
One-cusped complex hyperbolic 2-manifolds

Martin Deraux Matthew Stover

Sep 12, 2024

Abstract

This paper builds one-cusped complex hyperbolic 2-manifolds by an
explicit geometric construction. Specifically, for each odd d ≥ 1 there
is a smooth projective surface Zd with c2

1
(Zd) = c2(Zd) = 6d and a

smooth irreducible curve Ed on Zd of genus one so that ZdrEd admits
a finite volume uniformization by the unit ball B2 in C2. This produces
one-cusped complex hyperbolic 2-manifolds of arbitrarily large volume.
As a consequence, the 3-dimensional nilmanifold of Euler number 12d
bounds geometrically for all odd d ≥ 1.

1 Introduction

This introduction describes the main result along with some history and
context in §1.1, a more precise result in §1.2, and an application to geometric
bounding in §1.3.

1.1 The main result, history, and context

The purpose of this paper is to provide the first geometric construction of
complete one-cusped complex hyperbolic 2-manifolds of finite volume. The
basic main result is as follows.

Theorem 1.1. For each odd d ≥ 1, there is a one-cusped complex hyperbolic
2-manifold of volume 16π2d.

The existence of one-cusped manifolds was observed by the first au-
thor using Magma experimentation [4, Thm. 1.4], and a number of geomet-
ric properties were also recorded there, including the structure of the cusp

1



cross-section. This paper gives an explicit, completely disjoint, computer-
independent construction1. There is strong computational evidence suggest-
ing that the examples in [4] are precisely those constructed here, but this
paper does not address that question.

There is significant interest in existence of special metrics (e.g., Kähler–
Einstein metrics) on a smooth projective variety V , or more generally met-
rics on V rD for a given divisor D; see for example [29, 28]. Within this
context, Theorem 1.1 produces the first concrete example of a pair (V,D)
where dim(V ) > 1, D is smooth and irreducible, and V rD admits a com-
plete Kähler metric of constant biholomorphic sectional curvature −1 and
finite volume. However, the primary interest in one-cusped complex hy-
perbolic manifolds stems from the fact that one-cusped locally symmetric
manifolds of negative curvature are exceptional, rare, and elusive in (real)
dimension greater than three.

With deep geometrization results in hand it becomes easy to construct
2- and 3-dimensional manifolds that admit complete, finite volume metrics
of constant curvature −1 with exactly one cusp. Indeed, uniformization
implies that any once-punctured Riemann surface of genus g ≥ 1 admits
such a metric, and Thurston’s hyperbolization theorem [27, Thm. 2.3] leads
to a plethora of examples (e.g., many knot complements in the 3-sphere).
However, shockingly little is known in higher dimensions, especially in the
more generally setting of locally symmetric manifolds with negative curva-
ture (i.e., rank one). Hyperbolic 4-manifolds with exactly one cusp were first
constructed by Kolpakov and Martelli [13, Thm. 1.1], and see [25, 14, 15, 22]
for more examples. This paper and [4, Thm. 1.4] provide a fourth known
symmetric space of negative curvature admitting a one-cusped manifold quo-
tient of finite volume; still no example of any kind is known in dimension
greater than four.

For some perspective on why one-cusped manifolds are rare and special,
the second author proved that the theory of arithmetic subgroups of alge-
braic groups is not as useful for producing one-cusped examples as one might
think or hope. More specifically, for each k ≥ 1 the rank one arithmetic lo-
cally symmetric spaces with k cusps fall into finitely many commensurability
classes over all possible universal covers and dimensions [26, Thm. 1.1]. In
particular, there is a dimension d(n) so that n-cusped arithmetic locally
symmetric manifolds of negative curvature cannot exist above dimension
d(n). For example, 1-cusped arithmetic hyperbolic manifolds (in fact, orb-

1While some computations are more easily done with the aid of computer algebra
software, they can in principle all be done by hand.
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ifolds) cannot exist above dimension 30 [26, Thm. 1.3]. Thus it could well
be the case that there are no one-cusped rank one locally symmetric spaces
in sufficiently high dimensions.

