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Abstract. We study several explicit finite index subgroups in the known complex hyper-
bolic lattice triangle groups, and show some of them are neat, some of them have positive
first Betti number, some of them have a homomorphisms onto a non-Abelian free group.
For some lattice triangle groups, we determine the minimal index of a neat subgroup.
Finally, we answer a question raised by Stover and describe an infinite tower of neat ball
quotients all with a single cusp.

1. Introduction

The goal of this paper is to study some explicit finite index subgroups of the known
complex hyperbolic lattice triangle groups. Recall that the first examples of such lattices
were studied by Mostow [33] (see also [7], [43] and the references given there). New exam-
ples were discovered quite a bit later in joint work of the author with Parker aud Paupert,
see [13], [14].

Even though triangle groups are of course very special among all lattices in PU(2, 1),
they allow us to describe all commensurability classes of non-arithmetic lattices in PU(2, 1)
that are known to this day, so we consider it an important and interesting class.

In the papers cited above, explicit fundamental domains for the action of complex hy-
perbolic triangle groups are described, which allows us to describe

• a presentation for these groups in terms of generators and relations;
• the conjugacy classes of isotropy groups;
• the conjugacy classes of cusps.

Even though most of that information can be gathered in [14], that task would require
using the output of our computer program Spocheck [9], which is probably too much to
ask from the average reader.

In this paper we explain some details on how to achieve the last two items, we give
enough information for the above data to be recontructed fairly convieniently, and we list
the results in the form of a computer file [10]. We also give some applications to the
construction of explicit finite index subgroups of (some of) the complex hyperbolic lattice
triangle groups.

We focus on three different kinds of subgroups, namely

• torsion-free/neat subgroups;
• subgroups with positive first Betti number;
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• subgroups that surject onto a non-abelian free group.

Recall that a lattice Γ ⊂ PU(2, 1) is torsion-free (i.e. contains is no non-trivial element
of finite order) if and only if the quotient map H2

C → H2
C/Γ is an unramified covering.

Equivalently, one requires that the quotient H2
C/Γ is a manifold with charts given by local

inverses of the quotient map from H2
C.

A lattice is neat (see [4]) if it is torsion-free, and every parabolic element in the group can
be realized by a unipotent matrix. Neat lattices are also important, because when a lattice
Γ ⊂ PU(2, 1) is neat, the quotient X = H2

C/Γ admits a smooth toroidal compactification,
obtained by adding to each end of X an elliptic curve with negative self-intersection (see [2]
or [32]).

A well-known result of Selberg, usually referred to as Selberg’s lemma (see [39], [1]),
says that every finitely generated matrix group admits a neat subgroup of finite index.
Selberg’s argument relies on taking a principal congruence subgroup modulo a well-chosen
ideal, and this tends to produce subgroups of very large index (see the tables of section 7.3
for examples). We will attempt to get torsion-free subgroups of reasonably small index, so
that one can hope to get a presentation, compute the abelianization, count and describe
the cusps.

In the following discussion, let Γ stand for a lattice triangle group. By construction Γ is
not torsion-free, it is in fact generated by a special kind of torsion element (namely complex
reflections, which are elliptic transformations with a repeated eigenvalue, see section 2.1).

It is an standard consequence of the orbit-stabilizer theorem that the index of a torsion-
free subgroup H ⊂ Γ must be a multiple of the least common multiple L of the orders of
isotropy groups in Γ (see [17] for example). Moreover, if Γ (hence also H) is cocompact,
a standard consequence of Noether’s formula (see Proposition 3.3) implies that χ(H\H2

C)
must be a multiple of 3, which in some cases gives a slightly larger lower bound for the
index [Γ : H ].

We call the obvious lower bound the number

(1) Lopt =

{
3L if Γ is cocompact and 3χorb(H2

C/Γ) /∈ 3Z

L otherwise

If there exists a neat subgroup of index Lopt, we will say that the obvious lower bound
is realized.

For lattices in PU(1, 1) ∼= PSL(2,R), the analogue of the obvious lower bound (with a
factor of 2 instead of 3) is realized for every lattice, by a result of Edmonds, Ewing and
Kulkarni [17]. For PSL(2,C), Jones and Reid [25] have shown that there are lattices where
the obvious lower bound is arbitrarily far from being realized.

About lattice triangle groups in PU(2, 1), we prove the following using the results in
this paper in conjunction with Magma calculations, see section 7.3.

Theorem 1.1. The obvious lower bound is realized for S(4, σ1), S(3, σ5), S(5, σ10), S(10, σ10),
T (3,S2), T (3,E2), T (4,E2), T (5,H2), Γ(4, 5/12), Γ(6, 1/3), Γ(3, 1/3), Γ(4, 1/4), Γ(5, 1/10),
Γ(10, 0), Γ(3, 1/6), Γ(4, 1/12).
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S(4, σ1) S(3, σ5) S(5, σ10) S(10, σ10) T (3,S2) T (3,E2) T (4,E2) T (5,H2)

96 360 600 300 360 72 96 600

Γ(4, 5
12
) Γ(6, 1

3
) Γ(3, 1

3
) Γ(4, 1

4
) Γ(5, 1

10
) Γ(10, 0) Γ(3, 1

6
) Γ(4, 1

12
)

864 18 864 96 600 150 72 864
Table 1. Minimal index of a torsion-free subgroup

Corollary 1.2. The minimal index of torsion-free subgroups in the lattice triangle groups
in the statement of Theorem 1.1 are as in Table 1.

For the other lattice triangle groups, we were not able to prove that the obvious lower
bound cannot be realized (but we suspect that this is the case). Note that for some lattices,
we get a neat finite index subgroup of index reasonably close to Lopt; for others, the only
neat subgroups we know are principal congruence subgroups, and in some cases these
congruence subgroups seem inaccessible to computation using current computer technology
(see Tables 11 through 72 for the list of subgroups we were able to obtain).

We point out that some of the results in Theorem 1.1 are not new. For the group
Γ(3, 1/3), which is also the group Deligne-Mostow group Γµ,S3 for µ = (2, 2, 2, 7, 11)/12, the
subgroup of index 864 with Abelianization Z2 is the fundamental group of the Cartwright-
Steger surface.

For the groups Γ(6, 1/3) and Γ(3, 1/6), the subgroups of optimal index give a neat
subgroup H with χ(H\H2

C) = 1, 4 cusps and Abelianization Z4, which correspond to
Hirzebruch’s surface (see [23], [15]).

Note also that there are 4 non-arithmetic lattices in the list given in Theorem 1.1, namely
S(3, σ1), S(3, σ5), T (4,E2), Γ(4, 1/12). For these lattices, getting a subgroup with optimal
index yields a ball quotient with fairly large Euler characteristic (namely χ = 42, 98, 102, 39
respectively).

We point out a nice by-product of our search for neat subgroups in lattice triangle groups,
which answers a question raised by Stover in [41] (the analogous question for real hyperbolic
4-manifolds was raised by Long-Reid [31], and answered by Kolpakov and Martelli [29]).

Theorem 1.3. The Mostow group G = Γ(6, 0) has a neat subgroup H of index 72 such
that X = H\H2

C has exactly one cusp.

As pointed out to us by Matthew Stover, this result can be improved to the following
statement.

Theorem 1.4. There exists an infinite tower H = H1 ⊃ H2 ⊃ H3 ⊃ · · · of neat subgroups
with [H : Hn] → ∞ such that for every n, Xn = Hn\H

2
C has exactly one cusp.

A similar infinite tower of neat subgroup with 2 cusps was constructed by Di Cerbo and
Stover [16].

About subgroups with positive first Betti numbers (see section 7.1), first note that we
record the first Betti number of the torsion-free subgroups in the last column of Tables 11
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through 72. A lot of these have b1 > 0 (this is equivalent to saying that their Abelianization
is infinite). In cases where all the torsion-free subgroups we have found have b1 = 0, we
try computing all (normal) subgroups of “small” index, and check if these subgroups have
b1 > 0; the word “small” has no precise meaning here, we simply mean that the Magma
command for computing the corresponding subgroups should take less than a day, say. For
several lattice triangle groups, both of these methods fail, and we do not know any explicit
subgroup of finite index with b1 > 0.

Finally we review some facts (that are probably well-known to experts) that show that
many Mostow groups are large, i.e. they admit a finite index subgroup that maps onto a
non-Abelian free group. The subgroups in question are obtained by constructing explicit
subgroups that admit a homomorphism onto a hyperbolic triangle group. Largeness then
follows from largeness of every Fuchsian group (see Lemma 7.1).
Acknowledgements: I wish to thank Philippe Eyssidieux and Julien Paupert for interest-
ing discussions related to this work. Warm thanks also go to Matthew Stover, for patiently
explaining a lot of the computational techniques used in the paper, and for suggesting to
strengthen Theorem 1.3 to 1.4. Finally, the author acknowledges support from INRIA, in
the form of a research semester in the “Ouragan” team.

2. Background on lattice triangle groups

2.1. The complex hyperbolic plane. We briefly review basic facts about the complex
hyperbolic plane and complex hyperbolic triangle groups. Recall that the complex hy-
perbolic plane H2

C is the only Hermitian symmetric space of complex dimension 2 with
constant negative holomorphic sectional curvature (see [28]). One possible model is the
unit ball in B ⊂ C2 equipped with the Bergman metric, but it is convenient to see C2 as
an affine chart of P2

C, and to work in homogeneous coordinates. As a set, H2
C is the set of

complex lines that are negative for a fixed Hermitian inner product 〈·, ·〉 of signature (2, 1)
on C3, which we can describe as 〈V,W 〉 = W ∗HV for some Hermitian matrix H . Recall
that U(H) denotes the group

U(H) = {A ∈ GL3(C) : A
∗HA = H},

and PU(H) is the quotient of U(H) by the subgroup of scalar matrices. Note that by
Sylvester’s law of inertia, up to isomorphism, the real Lie group PU(H) is independent of
the choice of Hermitian form H , a common choice being the diagonal matrix diag(−1, 1, 1).

Up to scale, there is a unique PU(H)-invariant Riemannian metric on H2
C, which is

Kähler and has constant holomorphic sectional curvature. We refer to H2
C, equipped with

the unique PU(H)-invariant Riemannian metric of holomorphic sectional curvature −1, as
the complex hyperbolic plane. When we talk about volume, we mean volume with respect
to the corresponding Riemannian volume form.

The stabilizer of a point x = [V ] in H2
C in PU(H) is isomorphic to group of isometries of

the restriction of the Hermitian form to V ⊥ = {W ∈ C3 : 〈V,W 〉 = 0}. Because of the fact
that V is a negative vector and H has signature (2, 1), V ⊥ is a positive definite subspace,
so the stabililizer of a point is isomorphic to U(2).
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One checks that PU(H) is the full group of homomorphic isometries, and that it has
index two in the full group of isometries (an isometry not in PU(H) is induced by V 7→ QV̄
where Q is a matrix such that Q∗H̄Q = H (such a matrix exists because H and H̄ have
the same signature).

