br w ||w||2 # mirrors Extra generators

(2, 1− τ,−2) 4 4 2 (1, 0, 1) 2 1, 1
(1 + τ̄ ,−4,−1− τ̄) 2

(τ + 3, 0, τ̄) 4 4 2 (0, 1, 0) 1 1, 1

(τ − 4, 0, τ) 2

(1, 0,−1) 4 4 2 (0, 1, 0) 1 1, 1
(1, 0, 1) 2

(3τ − 6, τ, τ + 2) 6 6 3 (−τ̄ , τ, 1) 2 0, 3
(τ − 4, 0, τ) 2

(−τ̄ , 0, 1) 8 8 4 (0, 1, 0) 1 2, 2
(τ, 1, 1) 2

(τ, 2− τ,−τ) 12 12 6 (1, 0, 1) 2 0, 6
(1, τ̄ ,−τ) 2

/∈ K3
d

4 2 (1, 0, 1) 2 0, 1





τ̄ −τ − 1 τ

τ − 2 i
√
11 −τ + 2

τ τ + 1 τ̄





/∈ K3
d

4 2 (τ, 1, 1) 2 0, 1





−1 τ̄ τ + 1
−1 τ 1
τ 2 τ̄ + 1





/∈ K3
d

4 2 (−τ̄ , τ, 1) 2 0, 1





12 6− 2τ 17τ − 10
2τ̄ −τ − 1 −τ − 7

1− 3τ −τ − 1 τ − 12





Table 13. List of isolated fixed point isotropy groups for d = 11 (we write

τ = 1+i
√
11

2
).

• For each such subgroup S, study the action of S the right cosets of F∞ = ϕ(G∞)
in F to find generators for each cusp.

In the third item, we consider only maximal subgroups with this property.
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v |G| |RG| br w ||w||2 # mirrors Extra generators

(2τ + 4, 2, τ̄) 4 4 2 (2τ − 2, τ, 1) 2 0, 2
(2τ, 0, 1) 2

(1, 0,−1) 4 4 2 (0, 1, 0) 1 1, 1
(1, 0, 1) 2

(τ̄ , 0,−2) 4 4 2 (0, 1, 0) 1 1, 1
(τ, 0, 2) 2

(τ − 6, 2τ, 2) 4 4 2 (−τ̄ , 1, 0) 1 1, 1
(τ − 5, 2τ, 2) 2

(τ − 7,−2τ̄ , τ + 2) 6 6 3 (τ − 3, τ + 1, 1) 2 0, 3
(τ + 2, 3, τ̄) 2

(5τ̄ − 8,−τ − 3, τ − 3) 6 6 3 (1 + τ̄ , τ̄ ,−1) 2 0, 3
(τ + 7, 2, τ̄) 2

(−τ̄ , 0, 1) 8 8 4 (0, 1, 0) 1 2, 2
(τ, 1, 1) 2

(9, 1 + τ̄ ,−τ) 2 1





9τ − 8 9τ + 9 81
2τ + 3 8 9τ̄ + 9

5 2τ̄ + 3 9τ̄ − 8





/∈ K3
d

4 2 (τ − 2, τ, 1) 2 0, 1





7 3τ̄ + 1 −9τ + 1
τ̄ + 1 −τ − 2 −τ − 6
−τ −2 τ − 6





/∈ K3
d

4 2 (τ − 3, τ + 1, 1) 2 0, 1





2τ + 10 6τ̄ + 8 −9τ − 1
2τ̄ + 6 −5τ − 1 −2τ − 11
−3τ + 1 −τ − 8 3τ − 10





/∈ K3
d

4 2 (1 + τ̄ , τ̄ ,−1) 2 0, 1





2τ + 25 13τ̄ + 10 −47τ + 20
2τ̄ + 7 −5τ −12τ − 16
−3τ + 1 −τ − 7 3τ − 26





/∈ K3
d

6 2 (2,−τ,−1) 1 1, 0





τ + 1 τ̄ + 4 −1− 2τ
τ̄ + 2 −2τ − 2 τ − 4
−τ −3 −τ̄





Table 14. List of isolated fixed point isotropy groups for d = 19 (we write

τ = 1+i
√
19

2
).