Remark 1.2. The minimal possible volume of a complex hyperbolic 2-
manifold is 8π2/3. Work of Kamishima [10] asserts that if M is a one-
cusped finite volume complex hyperbolic 2-manifold, then its cusp cross
section must have trivial holonomy, which implies that M admits a smooth
toroidal compactification; see §1.3 for further discussion. L. Di Cerbo and
the second author proved that there is no minimal volume smooth toroidal
compactification with one cusp [6, Thm. 1.1], so one-cusped manifolds must
have volume at least 16π2/3. On the other hand, Di Cerbo and the second
author also proved that there is a two-cusped complex hyperbolic manifold
realizing every possible volume [5, Thm. 1.4].

1.2 The main technical result

Theorem 1.1 is a direct consequence of the following more precise result.

Theorem 1.3. For each odd d ≥ 1 there is a minimal smooth projective
surface Zd of general type with c2

1
(Z) = c2(Z) = 6d and a smooth irreducible

curve Ed on Zd of genus one with self-intersection −12d so that Zd rEd is
uniformized by the unit ball B2 in C2.

The pair (Z1, E1) is constructed in §3 and the proof of Theorem 1.3,
which immediately implies Theorem 1.1 by Chern–Gauss–Bonnet, is the
content of §4. The initial example Z1 is one of the desingularized product-
quotient surfaces with pg = q = 1 studied by Polizzi [21]. Briefly, there is a
product X = C1 × C2 of hyperbolic Riemann surfaces and a finite group F
acting on X so that Z1 is the minimal desingularization of X/F . The other
examples are built using a covering construction.

Remark 1.4. As in the case of Riemann surfaces, the proof that (Z1, E1)
is a ball quotient applies a uniformization theorem, here due to Kobayashi
[12, Thm. 2] (also see [28, Thm. 3.1]). A key difference makes the higher-
dimensional case much more subtle and special. A Riemann surface can be
uniformized by a constant curvature metric if and only if a characteristic
class (namely the Euler characteristic) has the appropriate sign. In higher
dimensions, uniformization requires equality between Chern numbers, not
merely an inequality, which is a significantly more stringent requirement.
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1.3 Geometric bounding

One application of the construction is to geometric bounding. A famous
theorem of Rohlin states that all closed, connected, orientable 3-manifolds
are diffeomorphic to the boundary of a compact 4-manifold [23]. For a
3-manifold admitting one of the eight geometries [24, §4], it is then of in-
terest to know whether it can be realized as the boundary of a geometric
4-manifold, and now there are obstructions, say from index theory. For
example, Long and Reid studied when flat or hyperbolic manifolds can geo-
metrically bound a hyperbolic manifold [17]. For flat manifolds, this means
realizing the manifold as the cusp cross-section of a one-cusped hyperbolic
manifold of one dimension higher, whereas in the hyperbolic case it means
realizing the manifold as a totally geodesic boundary.

For infranil 3-manifolds (i.e., those with Nil geometry), the relevant ques-
tion is whether or not it can be realized as the cusp-cross section of a com-
plex hyperbolic manifold. Restrictions on which manifolds can bound were
given by unpublished work of Walter Neumann and Alan Reid, and work
of Kamishima [10] indicates that a manifold that bounds must have trivial
holonomy. In other words, the cross-section should be a nilmanifold. In the
language of toroidal compactifications, this is equivalent to saying that the
complex hyperbolic manifold admits a smooth toroidal compactification by
an elliptic curve of self-intersection −d, where d ≥ 1 and d is the Euler num-
ber of the nilmanifold (as defined on [24, p. 435]). In the smooth toroidal
case, Corollary 2.2 below shows that the Euler number is moreover divisible
by four. The examples in this paper cover many, but not all, remaining
possibilities.

Theorem 1.5. For every odd d ≥ 1, the 3-dimensional nilmanifold with
Euler number 12d geometrically bounds a complex hyperbolic manifold.

As in the flat case [18], every infranil 3-manifold is the cusp cross-section
of some complex hyperbolic 2-manifold, possibly with many cusps [19, 20].
It would be interesting if every other nilmanifold with Euler number divisible
by four can be realized as the cusp cross-section of a one-cusped manifold.
It may even be the case that examples can be found that are commensurable
with the examples in this paper.
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2 Background

This paper assumes basic familiarity with complex hyperbolic manifolds and
the topology of smooth projective varieties. See for example [9, 1] for basic
references on what follows.