An explicit expression for the invariant Riemannian metric can be found in [28], see
also [20]. We will not need any expression for that metric; for concreteness, we describe
the corresponding distance function, which is given by

cosh

(
1

2
d(CV,CW )

)
=

|〈V,W 〉|√
〈V, V 〉〈W,W 〉

.

where V,W ∈ C3 are any two negative vectors. The factor 1
2
is included for the constant

holomorphic sectional curvature to be equal to −1.
Given two distinct points CV,CW ∈ H2

C, i.e. V,W are linearly independent over C, the
restriction of the Hermitian form to the complex span C{V,W} has signature (1, 1), so the
set of negative vectors in the span gives a copy of H1

C, which is totally geodesic. We call
this the complex line through V and W .

2.2. Point stabilizers. Recall that the isometric action of PU(H) on the open ball H2
C

extends to an action on the closed ball H2
C∪∂∞H2

C by homeomorphisms. Every homeomor-
phism of a closed ball has a fixed point, and the position of the corresponding fixed points
(in H2

C or in ∂∞H2
C) gives a classification of isometries into elliptic, parabolic, loxodromic

isometries (see section 6.2 in [20]).
Elliptic isometries are the ones that have a fixed point in H2

C. The ones without any
fixed point in H2

C are either parabolic (unique fixed point in ∂∞H2
C) or loxodromic (two

distinct fixed points in ∂∞H2
C).

Suppose A ∈ PU(H) is elliptic. Then A has an eigenvector V0 with 〈V0, V0〉 < 0, and by
multiplying A by a constant, we may assume the corresponding eigenvalue is 1. Moreover,
we may normalize V0 so that 〈V0, V0〉 = −1. The orthogonal complement V ⊥

0 = {W ∈ C3 :
〈V0,W 〉 = 0} is invariant under A and, because of the signature assumption, the restriction
of the Hermitian form to V ⊥ is positive definite. Pick a V1 ∈ V ⊥

0 , which once again we
may normalize so that 〈V1, V1〉 = 1, and then take V2 to be the Hermitian box product
V0 ⊠ V1 (i.e. the usual cross-product of V ∗

0 H with V ∗
1 H). Normalizing V2, we get A to be

diagonal in the basis V0, V1, V2, which is standard Lorentzian in the sense that the matrix
of the Hermitian form in that basis is

J =



−1 0 0

0 1 0

0 0 1


 ,

As mentioned before, this identifies the stabilizer of CV0 in PU(H) with the unitary group
U(2) (which is a compact group).

When A has distinct eigenvalues, A is called a regular elliptic isometry. In that
case, A has three linearly independent eigenvectors, and the Lorentzian character of the
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diagonalizing basis is essentially automatic because eigenvectors with different eigenvalues
are orthogonal with respect to 〈·, ·〉 (one simply normalizes any triple of eigenvectors).

When A is elliptic and has a double eigenvalue, the above argument shows that A remains
diagonalizable (because every matrix in U(2) is diagonalizable). We can write

C3 = CV0 ⊕ V ⊥
0

for some V0 ∈ C3 with 〈V0, V0〉 6= 0 (if the inner product were 0, the above decomposi-
tion would not be a direct sum). Note that A acts projectively as the identity on the
projectivization of V ⊥

0 , because it is an eigenspace for A.
If 〈V0, V0〉 > 0, we call A a complex reflection, and we call (the projectivization of)

V ⊥
0 its mirror, which is a complex line, i.e. a totally geodesic copy of H1

C in H2
C.

If 〈V0, V0〉 < 0, then CV0 gives an isolated fixed point in H2
C for the action of A, and we

say that A is a complex reflection in a point.
In both cases there is a simply formula for A in terms of the Hermitian inner product.

Indeed, let ζ ∈ C be such that |ζ | = 1 and consider the linear map given for every X ∈ C3

by

(2) R(X) = X + (ζ − 1)
〈X, V0〉

〈V0, V0〉
V0.

It is easy to see that V ⊥
0 and CV0 are eigenspaces of R, with eigenvalue 1 and ζ respectively.

Depending on the sign of 〈V0, V0〉, we get either a complex reflection (with mirror V ⊥
0 ) or

a complex reflection in a point. The complex number ζ is called the multiplier of the
complex reflection.

Remark 2.1. (1) It follows from the above discussion that if a holomorphic isometry
A ∈ PU(H) fixes two distinct points in H2

C, then it fixes the complex lines through
these two points, hence it is a complex reflection.

(2) Regular elliptic elements can have non-trivial powers that are no longer regular.

2.3. Ideal point stabilizers. We now review some facts about the stabilizer in G =
PU(H) of an ideal point, i.e. a complex line spanned by a null vector. Recall that all
Hermitian forms of signature (2, 1) on C3 are equivalent over R, so we may assume by
choosing a suitable basis of C3 that the matrix of the Hermitian form in the standard basis
e1, e2, e3 of C3 is the antidiagonal matrix

J =



0 0 1

0 1 0

1 0 0


 .

With such normalization, e1 is a null vector, so Ce1 ∈ ∂∞H2
C.
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The unipotent stabilizer of e1 in G forms a subgroup of StabG(e1), which is given by the
matrices of the form

(3) T (z, t) =



1 −z̄ −|z|2+it

2

0 1 z

0 0 1


 .

where z ∈ C, t ∈ R. Let V = (v1, v2, v3) ∈ C3 be any null vector for the form 〈V,W 〉 =
W ∗JV , i.e. 2ℜ(v1v̄3) + |v2|2 = 0. If v3 = 0, then v2 = 0 and V is a multiple of e1;
if v3 6= 0, we can normalize the homogeneous coordinates so that v3 = 1, and then we
have 2ℜ(v1) + |v2|2 = 0. This implies that v is in the image of e3 = (0, 0, 1) under some
transformation T (z, t) (take z = v2, t = (2v1 + |v2|2)/i), i.e. the unipotent stabilizer acts
transitively on ∂∞H2

C \ Ce1.
In fact, one verifies that T (z, t)T (z′, t′) = T ((z, t) ⋆ (z′, t′)), where ⋆ denotes the Heisen-

berg group law, namely

(z, t) ⋆ (z′, t′) = (z + z′, t+ t′ + 2ℑ(zz̄′)).

The group C × R equipped with the Heisenberg group law is the (3-dimensional real)
Heisenberg group, and we denote it by H. Note that the center of H is the subgroup
{(0, t), t ∈ R}.

Equation (3) can be thought of as embedding H as the unipotent stabilizer of e1, or as
an identification between ∂∞H2

C \ Ce1 and H (the point (z, t) corresponds to the complex

line spanned by (−|z|2+it
2

, z, 1)). Since T (z, t) acts on H via left ⋆-multiplication by (z, t),
we often refer to the transformations T (z, t) as a Heisenberg translations. The elements
with z = 0, which are central in the unipotent stabilizer, are called vertical translations.

There are complex reflections in the stabilizer, given by the diagonal matrices Rζ =
diag(1, ζ, 1), |ζ | = 1. These act on H as (z, t) 7→ (ζz, t), and we refer to them as Heisen-
berg rotations. Finally, Heisenberg dilations are given by diag(λ, 1, 1/λ) for λ ∈ R∗.

The full stabilizer of e1 in G is generated by these three classes (see section 4.2.2 of [20]
for instance). In terms of the rough classification of isometries into elliptic, parabolic
and loxodromic transformation, Heisenberg translations (resp. rotations, dilations) are
parabolic (res. elliptic, loxodromic).

Note also that for arbitrary z ∈ C, t ∈ R and ζ ∈ C with |ζ | = 1, RζT (z, t) is parabolic,
but it is unipotent if and only if ζ = 1. The transformations RζT (z, t) with ζ 6= 1 are often
called screw-parabolic elements.

3. Lattices in PU(2, 1)

Throughout this section, Γ denotes a lattice in PU(H), in the sense of Definition 3.1.

Definition 3.1. A subgroup Γ ⊂ PU(H) is called a lattice if it is discrete and Γ\H2
C has

finite volume. A lattice is called cocompact (or uniform) if Γ\H2
C is compact.

To simplify notation, we write G = PU(H). Even though we will not use this in the
present paper, we point out that the lattice condition is equivalent to the requirement that
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Γ\G has a finite Haar measure (this is a consequence of the compactness of K = StabG(x),
x ∈ H2

C).
Since the stabilizer in G of a point x ∈ H2

C is compact, StabΓ(x) is a finite group, for
every x ∈ H2

C. It follows that the quotient Γ\H2
C acquires the structure of a complex

hyperbolic orbifold.
In order for the quotient map to induce a complex hyperbolic manifold structure on the

quotient, one needs the point-stabilizers to be trivial; since any element of finite order in
G fixes at least one point in H2

C, we have the following.

Proposition 3.1. The local inverses of the quotient map H2
C → Γ\H2

C define a manifold
structure on Γ\H2

C if and only if Γ is torsion-free.

When the conditions of Proposition 3.1 are satisfied, we say that Γ\H2
C is a smooth ball

quotient (of finite volume).

Remark 3.2. The quotient Γ\H2
C can be a smooth even in cases where Γ has non-trivial

torsion; indeed, some of the ball quotients constructed by Hirzebruch (see [3], [45] or [7])
give lattices such that Γ\H2

C biholomorphic to P2
C (possibly blown up at some points), but

the corresponding quotient map H2
C → P2

C is then a branched covering.

If Γ is torsion-free and cocompact, X = Γ\H2
C is a compact complex surface, and

Noether’s formula (see [21], p.438) says that

(4) Z ∋ χ(OX) =
c1(X)2 + c2(X)

12
.

Moreover, by Hirzebruch proportionality [22], smooth compact ball quotients satisfy the
same equality of Chern numbers as P2

C, namely c1(X)2 = 3c2(X). Since c2(X) is the
topological Euler characteristic χ(X), equation (4) implies the following.

Proposition 3.3. Let X be a compact smooth ball quotient. Then χ(X) ∈ 3Z.

There exist many compact smooth ball quotients with χ(X) = 3, namely fake projective
planes (these are compact ball quotients of dimension 2 with the same Betti numbers as P2

C,
in particular they have b1 = 0). Klingler [27] has shown that every fake projective plane
must be arithmetic (see also [47]), and this sets ground for a classification, since arithmetic
groups can be described by explicit number-theoretical data (see [46], [44]). Fake projective
planes were indeed enumerated by Prasad, Yeung [37], Cartwright and Steger [6]. As a
by-product of the work needed for the classification, Cartwright and Steger also found
a compact smooth ball quotient of dimension 2 with minimal volume (this is equivalent
to having Euler characteristic 3) but which is not a fake projective plane (in fact it has
positive first Betti number). The latter is listed in our paper, its fundamental group is
(conjugate to) a subgroup of a specific Mostow ball quotient (see Table 54).