About the first item, note that there is an effective algorithm for listing normal subgroups
H ⊂ Γ with [Γ : H ] ≤ N for any N ∈ N. This algorithm is implemented in Magma (via
the command LowIndexNormalSubgroups), and runs efficiently when N is “not too large”.

When G has too many (normal) subgroups, reasonable values of N tend to be very
small. This seems to be the case for d = 11 and d = 19 for instance, where listing all
normal subgroups of index ≤ 200 already takes quite a long time (and none of the many
corresponding subgroups turn out to be torsion-free). In such cases, we use congruence
subgroups, which tend to produce normal subgroups of larger index.

The orbifold Euler characteristics of the quotients Γd\H2
C are known, see Theorem 5A.4.7

in [17] for instance. For convenience, we list the results in Table 15, as well as the least
common multiple Ld of the orders of finite subgroups in Γd (it is a standard fact that the
index of any torsion-free subgroup in Γd must be a multiple of Ld).

We also list the smallest index of torsion-free (TF) subgroups we could find, as well
as the smallest index of a neat subgroup (i.e. torsion-free and torsion-free at infinity, a
property which we refer to as TF∞). Recall that the last condition is equivalent to the
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existence of a compactification of the quotient by finitely many elliptic curves with negative
self-intersection.

d χorb Ld Known TF∞ Known TF
1 1/32 96 96 96
2 3/16 48 96 48
3 1/72 72 72 72
7 1/7 168 336 336
11 3/8 24 432 432
19 11/8 24 864 864
43 83/8 ? ? ?
67 251/8 ? ? ?
163 2315/8 ? ? ?

Table 15. Euler characteristics for 1-cusped Picard modular surfaces, and
least common multiple Ld of the order of finite subgroups.

In the next few subsections, we will give a bit more details about the TF∞ subgroups
we have found, namely we list their abelianization, the index of their normal core, and the
self-intersections of the elliptic curves that compactify them. Computer code to verify our
claims is available at [9].

Note that we do not claim that the lists in the next few sections are optimal, nor
exhaustive. The reason why we cannot claim optimality is that we have no reasonable
effective upper bound for the index in Γd of the normal core

CoreΓd
(H) = ∩g∈Γd

gHg−1

of a torsion-free/neat subgroup H ⊂ Γd in terms of the index n = [Γd : H ]. It is easy to
see that the index of the normal core is bounded by n!, but in practice there is no hope to
list all normal subgroups of index n! (see the obvious lower bound given in table 15, which
implies n ≥ 24).

8.1. General method. In order to produce the lists in sections 8.2 through 8.7, we ask
Magma for a list normal subgroups of Γd of index ≤ N (we choose N so that Magma
answers within a reasonable amount of time, the size of N depends a lot on the value of
d, and to a lesser extent on the presentation used for Γd).

For each normal subgroup K ⊂ Γd, we determine whether K is TF (torsion-free); this is
done by verifying that the quotient map ϕ : Γd → F = Γd/K preserves the order of torsion
elements (it is enough to check that this is the case for a representative of each conjugacy
classes of torsion elements).

We also verify whether K is TF∞ (torsion-free at infinity) by finding a presentation for
its cusps. Note that the cusps of K are in 1-1 correspondence with right cosets in F of

F∞ = ϕ(Γ
(∞)
d ), where Γ

(∞)
d is the standard cusp of Γd, i.e. the stabilizer of (1, 0, 0). In

particular the number of cusps is the index [F : F∞]. Note also that since K is a normal

subgroup, all its cusps are isomorphic to each other, and one representative is K ∩ Γ
(∞)
d .
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The group K∞ = K ∩ Γ
(∞)
d can actually be presented by computing the kernel of the

restricted morphism φ|
Γ
(∞)
d

, since we have an explicit presentation for Γ
(∞)
d . Given a gener-

ating set for K∞, it is easy to check whether K∞ contains twist-parabolic elements, namely
we simply check if every generator is unipotent.

Now for each neat normal subgroup K ⊳ Γd, we once again consider the quotient map
ϕ : Γd → F = Γd/K, and search for subgroups S ⊂ F such that ϕ−1(S) is TF ; this
amounts to saying that no non-trivial element of S is conjugate to ϕ(t) for any t in our list
of representatives for torsion elements. Alternatively, this is equivalent to requiring that
xSx−1 ∩X = {e} for all x ∈ F and X = ϕ(X̃), with X̃ any isotropy group in Γd.