Let B2 be complex hyperbolic 2-space, that is the unit ball in C2 with
its metric of constant holomorphic sectional curvature −1. A complex hy-
perbolic manifold is a quotient M = B2/Γ of B2 by a torsion-free discrete
group of holomorphic isometries. If M has finite volume but is not compact,
then it has a finite number of cusps, each diffeomorphic to the product of
an infranil 3-manifold N with [0,∞), and N is called a cusp cross-section
of M . See [3, §2.2] for the definition of an infranil manifold.

When a cusp cross-section is a nilmanifold (i.e., has trivial holonomy),
the cusp is naturally diffeomorphic to a torus bundle over a punctured disk.
Smoothly filling in the puncture gives a smooth toroidal compactification of
the cusp. Since it is the case relevant to this paper, suppose that M has
one cusp with smooth toroidal compactification X obtained by adding the
elliptic curve E. Then (X,E) is called a ball quotient pair. In that case, X
is in fact a smooth projective variety and E a smooth curve of genus one
and self-intersection −d, where d is the Euler number of the nil 3-manifold
in the cusp cross-section (see [9, §4.2]).

Moreover, Kobayashi [12, Thm. 2] proved a uniformization theorem that
determines precisely when a pair (X,E) consisting of a smooth projective
variety and a smooth curve on X determine a ball quotient pair. Suppose
that X is a smooth projective variety with canonical divisor KX and E is a
smooth curve of genus one on X. Then X r E admits a complete complex
hyperbolic metric of finite volume if and only if the divisor KX + E is nef
and big, there are no (−2) curves on X disjoint from E, and

(KX + E)2 = 3c2(X), (1)

where c2(X) is the topological Euler characteristic. Here (KX + E)2 and
c2(X) are the relative Chern numbers c2

1
(X,E) and c2(X,E) of the pair

(X,E), respectively.

Lemma 2.1. Let (X,E) be a ball quotient pair with E an elliptic curve of
self-intersection −d. Then d is divisible by four.
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Proof. Suppose (X,E) is a ball quotient pair with E an elliptic curve of
self-intersection −d. The adjunction formula implies that

(KX + E)2 = K2

X − E2

= c1(X)2 + d

= 3c2(X)

and so d = 3c2(X)−c2
1
(X). However c2

1
(X) = 12χ(OX )−c2(X) by Noether’s

formula, so
d = 4c2(X) − 12χ(OX ),

which is divisible by four.

Reinterpreting Lemma 2.1 in terms of cusp cross-sections gives the fol-
lowing corollary.

Corollary 2.2. If M is a one-cusped complex hyperbolic manifold with cusp
cross-section a nilmanifold N with Euler number d, then d is divisible by
four.

3 Construction of the first example

This section follows work of Polizzi [21] to construct the crucial first example
(Z,E) needed to prove Theorem 1.1, and assumes that the reader is very
familiar with the language of Fuchsian groups, for example as in [11]. The
notation ∆(g; n) will denote the Fuchsian group of signature (g; n). In other
words, the quotient H2/∆(g; n) has genus g and aj cone points of order nj,
where n = na1

1
, . . . , nak

k and any n1
j is simply given as nj.

Briefly, the surface Z is the minimal desingularization of the quotient of
a product of curves. The curves C1 and C2 with action of the alternating
group A4 are constructed in §3.1. The quotient of C1 × C2 by the diagonal
action of A4 and its resolution Z are studied in §3.2. The elliptic curve E
on Z is constructed in §3.3. Finally, the fact that (Z,E) is a ball quotient
pair is proved in §3.4.

Remark 3.1. The example constructed in this section is of the kind covered
by [21, Prop. 7.3]. However, the precise example presented here is not the
one contained in Polizzi’s proof. Polizzi is only concerned with showing a
given triple consisting of two Fuchsian groups and a finite quotient produces
at least one surface, and does not analyze all the possibilities for a given
triple. Computer experiment indicates that each triple can in fact produce
distinct surfaces that are not even homotopy equivalent.
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3.1 The curves of genus four

The construction begins with the (2, 3, 12) triangle group

Γ0 =
〈
p, q, r | p2, q3, r12, pqr

〉

and the elements:

a = r6 g = (prq)−1

b = q2 h = (qpr)−1

c = (pr)q2(pr)−1

d = (pr)−1q2(pr)

