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§0. Introduction

The goal of these notes is to explain recent results in the theory of complex
varieties, mainly projective algebraic ones, through a few geometric questions
pertaining to hyperbolicity in the sense of Kobayashi. A complex space X is said
to be hyperbolic if analytic disks f : D→ X through a given point form a normal
family. If X is not hyperbolic, a basic question is to analyze entire holomorphic
curves f : C → X, and especially to understand the Zariski closure Y ⊂ X of
the union

⋃
f(C) of all those curves. A tantalizing conjecture by Green-Griffiths

and Lang says that Y is a proper algebraic subvariety of X whenever X is a
projective variety of general type. It is also expected that very generic algebraic
hypersurfaces X of high degree in complex projective space Pn+1 are Kobayashi
hyperbolic, i.e. without any entire holomorphic curves f : C→ X. A convenient
framework for this study is the category of “directed manifolds”, that is, the
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category of pairs (X,V ) where X is a complex manifold and V a holomorphic
subbundle of TX , possibly with singularities – this includes for instance the case of
holomorphic foliations. If X is compact, the pair (X,V ) is hyperbolic if and only
if there are no nonconstant entire holomorphic curves f : C→ X tangent to V , as
a consequence of the Brody criterion. We describe here the construction of certain
jet bundles JkX, Jk(X,V ), and corresponding projectivized k-jet bundles PkV .
These bundles, which were introduced in various contexts (Semple in 1954, Green-
Griffiths in 1978) allow to analyze hyperbolicity in terms of certain negativity
properties of the curvature. For instance, πk : PkV → X is a tower of projective
bundles over X and carries a canonical line bundle OPkV (1) ; the hyperbolicity of
X is then conjecturally equivalent to the existence of suitable singular hermitian
metrics of negative curvature on OPkV (−1) for k large enough. The direct images
(πk)∗OPkV (m) can be viewed as bundles of algebraic differential operators of order
k and degree m, acting on germs of curves and invariant under reparametrization.

Following an approach initiated by Green and Griffiths, one can use the Ahlfors-
Schwarz lemma in the situation where the jet bundle carries a (possibly singu-
lar) metric of negative curvature, to infer that every nonconstant entire curve
f : C → V tangent to V must be contained in the base locus of the metric. A
related result is the fundamental vanishing theorem asserting that entire curves
must be solutions of the algebraic differential equations provided by global sec-
tions of jet bundles, whenever their coefficients vanish on a given ample divisor;
this result was obtained in the mid 1990’s as the conclusion of contributions by
Bloch, Green-Griffiths, Siu-Yeung and the author. It can in its turn be used to
prove various important geometric statements. One of them is the Bloch theorem,
which was confirmed at the end of the 1970’s by Ochiai and Kawamata, asserting
that the Zariski closure of an entire curve in a complex torus is a translate of a
subtorus.

Since then many developments occurred, for a large part via the technique of
constructing jet differentials-either by direct calculations or by various indirect
methods: Riemann-Roch calculations, vanishing theorems ... In 1997, McQuillan
introduced his “diophantine approximation” method, which was soon recognized
to be an important tool in the study of holomorphic foliations, in parallel with
Nevanlinna theory and the construction of Ahlfors currents. Around 2000, Siu
showed that generic hyperbolicity results in the direction of the Kobayashi con-
jecture could be investigated by combining the algebraic techniques of Clemens,
Ein and Voisin with the existence of certain “vertical” meromorphic vector fields
on the jet space of the universal hypersurface of high degree; these vector fields
are actually used to differentiate the global sections of the jet bundles involved,
so as to produce new sections with a better control on the base locus. Also, in
2007, Demailly pioneered the use of holomorphic Morse inequalities to construct
jet differentials; in 2010, Diverio, Merker and Rousseau were able in that way to
prove the Green-Griffiths conjecture for generic hypersurfaces of high degree in
projective space – their proof also makes an essential use of Siu’s differentiation
technique via meromorphic vector fields, as improved by Păun and Merker in
2008. The last sections of the notes are devoted to explaining the holomorphic
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Morse inequality technique; as an application, one obtains a partial answer to the
Green-Griffiths conjecture in a very wide context: in particular, for every projec-
tive variety of general type X, there exists a global algebraic differential operator
P on X (in fact many such operators Pj) such that every entire curve f : C→ X

must satisfy the differential equations Pj(f ; f ′, . . . , f (k)) = 0. We also recover
from there the result of Diverio-Merker-Rousseau on the generic Green-Griffiths
conjecture (with an even better bound asymptotically as the dimension tends to
infinity), as well as a recent of Diverio-Trapani (2010) on the hyperbolicity of
generic 3-dimensional hypersurfaces in P4.

§1. Basic hyperbolicity concepts

1.A. Kobayashi hyperbolicity

We first recall a few basic facts concerning the concept of hyperbolicity, ac-
cording to S. Kobayashi [Kob70, Kob76]. Let X be a complex space. Consider
an analytic disk in X and a holomorphic map from the unit disk ∆ = D(0, 1) to
X. Given two points p, q ∈ X, consider a chain of analytic disks from p to q, that
is a chain of points p = p0, p1, . . . , pk = q of X, pairs of points a1, b1, . . . , ak, bk of
∆ and holomorphic maps f1, . . . , fk : ∆→ X such that

fi(ai) = pi−1, fi(bi) = pi, i = 1, . . . , k.

Denoting this chain by α, define its length `(α) by

(1.1’) `(α) = dP (a1, b1) + · · ·+ dP (ak, bk)

and a pseudodistance dKX on X by

(1.1”) dKX(p, q) = inf
α
`(α).

This is by definition the Kobayashi pseudodistance of X. In the terminology of
Kobayashi [Kob75], a Finsler metric (resp. pseudometric) on a vector bundle E
is a homogeneous positive (resp. nonnegative) positive function N on the total
space E, that is,

N(λξ) = |λ|N(ξ) for all λ ∈ C and ξ ∈ E,

but in general N is not assumed to be subbadditive (i.e. convex) on the fibers of E.
A Finsler (pseudo-)metric on E is thus nothing but a hermitian (semi-)norm on
the tautological line bundle OP (E)(−1) of lines of E over the projectivized bundle
Y = P (E). The Kobayashi-Royden infinitesimal pseudometric on X is the Finsler
pseudometric on the tangent bundle TX defined by
(1.2)

kX(ξ) = inf
{
λ > 0 ; ∃f : ∆→ X, f(0) = x, λf ′(0) = ξ

}
, x ∈ X, ξ ∈ TX,x.

Here, if X is not smooth at x, we take TX,x = (mX,x/m
2
X,x)∗ to be the Zariski

tangent space, i.e. the tangent space of a minimal smooth ambient vector space
containing the germ (X,x); all tangent vectors may not be reached by analytic
disks and in those cases we put kX(ξ) = +∞. When X is a smooth manifold, it
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follows from the work of H. L. Royden ([Roy71], [Roy74]) that dKX is the integrated
pseudodistance associated with the pseudometric, i.e.

dKX(p, q) = inf
γ

∫
γ

kX(γ′(t)) dt,

where the infimum is taken over all piecewise smooth curves joining p to q ; in the
case of complex spaces, a similar formula holds, involving jets of analytic curves
of arbitrary order, cf. S. Venturini [Ven96].