Note also that every element in 3Z is the Euler characteristic of some smooth compact
ball quotient. Indeed, the fundamental group of the Cartwright-Steger Γ has Abelianization
Z⊕Z, hence a surjective morphism Γ → Z; the preimage of nZ under this morphism gives
a subgroup of index n in Γ, which has Euler characteristic 3n.
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For non-compact ball quotients, the Euler characteristic can be equal to any natural
number n ∈ N∗. This follows from the fact that the surface constructed by Hirzebruch
in [23] has Euler characteristic 1 and the Abelianization of its fundamental group is Z4, so
the corresponding lattice has a homomorphism onto Z (and the latter has subgroups of any
arbitrary finite index). In fact a stronger result was proved by Di Cerbo and Stover [16],
namely for every n ∈ N∗, there exists a non-cocompact ball quotient with two cusps and
Euler characteristic 1. In this paper, we will improve this to get a tower of smooth ball
quotients with a single cusp, see Theorem 1.4.

It is natural to look for a condition analogous to the torsion-free condition but for
stabilizers of ideal points. Of course a finite covering of a non-compact ball quotient will
remain non-compact, so one cannot hope to get rid of cusps alltogether in a subgroup
of finite index (see Proposition 3.4); the relevant condition for cusps to be torsion-free is
slightly more subtle.

We start by observing that if Γ ⊂ G is discrete and x ∈ ∂∞H2
C, then StabΓ(x) can-

not contain both parabolic and loxodromic elements, which simplifies the description of
stabilizers of ideal points in discrete groups, see section 2.3.

Because of the lattice assumption, the thick-thin decomposition (see section 4 of [26] for
instance) implies that the quotient Γ\H2

C has finitely many ends, each being homeomorphic
to N×]0,∞[, where N is a compact quotient of the Heisenberg group, which is isomorphic
to the stabilizer in Γ of a given ideal point x ∈ ∂∞H2

C (see also [19]). The end of the
quotient is usually referred to as a cusp; cusps are in 1-1 correspondence with Γ-conjugacy
classes of non-trivial isotropy groups of ideal boundary points that contain at least one
parabolic element. By extension, these stabilizers are often called cusps as well.

In particular, we have the following.

Proposition 3.4. Let Γ be a lattice in G = PU(H). The quotient Γ\H2
C is cocompact if

and only if Γ contains no parabolic element.

Using the description of StabG(x) for x ∈ ∂∞H2
C (see section 2.1), we can say a little

more about cusp groups. Once again, if StabΓ(x) is a cusp group, then it consists of
screw-parabolic elements, i.e. matrices of the form

(5)



1 −z̄ −|z|2+it

2

0 ζ z

0 0 1


 ,

z, ζ ∈ C, t ∈ R, |ζ | = 1.
The projection

(6)



1 −z̄ −|z|2+it

2

0 ζ z

0 0 1


 7→

(
ζ z

0 1

)
.

is a group homomorphism, which can be interpreted as a map

Φ : StabparG (x) → Isom(C)
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of the parabolic stabilizer onto the group of Euclidean isometries of C, with central kernel.
Since we assume that Γ is a lattice, StabΓ(x) must act dicretely and cocompactly on

the Heisenberg group H, from which is follows that Φ(StabΓ(x)) must act dicretely and
cocompactly on C (and the kernel must be an infinite cyclic group).

In those terms, the analogue of the torsion-free condition for cusps is quite natural; one
requires that Φ(StabΓ(x)) be a torsion-free (cocompact) group of isometries of C. It is
a standard fact that these are just free Abelian groups generated by two translations in
different directions, hence the quotient C/Φ(StabΓ(x)) is an elliptic curve.

Definition 3.2. A lattice Γ ⊂ PU(2, 1) is neat if every matrix representative A of an
element γ ∈ Γ that has a root of unity as an eigenvalue is actually (a multiple of) a
unipotent matrix.

One can push the above discussion to prove the following, see [2] for the arithmetic
case, [32] for the general case.

Theorem 3.5. Let Γ ⊂ PU(2, 1) be a neat lattice. Then X = Γ\H2
C is smooth, and it

admits a smooth compactification X̄, where X̄ \X is a disjoint union of elliptic curves with
negative self-intersection.

One can also give a simple interpretation of the self-intersection of the elliptic curves in
the compactification X̄.

Indeed, let Γ be a neat lattice and let P be a cusp subgroup of Γ. It follows from the
previous discussion that P is a central extension (with infinite cyclic center) of sugroup
of Isom(C) generated by two translations. In terms of the Heisenberg group, we get two
Heisenberg translations A,B (such that the entries A1,2 and B1,2 linearly independent over
R) such that Φ(A) and Φ(B) generate Φ(StabΓ(x)), and a non-trivial vertical translation
Z that generates the kernel.

Since the commutator of two Heisenberg translations must be a vertical translation, we
can write

ABA−1B−1 = [A,B] = Zk

for some integer k. Proposition 4.2.12 and equation (4.2.15) of [24] say that the self-
intersection of the elliptic curve corresponding is −|k|.

This self-intersection can be computed very efficiently from a presentation for C in terms
of generators and relations. Indeed, given the above description, C must be isomorphic to

〈
a, b, z | [a, b]z−k, z central

〉
,

whose abelianization is Z⊕ Z⊕ Z|k|.

Remark 3.6. When Γ is a non-neat lattice, one can still compactify the quotient, but the
ends are then filled with quotients of elliptic curves by a finite group, see recent work of
Eyssidieux [18].

3.1. Lattice triangle groups. Recall that complex reflections are elliptic elements whose
matrix representative has a repeated eigenvalue, see equation (2). The lattices we consider
in this paper are all triangle groups in the following sense.
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Definition 3.3. A complex hyperbolic triangle group is a subgroup of PU(H) generated by
three complex reflections R1, R2, R3.

It turns out that several triangle groups are lattices, as was first observed by Mostow [33].
More examples were found later [11], [42], [13] and [14].

We refer to the lattice triangle groups listed in [14] as the known lattice triangle groups.
The list is reproduced here in Tables 11 through 72.

We briefly review notation, a detailed parametrization for these groups can be found in
section 3 of [14]. We list groups of three kinds, see Table 3.1. Sporadic groups and Mostow

Name Notation Parameters

Sporadic groups S(p, τ) p ∈ N∗, τ ∈ C

Thompson groups T (p,T) p ∈ N∗,T ∈ C3

Mostow groups Γ(p, t) p ∈ N∗, t ∈ Q

groups are generated by R1 and J , where R1 is a complex reflection with multiplier e2πi/p,
and J is a regular elliptic element of order 3. One gets two other complex reflections by
setting R2 = JR1J

−1 and R3 = J−1R1J .
Sporadic groups are characterized by this data and the fact that tr(R1J) = τ . The

corresponding sporadic group S(p, τ) is a lattice only for wisely chosen pairs (p, τ).
Mostow groups Γ(p, t) are special cases of sporadic groups, where we take

τ = eπi(
3
2
+ 1

3p
− t

3
).

Thompson groups are generated by three complex reflections R1, R2, R3 with the same
multiplier e2πi/p, but where there is no isometry J as above such that Rk+1 = JRkJ

−1.
These are parametrized by a triplet T = (ρ, σ, τ) ∈ C3 that generalizes the trace parameter
of sporadic groups (see section 3 of [14] for details).

As discussed in [14], the commensurability classes of the lattices in these three classes
contain all known non-arithmetic commensurability classes of lattices in PU(2, 1) (there
are currently 22 known commensurability classes).

4. Conjugacy classes of isotropy groups

In this section we briefly recall how to use a fundamental domain F for a lattice Γ ⊂
PU(2, 1) to obtain the list of conjugacy classes of

• isotropy groups in Γ of points in H2
C;

• cusps in Γ.

The isotropy groups of points in H2
C are precisely the maximal finite subgroups in Γ, and

the cusps are isotropy groups of ideal boundary points that contain at least one parabolic
element (the latter are infinite, in fact they act cocompactly on horospheres).

Note that the finite isotropy groups were already listed in the tables of [14]; either they
are generated by complex reflections (in which case they occur in the tables giving vertex
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stabilizers), or they are not (in which case they can be deduced from the information about
singular points of the quotient).

For cusps, the information given in [14] only says whether the group is generated by
reflections, and when it is not, we did not give actual generators. In order to get generators,
we use the computer output of Spocheck [9].

What we do in Spocheck uses the fundamental domains constructed in [14] and tracks
cycles of (ideal or finite) vertices, as well as facets of higher-dimension. The point is
that every isotropy group is conjugate to one with fixed point in the boundary of the
fundamental domain, hence it is enough to compute the stabilizers of all facets of the
fundamental domain. We use the same method as Mostow in section 18.2 of [33].

In the following paragraphs, we let F be (finite-sided) a fundamental domain for Γ, and
let v denote a facet of F . In order to compute StabΓ(v) we build a graph whose vertices
are given by facets of the fundamental domain F . For every such facet v, we list all sides
of F containing v. For every such side s, we consider the side-pairing map γs, and draw an
edge from v to γs(v). Let us denote by T the corresponding directed graph; it is a finite
graph since we assume F has finitely many sides.

By construction, the Γ-orbits of ideal vertices are in 1-1 correspondence with the con-
nected components of T . We have a well-defined representation ρv : π1(T, v) → Γ, and the
stabilizer of v in Γ is precisely the image Im(ρv). In particular, in order to get a generating
set for StabΓ(v), it is enough to construct explicit generators of π1(T, v) (which can be done
by constructing a maximal subtree containing v in T ).

The computations (and even the end results of these computations) are too long to be
included in a paper, we will list them in the form of a Magma file in [10]. In this paper,
we give the details only for a couple examples that illustrate the method, see sections 4.1
and 4.2.

The general result for ideal vertices is given in the Tables of section 7.3 (Tables 11
through 72), sixth (cusp generators) and seventh column (cusp relations).

4.1. Isotropy groups for Γ = S(3, σ1). In this section, we use word notation used in [14],
so that 1, 2, 3 and 4 stand for R1, R2, R3 and J respectively, and 1̄ stands for R−1

1 , etc.
Consider the group Γ = S(3, σ1). The Spocheck output [9] gives us the stabilizers listed
in Table 2. It turns out all non Abelian finite stabilizers are complex reflection groups, so
they can be described in terms of the Shephard-Todd classification [40]. In the tables, we
write Gk for (a group isomorphic to) the k-th imprimitive group in the Shephard-Todd list.

Recall that brn(a, b) means (ab)n/2 = (ba)n/2, which when n is odd means

(7) aba · · · ba = bab · · · ab

where both sides of equation (7) are products of n factors.
For the cusp, we know from [14] or [9] that R1 and R2 braid with length 6. We then use

the fact that (ab)3 is central in the braid group 〈 a, b | br6(a, b) 〉 and the basic geometry
of braiding complex reflections (see section 2.3 of [33] or section 2.3 of [14]) to identify the
relevant subgroup of Isom(C) (see section 3) as a (3, 3, 3)-triangle group.
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Ridge stab. Edge stab. Vertex stab.