One can directly check that

Γ1 =
〈
a, b, c, d

〉

∼=
〈
a, b, c, d | a2, b3, c3, d3, abcd

〉

Γ2 =
〈
g, h

〉

∼=
〈
g, h | [g, h]2

〉

are both index six subgroups of Γ0. Fundamental domains for the action
of Γ1 and Γ2 are shown in Figure 1 as unions of copies of the obvious fun-
damental domain for the action of the triangle group Γ0 (i.e., the union of
two adjacent triangles, one white and one gray). In terms of the orbifold

a

b

c

d

g

h

gh

r

q

p

Figure 1: Fundamental domains for Γ1 (left) and Γ2 (right), as copies of a
fundamental domain for Γ0 (shown in bold on both pictures)

quotients, there are maps of orbifolds depicted in the top half of Figure 2.
In particular, Γ1

∼= ∆(0; 2, 33) and Γ2
∼= ∆(1; 2).

Now consider the homomorphisms ρj : Γj → A4 induced by

ρ1(a) = (1 3)(2 4) ρ2(g) = (1 2 3)
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Z/66-to-1

Z/3Z/3

12

2 3

2

3 3

3

2

22

2

Figure 2: Coverings of hyperbolic orbifolds

ρ1(b) = (1 3 2) ρ2(h) = (1 4 2)

ρ1(c) = (1 2 4)

ρ1(d) = (1 2 4)

with the convention that the alternating group A4 acts on {1, 2, 3, 4} on the
right2. Let Λj be the kernel of ρj. Since ρj is injective on the finite order
elements of Γj, it follows that Λj is torsion-free.

Up to a choice of orientation on the upper half-plane H2, there is a
unique uniformization of the (2, 3, 12) triangle group, which by restriction
to Λj determines a unique Riemann surface Cj = H2/Λj with an action
of A4 induced by ρj . An orbifold Euler characteristic calculation implies
that C1 and C2 both have genus four. The following lemma is direct from
the definitions of the homomorphisms and combinatorics of the associated
coverings of orbifolds.

Lemma 3.2. Each order two element of A4 has exactly two fixed points on
Cj . These fixed points are precisely the six lifts to Cj of the unique cone
point of order two on H2/Γj , hence the A4 action on these six points is
transitive. No order three element of A4 has fixed point on C2.

2While not the authors’ preference, this choice is for consistency with standard com-
puter algebra software.
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3.2 The product action

Retaining the notation of §3.1, defineX = C1×C2 and consider the diagonal
action of A4 on X. Lemma 3.2 implies that each 3-cycle acts freely on X,
since it acts freely on the second coordinate. Each order two element has
exactly four fixed points, namely the points of the form (z, w) with z one of
its two fixed points on C1 and w one of its two fixed points on C2.

Therefore the quotient
Y = X/A4

has exactly two singular points, which are quotient singularities of type A1.
Indeed, the action of an order two element σ ∈ A4 on the tangent space to
a fixed point (z, w) is by − Id. Let ϕ : Z → Y be the minimal resolution of
singularities of Y , which gives a diagram

X

Y Z

π

ϕ

where π is projection for the A4 action. The minimal resolution has the
property that if y1, y2 are the singular points of Y , then ϕ is an isomorphism
on Zrϕ−1({y1, y2}) and each ϕ−1(yj) is a smooth rational curve Fj of self-
intersection −2. See [1, §III.1-7].

Note that X has Euler characteristic 36, the action of A4 has twelve fixed
points, and each singular point of Y is replaced in Z by P1 (i.e., topologically
a 2-sphere), hence the Euler characteristic of Z is

c2(Z) =
1

12
(36 − 12) + 2× 2 = 6.

Moreover, KZ = ϕ∗KY since the resolution is of two A1 singularities. In-
deed, KZ can be written as ϕ∗KY + α1F1 + α2F2 for some α1, α2 ∈ Q by
basic properties of the canonical bundle, but adjunction implies that each
αj must be zero. Therefore

c1(Z)2 = ϕ∗(KY )
2 =

1

12
K2

X = 6,

since c2
1
(X) = 2c2(X) for smooth compact quotients of H2 × H2 by Hirze-

bruch proportionality [7, Satz 2]. Thus Z is a smooth surface such that
c2
1
(Z) = c2(Z) = 6.
Finally, observe that Z is minimal of general type; see [21, Prop. 5.6].