1.3. Definition. A complex space X is said to be hyperbolic (in the sense of
Kobayashi) if dKX is actually a distance, namely if dKX(p, q) > 0 for all pairs of
distinct points (p, q) in X.

When X is hyperbolic, it is interesting to investigate when the Kobayashi met-
ric is complete: one then says that X is a complete hyperbolic space. However, we
will be mostly concerned with compact spaces here, so completeness is irrelevant
in that case.

Another important property is the monotonicity of the Kobayashi metric with
respect to holomorphic mappings. In fact, if Φ : X → Y is a holomorphic map,
it is easy to see from the definition that

(1.4) dKY (Φ(p),Φ(q)) ≤ dKX(p, q) for all p, q ∈ X.

The proof merely consists of taking the composition Φ◦fi for all clains of analytic
disks connecting p and q in X. Clearly the Kobayashi pseudodistance dKC on
X = C is identically zero, as one can see by looking at arbitrarily large analytic
disks ∆ → C, t 7→ λt. Therefore, if there is any (non constant) entire curve
Φ : C → X, namely a non constant holomorphic map defined on the whole
complex plane C, then by monotonicity dKX is identically zero on the image Φ(C)
of the curve, and therefore X cannot be hyperbolic. When X is hyperbolic, it
follows that X cannot contain rational curves C ' P1, or elliptic curves C/Λ, or
more generally any non trivial image Φ : W = Cp/Λ → X of a p-dimensional
complex torus (quotient of Cp by a lattice).

1.B. The case of complex curves (i.e. Riemann surfaces)

The only case where hyperbolicity is easy to assess is the case of curves
(dimCX = 1). In fact, as the disk is simply connected, every holomorphic map

f : ∆ → X lifts to the universal cover f̂ : ∆ → X̂, so that f = ρ ◦ f̂ where

ρ : X̂ → X is the projection map.
Now, by the Poincaré-Koebe uniformization theorem, every simply connected

Riemann surface is biholomorphic to C, the unit disk ∆ or the complex projective
line P1. The complex projective line P1 has no smooth étale quotient since every

automorphism of P1 has a fixed point; therefore the only case where X̂ ' P1

is when X ' P1 already. Assume now that X̂ ' C. Then π1(X) operates by
translation on C (all other automorphisms are affine and have fixed points), and
the discrete subgroups of (C,+) are isomorphic to Zr, r = 0, 1, 2. We then obtain
respectively X ' C, X ' C/2πiZ ' C∗ = C r {0} and X ' C/Λ where Λ
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is a lattice, i.e. X is an elliptic curve. In all those cases, any entire function

f̂ : C → C gives rise to an entire curve f : C → X, and the same is true when
X ' P1 = C ∪ {∞}.

Finally, assume that X̂ ' ∆; by what we have just seen, this must occur as
soon as X 6' P1,C,C∗,C/Λ. Let us take on X the infinitesimal metric ωP which
is the quotient of the Poincaré metric on ∆. The Schwarz-Pick lemma shows that
dK∆ = dP coincides with the Poincaré metric on ∆, and it follows easily by the
lifting argument that we have kX = ωP . In particular, dKX is non degenerate and
is just the quotient of the Poincaré metric on ∆, i.e.

dKX(p, q) = inf
p′∈ρ−1(p), q′∈ρ−1(q)

dP (p′, q′).

We can summarize this discussion as follows.

1.5. Theorem. Up to bihomorphism, any smooth Riemann surface X belongs
to one (and only one) of the following three types.

(a) (rational curve) X ' P1.

(b) (parabolic type) X̂ ' C, X ' C, C∗ or X ' C/Λ (elliptic curve)

(c) (hyperbolic type) X̂ ' ∆. All compact curves X of genus g ≥ 2 enter in
this category, as well as X = P1r{a, b, c} ' Cr{0, 1}, or X = C/Λr{a}
(elliptic curve minus one point).

In some rare cases, the one-dimensional case can be used to study the case of
higher dimensions. For instance, it is easy to see by looking at projections that
the Kobayashi pseudodistance on a product X ×Y of complex spaces is given by

dKX×Y ((x, y), (x′, y′)) = max
(
dKX(x, x′), dKY (y, y′)

)
,(1.6)

kX×Y (ξ, ξ′) = max
(
kX(ξ),kY (ξ′)

)
,(1.6’)

and from there it follows that a product of hyperbolic spaces is hyperbolic. As
a consequence (C r {0, 1})2, which is also a complement of five lines in P2, is
hyperbolic.

1.C. Brody criterion for hyperbolicity

Throughout this subsection, we assume that X is a complex manifold. In
this context, we have the following well-known result of Brody [Bro78]. Its main
interest is to relate hyperbolicity to the non existence of entire curves.

1.7. Brody reparametrization lemma. Let ω be a hermitian metric on X
and let f : ∆ → X be a holomorphic map. For every ε > 0, there exist a radius
R ≥ (1 − ε)‖f ′(0)‖ω and a homographic transformation ψ of the disk D(0, R)
onto (1− ε)∆ such that

‖(f ◦ ψ)′(0)‖ω = 1, ‖(f ◦ ψ)′(t)‖ω ≤
1

1− |t|2/R2
for every t ∈ D(0, R).

Proof. Select t0 ∈ ∆ such that (1 − |t|2)‖f ′((1 − ε)t)‖ω reaches its maximum
for t = t0. The reason for this choice is that (1 − |t|2)‖f ′((1 − ε)t)‖ω is the
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norm of the differential f ′((1 − ε)t) : T∆ → TX with respect to the Poincaré
metric |dt|2/(1−|t|2)2 on T∆, which is conformally invariant under Aut(∆). One
then adjusts R and ψ so that ψ(0) = (1 − ε)t0 and |ψ′(0)| ‖f ′(ψ(0))‖ω = 1. As
|ψ′(0)| = 1−ε

R (1− |t0|2), the only possible choice for R is

R = (1− ε)(1− |t0|2)‖f ′(ψ(0))‖ω ≥ (1− ε)‖f ′(0)‖ω.

�

The inequality for (f ◦ ψ)′ follows from the fact that the Poincaré norm is
maximum at the origin, where it is equal to 1 by the choice of R. Using the
Ascoli-Arzelà theorem we obtain immediately:

1.8. Corollary (Brody). Let (X,ω) be a compact complex hermitian manifold.
Given a sequence of holomorphic mappings fν : ∆→ X such that lim ‖f ′ν(0)‖ω =
+∞, one can find a sequence of homographic transformations ψν : D(0, Rν) →
(1−1/ν)∆ with limRν = +∞, such that, after passing possibly to a subsequence,
(fν◦ψν) converges uniformly on every compact subset of C towards a non constant
holomorphic map g : C→ X with ‖g′(0)‖ω = 1 and supt∈C ‖g′(t)‖ω ≤ 1.