〈J〉, order 3 〈R1〉, order 3 〈1, 2〉, Cusp

〈R1〉, order 3 〈1, 23̄2̄〉, order 72 (G5)

〈R1J〉, order 8 〈1, 2323̄2̄〉, order 24 (G4)

〈1, 3̄2̄323〉, order 24 (G4)
Table 2. Facet stabilizers for S(3, σ1)

From this and the fact that the braid relation br6(a, b) implies that (ab)3 is central, one
easily sees that the cusp has a presentation of the form

〈
r1, r2 | r61, r

6
2, br6(r1, r2)

〉
.

4.2. Isotropy groups for Γ = S(3, σ5). A more complicated example is given by the
group Γ = S(3, σ5). The Spocheck output gives us the information in Table 3, where Ξ
is a complicated generating set for the corresponding cusp. Explicitly Ξ consists of the

Ridge stab. Edge stab. Vertex stab.

〈J〉, order 3 〈R1〉, order 3 〈1, 2〉, order 72 (G5)

〈R1〉, order 3 〈1, 23̄2̄〉, order 360 (G20)

〈R1J〉, order 30 〈Ξ〉, Cusp

〈23̄2̄1232̄, (R1J)
5〉, order 18
Table 3. Facet stabilizers for S(3, σ5)

following elements:

x0 = 2

x1 = 1232̄123̄ 2̄ 1̄

x2 = (123)2121̄312̄ 1̄(3̄ 2̄ 1̄)2

x3 = (123)413̄231̄(3̄ 2̄ 1̄)4

x4 = (3̄ 2̄ 1̄)23̄ 2̄ 313̄23(123)2

x5 = (3̄ 2̄ 1̄)232̄(123)

x6 = 4̄21212̄ 1̄ 3̄ 2̄ 1̄ 2

By constructing all words of length ≤ 5 in x0 and x1, one checks that x2, x3, x4, x5 ∈
〈x0, x1〉, in fact we have: x2 = x1x0x

−1
1 , x3 = x1x0x1x

−1
0 x−1

1 , x4 = x−1
0 x−1

1 x0x1x0, x5 =
x−1
0 x1x0.
Computing short words in x0, x6, we also have x1 = x6x0x

−1
6 , so we get the following.

Proposition 4.1. The group generated by Ξ is generated by x0 and x6.
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In order to work out a presentation for the group generated by x0 and x6, we need to
work a little more. We use the discussion given in section 2.3 of the stabilizer of an ideal
point in PU(2, 1).

We start by giving matrices for the group, with integral entries in the smallest possible

number field, i.e. K = Q(ω, ϕ), where ω = −1+i
√
3

2
, ϕ = 1+

√
5

2
. The lattice can be written

as the group generated by

R1 =



ω ω + ϕ ω̄ϕ+ ω

0 1 0

0 0 1


 J =



0 0 −ω

1 0 0

0 1 0


 ,

which preserve the Hermitian form

H =




α β −ωβ̄

β̄ α β

−ω̄β β̄ α


 ,

where α = 3 and β = −(2 + ω)ϕ+ (1− ω).
It follows from Proposition 4.1 that that the cusp is generated by

A = 2̄ 123121̄ 2̄ 1̄P 2, B = R2

By using a suitable matrix Q ∈ GL(3,OK), for example

Q =




ω(ϕ+ 1) ω̄(ϕ+ 1) ω + 1

−ω̄(2ϕ+ 1) −(ϕ+ 1) ϕ + ω̄

ϕ+ 1 ω(ϕ+ 1) 1 + ω̄ϕ


 ,

we can write A and B in upper triangular form, namely we have (in the projective group)

Q−1AQ =



1 0 −ω̄

0 −ω̄ 0

0 0 1


 , Q−1BQ =



1 1 + 2ω −ω

0 ω 1

0 0 1


 .

Note that Q∗HQ is (a real multiple) of



0 0 ω − 1

0 3 0

ω̄ − 1 0 0


 .

As discussed in section 2.3, the action on the complex line tangent to the ideal boundary
at the ideal fixed point is described projectively by the lower-right 2× 2 submatrix, i.e. if
we denote by Ã, B̃ the corresponding Euclidean isometries of C, we have

Ã(z) = −ω̄z, B̃(z) = ωz + 1

which are rotations about 0 (resp. 1−ω̄
3
) and order 6 (resp. 3).
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Note that the product B̃Ã is a rotation of order 2, and the relevant Euclidean group of
isometries is a (2, 3, 6) triangle group.

Going back to the original matrices A,B and BA, note that (still in the projective group)

(8) A6 =



1 0 −6ω̄

0 1 0

0 0 1


 , B3 = Id, (BA)2 =



1 0 −ω̄

0 1 0

0 0 1


 .

The last equality shows that (BA)2 is central.
In fact we have the following

Proposition 4.2. The cusp of S(3, σ5) can be represented as the group generated by A
and B. Its center is generated by (AB)2, and it is isomorphic to

〈a, b|a6(ba)−12, b3, [a, (ab)2], [b, (ab)2]〉.

Proof: The above discussion shows that the group of isometries of C obtained as the action
on the complex line tangent to the ball at the fixed point of the cusp is a (2, 3, 6)-triangle
group.

It is well known that this triangle group has a presentation of the form 〈 α, β | α6, β3, (αβ)2 〉,
in particular, any word in α, β, γ that is trivial in the triangle group can be written as a
product of conjugates of α6, β3 or (αβ)2. This implies that every central element in the
cusp must be a product of powers of A6, B3 and (AB)2. The computation of equation (8)
shows that (AB)2 generates the center. �

Note that explicit computation shows that BA−1 has order has order 6, and that the
braid relation br(B,BA−1) holds in the group. One checks (for example using Magma)
that the group 〈

c, d | c3, d6, br4(c, d)
〉

is isomorphic to the above presentation (where the isomorphism maps c↔ b, d↔ ba−1).

5. Methods for finding subgroups

In order to get subgroups, we use four basic methods, listed

• The LowIndexSubgroups gives us list of subgroups of small index (usually reason-
able for index bounds of about 30);

• The LowIndexNormalSubgroups gives us list of normal subgroups of small index,
and it works for much larger index than the previous one (usually reasonable for
index bounds of 30,000 to 100,000);

• The SimpleQuotients allows us to study only simple quotients, and can give ho-
momorphisms to very large finite (simple) groups;

• Congruence subgroups (either we choose an explicit prime ideal and reduce the
matrices modulo that ideal, or we use the CongruenceImage command in Magma).

The cost of all these methods grows exponentially as the number of generators increase.
What makes them usable in the context of subgroups of small index in this context is that
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lattice triangle groups have few generators (most are generated by 2 elements, some by 3
elements).

There is also a slightly more subtle method to build non-normal (neat) subgroups con-
taining a given normal (neat) subgroup. This is well known to experts, but we give some
details in section 5.5.

5.1. Low Index Subgroups (LIS). This method works only for subgroups of fairly small
index; the indices accessible by this method depend to a great extend on the lattice triangle
group we are considering (generally index 20 is already a lot to ask).

5.2. Low Index Normal Subgroups (LINS). For normal subgroups, the allowed in-
dices are much larger, but once again, the reasonable values depend on the group (for some,
Magma gives reasonable access to the index ≤ 100 000, while for some others index 1 000
is already a lot to ask).

5.3. Simple Quotients (SQ). The search for simple quotients depends on choices of
parameters (lower and upper bounds for the order of the group, and an upper bound on
the degree of the permutation group, i.e. N such that the group embeds in the symmetric
group SN ). For more details, see the README file in the computer code [10].

5.4. Congruence Subgroups (CS). We say a word about how we compute congruence
subgroups. Each triangle group comes with an explicit generating set, given by a finite set

A of matrices in U(H), with algebraic integer entries. Denote by Γ̃ the group generated
by A, and by Γ the corresponding subgroup of PU(H).

Here H is a Hermitian form over a number field K, with ring of integers OK. Given an
ideal I ⊂ OK, we consider the finite ring R = OK/I, and consider the group homomorphism

ϕ : Γ̃ → GL(3, R)

obtained by reducing all entries modulo I.

Definition 5.1. The principal congruence subgroup of Γ mod I is the projectivization of
the kernel of ϕ.

In order for these principal congruence subgroups to be accessible to computation, we
need to define the above data in Magma, which is a little subtle.

Recall that we are given a presentation for Γ in terms of generators and relations, and
we would like to compute a presentation for a principal congruence subgroup. In order to
do this, we follow the next steps.

• Define F̃ = Im(ϕ) as the MatrixGroup over the finite ring R = OK/I generated by
ϕ(a), a ∈ A.

• Convert F̃ to a permutation group via PermutationGroup(FPGroup( . . . ));, and

compute the permutation group F = F̃ /ZF̃ , where ZF̃ is the group of scalar matri-

ces in F̃ .
• Define a homomorphism from Γ to F , and compute its kernel.
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The above steps are quite heavy computationally, and they will only succeed when the
order of F̃ is not too large.

Note that in order to use the above method, we need to choose an ideal I in OK. Recall
that OK is not a unique factorization domain, but there is a unique factorization of ideals
as a product of prime ideals, see standard texts on algebraic number theory, e.g. [36]. This
factorization is implemented in Magma.

In order to select ideals, we factor a the ideal nOK = I1 ·I2 · · · Ir for some rational integer
n ∈ Z, and pick one of its prime ideal factors I1 (or sometimes the product of several such
prime ideal factors).

5.5. Promoting normal subgroups to non-normal subgroups of smaller index.
The last three methods (LINS, QS, SC) give normal subgroups of fairly large index, and
we now explain how to improve this to get (non-normal) subgroups of smaller index.

Suppose ϕ : Γ → F is a surjective morphism onto a finite group, let K = Ker(h). The
basic observation is that for every subgroup S ⊂ F , H = ϕ−1(S) is a subgroup of Γ that
contains K. Converserly, any subgroup H with K ⊂ H ⊂ Γ is obtained in this way (as
ϕ−1(ϕ(H))). Note also that with the above notation, the indices [Γ : H ] and [F : S] are
equal.

Moreover, the preimage ϕ−1(S) is a finitely presented group and, at least when the index
is not too large, a presentation can be obtained via Magma.

Now suppose that we have a list I1, . . . , Ir of finite subgroups of Γ such that every torsion
element in Γ is conjugate to an element of some Ik (in other words, the subgroups Ik give
a list of the non-trivial isotropy groups for the action of Γ on H2

C).