Moreover, as discussed in [21, §5], pg(Z) = q(Z) = 1 where the Albanese map
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of Z is ϕ followed by the projection of Y onto H2/Γ2 induced by projection of
C1×C2 onto the second factor. The contents of this subsection are collected
in the following result.

Proposition 3.3. Let C1 and C2 be the genus four curves with A4 action
described in §3.1. Set X = C1 × C2 and consider the diagonal action of A4

with quotient Y . Then Y has two singularities of type A1 and its minimal
resolution Z is a minimal surface of general type with pg = q = 1 and
c2
1
= c2 = 6. The Albanese map of Z is induced by the natural projection of

Y onto the smooth curve C2/A4 of genus one.

3.3 The elliptic curve E

The surface X in §3.2 is uniformized by Λ1×Λ2, where the action on H2×H2

is induced by the product action of Γ0×Γ0. Consider the intermediate group
Γ1 × Γ2, which produces a sequence of orbifold covers

H2/Γ1 ×H2/Γ2

Y

C1 × C2

A4

A4×A4

where the bottom covering is the diagonal action of A4 and the composition
of the two covers is the product action of A4×A4. The goal of this subsection
is to use this diagram to prove that the image of the diagonal D̃ of H2 ×H2

in Y is a singular curve whose normalization has genus one.
The stabilizer in Γ1 × Γ2 of D̃ is naturally isomorphic to the subgroup

Γ1 ∩ Γ2 of Γ0. The relations

t1 = g3 s1 = [g, h]

= bdc = a

t2 = g−1h s2 = (hgh−1)[g, h](hgh−1)−1

= c−1b = (d2cb2)a(d2cb2)−1

s3 = (hg−1h−1)[g, h](hg−1h−1)−1

= dad−1

in Γ0 imply that Γ1∩Γ2 contains the group Γ3 generated by these elements.
In fact, Γ3

∼= Γ(1; 23) is generated by these five elements with the relation

[t1, t2] = s1s2s3
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along with the relations that each sj has order two.
Moreover, Γ3 is the kernel of the homomorphism Γ2 → Z/3 = 〈σ〉 defined

by sending both g and h to σ. It is also the kernel of the homomorphism
Γ1 → Z/3 defined by sending a to the identity and b, c, d all to σ. It follows
that Γ3 = Γ1 ∩ Γ2 is normal of index 3 in each, and H2/Γ3 is the orbifold
of genus one with three cone points of order two completing the diagram in
Figure 2.

If Ω < Γ1×Γ2 is the subgroup associated with Y , then Ω is the preimage
in Γ1 × Γ2 of the diagonal subgroup of A4 × A4 under ρ1 × ρ2. Thus the
stabilizer in Ω of D̃ is

Γ4 =
{
γ ∈ Γ3 : ρ1(γ) = ρ2(γ)

}
.

Direct checks show that

ρ1(t1) = (1 3)(2 4) ρ2(t1) = Id

ρ1(t2) = (1 4)(2 3) ρ2(t2) = (1 3)(2 4)

and that ρ1 and ρ2 agree on each sj. Then

ρ1(t
2

1) = ρ2(t
2

1)

ρ1(t
2

2) = ρ2(t
2

2)

and so Γ4 contains the index four subgroup of Γ3 isomorphic to ∆(1; 212)
induced by the unique (Z/2)2 unramified cover of the torus. From the fact
that ρ1 and ρ2 differ on tℓ1j tℓ2k with ℓ1, ℓ2 ∈ {0, 1} not both zero, it follows

that Γ4
∼= ∆(1; 212) with natural generating set t2

1
, t2

2
, and all the appro-

priate conjugates of each sj. For instance, one can take t1sjt
−1

1
, t2sjt

−1

2
,

t1t2sj(t1t2)
−1 for j = 1, 2, 3. This leads to the diagram of orbifold coverings

depicted in Figure 3.
The above leads to the commutative diagram of immersions

H2/Γ0 H2/Γ0 ×H2/Γ0

H2/Γ3 H2/Γ1 ×H2/Γ2

H2/Γ4 Y

"→

" →

associated with projections of the diagonal D̃ of H2×H2. While the diagonal
of H2/Γ0 ×H2/Γ0 is certainly embedded, the coverings under consideration

11



C1 C2

H2/(Λ1 ∩ Λ2)

Z/3Z/3

A4

(Z/2)2

A4

(Z/2)2

2

3 3

3

2

22

2

2 (×12)

Figure 3: Further coverings of hyperbolic orbifolds

are orbifold covers, hence it does not follow that H2/Γj embeds for j = 3, 4.
In fact, this is not the case.