An entire curve g : C→ X such that supC ‖g′‖ω = M < +∞ is called a Brody
curve; this concept does not depend on the choice of ω when X is compact, and
one can always assume M = 1 by rescaling the parameter t.

1.9. Brody criterion. Let X be a compact complex manifold. The following
properties are equivalent.

(a) X is hyperbolic.
(b) X does not possess any entire curve f : C→ X.
(c) X does not possess any Brody curve g : C→ X.
(d) The Kobayashi infinitesimal metric kX is uniformly bouded below, namely

kX(ξ) ≥ c‖ξ‖ω, c > 0,

for any hermitian metric ω on X.

Proof. (a)⇒(b) If X possesses an entire curve f : C → X, then by looking at
arbitrary large disks D(0, R) ⊂ C, it is easy to see that the Kobayashi distance
of any two points in f(C) is zero, so X is not hyperbolic.
(b)⇒(c) is trivial.
(c)⇒(d) If (d) does not hold, there exists a sequence of tangent vectors ξν ∈ TX,xν
with ‖ξν‖ω = 1 and kX(ξν) → 0. By definition, this means that there exists an
analytic curve fν : ∆ → X with f(0) = xν and ‖f ′ν(0)‖ω ≥ (1 − 1

ν )/kX(ξν) →
+∞. One can then produce a Brody curve g = C → X by Corollary 1.8,
contradicting (c).
(d)⇒(a) In fact (d) implies after integrating that dKX(p, q) ≥ c dω(p, q) where dω
is the geodesic distance associated with ω, so dKX must be non degenerate. �

Notice also that if f : C→ X is an entire curve such that ‖f ′‖ω is unbounded,
one can apply the Corollary 1.8 to fν(t) := f(t + aν) where the sequence (aν)
is chosen such that ‖f ′ν(0)‖ω = ‖f(aν)‖ω → +∞. Brody’s result then produces
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repametrizations ψν : D(0, Rν)→ D(aν , 1− 1/ν) and a Brody curve g = lim f ◦
ψν : C → X such that sup ‖g′‖ω = 1 and g(C) ⊂ f(C). It may happen that the
image g(C) of such a limiting curve is disjoint from f(C). In fact Winkelmann
[Win07] has given a striking example, actually a projective 3-fold X obtained
by blowing-up a 3-dimensional abelian variety Y , such that every Brody curve
g : C → X lies in the exceptional divisor E ⊂ X ; however, entire curves f :
C → X can be dense, as one can see by taking f to be the lifting of a generic
complex line embedded in the abelian variety Y . For further precise information
on the localization of Brody curves, we refer the reader to the remarkable results
of [Duv08].

The absence of entire holomorphic curves in a given complex manifold is often
referred to as Brody hyperbolicity. Thus, in the compact case, Brody hyperbolicity
and Kobayashi hyperbolicity coincide (but Brody hyeperbolicity is in general a
strictly weaker property when X is non compact).

1.D. Geometric applications

We give here two immediate consequences of the Brody criterion: the openness
property of hyperbolicity and a hyperbolicity criterion for subvarieties of complex
tori. By definition, a holomorphic family of compact complex manifolds is a
holomorphic proper submersion X→ S between two complex manifolds.

1.10. Proposition. Let π : X→ S be a holomorphic family of compact complex
manifolds. Then the set of s ∈ S such that the fiber Xs = π−1(s) is hyperbolic is
open in the Euclidean topology.

Proof. Let ω be an arbitrary hermitian metric on X, (Xsν )sν∈S a sequence of non
hyperbolic fibers, and s = lim sν . By the Brody criterion, one obtains a sequence
of entire maps fν : C → Xsν such that ‖f ′ν(0)‖ω = 1 and ‖f ′ν‖ω ≤ 1. Ascoli’s
theorem shows that there is a subsequence of fν converging uniformly to a limit
f : C→ Xs, with ‖f ′(0)‖ω = 1. Hence Xs is not hyperbolic and the collection of
non hyperbolic fibers is closed in S. �

Consider now an n-dimensional complex torus W , i.e. an additive quotient
W = Cn/Λ, where Λ ⊂ Cn is a (cocompact) lattice. By taking a composition
of entire curves C → Cn with the projection Cn → W we obtain an infinite
dimensional space of entire curves in W .

1.11. Theorem. Let X ⊂ W be a compact complex submanifold of a complex
torus. Then X is hyperbolic if and only if it does not contain any translate of a
subtorus.

Proof. If X contains some translate of a subtorus, then it contains lots of entire
curves and so X is not hyperbolic.

Conversely, suppose that X is not hyperbolic. Then by the Brody criterion
there exists an entire curve f : C → X such that ‖f ′‖ω ≤ ‖f ′(0)‖ω = 1, where

ω is the flat metric on W inherited from Cn. This means that any lifting f̃ =
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(f̃ , . . . , f̃ν) : C→ Cn is such that

n∑
j=1

|f ′j |2 ≤ 1.

Then, by Liouville’s theorem, f̃ ′ is constant and therefore f̃ is affine. But then
the closure of the image of f is a translate a + H of a connected (possibly real)
subgroup H of W . We conclude that X contains the analytic Zariski closure of
a+H, namely a+HC where HC ⊂ W is the smallest closed complex subgroup
of W containing H. �

§2. Directed manifolds

2.A. Basic definitions concerning directed manifolds

Let us consider a pair (X,V ) consisting of a n-dimensional complex manifold
X equipped with a linear subspace V ⊂ TX : assuming X connected, this is by
definition an irreducible closed analytic subspace of the total space of TX such
that each fiber Vx = V ∩TX,x is a vector subspace of TX,x; the rank x 7→ dimC Vx
is Zariski lower semicontinuous, and it may a priori jump. We will refer to such
a pair as being a (complex) directed manifold. A morphism Φ : (X,V )→ (Y,W )
in the category of (complex) directed manifolds is a holomorphic map such that
Φ∗(V ) ⊂W .

The rank r ∈ {0, 1, . . . , n} of V is by definition the dimension of Vx at a
generic point. The dimension may be larger at non generic points; this happens
e.g. on X = Cn for the rank 1 linear space V generated by the Euler vector field:
Vz = C

∑
1≤j≤n zj

∂
∂zj

for z 6= 0, and V0 = Cn. Our philosophy is that directed
manifolds are also useful to study the “absolute case”, i.e. the case V = TX ,
because there are certain fonctorial constructions which are quite natural in the
category of directed manifolds (see e.g. §5, 6, 7). We think of directed manifolds
as a kind of “relative situation”, covering e.g. the case when V is the relative
tangent space to a holomorphic map X → S. In general, we can associate to
V a sheaf V = O(V ) ⊂ O(TX) of holomorphic sections. These sections need
not generate the fibers of V at singular points, as one sees already in the case
of the Euler vector field when n ≥ 2. However, V is a saturated subsheaf of
O(TX), i.e. O(TX)/V has no torsion: in fact, if the components of a section have
a common divisorial component, one can always simplify this divisor and produce
a new section without any such common divisorial component. Instead of defining
directed manifolds by picking a linear space V , one could equivalently define them
by considering saturated coherent subsheaves V ⊂ O(TX). One could also take
the dual viewpoint, looking at arbitrary quotient morphisms Ω1

X →W = V∗ (and
recovering V = W∗ = HomO(W,O), as V = V∗∗ is reflexive). We want to stress
here that no assumption need be made on the Lie bracket tensor [ , ] : V× V→
O(TX)/V, i.e. we do not assume any kind of integrability for V or W.