Proposition 5.1. (1) K is torsion-free if and only if |ϕ(Ij)| = |Ij | for all j = 1, . . . , r.
(2) If K is torsion-free, then H = ϕ−1(S) is torsion-free if and only if x−1Sx∩Ij = {Id}

for every x ∈ F and every j.

In part (2), instead of taking all the elements x ∈ F , it is of course enough to check all the
elements in a right-transversal for S in F . Note that all the verifications of Proposition 5.1
take place in a finite group, so in a sense they can be considered easy. . . but they can take
a long time if the index [F : S] is big.

There is also a variant of this method that allows us to check whether K and H are neat
(see Definition 3.2), but this is quite a bit more complicated. We now summarize its main
steps.

• Let C denote a cusp of G (we discussed how to get generators and relations for C
in section 4.2).

• Let CF denote h(C) (generators for this group are given by the h-images of gener-
ators of C), and KC = Ker(h|C). Note that this has finite index in C, so Magma
can find a presentation for KC . Let k1, . . . , kn denote a generating set for KC .

• The cusps of K\H2
C are in 1-1 correspondence with right cosets of CF in F , and the

corresponding cusp groups are all conjugate to KC . Denote by f1, . . . , fm a right
transversal for CF .
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• Study the action of S = h(H) on the set of the right coset of CF , find its orbits
and stabilizers. The cusps of H are in 1-1 correspondence with these orbits.

• In order to get cusp generators, take a right coset x = CFfj and denote by Ix its
stabilizer under the S-action. Find a generating set for Ix, and choose lifts i1, . . . , ir
to H for this generating set. Cusp generators are given by the elements

i1, . . . , ir, k
fj
1 , . . . , k

fj
n .

• Use a suitable linear change of coordinates to make all cusp generators upper tri-
angular, and multiply each of them by a scalar to get the upper left entry to be 1
(recall we are working in PU(2, 1) rather than U(2, 1)). The corresponding cusp is
neat if and only if every generator is unipotent.

• Since every cusp is isomorphic to a finite index subgroup of KC , we can use Magma
to get a presentation for every cusp group.

• If the cusp is neat, we compute the self-intersection of corresponding the elliptic
curve in the toroidal compactification by computing the abelianization of the cor-
responding cusp group, which is isomorphic to Z2 ⊕ Zq for some q ∈ N∗. In that
case the self-intersection is given by −q (see Proposition 4.2.12 in [24]).

A Magma implementation of these methods can be found in our computer code [10].

6. A tower of one-cusped smooth ball quotients

In this section we describe prove Theorem 1.3. As mentioned in the introduction, this
gives a positive answer to a question raised by Stover in [41].

The group is a subgroup of index 72 in the Mostow group G = Γ(6, 0), which has the
presentation

〈
r1, r2, r3, j | r−1

2 jr1j
−1, r−1

3 j−1r1j, r
6
1, j

3, (r1j)
12, (r2r1j)

6, br3(r1, r2)
〉
.

This group has a single cusp, represented by C = 〈r1, r2〉.
Every non-trivial isotropy group for the action of G on H2

C is in the list of table 4.

Isotropy group 〈j〉 〈r1j〉 〈r1, r2r1j〉 〈r2j−1〉 〈r2, (r1j)2〉 〈r2r1j, (r1j)2〉

Order 3 12 36 12 36 36
Table 4. Isotropy groups of G

The subgroup alluded to in the statement of Theorem 1.3 is

H = 〈r1r2r1jr
−1
2 , r1r2r3jr

−1
1 , jr−1

1 r3r2r3, (r
2
1r2)

2〉.

Alternatively, the reader can reconstruct the group by loading the code given in [10] into
Magma, then running the commands

A:=MostowGroup(6,0);

FindTorsionFreeSubgroups(∼A,864,[2]);
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The field A‘Subgroups should then have a seven elements, and A‘Subgroups[7] contains
a Magma description of the subgroup in question. We write X = H\H2

C.
From the above pieces of information, Magma allows us to check that [Γ : H ] = 72,

hence

χ(X) = 72 · χorb(Γ\H2
C) = 72 ·

1

12
= 6.

Let K = CoreG(H), and let F = Γ/K, which has order 864. Using Magma, it is
straighforward to check that the isotropy groups of Table 4 inject in F , so K is torsion-
free.

Let us denote by S ⊂ F the image of H . A simple computer check shows that S
has trivial intersection with every conjugate of the image in F of every isotropy group in
Table 4, so H is torsion-free.

We write X = H\H2
C and Y = K\H2

C, and X̄ , Ȳ for their respective toroidal compacti-
fications.

In order to study the cusps of X and Y , we let CF denote the image in F of the cusp
〈r1, r2〉 in G; we have [F : CF ] = 12, so Y has 12 cusps. Computing the kernel CK of
the homomorphism hC : C → CF using Magma, one computes generators, and checks that
each generator is unipotent element, so K is neat. The Abelianization of CK is Z12 ⊕ Z2,
so the 12 elliptic curves compactifying Y to Ȳ have self-intersection −12.

In order to prove that X has a single cusp, simply check that S acts transitively on
the set of right cosets of CF in F . It also follows that the 12 cusp groups of X are all
isomorphic to the cusp group CK of X . Using Magma, one can check that the cusp C of
H is represented by the group generated by

(9) (r2r
2
1)

2, r22r
−1
1 r2r

−2
1 r2r

−1
1 , r2r

−2
1 r2r

−1
1 r22r

−1
1 .

We finish this section by proving Theorem 1.4. Let ϕ : H → Z2 be obtained from the
abelianization map by projecting onto the Z2-factor of Z3 ⊕ Z2. By explicit calculation of
the image of the generating set for C of equation (9), we check that ϕ(C) is a lattice in of
index 12 in Z2.

By projecting onto one factor of Z2, it is easy to get a homomorphism ψ : H → Z such
that ψ(C) = 2Z. Now for n ∈ N∗, consider Hn = ψ−1(nZ). For any odd n, the action of
nZ is transitive on the cosets of 2Z, so Hn has exactly one cusp. The tower of Theorem 1.4
is then obtained by choosing an increasing sequence of odd integers n1 < n2 < . . . such
that for all j, nj divides nj+1.

7. Summary of the results for all groups

In this section, we list the subgroups we were able to find inside the known lattice triangle
groups. We focus on three different aspects, namely

• neat subgroups (section 7.3)
• subgroups with positive b1 (section 7.1)
• large subgroups (section 7.2)
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7.1. Positive b1. In order to find subgroups Γ0 ⊂ G with b1(Γ0) > 0, we study whichever
neat subgroups we can find in G, ask Magma to compute the Abelizanition using the
command AbelianQuotientInvariants.

When getting a homomorphism by using SimpleQuotients or CongruenceImage, the
large order of the group often seems to make it too difficult for Magma to compute a
presentation for K = Ker(h), it is not clear how to estimate b1(K).

In Tables 5 through 7, we list the groups where one of these methods yields an explicit
(torsion-free or not) subgroup with positive b1. In case we have such an example we mention
how the reader can find it, writing

• ”LIS(N)” where N is the index of the subgroup;
• ”LINS(N)” whereN is the (bound on the) index of the normal subgroup or ”LINS(N,G)”
with an concise description of the quotient if we have one;

• ”SQ(G)” where G is a description of the Simple Quotient;
• ”mod p” if reduction mod p gives a kernel with positive b1.
• “Map(N)” if we know a homomorphism to a triangle group having a torsion-free
subgroup of index N (see section 7.2).

• nothing if we were unable to find any subgroup with positive b1.

For non-cocompact groups, in the last column of the tables, we give information as to
whether or not the positive first Betti number comes from the cusps; more precisely, we
mention whether (for a suitable subgroup in the list) all cusp groups map have infinite
image in the abelianization.

7.2. Large subgroups. We call a group G large if it has a finite index subgroup H with a
surjective homomorphism ϕ : H → Fn, where n > 1 and Fn is the non-Abelian free group
on n generators. Of course, we may assume n = 2, since every Fn, n > 2 maps onto F2.
If this is the case, then by abelianizing the free group, we get a morphism onto Z2, hence
the first Betti number of H is positive.

Even though there are nice sufficient conditions of largeness due to Button [5], there is
no general algorithm for determining largeness. The sufficient condition for largeness used
in this paper is based on the following simple observation.

Lemma 7.1. (1) Every torsion-free lattice in PSL(2,R) maps onto a non-Abelian free
group;

(2) Every lattice in PSL(2,R) is large.

Proof: Part (2) follows from part (1) because of Selberg’s lemma. Part (1) is obvious
for non cocompact lattices, since the fundamental group of a non-compact hyperbolic
Riemann surface is itself a non-Abelian free group. For cocompact lattices, we can write
the corresponding closed surface as the boundary of a handlebody, which retracts onto a
bouquet of circles. �

As an immediate consequence, we see that if G maps onto a lattice in PSL(2,R), then
G is large.

Note that PSL(2,R) ∼= PU(1, 1), but when we change this group to PU(2, 1), we have
no reasonable analogue of Lemma 7.1 at hand. It is a folklore conjecture that every lattice
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NA NC S(3, σ1) OK LINS(18144), SQ ?

NA NC S(4, σ1) OK LINS(96) ∞ cusp images

NA NC S(6, σ1) OK LINS(6) ∞ cusp images

S(3, σ̄4) OK LINS(18144)

NA NC S(4, σ̄4) ? ?

NA S(5, σ̄4) ?

NA NC S(6, σ̄4) ? ?

NA S(8, σ̄4) ?

NA S(12, σ̄4) ?

S(2, σ5) ?

NA NC S(3, σ5) OK LINS(360) ∞ cusp images

NA NC S(4, σ5) ? ?

S(3, σ10) OK LINS(2160)

S(4, σ10) ?

S(5, σ10) OK LINS(600)

S(10, σ10) OK LINS(18000)
Table 5. Subgroups of Sporadic groups with b1 > 0

T (3,S2) OK LINS(360)

NA NC T (4,S2) OK LINS(23040) not all cusps have ∞ image

T (5,S2) ?

NC T (3,E2) OK LINS(24) ∞ cusp images

NA NC T (4,E2) OK LINS(24) ∞ cusp images

NC T (6,E2) OK LINS(6) ∞ cusp images

T (2,H1) OK LIS(56)

T (2,H2) OK LIS(30)

T (3,H2) ?

T (5,H2) OK LINS(600)
Table 6. Subgroups of Thompson groups with b1 > 0

in PU(2, 1) of Kazhdan type (i.e. such that its ambient algebraic Q-group is the group of
a Hermitian form over a number field, rather than a more complicated division algebra)
should have a large subgroup of finite index. Every complex reflection group is of Kazhdan
type, so all the groups we consider in this paper fall in the scope of this conjecture, and
we expect them to be large; but for most known lattice triangle groups, largeness is not
known.
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Γ(5, 7/10) OK LINS(15000)

NC Γ(6, 2/3) OK LINS(6) ∞ cusp images

Γ(7, 9/14) OK Map(84)

Γ(8, 5/8) OK LIS(12), Map(48)

Γ(9, 11/18) OK LIS(9)

Γ(10, 3/5) OK LIS(10), Map(30)

Γ(12, 7/12) OK LIS(6), Map(72)

Γ(18, 5/9) OK LIS(6), Map(54)

Γ(4, 5/12) OK LINS(18144)

Γ(5, 11/30) ?