Proposition 3.4. The image Ê of Γ4\H
2 in Y meets each of the two A1

singularities with multiplicity six. Away from those points, the map is an
embedding. Consequently, the proper transform E of Ê to the resolution Z
of Y is a smooth curve of genus one with self-intersection −12.

The proof of Proposition 3.4 is quite involved, and requires some pre-
liminary lemmas (Lemmas 3.5 through 3.7). Notation established in each
step will be used freely in each subsequent step. For n = 2, 3 or 12, let
z̃n ∈ D̃ be the point fixed by the diagonal action of p, q, and r on H2 ×H2,
respectively. Then the image zn of z̃n on D̃/Γ0 is its cone point of order n.
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Lemma 3.5. All intersections of D̃ with its orbit under Γ0 ×Γ0 arise from
translates under the diagonal action of Γ0 of the three configurations depicted
in Figure 4.

Proof. Consider the diagonal embedding of D0 = H2/Γ0 in

X0 = H2/Γ0 ×H2/Γ0 ≃ P1 × P1.

At a cone point zn on D0 of order n (n = 2, 3 or 12) with lift z̃n ∈ D̃ as
above, the orbifold covering by H2×H2 has local group (Z/n)2 and there are
n preimages of H2/Γ0 through z̃n, namely the graphs of the various powers
of the associated elliptic element of PSL2(R). This gives the configurations
in Figure 4.

D̃

{

(z, p(z))
}

z̃2

{

(z, q2(z))
}

{

(z, q(z))
}

z̃3

{

(z, rj(z))
}

z̃12

Figure 4: The Γ0 × Γ0 orbits of D̃ that meet D̃

Moreover, if (α, β) ∈ Γ0×Γ0 with α 6= β and (α, β)(D̃)∩ D̃ is nonempty,
then the intersection is a point

(w,w) = (α(z), β(z)),

and thus β−1α(z) = z and so β−1α is torsion in Γ0. Since the conjugacy
classes of torsion elements of Γ0 are represented by powers of conjugates of
p, q, r, it follows that (z, z) is a Γ0-translate of some z̃j . Thus all intersec-

tions of D̃ with its orbit under Γ0 × Γ0 arise from translates of the three
configurations depicted in Figure 4 under the diagonal action of Γ0. This
proves the lemma.
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Next, consider X3 = H2/Γ1 ×H2/Γ2 and D3 = H2/Γ3.

Lemma 3.6. The immersion D3 # X3 is an embedding away from the three
cone points of D3 and the cone points all map to a single point of X3, as
depicted in Figure 5.

Proof. The map from X3 to X0 has degree 36, since [Γ0 : Γj] = 6 for j = 1, 2,
and the map from D3 to D0 has degree 18; see Figure 3. It follows that the
preimage of D0 ⊂ X0 in X3 has two irreducible components, namely the
image of D3 and another curve D′

3
, where the map D3 # X3 is induced by

the orbifold covering projection Γ3\H
2 → Γj\H

2 in each coordinate j = 1, 2.

Since the Γ0×Γ0 orbit of D̃ only intersects D̃ nontrivially at lifts of orbifold
points of D0, the irreducible components of the preimage of D0 and their
intersection properties can be understood by understanding the preimages
in X3 of the cone points on D0.

2 2

2

X3D3

Figure 5: The immersion of D3 in X3

Since p /∈ Γ1,Γ2, the cone point z2 ∈ D0 of order two, whose image in
X0 has orbifold weight four, has nine preimages in X3 that are all smooth
points for the orbifold structure. Since z2 also has exactly nine preimages in
D3, it follows that D3 # X3 is an embedding on these points and thus D3

meets D′

3
at each of these points, and each intersection is transversal since

this is the case in the universal cover. Since q ∈ Γ1 but q /∈ Γ2, the cone
point z3 of order three has 36

3
= 12 lifts to X3 and 18

3
= 6 lifts to D3. The

action of (q, Id) at z̃3 in Figure 4 identifies the three embedded copies of H2.
It follows that D3 embeds in X3 at the six lifts of z3 and that D3 does not
meet D′