If H = ϕ−1(S) is TF , we compute generators for each of its cusps, by studying the

action of S on the set of right cosets of F∞ = ϕ(Γ
(∞)
d ) in F . Note once again that the

cusps are in bijection with S-orbits of such right cosets, and we can produce generators for

each cusp by finding generators for the kernel K∞ of the map Γ
(∞)
d → F∞, and adjoining

extra generators obtained by lifting generators of the stabilizer in S of the corresponding
right coset.

Once we have generators for the cusps of H , we can easily check whether or not each
cusp contains twist-parabolic elements (once again, simply check whether every element in
our generating set is unipotent).

If no cusp contains twist-parabolics, H is TF∞, and we get the self-intersection of the
compactifying elliptic curves by computing the abelianization of the cusp groups (this is
done by using a presentation for the cusp groups). Recall that the self-intersection of the
elliptic curve compactifying a given cusp with unipotent group U is given by the −k where
k is the unique positive integer such that U ∼= Zk ⊕ Z ⊕ Z, see Proposition 4.2.12 and
equation (4.2.15) of [17].

8.1.1. Slight improvements. Since we are mainly interested in studying the smallest index
of TF∞ subgroups, for a given finite quotient F of Γd, we will not study φ−1(S) for all
subgroups S of F .

First, we known the index of torsion-free subgroups must be a multiple of the least
common multiple of the order of isotropy groups, which decreases the list slightly. Also,

• if S1, S2 ⊂ F are conjugate, they clearly give conjugate preimages in Γd;
• if S1 ( S2 ⊂ F , then φ−1(S1) ⊂ φ−1(S2) has index [S1 : S2], and in particular in
that case φ−1(S1) will definitely not be optimal.

Hence, in searching for subgroups S of F , we will discard all sugroups having one conjugate
contained in a subgroup S ′ ⊂ F that has already been studied.

8.1.2. Non-optimality, non-exhaustivity. As far as we know, no efficient bound is known
for the index [Γd : Core(Γd, H)] for subgroups H ⊂ Γd of index k (for example take k to be
the smallest index of a TF∞ subgroup in Γd). If we had such a bound, then we could in
principle run an exhaustive computer search, and determine the actual optimal index for
TF∞ subgroups (this would of course succeed only if the computer search goes through
in reasonable amount of time and memory).



22 MARTIN DERAUX AND MENGMENG XU

Once again, we insist that the list of subgroups given here is not exhaustive.

8.2. Cusp data for some TF∞ subgroups of index 96 in Γ1. In order to get Table 16,
we used normal subgroups in Γ1 of index ≤ 8000. Note that for some entries in the table,
we found several non-conjugate subgroups with the same data.

H/[H,H ] # Cusps self-intersections [Γ1 : CoreΓ1(H)]
Z2
2 ⊕ Z4 6 (−2)6 384

Z2 ⊕ Z2
4 ⊕ Z2 4 (−2)2, (−4)2 384

Z2
4 ⊕ Z2 4 (−2)2, (−4)2 1536

Z2 ⊕ Z2
4 ⊕ Z2 4 (−2)2, (−4)2 1536

Z2
4 ⊕ Z2 4 (−2)2, (−4)2 6144

Table 16. Numerical invariants for some TF∞ subgroups H ⊂ Γ1 of index 96.

8.3. Cusp data for some TF∞ subgroups of index 96 in Γ2. In order to get Table 17,
we used normal subgroups in Γ2 of index ≤ 8000.

H/[H,H ] # Cusps self-intersections [Γ2 : CoreΓ2(H)]
Z6
2 ⊕ Z4 ⊕ Z8 8 (−4)4, (−8)4 384
Z3
2 ⊕ Z2

4 6 (−8)6 384
Z4
2 ⊕ Z2

4 ⊕ Z8 8 (−2)4, (−4)2, (−16)2 1536
Z6
2 ⊕ Z4 ⊕ Z8 8 (−4)4, (−8)4 1536

Table 17. Numerical invariants for some TF∞ subgroups H ⊂ Γ2 of index 96.