NC Γ(6, 1/3) OK LINS(6) ∞ cusp images

Γ(7, 13/42) OK Map(84)

Γ(8, 7/24) OK LIS(12), Map(48)

Γ(9, 5/18) OK LIS(9)

Γ(10, 4/15) OK LIS(10), Map(30)

Γ(12, 1/4) OK LIS(6), Map(72)

Γ(18, 2/9) OK LIS(6), Map(18)

Γ(3, 1/3) OK LINS(18144)

NC Γ(4, 1/4) OK LINS(96) ∞ cusp images

Γ(5, 1/5) ?

NA NC Γ(6, 1/6) OK LIS(6), Map(18) ∞ cusp images

Γ(8, 1/8) OK LINS(1536), Map(72)

Γ(12, 1/12) OK LIS(6), Map(72)

Γ(3, 7/30) ?

Γ(4, 3/20) OK Map(120)

Γ(5, 1/10) OK LINS(600)

Γ(10, 0) OK LINS(600), Map(30)

NC Γ(3, 1/6) OK LINS(72) ∞ cusp images

Γ(4, 1/12) OK LINS(864), Map(18)

NC Γ(6, 0) OK LINS(6) ∞ cusp images

Γ(3, 5/42) ?

Γ(3, 1/12) OK LIS(48)

Γ(4, 0) OK LIS(24), Map(48)

Γ(3, 1/18) OK LIS(24)

Γ(3, 1/30) OK LIS(40)

Γ(3, 0) OK LIS(24)
Table 7. Subgroups of Mostow groups with b1 > 0
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We now discuss how to use Lemma 7.1 in order to find explicit subgroups of finite index
in some Mostow groups that map to non-Abelian free groups. We do not know how to
generalize this to other lattice triangle groups.

It is well known to experts that Livne’s thesis [30] gives maps from some Mostow lat-
tices to surface groups, which shows that some specific Mostow lattices are large. For
a description of Livne’s lattices in relation to Mostow’s groups, see §16 in the book by
Deligne and Mostow [8]. Recall that Livne constructs smooth ball quotients Xn indexed
by n = 5, 6, 7, 8, 9, 10, 12, 18, whose automorphism group A fits is an extension

1 → Z/dZ → A→ SL(2,Z/nZ)× (Z/nZ)2 → 1,

and the quotient A\Xn is Γµ,Σ\H2
C, where d = gcd(6, n). The order of these automorphism

groups gives the index of the corresponding subgroup of the relevant Mostow group; we
list these in the last column of Table 8. For some Mostow groups, we will give subgroups

Mostow group n d |SL(2, n)| Index

Γ(5, 7
10
) 5 5 120 15 000

Γ(6, 2
3
) 6 1 144 5 184

Γ(7, 9
14
) 7 7 336 115 248

Γ(8, 5
8
) 8 4 384 98 304

Γ(9, 11
18
) 9 3 648 157 464

Γ(10, 3
5
) 10 5 720 360 000

Γ(12, 7
12
) 12 2 1 152 331 776

Γ(18, 5
9
) 18 3 3 888 3 779 136

Table 8. Index of torsion-free subgroups coming from Livne’s construction

of much smaller index that map onto a non-Abelian free group, see Proposition 7.1 and
Table 10.

Note that the maps from Livne groups to Fuchsian groups are actually induced by
holomorphic fibrations of the corresponding ball quotients over suitable Riemann surfaces
(actually Xn fibers over the quotient of the upper half plane under the principal congruence
subgroup modulo n, see [8]). The maps we construct are also induced by holomorphic maps
to curves, as can be seen from their interpretation as forgetful maps of moduli spaces of
points on P1

C, see [12].
Rather than going into the details of Deligne-Mostow theory and forgetful maps, we give

a more down to earth approach that requires only group theory.

Proposition 7.1. The Mostow groups Γ(7, 9/14), Γ(8, 5/8), Γ(9, 11/18), Γ(10, 3/5), Γ(12, 7/12),
Γ(18, 5/9), Γ(7, 13/42), Γ(8, 7/24), Γ(9, 5/18), Γ(10, 4/15), Γ(12, 1/4), Γ(18, 2/9), Γ(6, 1/6),
Γ(8, 1/8), Γ(12, 1/12), Γ(4, 3/20), Γ(10, 0), Γ(4, 1/12), Γ(6, 0), Γ(4, 0) have a surjective ho-
momorphism onto a lattice in PSL(2,R).
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p 7 8 9 10 12 18

Index 84 48 36 30 24 18
Table 9. Optimal index of torsion-free subgroups in the triangle group T2,3,p.

The basis of the construction of these homorphisms is simply to combine Mostow’s
braid group description of the lattices Γ(p, t) with the results in [12] about forgetful maps
of Deligne-Mostow moduli spaces.

We briefly sketch how this is done; the reader without any knowledge of Deligne-Mostow
theory can skip this part. Each group Γ(p, t) = 〈R1, J〉 is conjugate in PU(2, 1) to a specific
Deligne-Mostow group from [7], [34], namely Γµ,Σ where

µ =

(
1

2
−

1

p
,
1

2
−

1

p
,
1

2
−

1

p
,
1

4
+

3

2p
−
t

2
,
1

4
+

3

2p
+
t

2

)

and Σ = S3 permutes the first three weights.
If µ satisfies the Deligne-Mostow INT condition, then the corresponding Deligne-Mostow

group Γµ is contained in Γµ,Σ as a subgroups of index |Σ| = 3! = 6. Mostow explains in [35]
how to write explicit generators for Γµ, namely Aj, Bj , j = 1, 2, 3 with

(10) Bj = R2
j , A−1

j = J−1RjRj+1.

Recall that Rj+1 = JRjJ
−1 index j taken mod 3 (J3 = Id). From this information, it is

easy to ask Magma for a presentation for each Γµ.
Note also that when µ satisfies Mostow’s Σ-INT condition for Σ = S3 but not the INT

condition, we have Γµ = Γµ,Σ, see [38] for instance.
Recall the presentation for Γ(p, t) given in Appendix A.9 of[14], namely

Γ(p, t) =
〈
R1, R2, R3, J

∣∣Rp
1, J

3, (R1J)
2k, JR1J

−1 = R2, JR2J
−1 = R3,

br3(R1, R2), (R1R2)
6p
p−6 , (JR2R1)

4kp
(2k−4)p−4k

〉

where the last two relations are omitted when the corresponding exponent is negative.
We wish to construct a homomorphism of Γ(p, t) onto the (2, 3, p) triangle group

T2,3,p =
〈
β, γ | (βγ)2, β3, γp

〉
.

For convenience, recall that the optimal index of a torsion-free subgroup in the hyperbolic
triangle groups are as in Table 9 (cf. [17]).

Proposition 7.2. Suppose p > 6 and Γ(p, t) satisfies the Mostow Σ-INT condition. Then
there is a unique group homomorphism ϕ : Γ(p, t) → T2,3,p such that ϕ(J) = β and
ϕ(R1) = γ.

Proof: If the map exists, then we must have ϕ(R2) = βγβ−1 and ϕ(R3) = β−1γβ. We
then check that, under the hypotheses of Proposition 7.2, for every relator w1 . . . wn in the
presentation of Γ(p, t), the relation ϕ(w1) . . . ϕ(wn) = id holds in T2,3,p (in that case, we
say that the relation is compatible).
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For example, ϕ(R1)ϕ(R2)ϕ(R1) = γβγβ−1γ = β−2γ = βγ, and ϕ(R2)ϕ(R1)ϕ(R2) =
βγβ−1γβγβ−1 = βγβ2γβγβ2 = γ−1β−1 = βγ, so the braid relation R1R2R1(R2R1R2)

−1 is
compatible.

For the other relations, one checks that ϕ(R1)ϕ(R2) = β and ϕ(R1)ϕ(R2)ϕ(J) = γ−2.
It is then easy to verify that for the relevant values of k = 2, 3, 4 and 5, 6p/(p − 6) is a
multiple of 3 and 4kp/((k − 2)p− 2k) is a multiple of p. �

Proposition 7.2 implies Proposition 7.1 for the Mostow groups Γ(7, 9
14
), Γ(8, 5

8
), Γ(9, 11

18
),

Γ(10, 3
5
), Γ(12, 7

12
), Γ(18, 5

9
), Γ(7, 13

42
), Γ(8, 7

24
), Γ(9, 5

18
), Γ(10, 4

15
), Γ(12, 1

4
), Γ(18, 12

9
), Γ(8, 1

8
),

Γ(12, 1
12
), Γ(10, 0). Note that the first 6 groups in this list are Livne lattices; one can check

that the corresponding maps are the same as the ones that come from the Livné construc-
tion (the construction is conveniently reviewed in [8], §16).

For the other cases of Proposition 7.1, we use Γµ instead of Γµ,Σ. We define two kinds
of subgroups of Γµ, namely

(11) K = 〈〈A1, A2, A3〉〉, L = 〈〈A1, B2, B3〉〉,

see the notation in equation (10).
We then use group theory software to compute a simplified presentation for Γµ/K and

Γµ/L, and find that in each of the cases listed in Proposition 7.1, the corresponding quotient
is a p, q, r triangle group.

The details are listed in Table 10. In the last column of the table, we list the index of
the subgroups we obtain that map to a non-Abelian free group. The factor 6 comes from
the index of Γµ in Γµ,Σ, the other factor comes from the minimal index of a torsion-free
subgroup in a Fuchsian group [17].

Recall that when 1/p+1/q+1/r, the (p, q, r) is a lattice in PSL(2,R), and this is satisfied
for at least one triple (p, q, r) of each row of table 10, so the proof of Proposition 7.1 is
complete.

Now Lemma 7.1 implies the following.

Theorem 7.3. Let Γ be one of the Mostow lattices listed in Proposition 7.1. Then Γ is
large.

Note also that our proof give a way to describe explicit subgroups, and explicit mor-
phisms to F2.