3
at these points. This proves that D3 embeds in X3 away from its

three cone points of order two.
The cone point z12 on D0 of order twelve has preimage the three cone

points of order two on D3. The image of z12 on X0 has orbifold weight
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122 = 144, and it lifts to a single orbifold point of weight four with local
group (Z/2)2 on X3 associated with the conjugacy class of the subgroup of
Γ1 × Γ2 generated by (r6, Id) and (Id, r6). Indeed, this is the point (w1, w2)
on X3 where wj is the unique cone point of order two on H2/Γj . The cone
points of order two on D3 then must all map to this point, hence the image
of D3 passes through this point with multiplicity three. This completely
determines the image of D3 in X3, which fails to be an embedding at the
three cone points of order two, which are all identified. Thus the image of
D3 is as depicted in Figure 5, proving the lemma.

Lemma 3.7. Ramification of the orbifold cover Y → X3 is:

� degree n ramification above vertical curves of the form {xn} ×H2/Γ2,
where xn ∈ H2/Γ1 is a cone point of order n;

� degree two ramification over H2/Γ1×{w2}, where w2 is the cone point
of order two on H2/Γ2.

If pj denotes projection of D3 onto H2/Γj and the image (p1(z), p2(z)) of a
point z ∈ D3 on X3 intersects the ramification locus, then pj(z) is a cone
point of H2/Γj for at least one j ∈ {1, 2}.

Proof. The last statement is an immediate consequence of the first and
Lemma 3.6. For the first statement, note that ramification comes from
elements of the form (t, Id) or (Id, t) not contained in the subgroup Λ of
Γ1 × Γ2 associated with Y , where t is finite order. Since Λ contains none of
the elements of Γ1 × Γ2 of this form by definition, as ρ1 and ρ2 are injective
on torsion, the lemma follows.

Proof of Proposition 3.4. Set D4 = H2/Γ4 and let Ê denote its image in
Y . The map D4 → D3 has degree four, and Y → X3 has degree 12 and is
unramified over D3, so D3 has three preimages in Y .

The image of D3 in X3 meets each vertical curve {z3} × H2/Γ2, over
which the map Y → X3 has degree three ramification by Lemma 3.7, in
a single point that has four preimages in Y . Since D4 → D3 is of degree
four and unramified above the relevant points, Ê must pass through all four
preimages. Thus Ê is smooth through each lift.

The image of D3 meets {x2}×H2/Γ2 and H2/Γ1×{w2} precisely in the
point (x2, w2) where the immersion of D3 fails to be an embedding. This
point on X3 has preimage containing the two A1 singularities of Y . Locally
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around an A1 singularity the cover is the map from a neighborhood V of an
A1 singularity to a neighborhood U of the origin in C2 given by

U −→ V −→ U

where the composition U → U is the action of (Z/2)2 by reflections of order
two in each coordinate and the map U → V is the quotient by the diagonal
subgroup generated by (−1,−1). The map V → U is two-to-one on lines
through the singular point. It follows that the preimage of D3 in Y passes
through each A1 singularity with multiplicity six.

On the other hand, each of the twelve cone points on D4 must map to one
of the A1 singularities, since these are the only orbifold points on Y for its
H2 ×H2 orbifold structure, and orbifold points of D4 must map to orbifold
points of Y . It follows that Ê must pass through the A1 singularities with
total multiplicity twelve, and therefore it passes through each singularity
with multiplicity six. This proves that Ê is embedded in Y away from the
A1 singularities and passes through each singular point with multiplicity six.

Now consider the proper transform E of Ê to Z under the minimal
resolution ϕ : Z → Y , and let F1, F2 be the (−2) curves resolving the
singularities. The above implies that

E · Fj = 6

for j = 1, 2. Write E as ϕ∗Ê + α1F1 + α2F2 for αj ∈ Q. Then KZ · Fj = 0,
so

KZ · E = ϕ∗KY · ϕ∗Ê

= KY · Ê

= 2|eorb(D4)|

by relative Hirzebruch proportionality [8, §4], where eorb denotes the orbifold
Euler characteristic. Since

eorb(D4) = 0− 12×
1

2
= −6

it follows that KZ ·E = 12. Since E has genus one, adjunction implies that
E2 = −12, which completes the proof of the proposition.