8.4. Cusp data for some TF∞ subgroups of index 72 in Γ3. In order to get Table 18,
we used normal subgroups in Γ3 of index ≤ 7776 (this was chosen to check whether we
obtain the same subgroups as in [30], which turns out to be the case).

H/[H,H ] # Cusps self-intersections [Γ3 : CoreΓ3(H)]
Z4 4 (−1)4 1944

Z3 ⊕ Z2 2 (−1), (−3) 1944
Z2 2 (−1), (−3) 5832

Table 18. Numerical invariants for some TF∞ subgroups H ⊂ Γ3 of index 72.

8.5. Cusp data for some TF∞ subgroups of index 366 in Γ7. In order to get Ta-
ble 19, we used normal subgroups in Γ7 of index ≤ 70000.

8.6. Cusp data for some TF∞ subgroups of index 432 in Γ11. In order to get
Table 20, we used the neat principal congruence subgroup of smallest index in Γ11 (the
corresponding finite quotient has order 5616, and it is isomorphic to PSL(3, 3)).
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H/[H,H ] # Cusps self-intersections [Γ7 : CoreΓ7(H)]
Z8
7 24 (−7)24 336

Z3
2 ⊕ Z3

4 12 (−2)2, (−4)9, (−8) 10572
Z7 ⊕ Z3

14 18 (−1)6, (−2)3, (−7)6, (−14)3 56448
Z6
2 ⊕ Z6 12 (−1)3, (−2)3, (−7)3, (−14)3 56448

Table 19. Numerical invariants for some TF∞ subgroups H ⊂ Γ7 of index 336.

H/[H,H ] # Cusps self-intersections [Γ11 : CoreΓ11(H)]
Z2 ⊕ Z12 ⊕ Z156 8 (−3)8 5616

Table 20. Numerical invariants for some TF∞ subgroups H ⊂ Γ11 of index 432.

8.7. Cusp data for some TF∞ subgroups of index 864 in Γ19. In order to get
Table 21, we used the neat principal congruence subgroup of smallest index in Γ19 (the
corresponding finite quotient has order 6048, and it is isomorphic to PU(3, 3)).

H/[H,H ] # Cusps self-intersections [Γ19 : CoreΓ19(H)]
Z5
2 ⊕ Z6 ⊕ Z42 16 (−3)16 6048

Table 21. Numerical invariants for some TF∞ subgroups H ⊂ Γ19 of index 864.

9. Torsion generating sets

Recall that Γd is generated by torsion elements if and only if Γd\H2
C is simply connected,

by a result of Armstrong [2]; in fact, if Γd
∼= G = 〈 X | R 〉 and if we have a list T of repre-

sentatives of conjugacy classes of torsion elements in Γd, then π1(Γd\H2
C) = 〈 X | R ∪ T 〉.

It is not completely obvious that the latter group can be computed, but it turns out to be
the case for all groups we were able to treat in this paper.

Specifically, we have the following.

Proposition 9.1. For every d = 1, 2, 3, 7, 11, 19, Γd is generated by torsion elements.

Rather than trying to simplify the presentation 〈 X | R ∪ T 〉 as above, we will list
explicit torsion elements that generate the corresponding groups.

In order to obtain such generating sets, we used two different methods, that turn out to
cover all the cases of Proposition 9.1.

(1) The first one uses the presentation obtained from the Mark-Paupert presentation
without simplifying it. Recall that the generators of their presentations are obtained
from a list of rational points pk by choosing Ak such that Ak(p∞) = pk. These
Ak’s are not uniquely defined, but we can assume that the set of rational points
{p1, . . . , pN} is closed under the matrices Ak (see the discussion in section 4). Once
we have adjusted the matrices to satisfy this condition, we select only the ones
that have finite order (this can of course be checked in Γd) to get a list of torsion
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elements L ⊂ G = 〈 X | R 〉 (the word problem in the Mark-Paupert generators is
easy to solve by geometric means). For small subsets L′ = {Xj1, . . . , Xjk} ⊂ L, we
would like to compute the index of the subgroup generated by L′ in G with Magma
or GAP. When the index is 1, i.e. L′ generates G, both pieces of software answer
very quickly; if the index is infinite, the computation runs for quite a while, which
we take as a sign that L′ does not seem to generate.
The easiest way to circumvent this difficulty is to use the Magma command

#Generators(Simplify(G:Preserve:=[j1,...,jk]));

and check whether this is equal to k (if so, then G is generated by k (torsion)
elements).