The singular set Sing(V ) is by definition the set of points where V is not lo-
cally free, it can also be defined as the indeterminacy set of the (meromorphic)
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classifying map α : X 99K Gr(TX), z 7→ Vz to the Grasmannian of r dimensional
subspaces of TX . We thus have V|XrSing(V ) = α∗S where S → Gr(TX) is the
tautological subbundle of Gr(TX). The singular set Sing(V ) is an analytic sub-
set of X of codim ≥ 2, hence V is always a holomorphic subbundle outside of
codimension 2. Thanks to this remark, one can most often treat linear spaces as
vector bundles (possibly modulo passing to the Zariski closure along Sing(V )).

2.B. Hyperbolicity properties of directed manifolds

Most of what we have done in §1 can be extended to the category of directed
manifolds.

2.1. Definition. Let (X,V ) be a complex directed manifold.

i) The Kobayashi-Royden infinitesimal metric of (X,V ) is the Finsler metric
on V defined for any x ∈ X and ξ ∈ Vx by

k(X,V )(ξ) = inf
{
λ > 0 ; ∃f : ∆→ X, f(0) = x, λf ′(0) = ξ, f ′(∆) ⊂ V

}
.

Here ∆ ⊂ C is the unit disk and the map f is an arbitrary holomorphic
map which is tangent to V , i.e., such that f ′(t) ∈ Vf(t) for all t ∈ ∆. We
say that (X,V ) is infinitesimally hyperbolic if k(X,V ) is positive definite
on every fiber Vx and satisfies a uniform lower bound k(X,V )(ξ) ≥ ε‖ξ‖ω
in terms of any smooth hermitian metric ω on X, when x describes a
compact subset of X.

ii) More generally, the Kobayashi-Eisenman infinitesimal pseudometric of
(X,V ) is the pseudometric defined on all decomposable p-vectors ξ =
ξ1 ∧ · · · ∧ ξp ∈ ΛpVx, 1 ≤ p ≤ r = rankV , by

ep(X,V )(ξ) = inf
{
λ > 0 ; ∃f : Bp → X, f(0) = x, λf∗(τ0) = ξ, f∗(TBp) ⊂ V

}
where Bp is the unit ball in Cp and τ0 = ∂/∂t1 ∧ · · · ∧ ∂/∂tp is the unit p-
vector of Cp at the origin. We say that (X,V ) is infinitesimally p-measure
hyperbolic if ep(X,V ) is positive definite on every fiber ΛpVx and satisfies a

locally uniform lower bound in terms of any smooth metric.

If Φ : (X,V )→ (Y,W ) is a morphism of directed manifolds, it is immediate to
check that we have the monotonicity property

k(Y,W )(Φ∗ξ) ≤ k(X,V )(ξ) ∀ξ ∈ V,(2.2)

ep(Y,W )(Φ∗ξ) ≤ ep(X,V )(ξ) ∀ξ = ξ1 ∧ · · · ∧ ξp ∈ ΛpV.(2.2p)

The following proposition shows that virtually all reasonable definitions of the hy-
perbolicity property are equivalent if X is compact (in particular, the additional
assumption that there is locally uniform lower bound for k(X,V ) is not needed).
We merely say in that case that (X,V ) is hyperbolic.

2.3. Proposition. For an arbitrary directed manifold (X,V ), the Kobayashi-
Royden infinitesimal metric k(X,V ) is upper semicontinuous on the total space
of V . If X is compact, (X,V ) is infinitesimally hyperbolic if and only if there are
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no non constant entire curves g : C→ X tangent to V . In that case, k(X,V ) is a
continuous (and positive definite) Finsler metric on V .

Proof. The proof is almost identical to the standard proof for kX , for which we
refer to Royden [Roy71, Roy74]. One of the main ingredients is that one can
find a Stein neighborhood of the graph of any analytic disk (thanks to a result of
[Siu76], cf. also [Dem90a] for more general results). This allows to obtain “free”
small deformations of any given analytic disk, as there are many holomorphic
vector fields on a Stein manifold. �

Another easy observation is that the concept of p-measure hyperbolicity gets
weaker and weaker as p increases (we leave it as an exercise to the reader, this is
mostly just linear algebra).

2.4. Proposition. If (X,V ) is p-measure hyperbolic, then it is (p+ 1)-measure
hyperbolic for all p ∈ {1, . . . , r − 1}.

Again, an argument extremely similar to the proof of 1.10 shows that relative
hyperbolicity is again an open property.

2.5. Proposition. Let (X,V)→ S be a holomorphic family of compact directed
manifolds (by this, we mean a proper holomorphic map X → S together with an
analytic linear subspace V ⊂ TX/S ⊂ TX of the relative tangent bundle, defining a
deformation (Xs, Vs)s∈S of the fibers). Then the set of s ∈ S such that the fiber
(Xs, Vs) is hyperbolic is open in S with respect to the Euclidean topology.

Let us mention here an impressive result proved by Marco Brunella [Bru03,
Bru05, Bru06] concerning the behavior of the Kobayashi metric on foliated vari-
eties.

2.6. Theorem (Brunella). Let X be a compact Kähler manifold equipped with a
(possibly singular) rank 1 holomorphic foliation which is not a foliation by rational
curves. Then the canonical bundle KF = F∗ of the foliation is pseudoeffective (i.e.
the curvature of KF is ≥ 0 in the sense of currents).

The proof is obtained by putting on KF precisely the metric induced by the
Kobayashi metric on the leaves whenever they are generically hyperbolic (i.e.
covered by the unit disk). The case of parabolic leaves (covered by C) has to be
treated separately.

§3. Algebraic hyperbolicity

In the case of projective algebraic varieties, hyperbolicity is expected to be
related to other properties of a more algebraic nature. Theorem 3.1 below is a
first step in this direction.

3.1. Theorem. Let (X,V ) be a compact complex directed manifold and let∑
ωjkdzj ⊗ dzk

be a hermitian metric on X, with associated positive (1, 1)-form
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ω =
i

2

∑
ωjkdzj ∧ dzk.