7.3. Neat subgroups. We summarize the results of our search for neat subgroups of small
index in Tables 11 through 72. In these tables, for each triangle group, we give

• The Euler characteristic and the least common multiple (LCM) of the orders of
isotropy groups; this gives a lower bound for the index of torsion-free subgroups.
Note that by Noether’s formula (see section 3), compact ball quotients have Euler
characteristic an integer multiple of 3. In some cases, this yields a slightly higher
lower bound (given by 3·LCM);

• The arithmeticity (A/NA) and cocompactness (C/NC) of the group;
• Its Abelianization;
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Γ(p, t) Cocompact, Arithmetic? Γµ/K Γµ/L Index

Γ(8, 5/8) C,A 4,4,4 2,2,4 6 · 8 = 48

Γ(10, 3/5) C,A 5,5,5 2,2,5 6 · 5 = 30

Γ(12, 7/12) C,A 6,6,6 2,2,2 6 · 12 = 72

Γ(18, 5/9) C,A 9,9,9 2,2,3 6 · 9 = 54

Γ(8, 7/24) C,NA 4,4,4 3,3,4 6 · 8 = 48

Γ(10, 4/15) C,NA 5,5,5 3,3,5 6 · 5 = 30

Γ(12, 1/4) C,A 6,6,6 2,3,3 6 · 12 = 72

Γ(18, 2/9) C,A 9,9,9 3,3,3 6 · 3 = 18

Γ(6, 1/6) NC,NA 3,3,3 3,4,4 6 · 3 = 18

Γ(8, 1/8) C,A 4,4,4 4,4,4 6 · 12 = 72

Γ(12, 1/12) C,A 6,6,6 2,2,2 6 · 12 = 72

Γ(4, 3/20) C,A 2,2,2 2,5,5 6 · 20 = 120

Γ(10, 0) C,A 5,5,5 5,5,5 6 · 5 = 30

Γ(4, 1/12) C,NA 2,2,2 2,6,6 6 · 12 = 72

Γ(6, 0) NC,A 3,3,3 3,6,6 6 · 3 = 18

Γ(4, 0) C,A 2,2,2 2,8,8 6 · 8 = 48
Table 10. List of maps to triangle groups; in the last column, we list the
index of the subgroups we find that map to a non-Abelian free group.

• Generators for (representatives of) its cusps (inside one given box corresponding to
the description of the cusps, each line corresponds to different conjugacy classes of
cusps).

• The order of the smallest congruence image such that the corresponding principal
congruence subgroup is torsion-free (we also an explicit description of the congru-
ence image group, if we know one). In some cases, the congruence image seems
too large to compute anything about it, in which case we simply write “?” in the
corresponding box of the table. In the last column, we list the rational prime whose
prime ideal factor was used to get a torsion-free congruence subgroup (in some rare
cases, one can get a smaller congruence by reduction modulo a non-prime ideal).

• If we found any neat subgroup with index smaller than the order of the congruence
image, we list some basic invariants for the corresponding subgroups (index, index
of the normal core, quotient by the normal core, abelianization, self-intersections
of the elliptic curves in the toroidal compactification, first Betti number).

Remark 7.4. (1) When the Congruence image column of the following tables contains
a question mark “?”, we mean that the corresponding finite group seems too large
to compute anything. We suspect that one could probably work a little more
and compute the order of these groups and identify them as explicit projectivized
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linear groups over finite fields, but it is probably hopeless to try and compute
anything about the corresponding principal congruence subgroups (presentation,
Abelianization).

(2) In Tables 11 through 72, we write Zn for Z/nZ, and PU(m,n) denotes PU(m,Fn),
PGL(m,n) denotes PGL(m,Fn) where Fn is the field with n elements (n is a power
of a single prime).

S(3, σ1)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
2
9

72 NA NC Z3 R1, R2 br6(R1, R2) 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

432 = 6 · 72 16868 Z3 × PGL(3, 3) Z3 ⊕ Z6 ⊕ Z18 (−3)6, (−9)14 0

864 = 12 · 72 18144 Z3 × PSU(3, 3) Z2
2 ⊕ Z2 (−2)36 2

Table 11. Neat subgroups of S(3, σ1) with core index ≤ 20000

S(4, σ1)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
7
16

96 NA NC Z4 1, 232̄ br4(1, 232̄) 42 456 960, PGL(3,9)

Index Core Index Quotient Ab Self-int b1

96 96 Z2
2 ⊕ Z3

4 ⊕ Z4 (−8)24 4

96 384 Z5
2 ⊕ Z2

8 (−8)6 0

96 384 Z5
2 ⊕ Z3

4 (−4)12 0

96 384 Z2
2 ⊕ Z3

4 ⊕ Z2
8 (−4)12 0

96 384 Z5
2 ⊕ Z2

4 ⊕ Z2
8 (−2)8, (−4)8 0

96 384 Z3
2 ⊕ Z3

4 ⊕ Z2 (−2)8, (−4)8 2

Table 12. Neat subgroups of S(3, σ1) with core index ≤ 384
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S(6, σ1)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
43
72

72 NA NC Z6 1, 2323̄2̄ br3(1, 2323̄2̄) 378 000, PGU(3, 5)

1, 3̄2̄323 br3(1, 3̄2̄323)

Index Core Index Quotient Ab Self-int b1

1728 = 24 · 72 36288 PSU(3, 3)× Z3 Z3
2 ⊕ Z4 ⊕ Z4 (−2)72 4

Table 13. Neat subgroups of S(6, σ1).

S(3, σ̄4)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
2
63

504 A C Z3 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

6048 = 12 · 504 18144 PSU(3, 3)× Z3 Z10 10

Table 14. Neat subgroups of S(3, σ̄4).

S(4, σ̄4)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
25
224

672 NA NC {0} R1, R2 br4(R1, R2) 6 048, PGU(3, 3)

Index Core Index Quotient Ab Self-int b1

6048 = 9 · 672 6048 PSU(3, 3) Z8
3 (−6)56 0

Table 15. Neat subgroups of S(3, σ̄4).

S(5, σ̄4)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
47
280

4200 NA C {0} ?

Table 16. Invariants for S(5, σ̄4)

S(6, σ̄4)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
25
126

252 NA NC Z3 1, 232̄ br3(1, 232̄) 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

3024 = 12 · 252 378 000 PGU(3, 5) Z3
5 (−1)4, (−5)4 0

Table 17. Torsion-free subgroups of S(6, σ̄4).
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S(8, σ̄4)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
99
448

1344 NA C {0} 42 456 960, PGL(3,9)

Index Core Index Quotient Ab Self-int b1

131712 = 98 · 1344 5663616 PGU(3, 7) ? ?

Table 18. Torsion-free subgroups of S(8, σ̄4).

S(12, σ̄4)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
221
1008

1008 NA C Z3 ?

Index Core Index Quotient Ab Self-int b1

6048 = 6 · 1008 18144 PGU(3, 3)× Z3 Z4
3 0

Table 19. Torsion-free subgroups of S(12, σ̄4) with core index ≤ 20000.

S(2, σ5)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
45

360 A C Z6 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

54, 000 = 50 · 1080 378 000 PGU(3, 5) Z10
2 ⊕ Z10 ⊕ Z70 0

Table 20. Torsion-free subgroups of S(2, σ5)

S(3, σ5)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
49
180

360 NA NC Z2
3 c1 = 2, c2 = 2(J̄ 1̄)21212̄1̄(J̄ 1̄)32 c31, c

6
2,br4(c1, c2) 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

360 360 Z3 ⊕ Z8 (−1)20 8

360 360 Z9
3 (−1)20 0

360 1080 Z2
3 ⊕ Z6 (−1)20 6

Table 21. Neat subgroups of S(3, σ5) with core index ≤ 10, 000

S(4, σ5)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
17
36

720 NA NC Z6 R1, R2 br4(R1, R2) 152 334 000 000, PGL(3, 25)

Table 22. Invariants for S(4, σ5)
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S(3, σ10)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
45

360 A C Z3 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

2160 = 2 · 1080 2160 Z16 16

2160 = 2 · 1080 34560 Z8
2 ⊕ Z8 0

2160 = 2 · 1080 34560 Z2
2 ⊕ Z2

4 ⊕ Z16 0

Table 23. Neat subgroups of S(3, σ10) with core index ≤ 40, 000

S(4, σ10)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
3
32

480 A C {1} 42 456 960, PGL(3, 9)

Index Core Index Quotient Ab Self-int b1

12, 000 = 25 · 480 372, 000 PGL(3, 5) Z5 ⊕ Z155 0

Table 24. Neat subgroups of S(4, σ10)

S(5, σ10)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
1
8

600 A C Z5 42 573 600, PGU(3, 9)

Index Core Index Quotient Ab Self-int b1

600 600 Z20 20

600 15 000 Z7
5 0

600 15 000 Z5 ⊕ Z8 8

Table 25. Neat subgroups of S(5, σ10) with core index ≤ 20, 000

S(10, σ10)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
13
100

300 A C Z5 42 573 600, PGU(3, 9)

Index Core Index Quotient Ab Self-int b1

300 18,000 Z2
5 ⊕ Z15 0

Table 26. Neat subgroups of S(10, σ10) with core index ≤ 20, 000

[6] Donald I. Cartwright and Tim Steger. Enumeration of the 50 fake projective planes. C. R., Math.,
Acad. Sci. Paris, 348(1-2):11–13, 2010.
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T (3,S2)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
2
15

360 A C Z3 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

360 360 Z16 16

Table 27. Neat subgroups of T (3,S2) with core index ≤ 2, 000

T (4,S2)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
3

480 NA NC {1} R1, R2 br4(R1, R2) 42 456 960, PGL(3, 9)

Index Core Index Quotient Ab Self-int b1

155, 520 = 324 · 480 42456960 ? ?

Table 28. Neat subgroups of T (4,S2)

T (5,S2)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
133
300

600 NA C Z5 23 619 600

Index Core Index Quotient Ab Self-int b1

3600 = 2 · 1800 3600 Z8
3 0

Table 29. Neat subgroups of T (5,S2)

T (3,E2)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
4

72 A NC Z2
3 c1 = 2, c2 = (3̄2̄1̄)22̄1̄2 c31, c

6
2(c1c2)

−4, (c1c2)
2 central 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

72 72 Z8 (−1)12 8

72 648 Z2
3 ⊕ Z4 (−1)3, (−3)3 4

72 648 Z3
3 ⊕ Z2 (−3)4 2

72 648 Z4
3 ⊕ Z2 (−1)3, (−3)3 2

Table 30. Neat subgroups of T (3,E2) of core index ≤ 1000

[7] P. Deligne and G. D. Mostow. Monodromy of hypergeometric functions and non-lattice integral mon-

odromy. Publ. Math., Inst. Hautes Étud. Sci., 63:5–89, 1986.
[8] Pierre Deligne and George Daniel Mostow. Commensurabilities among lattices in PU(1, n), volume

132 of Ann. Math. Stud. Princeton, NJ: Princeton University Press, 1993.
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T (4,E2)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
17
32

96 NA NC Z2 ⊕ Z4 R1, R2 br4(R1, R2) 50 778 000 000, PSL(3, 25)

R1, R3 br4(R1, R3)

R1, R2R3R
−1
2 br4(R1, R2R3R

−1
2 )