3.4 Proof that (Z,E) is a ball quotient pair

Let (Z,E) be the pair constructed in §3.3. First, there are the simple cal-
culations

c21(Z,E) = (KZ + E)2 = K2

Z − E2 = 18
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c2(Z,E) = c2(Z) = 6

that give c2
1
(Z,E) = 3c2(Z,E). To prove that (Z,E) is a ball quotient pair,

it suffices to prove that KZ + E is both nef [16, Def. 1.4.1], big [16, Def.
2.2.1], and that every (−2) curve of X meets E nontrivially.

Consider an irreducible curve C on Z. If C is not E or one of the (−2)
curves Fj , then C · E ≥ 0 and ϕ(C) is an irreducible curve on Y . Then

(KZ + E) · C = KY · ϕ(C) + Ê · C > 0

since KY is ample. To see that KY is ample, note that Y is a compact
quotient of H2×H2 by a group action with only isolated fixed points. Since
there is no branching divisor, the orbifold canonical class for Y is the same
as the canonical class [2, Prop. 4.4.15].

Then

(KZ + E) ·E = 0

(KZ + E) · Fj = 6

so (KZ +E) ·C ≥ 0 for all irreducible curves C on Z, and therefore KZ +E
is nef. Then (KZ + E)2 > 0, so it is big by [16, Thm. 2.2.16]. Moreover,
note that ampleness of KY implies that there is no (−2) curve on Y disjoint
from the singular points, since such a curve C would have KY · C = 0
by adjunction, contradicting ampleness of KY . Therefore there is no (−2)
curve on Z that does not meet E. This combined with Chern–Gauss–Bonnet
completes the proof of the following result:

Theorem 3.8. The pair (Z,E) constructed in this section is a ball quotient
pair. Specifically, ZrE is a smooth one-cusped ball quotient of volume 16π2.

4 The proof of Theorem 1.3

Recall that Theorem 1.1 is an immediate consequence of Theorem 1.3 and
Chern–Gauss–Bonnet. This section proves Theorem 1.3. To start, the pair
(Z1, E1) for Theorem 1.3 is the surface Z from §3 and elliptic curve E on
Z, so it suffices to construct (Zd, Ed) for all odd d > 1.

Lemma 4.1. To prove Theorem 1.3, it suffices to prove that there is an étale
cover Zd → Z1 of every odd degree d so that E1 has irreducible preimage Ed

in Zd.
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Proof. Note that Ed → E1 is étale, so Ed has genus one. Given the hy-
potheses of the lemma, there is an étale covering

Zd r Ed −→ Z1 r E1

of degree d. Since Z1 r E1 is a ball quotient, so is Zd r Ed. Since Ed is
a single genus one curve, Zd r Ed is a one-cusped ball quotient and hence
(Zd, Ed) is a ball quotient pair. Moreover, characteristic classes multiply in
covers, so c2

1
(Zd) = c2(Zd) = 6d. Similarly, self-intersection multiplies, so Ed

has self-intersection −12d. Thus the surfaces (Zd, Ed) satisfy the hypotheses
of Theorem 1.3 and hence their existence would prove that result.

Proposition 4.2. For each odd d ≥ 1 there is an étale cover Zd → Z1 of
every odd degree d so that E1 has irreducible preimage Ed in Zd.

Proof. Recall from Proposition 3.3 that the Albanese map of Z1 is given by
projection onto the curveD2 = H2/Γ2 of genus one. It follows from standard
facts about the Albanese map that π1(Z1)

ab modulo torsion is isomorphic to
Z2 induced by the Albanese map (e.g., see [1, §I.13]). By construction, the
map E1 → D2 is an étale cover of degree 12, hence the image of π1(E1) in
Z2 has index 12. Thus for each odd d ≥ 1 there is a finite abelian quotient
Ad of Z2 with order d so that the induced homomorphism µd : π1(Z1) → Ad

has the property that the restriction to π1(E1) is surjective. If Zd is the
covering of Z1 associated with µd, then E1 has exactly one preimage in Zd,
which is an irreducible curve of genus one. This proves the proposition.

This completes the proof of the main result of this paper.

Proof of Theorem 1.3. Take the surfaces (Zd, Ed) provided by Proposition
4.2 and apply Lemma 4.1.
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