Consider the following three properties, which may or not be satisfied by (X,V ):

i) (X,V ) is hyperbolic.
ii) There exists ε > 0 such that every compact irreducible curve C ⊂ X

tangent to V satisfies

−χ(C) = 2g(C)− 2 ≥ ε degω(C)

where g(C) is the genus of the normalization C of C, χ(C) its Euler
characteristic and degω(C) =

∫
C ω. (This property is of course indepen-

dent of ω.)
iii) There does not exist any non constant holomorphic map Φ : Z → X from

an abelian variety Z to X such that Φ∗(TZ) ⊂ V .

Then i)⇒ ii)⇒ iii).

Proof. i) ⇒ ii) If (X,V ) is hyperbolic, there is a constant ε0 > 0 such that
k(X,V )(ξ) ≥ ε0‖ξ‖ω for all ξ ∈ V . Now, let C ⊂ X be a compact irreducible curve

tangent to V and let ν : C → C be its normalization. As (X,V ) is hyperbolic,
C cannot be a rational or elliptic curve, hence C admits the disk as its universal
covering ρ : ∆→ C.

The Kobayashi-Royden metric k∆ is the Finsler metric |dz|/(1−|z|2) associated
with the Poincaré metric |dz|2/(1− |z|2)2 on ∆, and kC is such that ρ∗kC = k∆.
In other words, the metric kC is induced by the unique hermitian metric on

C of constant Gaussian curvature −4. If σ∆ = i
2dz ∧ dz/(1 − |z|

2)2 and σC
are the corresponding area measures, the Gauss-Bonnet formula (integral of the
curvature = 2π χ(C)) yields∫

C
dσC = −1

4

∫
C

curv(kC) = −π
2
χ(C).

On the other hand, if j : C → X is the inclusion, the monotonicity property (2.2)
applied to the holomorphic map j ◦ ν : C → X shows that

kC(t) ≥ k(X,V )

(
(j ◦ ν)∗t

)
≥ ε0

∥∥(j ◦ ν)∗t
∥∥
ω

∀t ∈ TC .

From this, we infer dσC ≥ ε2
0(j ◦ ν)∗ω, thus

−π
2
χ(C) =

∫
C
dσC ≥ ε

2
0

∫
C

(j ◦ ν)∗ω = ε2
0

∫
C
ω.

Property ii) follows with ε = 2ε2
0/π.

ii)⇒ iii) First observe that ii) excludes the existence of elliptic and rational curves
tangent to V . Assume that there is a non constant holomorphic map Φ : Z → X
from an abelian variety Z to X such that Φ∗(TZ) ⊂ V . We must have dim Φ(Z) ≥
2, otherwise Φ(Z) would be a curve covered by images of holomorphic maps
C → Φ(Z), and so Φ(Z) would be elliptic or rational, contradiction. Select a
sufficiently general curve Γ in Z (e.g., a curve obtained as an intersection of very
generic divisors in a given very ample linear system |L| in Z). Then all isogenies
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um : Z → Z, s 7→ ms map Γ in a 1 : 1 way to curves um(Γ) ⊂ Z, except
maybe for finitely many double points of um(Γ) (if dimZ = 2). It follows that
the normalization of um(Γ) is isomorphic to Γ. If Γ is general enough, similar
arguments show that the images

Cm := Φ(um(Γ)) ⊂ X
are also generically 1 : 1 images of Γ, thus Cm ' Γ and g(Cm) = g(Γ). We would
like to show that Cm has degree ≥ Const m2. This is indeed rather easy to check
if ω is Kähler, but the general case is slightly more involved. We write∫

Cm

ω =

∫
Γ
(Φ ◦ um)∗ω =

∫
Z

[Γ] ∧ u∗m(Φ∗ω),

where Γ denotes the current of integration over Γ. Let us replace Γ by an arbitrary
translate Γ + s, s ∈ Z, and accordingly, replace Cm by Cm,s = Φ ◦um(Γ + s). For
s ∈ Z in a Zariski open set, Cm,s is again a generically 1 : 1 image of Γ + s. Let
us take the average of the last integral identity with respect to the unitary Haar
measure dµ on Z. We find∫

s∈Z

(∫
Cm,s

ω

)
dµ(s) =

∫
Z

(∫
s∈Z

[Γ + s] dµ(s)

)
∧ u∗m(Φ∗ω).

Now, γ :=
∫
s∈Z [Γ + s] dµ(s) is a translation invariant positive definite form of

type (p−1, p−1) on Z, where p = dimZ, and γ represents the same cohomology
class as [Γ], i.e. γ ≡ c1(L)p−1. Because of the invariance by translation, γ has
constant coefficients and so (um)∗γ = m2γ. Therefore we get∫

s∈Z
dµ(s)

∫
Cm,s

ω = m2

∫
Z
γ ∧ Φ∗ω.

In the integral, we can exclude the algebraic set of values z such that Cm,s is
not a generically 1 : 1 image of Γ + s, since this set has measure zero. For each
m, our integral identity implies that there exists an element sm ∈ Z such that
g(Cm,sm) = g(Γ) and

degω(Cm,sm) =

∫
Cm,sm

ω ≥ m2

∫
Z
γ ∧ Φ∗ω.

As
∫
Z γ ∧ Φ∗ω > 0, the curves Cm,sm have bounded genus and their degree is

growing quadratically with m, contradiction to property ii). �

3.2. Difinition. We say that a projective directed manifold (X,V ) is “alge-
braically hyperbolic” if it satisfies property 3.1 ii), namely, if there exists ε > 0
such that every algebraic curve C ⊂ X tangent to V satisfies

2g(C)− 2 ≥ ε degω(C).

A nice feature of algebraic hyperbolicity is that it satisfies an algebraic analogue
of the openness property.

3.3. Proposition. Let (X,V)→ S be an algebraic family of projective algebraic
directed manifolds (given by a projective morphism X → S). Then the set of
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t ∈ S such that the fiber (Xt, Vt) is algebraically hyperbolic is open with respect to
the “countable Zariski topology” of S (by definition, this is the topology for which
closed sets are countable unions of algebraic sets).

Proof. After replacing S by a Zariski open subset, we may assume that the
total space X itself is quasi-projective. Let ω be the Kähler metric on X ob-
tained by pulling back the Fubini-Study metric via an embedding in a projective
space. If integers d > 0, g ≥ 0 are fixed, the set Ad,g of t ∈ S such that Xt

contains an algebraic 1-cycle C =
∑
mjCj tangent to Vt with degω(C) = d and

g(C) =
∑
mj g(Cj) ≤ g is a closed algebraic subset of S (this follows from the

existence of a relative cycle space of curves of given degree, and from the fact
that the geometric genus is Zariski lower semicontinuous). Now, the set of non
algebraically hyperbolic fibers is by definition⋂

k>0

⋃
2g−2<d/k

Ad,g.