(2) Another method is to use our list of isotropy groups, more specifically we take
the cyclic groups giving non-reflection isotropy group, and use them as candidate
torsion generating sets. In order to check whether they generate, we write them as
words in the Mark-Paupert generating set. The command

Simplify(G:Preserve:=[...]);

does not work directly since these torsion elements are not in the Mark-Paupert
generating set, but we can add them in the generating set by using suitable Tietze
transformations (use the Magma command AddGenerator(G,w);, which creates a
new generator and a relator that sets it equal to the word w).

Method 1 turns out to give 3-generator presentations for d = 2, 11 and 19. For d = 11
and 19 we cannot hope for a smaller generating set, since their abelianizations are given

by Γ
(ab)
11

∼= Γ
(ab)
19

∼= Z3
2 (see Table 22 on page 26), hence cannot be generated by less than 3

elements. For d = 2 we do not know whether there exists a 2-generator presentation (note

that Γ
(ab)
2

∼= Z2 ⊕ Z4).
For d = 1, 7, the group Γd has exactly two conjugacy classes of isotropy groups that are

not generated by complex reflections, and one checks that method 2 works to show that
this gives a 2-element generating set. For d = 3, we take the element of order 6 given by
the complex reflection R = diag(1, ζ6, 1) and one regular elliptic isometry of order 4.

10. Braid presentations

For each Picard modular group, we find an explicit small torsion generating set (see
section 9). Using the list of (conjugacy classes of) isotropy groups, we get some relations
in the group by

• expressing the generators of the isotropy groups as words in the small torsion gen-
erating set;

• presenting the isotropy groups.

Note that the isotropy groups are either reflection groups, or cyclic groups generated by
regular ellitic elements. For non-cyclic reflection groups, we have explicit presentations
(see [7] for instance).

We expect that these relations are “close” to giving a presentation of the group, which
is confirmed by the results given in sections 23 through 27. We omit the results for d = 19
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because the results barely fit in one page; the results are more conveniently available in a
separate Magma file, see [9].

In order to obtain the presentations below, we

• start with a version of the Mark-Paupert/Polletta (MPP) presentation (simplified
so that the generating set is our small torsion generating set);

• add generators corresponding to (minimal) reflection generating sets for a represen-
tative of each isotropy group, as well as generators corresponding to regular elliptic
elements for non-reflection generators;

• we include relations corresponding to presentations for the corresponding isotropy
group;

• remove as many MPP relations as we can using Magma.

We briefly comment on how to perform the last step. The basic point is that we use the
command SearchForIsomorphism in Magma.

More specifically, if the small torsion generating set has k elements, we use the command

SearchForIsomorphism(G1,G2,k:MaxRels:=n);

where n is chosen so that we get an answer in a reasonable amount of time. Recall that
the result of this command is true if Magma finds an isomorphism, and false if it did
not find one (which does not necessarily mean that the groups are not isomomorphic!)

The choice of the Magma parameter k (which is a bound on the sum of the word lengths
of the images of generators) to be equal to the number of generators is made because we
only want to check whether the obvious map sending the small torsion generating set to
themselves is an isomorphism.

For two (resp. three) generators, n = 10000 (resp. n = 50000) seems to work well in
most cases. Note also that removing all MPP at once seems to represent too much work
for Magma, so we remove them only a few at a time and repeat the procedure.

Note that this is of course not an algorithmic procedure, and the presentations listed
below are by no means canonical. In particular, even though we hope that the MPP rela-
tions that we did not manage to remove give some information about the global structure
of the orbifold, it is not at all clear how to describe the fundamental group of the smooth
part of the quotient orbifold.

In the presentations of Tables 23 through 27, we use the beginning of the alphabet (a, b
for d = 1, 3, 7, a, b, c for d = 2, 11) for the elements in our original small torsion generating
set. For d = 19 we only give torsion generators, but a braid presentation is given at [9].