Index Core Index Quotient Ab Self-int b1

96 192 Z4
2 ⊕ Z2

4 ⊕ Z4 (−2)18 4

96 768 Z4
2 ⊕ Z2

4 ⊕ Z4 (−2)10, (−4)4 4

96 768 Z6
2 ⊕ Z3

4 ⊕ Z8 (−2)10, (−4)4 0

Table 31. Neat subgroups of T (4,E2) of core index ≤ 1000

T (6,E2)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
3
4

36 A NC Z2
6 R2, R3 br3(R2, R3) 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

72 72 Z3
2 ⊕ Z8 (−1)12 8

Table 32. Neat subgroups of T (6,E2) of core index ≤ 200

T (2,H1)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
49

1176 A C Z2 ?

Table 33. Invariants for T (2,H1)

T (2,H2)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
1

100
300 A C {1} 42 573 600, PGU(3, 9)

Table 34. Invariants for T (2,H2)

T (3,H2)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 7)
26
75

1800 NA C Z3 ?

Table 35. Invariants for T (3,H2)
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T (5,H2)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
73
100

600 A C Z5 23 619 600

Index Core Index Quotient Ab Self-int b1

600 600 Z20 20

Table 36. Neat subgroups of T (5,H2)

Γ(5, 7/10)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
1

200
600 A C {1} 42 573 600, PGU(3, 9)

Index Core Index Quotient Ab Self-int b1

3000 = 5 · 600 15 000 Z5 ⊕ Z4 4

Table 37. Neat subgroups of Γ(5, 7/10) of core index ≤ 40, 000

Γ(6, 2/3)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
72

72 A NC Z6 R1, R2 br3(R1, R2) 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

72 1944 Z3 ⊕ Z2 −1,−3 2

72 1944 Z4 (−1)4 4

Table 38. Neat subgroups of Γ(6, 2/3) of core index ≤ 2000

Γ(7, 9/14)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
1
49

588 A C {1} ?

Table 39. Invariants for Γ(7, 9/14)

Γ(8, 5/8)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
3

128
384 A C Z4 42 456 960, PGL(3, 9)

Index Core Index Quotient Ab Self-int b1

466560 = 1215 · 384 42456960 ? ?

Table 40. Neat subgroups of Γ(8, 5/8)
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Γ(9, 11/18)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
2
81

324 NA C Z3 ?

Table 41. Invariants for Γ(9, 11/18)

Γ(10, 3/5)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
1
40

600 A C Z2 42 573 600, PGU(3, 9)

Index Core Index Quotient Ab Self-int b1

583200 = 972 · 600 42573600 ? ?

Table 42. Neat subgroups of Γ(10, 3/5)

Γ(12, 7/12)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
7

288
288 A C Z12 152 334 000 000

Table 43. Invariants for Γ(12, 7/12)

Γ(18, 5/9)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
5
9

648 A C Z6 ?

Table 44. Invariants for Γ(18, 5/9)

Γ(4, 5/12)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
72

288 A C Z6 152 334 000 000

Index Core Index Quotient Ab Self-int b1

864 18144 PGU(3, 3)× Z3 Z3
2 ⊕ Z2 2

Table 45. Neat subgroups of Γ(4, 5/12) of core index ≤ 40, 000

Γ(5, 11/30)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 7)
8

225
1800 A C Z3 ?

Table 46. Invariants for Γ(5, 11/30)
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Γ(6, 1/3)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
18

18 A NC Z3 ⊕ Z6 R1, R2 br3(R1, R2) 378 000, PGU(3, 5)

c1 = R1, c2 = J 2̄1̄ c61, c
3
2,br4(c1, c2)

Index Core Index Quotient Ab Self-int b1

18 18 Z4 (−1)4 4

18 54 Z3 ⊕ Z2 −1,−3 2

18 162 Z2 −1,−3 2

Table 47. Neat subgroups of Γ(6, 1/3) of core index ≤ 1, 000

Γ(7, 13/42)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
61
882

1764 NA C Z3 ?

Table 48. Invariants for Γ(7, 13/42)

Γ(8, 7/24)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
11
144

576 NA C Z6 ?

Table 49. Invariants for Γ(8, 7/24)

Γ(9, 5/18)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
13
162

324 A C Z2
3 ?

Table 50. Invariants for Γ(9, 5/18)

Γ(10, 4/15)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 7)
37
450

450 NA C Z6 ?

Table 51. Invariants for Γ(10, 4/15)

Γ(12, 1/4)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
12

144 A C Z3 ⊕ Z6 152 334 000 000

Table 52. Invariants for Γ(12, 1/4)
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Γ(18, 2/9)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
13
162

162 A C Z3 ⊕ Z6

Table 53. Invariants for Γ(18, 2/9)

Γ(3, 1/3)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1

288
288 A C Z3 152 334 000 000

Index Core Index Quotient Ab Self-int b1

864 18,144 Z3 × PSU(3, 3) Z2 2

Table 54. Neat subgroups of Γ(3, 1/3) of core index ≤ 30, 000

Γ(4, 1/4)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
1
32

96 A NC Z4 c1 = 1, c2 = J 2̄1̄ c41, c
4
2,br4(c1, c2) 6 048

Index Core Index Quotient Ab Self-int b1

96 96 Z2
2 ⊕ Z4 (−2)6 4

96 384 Z2 ⊕ Z2
4 ⊕ Z2 (−2)2, (−4)2 2

Table 55. Neat subgroups of Γ(4, 1/4) of core index ≤ 1, 000

Γ(5, 1/5)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
23
400

1200 NA C {1} 1 852 734 273 062 400

Table 56. Invariants for Γ(5, 1/5)

[9] M. Deraux. Spocheck. https://hal.archives-ouvertes.fr/hal-02398953, 2019.
[10] Martin Deraux. gitlab project neat subgroups. https://plmlab.math.cnrs.fr/deraux/neat-subs.
[11] Martin Deraux. Deforming the R-fuchsian (4, 4, 4)-triangle group into a lattice. Topology, 45(6):989–

1020, 2006.
[12] Martin Deraux. Forgetful maps between Deligne-Mostow ball quotients. Geom. Dedicata, 150:377–389,

2011.
[13] Martin Deraux, John R. Parker, and Julien Paupert. New nonarithmetic complex hyperbolic lattices.

Invent. Math., 203(3):681–771, 2016.
[14] Martin Deraux, John R. Parker, and Julien Paupert. New nonarithmetic complex hyperbolic lattices

II. Michigan Math. J., 70(1):133–205, 2021.
[15] Luca Di Cerbo and Matthew Stover. Classification and arithmeticity of toroidal compactifications

with 3c2 = c2
1
= 3. Geom. Topol., 22(4):2465–2510, 2018.
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Γ(6, 1/6)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
11
144

144 NA NC Z6 R1, R2 br3(R1, R2) 152 334 000 000

Index Core Index Quotient Ab Self-int b1

864 = 6 · 144 20736 Z3 ⊕ Z2
6 ⊕ Z2 −1,−2, (−3)5, (−6)5 2

Table 57. Neat subgroup of Γ(6, 1/6) obtained from reduction mod 6

Γ(8, 1/8)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
3
32

192 A C Z8 42 456 960, PGL(3, 9)

Table 58. Invariants for Γ(8, 1/8)

Γ(12, 1/12)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
7
72

144 A C Z12 152 334 000 000

Table 59. Invariants for Γ(12, 1/12)

Γ(3, 7/30)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 7)
2

225
1800 A C Z3 ?

Table 60. Invariants for Γ(3, 7/30)

Γ(4, 3/20)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
33
800

2400 NA C Z2 1 852 734 273 062 400

Table 61. Invariants for Γ(4, 3/20)

Γ(5, 1/10)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
13
200

600 A C Z5 42 573 600, PGU(3, 9)

Index Core Index Quotient Ab Self-int b1

600 600 Z8 8

600 15 000 Z2
5 ⊕ Z4 4

600 15 000 Z5
5 0

Table 62. Neat subgroups of Γ(5, 1/10) of core index ≤ 30, 000
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Γ(10, 0)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
1
10

150 A C Z10 42 573 600, PGU(3, 9)

Index Core Index Quotient Ab Self-int b1

150 600 Z4
2 ⊕ Z4 4

150 750 Z2
5 ⊕ Z4 4

150 1800 Z2
5 ⊕ Z4 4

Table 63. Neat subgroups of Γ(10, 0) of core index ≤ 2, 000

Γ(3, 1/6)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
72

72 A NC Z2
3 c1 = 1, c2 = J 2̄1̄ c31, c

6
2,br4(c1, c2) 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

72 72 Z4 (−1)4 4

72 648 Z3 ⊕ Z2 −1,−3 2

Table 64. Neat subgroups of Γ(3, 1/6) of core index ≤ 2, 000

Γ(4, 1/12)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
13
288

288 NA C Z12 152 334 000 000

Index Core Index Quotient Ab Self-int b1

864 864 Z6
2 ⊕ Z4 4

864 3456 Z8
2 ⊕ Z2 2

Table 65. Neat subgroups of Γ(4, 1/12) of core index ≤ 10, 000

Γ(6, 0)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
12

36 A NC Z3 ⊕ Z6 R1, R2 br3(R1, R2) 378 000, PGU(3, 5)

Index Core Index Quotient Ab Self-int b1

72 216 Z3 ⊕ Z4 (−1)3, (−3)3 4

72 216 Z2
3 ⊕ Z2 (−3)4 2

72 648 Z3 ⊕ Z2 −3,−9 2

72 864 Z3 ⊕ Z2 −12 2

Table 66. Neat subgroups of Γ(6, 0) of core index ≤ 1, 000
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Γ(3, 5/42)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
61

3528
3528 NA C Z3 ?

Table 67. Invariants for Γ(3, 5/42)

Γ(3, 1/12)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
11
576

576 NA C Z3 ?

Table 68. Invariants for Γ(3, 1/12)

Γ(4, 0)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 3)
3
64

192 A C Z4 42 456 960, PGL(3, 9)

Index Core Index Quotient Ab Self-int b1

16512 = 86 · 192 5663616 (PGU(3, 7)) ? ?

Table 69. Neat subgroups of Γ(4, 0)

Γ(3, 1/18)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
13
648

648 A C Z2
3 ?

Table 70. Invariants for Γ(3, 1/18)

Γ(3, 1/30)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 7)
37

1800
1,800 NA C Z3 ?

Table 71. Invariants for Γ(3, 1/30)

Γ(3, 0)
χ LCM A? C? Ab Cusps Cusp relations Congr. image (mod 5)
1
48

144 A C Z2
3 ?

Index Core Index Quotient Ab Self-int b1

2016 = 14 · 144 54,432 PGU(3, 3)× Z2
3 Z4

3 ⊕ Z4 4

2016 54,432 PGU(3, 3)× Z2
3 Z6

3 ⊕ Z2 2

2016 54,432 PGU(3, 3)× Z2
3 Z8

3 0

Table 72. Neat subgroups of Γ(3, 0)
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