This concludes the proof (of course, one has to know that the countable Zariski
topology is actually a topology, namely that the class of countable unions of
algebraic sets is stable under arbitrary intersections; this can be easily checked
by an induction on dimension). �

3.4. Remark. More explicit versions of the openness property have been dealt
with in the literature. H. Clemens ([Cle86] and [CKL88]) has shown that on a
very generic surface of degree d ≥ 5 in P3, the curves of type (d, k) are of genus
g > kd(d − 5)/2 (recall that a very generic surface X ⊂ P3 of degree ≥ 4 has
Picard group generated by OX(1) thanks to the Noether-Lefschetz theorem, thus
any curve on the surface is a complete intersection with another hypersurface of
degree k ; such a curve is said to be of type (d, k) ; genericity is taken here in the
sense of the countable Zariski topology). Improving on this result of Clemens,
Geng Xu [Xu94] has shown that every curve contained in a very generic surface
of degree d ≥ 5 satisfies the sharp bound g ≥ d(d− 3)/2− 2. This actually shows
that a very generic surface of degree d ≥ 6 is algebraically hyperbolic. Although
a very generic quintic surface has no rational or elliptic curves, it seems to be
unknown whether a (very) generic quintic surface is algebraically hyperbolic in
the sense of Definition 3.2.

In higher dimension, L. Ein ([Ein88], [Ein91]) proved that every subvariety of
a very generic hypersurface X ⊂ Pn+1 of degree d ≥ 2n+ 1 (n ≥ 2), is of general
type. This was reproved by a simple efficient technique by C. Voisin in [Voi96].

3.5. Remark. It would be interesting to know whether algebraic hyperbolic-
ity is open with respect to the Euclidean topology ; still more interesting would
be to know whether Kobayashi hyperbolicity is open for the countable Zariski
topology (of course, both properties would follow immediately if one knew that
algebraic hyperbolicity and Kobayashi hyperbolicity coincide, but they seem oth-
erwise highly non trivial to establish). The latter openness property has raised
an important amount of work around the following more particular question: is a
(very) generic hypersurface X ⊂ Pn+1 of degree d large enough (say d ≥ 2n+ 1)
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Kobayashi hyperbolic ? Again, “very generic” is to be taken here in the sense of
the countable Zariski topology. Brody-Green [BrGr77] and Nadel [Nad89] pro-
duced examples of hyperbolic surfaces in P3 for all degrees d ≥ 50, and Masuda-
Noguchi [MaNo93] gave examples of such hypersurfaces in Pn for arbitrary n ≥ 2,
of degree d ≥ d0(n) large enough. The question of studying the hyperbolicity of
complements Pn rD of generic divisors is in principle closely related to this; in
fact if D = {P (z0, . . . , zn) = 0} is a smooth generic divisor of degree d, one may
look at the hypersurface

X =
{
zdn+1 = P (z0, . . . , zn)

}
⊂ Pn+1

which is a cyclic d : 1 covering of Pn. Since any holomorphic map f : C →
Pn r D can be lifted to X, it is clear that the hyperbolicity of X would imply
the hyperbolicity of Pn rD. The hyperbolicity of complements of divisors in Pn
has been investigated by many authors.

In the “absolute case” V = TX , it seems reasonable to expect that properties
3.1 i), ii) are equivalent, i.e. that Kobayashi and algebraic hyperbolicity coincide.
However, it was observed by Serge Cantat [Can00] that property 3.1 (iii) is not
sufficient to imply the hyperbolicity of X, at least when X is a general complex
surface: a general (non algebraic) K3 surface is known to have no elliptic curves
and does not admit either any surjective map from an abelian variety; however
such a surface is not Kobayashi hyperbolic. We are uncertain about the sufficiency
of 3.1 (iii) when X is assumed to be projective.

§4. The Ahlfors-Schwarz lemma for metrics of negative curvature

One of the most basic ideas is that hyperbolicity should somehow be related
with suitable negativity properties of the curvature. For instance, it is a stan-
dard fact already observed in Kobayashi [Kob70] that the negativity of TX (or
the ampleness of T ∗X) implies the hyperbolicity of X. There are many ways of
improving or generalizing this result. We present here a few simple examples of
such generalizations.

4.A. Exploiting curvature via potential theory

If (V, h) is a holomorphic vector bundle equipped with a smooth hermitian
metric, we denote by ∇h = ∇′h + ∇′′h the associated Chern connection and by

ΘV,h = i
2π∇

2
h its Chern curvature tensor.

4.1. Proposition. Let (X,V ) be a compact directed manifold. Assume that V
is non singular and that V ∗ is ample. Then (X,V ) is hyperbolic.

Proof. (from an original idea of [Kob75]). Recall that a vector bundle E is said
to be ample if SmE has enough global sections σ1, . . . , σN so as to generate 1-jets
of sections at any point, when m is large. One obtains a Finsler metric N on E∗

by putting

N(ξ) =
( ∑

1≤j≤N
|σj(x) · ξm|2

)1/2m
, ξ ∈ E∗x,
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and N is then a strictly plurisubharmonic function on the total space of E∗

minus the zero section (in other words, the line bundle OP (E∗)(1) has a metric of
positive curvature). By the ampleness assumption on V ∗, we thus have a Finsler
metric N on V which is strictly plurisubharmonic outside the zero section. By
the Brody lemma, if (X,V ) is not hyperbolic, there is a non constant entire curve
g : C→ X tangent to V such that supC ‖g′‖ω ≤ 1 for some given hermitian metric
ω on X. Then N(g′) is a bounded subharmonic function on C which is strictly
subharmonic on {g′ 6= 0}. This is a contradiction, for any bounded subharmonic
function on C must be constant. �

4.B. Ahlfors-Schwarz lemma

Proposition 4.1 can be generalized a little bit further by means of the Ahlfors-
Schwarz lemma (see e.g. [Lang87]; we refer to [Dem85] for the generalized version
presented here; the proof is merely an application of the maximum principle plus
a regularization argument).

4.2. Ahlfors-Schwarz lemma. Let γ(t) = γ0(t) i dt ∧ dt be a hermitian metric
on ∆R where log γ0 is a subharmonic function such that i ∂∂ log γ0(t) ≥ Aγ(t)
in the sense of currents, for some positive constant A. Then γ can be compared
with the Poincaré metric of ∆R as follows:

γ(t) ≤ 2

A

R−2|dt|2

(1− |t|2/R2)2
.

More generally, let γ = i
∑
γjkdtj∧dtk be an almost everywhere positive hermitian

form on the ball B(0, R) ⊂ Cp, such that −Ricci(γ) := i ∂∂ log det γ ≥ Aγ in
the sense of currents, for some constant A > 0 (this means in particular that
det γ = det(γjk) is such that log det γ is plurisubharmonic). Then the γ-volume
form is controlled by the Poincaré volume form :

det(γ) ≤
(p+ 1

AR2

)p 1

(1− |t|2/R2)p+1
.

4.C. Applications of the Ahlfors-Schwarz lemma to hyperbolicity

Let (X,V ) be a compact directed manifold. We assume throughout this sub-
section that V is non singular.

4.3. Proposition. Assume V ∗ is “very big” in the following sense: there exist
an ample line bundle L and a sufficiently large integer m such that the global
sections in H0(X,SmV ∗⊗L−1) generate all fibers over XrY , for some analytic
subset Y ( X. Then all entire curves f : C→ X tangent to V satisfy f(C) ⊂ Y
[under our assumptions, X is a projective algebraic manifold and Y is an algebraic
subvariety, thus it is legitimate to say that the entire curves are “algebraically
degenerate”].