Note that these are chosen to agree with the computer files available at [9], which are
generated with the computer; in many cases there are obvious simplifications (for example,
in Table 23, the definition of s and v make it clear that s = v, so one could remove one of
these from the generating set).

We then give definitions for generators and relations of isotropy groups, and finish with
(hopefully short) relations that we could not remove from the MPP relations. We also
sometimes keep some relations that could actually be removed, because they are fairly
concise in writing and give nice group-theoretic/geometric information.
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d Γd/[Γd,Γd]
1 Z/2Z⊕ Z/4Z
2 Z/2Z⊕ Z/4Z
3 Z/6Z
7 Z/2Z
11 Z/2Z⊕ Z/2Z⊕ Z/2Z
19 Z/2Z⊕ Z/2Z⊕ Z/2Z
43 Z/2Z⊕ Z/2Z⊕ Z/2Z
67 Z/2Z⊕ Z/2Z⊕ Z/2Z
163 ?

Table 22. Abelianizations of Γd

Remark 10.1. The relations kijkjikj, ijkijikj that appear in the middle of the braid
relations in Table 24 come from a presentation given in [7] for the Shephard-Todd group
G12 (this occurs as an isoptropy group of the Picard modular group Γ2).

For convenience (and perhaps independent interest), we list the Abelianization of the
Picard groups that we were able to compute in Table 22.

a =





−i 0 −1
i− 1 −1 i+ 1
i− 1 i− 1 1



 , b =





−1 0 i
i+ 1 1 −i+ 1
1 −i+ 1 −i− 1





Gens Isotropy generators Isotropy relations Other relations

a, b

r = a−2b−3a2,
s = aba−2ba2b−1,
t = a−1b2a2b−1,

u = a2,
v = aba−2ba2b−1,
w = aba−2b−2

a8, b12,
r4, s2, t2, u4, v2, w2,

br2(r, s),
br4(t, u),
br3(v, w),

br2(a
2, ba2b−1)

Table 23. Torsion generators and braid presentation for Γ1
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a =





−2 + 2α 2 + 2α 3
2 + 2α 3 2− 2α

3 2− 2α −2− 2α



 , b =





3 + α 2 + α 1− 3α
−2α 1− 2α α− 4
−2α −2α α− 3



 ,

c =





α− 2 2α− 2 3
2α 2α+ 1 2− α

3 + α 4 + α −1− 3α





Gens Isotropy generators Isotropy relations Other relations

a, b, c

e = (cb)4,
f = (bc−1)2a(cb)2,
g = (bc−1)2a(cb)2,
h = (cb)−1b2cb,

i = a,
j = cb−1c−1a−1cb,
k = cbc−1a(cbc−1)−1,
l = bc−1a−1cb−1,

m = cba−1cb(cbcbc)−1,
n = bc−1b−1c−1ac,

o = b2,
p = acbc−1b2c−1a,

q = b−1c−1acbc−1acb,

a2, b4, c6,
e2, f 2, g2, h2, i2, j2, k2,
l2, m2, n2, o2, p8, q4,

br2(e, f),
br4(g, h),
kijkjikj,
ijkijikj,
br3(l, m),
br2(n, o),

(b2cb−2c−1)2

Table 24. Torsion generators and braid presentation for Γ2 (we write α = i
√
2)

a =





1 0 0
0 τ 0
0 0 1



 , b =





−τ̄ −1 τ + 2
1 1 −2τ + 1
1 0 −2τ + 1





Gens Isotropy generators Isotropy relations Other relations

a, b

e = ba−1b−1a−2b2a2bab−1,
f = ab−2a−1,
g = b2a−1b2,

h = a−1b2a2bab−1

a6, b4, e2, f 2, g6, h3,
br2(a, e), br4(f, g)