Proof. Let σ1, . . . , σN ∈ H0(X,SmV ∗ ⊗ L−1) be a basis of sections generating
SmV ∗⊗L−1 over X r Y . If f : C→ X is tangent to V , we define a semipositive
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hermitian form γ(t) = γ0(t) |dt|2 on C by putting

γ0(t) =
∑
‖σj(f(t)) · f ′(t)m‖2/m

L−1

where ‖ ‖L denotes a hermitian metric with positive curvature on L. If f(C) 6⊂ Y ,
the form γ is not identically 0 and we then find

i ∂∂ log γ0 ≥
2π

m
f∗ΘL

where ΘL is the curvature form. The positivity assumption combined with an
obvious homogeneity argument yield

2π

m
f∗ΘL ≥ ε‖f ′(t)‖2ω |dt|2 ≥ ε′ γ(t)

for any given hermitian metric ω on X. Now, for any t0 with γ0(t0) > 0, the
Ahlfors-Schwarz lemma shows that f can only exist on a disk D(t0, R) such that
γ0(t0) ≤ 2

ε′R
−2, contradiction. �

There are similar results for p-measure hyperbolicity, e.g.

4.4. Proposition. Assume that ΛpV ∗ is ample. Then (X,V ) is infinitesimally
p-measure hyperbolic. More generally, assume that ΛpV ∗ is very big with base
locus contained in Y ( X (see 3.3). Then ep is non degenerate over X r Y .

Proof. By the ampleness assumption, there is a smooth Finsler metric N on ΛpV
which is strictly plurisubharmonic outside the zero section. We select also a
hermitian metric ω on X. For any holomorphic map f : Bp → X we define a
semipositive hermitian metric γ̃ on Bp by putting γ̃ = f∗ω. Since ω need not have
any good curvature estimate, we introduce the function δ(t) = Nf(t)(Λ

pf ′(t) · τ0),
where τ0 = ∂/∂t1 ∧ · · · ∧ ∂/∂tp, and select a metric γ = λγ̃ conformal to γ̃ such
that det γ = δ. Then λp is equal to the ratio N/Λpω on the element Λpf ′(t) · τ0 ∈
ΛpVf(t). Since X is compact, it is clear that the conformal factor λ is bounded
by an absolute constant independent of f . From the curvature assumption we
then get

i ∂∂ log det γ = i ∂∂ log δ ≥ (f,Λpf ′)∗(i ∂∂ logN) ≥ εf∗ω ≥ ε′ γ.
By the Ahlfors-Schwarz lemma we infer that det γ(0) ≤ C for some constant C,
i.e., Nf(0)(Λ

pf ′(0) · τ0) ≤ C ′. This means that the Kobayashi-Eisenman pseudo-

metric ep(X,V ) is positive definite everywhere and uniformly bounded from below.

In the case ΛpV ∗ is very big with base locus Y , we use essentially the same
arguments, but we then only have N being positive definite on X r Y . �

4.5. Corollary ([Gri71], KobO71]). If X is a projective variety of general type,
the Kobayashi-Eisenmann volume form en, n = dimX, can degenerate only along
a proper algebraic set Y ( X.

4.D. Main conjectures concerning hyperbolicity

One of the earliest conjectures in hyperbolicity theory is the following state-
ment due to Kobayashi ([Kob70], [Kob76]).
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4.6. Conjecture (Kobayashi).

(a) A (very) generic hypersurface X ⊂ Pn+1 of degree d ≥ dn large enough is
hyperbolic.

(b) The complement PnrH of a (very) generic hypersurface H ⊂ Pn of degree
d ≥ d′n large enough is hyperbolic.

In its original form, Kobayashi conjecture did not give the lower bounds dn and
d′n. Zaidenberg proposed the bounds dn = 2n+1 (for n ≥ 2) and d′n = 2n+1 (for
n ≥ 1), based on the results of Clemens, Xu, Ein and Voisin already mentioned,
and the following observation (cf. [Zai87], [Zai93]).

4.7. Theorem (Zaidenberg).The complement of a general hypersurface of degree
2n in Pn is not hyperbolic.

The converse of Corollary 4.5 is also expected to be true, namely, the generic
non degeneracy of en should imply that X is of general type, but this is only
known for surfaces (see [GrGr80] and [MoMu82]):

4.8. Conjecture (Green-Griffiths [GrGr80]). A projective algebraic variety X is
measure hyperbolic (i.e. en degenerates only along a proper algebraic subvariety)
if and only if X is of general type.

An essential step in the proof of the necessity of having general type subvari-
eties would be to show that manifolds of Kodaira dimension 0 (say, Calabi-Yau
manifolds and holomorphic symplectic manifolds, all of which have c1(X) = 0) are
not measure hyperbolic, e.g. by exhibiting enough families of curves Cs,` covering

X such that (2g(Cs,`) − 2)/ deg(Cs,`) → 0. Another (even stronger) conjecture
which we will investigate at the end of these notes is

4.9. Conjecture (Green-Griffiths [GrGr80]). If X is a variety of general type,
there exists a proper algebraic set Y ( X such that every entire holomorphic
curve f : C→ X is contained in Y .

One of the early important result in the direction of Conjecture 4.9 is the
proof of the Bloch theorem, as proposed by Bloch [Blo26a] and Ochiai [Och77].
The Bloch theorem is the special case of 4.9 when the irregularity of X sat-
isfies q = h0(X,Ω1

X) > dimX. Various solutions have then been obtained in
fundamental papers of Noguchi [Nog77, 81, 84], Kawamata [Kaw80] and Green-
Griffiths [GrGr80], by means of different techniques. See §10 for a proof based on
jet bundle techniques. A much more recent result is the striking statement due
to Diverio, Merker and Rousseau [DMR10], confirming 4.9 when X ⊂ Pn+1 is a
generic non singular hypersurface of sufficiently large degree d ≥ 2n

5
(cf. §16).

Conjecture 4.9 was also considered by S. Lang [Lang86, Lang87] in view of arith-
metic counterparts of the above geometric statements.

4.10. Conjecture (Lang). A projective algebraic variety X is hyperbolic if and
only if all its algebraic subvarieties (including X itself ) are of general type.

4.11. Conjecture (Lang). Let X be a projective variety defined over a number
field K.
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(a ) If X is hyperbolic, then the set of K-rational points is finite.
(a’) Conversely, if the set of K ′-rational points is finite for every finite exten-

sion K ′ ⊃ K, then X is hyperbolic.
(b ) If X is of general type, then the set of K-rational points is not Zariski

dense.
(b’) Conversely, if the set of K ′-rational points is not Zariski dense for any

extension K ′ ⊃ K, then X is of general type.

In fact, in 4.11 (b), if Y ( X is the “Green-Griffiths locus” of X, it is expected
that XrY contains only finitely many rational K-points. Even when dealing only
with the geometric statements, there are several interesting connections between
these conjectures.