(ab)3

Table 25. Generators and relations for Γ3 (we write τ = 1+i
√
3

2
)
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a =





−2 τ − 2 4τ − 1
−τ̄ τ + 1 3
τ 1 τ̄ + 2



 , b =





−2 τ 3τ − 1
−τ̄ 0 τ + 2
τ 1 τ̄ + 2





Gens Isotropy generators Isotropy relations Other relations

a, b

e = b−2a3b2,
f = aba−2 · b−1 · aba−2 · b · aba−2,

g = b−1a3b,
h = b−1a2ba3b,

i = (ba)−1a2ba3(ba),
j = b(a3ba2)b−1,
k = b(a3ba2)b−1,

l = (a−1bab−1)a−2ba(a−1bab−1)−1,
m = b−1a2ba3b,

n = (bab−1)−1a2ba3(bab−1)

a6, b7,
e2, f 2, g2, h2, i2,
j2, k2, l2, m2, n2,

br2(e, f), br4(g, h),
br4(i, j), br6(k, l),

br6(m,n),

(bab−1a−1baba3)3

Table 26. Torsion generators and braid presentation for Γ7 (we write τ = 1+i
√
7

2
)
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a =





−τ −τ − 1 τ − 1
−2 τ − 2 1
τ − 2 τ − 1 1



 , b =





1 1 −τ
τ̄ −τ −2

−τ − 1 −1 τ − 2



 , c =





1 0 0
0 −1 0
0 0 1





Gens Isotropy generators Isotropy relations Other relations

a, b, c

e = c,
f = b−1a−1b2ab,

g = c−1a−1bc−1a−1b . . .
. . . cb−1acb−1ac,
h = b−1a−2c2b,

i = c−1a−1bca−1b−1a−1b . . .
. . . cb−1abac−1b−1ac,
j = b−1ab2a−1b,

k = c−1a−1bc−1a−2b2a−1b,
l = c−1a−1bca−1b−1a−1 . . .

. . . b2a−1ba−1b−2a−1b,
m = c,

n = a−1b−1c−2b−1a,
o = b−1a2ba2b2a2b2a2b−1a−2b,

p = b−1ab2a−1b,
q = a−1ba,
r = b−1a−1b,

s = c−1a−1bc(a−1b2)2abcb−1a . . .
. . . (b−2a)2c−1a−1b−2acb−1a−2b

a4, b4, c2,
e2, f 2, g2,
h2, i2, j2,
k2, l2, m2,
n2, o2, p2,
q4, r4, s4,
br2(e, f),
br4(g, h),
br2(i, j),
br6(k, l),
br2(m,n),
br3(o, p)

(b−1aca−1b−1)2,
a−1ba−1b2ab−1ab−1a2b,

cb−1ab−1a−1b−2ab−1a2cb−1a

Table 27. Torsion generators and braid presentation for Γ11 (τ = 1+i
√
11

2
)

a =





2u+ 10 −2u+ 16 −7u+ 10
6 −2u+ 3 −3u− 7

−u+ 2 −u− 5 −11



 , b =





−5u+17
2

u− 14 9u−25
2

−10 5u−7
2

7u+13
2

3u−5
2

u+ 6 11



 ,

c =





−16 6u− 10 13u+49
2

2u− 6 7u+23
2

−u+ 24
3u+7
2

−u+25
2

−7u+11
2





Table 28. Torsion generating set for Γ19 (u = i
√
19).

[24] John R. Parker. On the volumes of cusped, complex hyperbolic manifolds and orbifolds. Duke Math.
J., 94(3):433–464, 1998.

[25] Julien Paupert and Pierre Will. Real reflections, commutators, and cross-ratios in complex hyperbolic
space. Groups Geom. Dyn., 11(1):311–352, 2017.

[26] David Polletta. Presentations for the Euclidean Picard modular groups. Geom. Dedicata, 210:1–26,
2021.



30 MARTIN DERAUX AND MENGMENG XU

[27] F. Rouillier. Solving zero-dimensional systems through the rational univariate representation. Appl.
Algebra Eng. Commun. Comput., 9(5):433–461, 1999.

[28] Atle Selberg. On discontinuous groups in higher-dimensional symmetric spaces. Contrib. Function
Theory, Int. Colloqu. Bombay, Jan. 1960, 1960.

[29] G. C. Shephard and J. A. Todd. Finite unitary reflection groups. Canadian J. Math., 6:274–304, 1954.
[30] Matthew Stover. Cusps of Picard modular surfaces. Geom. Dedicata, 157:239–257, 2012.
[31] Thomas Zink. über die Anzahl der Spitzen einiger arithmetischer Untergruppen unitärer Gruppen.
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