4.12. Proposition. Conjecture 4.9 implies the “if” part of Conjecture 4.10, and
Conjecture 4.8 implies the “only if” part of Conjecture 4.10, hence (4.8 and 4.9)
⇒ (4.10).

Proof. In fact if Conjecture 4.9 holds and every subvariety Y of X is of general
type, then it is easy to infer that every entire curve f : C→ X has to be constant
by induction on dimX, because in fact f maps C to a certain subvariety Y ( X.
Therefore X is hyperbolic.

Conversely, if Conjecture 4.8 holds and X has a certain subvariety Y which
is not of general type, then Y is not measure hyperbolic. However Proposition
2.4 shows that hyperbolicity implies measure hyperbolicity. Therefore Y is not
hyperbolic and so X itself is not hyperbolic either. �

4.13. Proposition. Assume that the Green-Griffiths conjecture 4.9 holds. Then
the Kobayashi conjecture 4.6 (a) holds with dn = 2n+ 1.

Proof. We know by Ein [Ein88, Ein91] and Voisin [Voi96] that a very generic
hypersurface X ⊂ Pn+1 of degree d ≥ 2n+ 1, n ≥ 2, has all its subvarieties that
are of general type. We have seen that the Green-Griffiths conjecture 4.9 implies
the hyperbolicity of X in this circumstance. �

§5. Projectivization of a directed manifold

5.A. The 1-jet fonctor

The basic idea is to introduce a fonctorial process which produces a new com-

plex directed manifold (X̃, Ṽ ) from a given one (X,V ). The new structure (X̃, Ṽ )
plays the role of a space of 1-jets over X. We let

X̃ = P (V ), Ṽ ⊂ T
X̃

be the projectivized bundle of lines of V , together with a subbundle Ṽ of T
X̃

defined as follows: for every point (x, [v]) ∈ X̃ associated with a vector v ∈
Vx r {0},

(5.1) Ṽ(x,[v]) =
{
ξ ∈ T

X̃, (x,[v])
; π∗ξ ∈ Cv

}
, Cv ⊂ Vx ⊂ TX,x,
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where π : X̃ = P (V ) → X is the natural projection and π∗ : T
X̃
→ π∗TX is its

differential. On X̃ = P (V ) we have a tautological line bundle O
X̃

(−1) ⊂ π∗V

such that O
X̃

(−1)(x,[v]) = Cv. The bundle Ṽ is characterized by the two exact
sequences

0 −→ T
X̃/X

−→ Ṽ
π∗−→ O

X̃
(−1) −→ 0,(5.2)

0 −→ O
X̃
−→ π∗V ⊗ O

X̃
(1) −→ T

X̃/X
−→ 0,(5.2’)

where T
X̃/X

denotes the relative tangent bundle of the fibration π : X̃ → X. The

first sequence is a direct consequence of the definition of Ṽ , whereas the second
is a relative version of the Euler exact sequence describing the tangent bundle of
the fibers P (Vx). From these exact sequences we infer

(5.3) dim X̃ = n+ r − 1, rank Ṽ = rankV = r,

and by taking determinants we find det(T
X̃/X

) = π∗ detV ⊗ O
X̃

(r), thus

(5.4) det Ṽ = π∗ detV ⊗ O
X̃

(r − 1).

By definition, π : (X̃, Ṽ ) → (X,V ) is a morphism of complex directed mani-
folds. Clearly, our construction is fonctorial, i.e., for every morphism of directed
manifolds Φ : (X,V )→ (Y,W ), there is a commutative diagram

(5.5) (X̃, Ṽ )
π //

Φ̃
���
�
�

(X,V )

Φ

��
(Ỹ , W̃ )

π // (Y,W )

where the left vertical arrow is the meromorphic map P (V ) 99K P (W ) induced

by the differential Φ∗ : V → Φ∗W (Φ̃ is actually holomorphic if Φ∗ : V → Φ∗W
is injective).

5.B. Lifting of curves to the 1-jet bundle

Suppose that we are given a holomorphic curve f : ∆R → X parametrized
by the disk ∆R of centre 0 and radius R in the complex plane, and that f is a
tangent curve of the directed manifold, i.e., f ′(t) ∈ Vf(t) for every t ∈ ∆R. If f is
non constant, there is a well defined and unique tangent line [f ′(t)] for every t,
even at stationary points, and the map

(5.6) f̃ : ∆R → X̃, t 7→ f̃(t) := (f(t), [f ′(t)])

is holomorphic (at a stationary point t0, we just write f ′(t) = (t− t0)su(t) with
s ∈ N∗ and u(t0) 6= 0, and we define the tangent line at t0 to be [u(t0)], hence

f̃(t) = (f(t), [u(t)]) near t0 ; even for t = t0, we still denote [f ′(t0)] = [u(t0)]
for simplicity of notation). By definition f ′(t) ∈ O

X̃
(−1)

f̃(t)
= Cu(t), hence the
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derivative f ′ defines a section

(5.7) f ′ : T∆R
→ f̃∗O

X̃
(−1).

Moreover π ◦ f̃ = f , therefore

π∗f̃
′(t) = f ′(t) ∈ Cu(t) =⇒ f̃ ′(t) ∈ Ṽ(f(t),u(t)) = Ṽ

f̃(t)

and we see that f̃ is a tangent trajectory of (X̃, Ṽ ). We say that f̃ is the canonical

lifting of f to X̃. Conversely, if g : ∆R → X̃ is a tangent trajectory of (X̃, Ṽ ),

then by definition of Ṽ we see that f = π ◦ g is a tangent trajectory of (X,V )

and that g = f̃ (unless g is contained in a vertical fiber P (Vx), in which case f is
constant).

For any point x0 ∈ X, there are local coordinates (z1, . . . , zn) on a neighbor-
hood Ω of x0 such that the fibers (Vz)z∈Ω can be defined by linear equations

(5.8) Vz =
{
ξ =

∑
1≤j≤n

ξj
∂

∂zj
; ξj =

∑
1≤k≤r

ajk(z)ξk for j = r + 1, . . . , n
}
,

where (ajk) is a holomorphic (n− r)× r matrix. It follows that a vector ξ ∈ Vz is
completely determined by its first r components (ξ1, . . . , ξr), and the affine chart
ξj 6= 0 of P (V )�Ω can be described by the coordinate system

(5.9)
(
z1, . . . , zn;

ξ1

ξj
, . . . ,

ξj−1

ξj
,
ξj+1

ξj
, . . . ,

ξr
ξj

)
.

Let f ' (f1, . . . , fn) be the components of f in the coordinates (z1, . . . , zn)
(we suppose here R so small that f(∆R) ⊂ Ω). It should be observed that
f is uniquely determined by its initial value x and by the first r components
(f1, . . . , fr). Indeed, as f ′(t) ∈ Vf(t) , we can recover the other components by
integrating the system of ordinary differential equations

(5.10) f ′j(t) =
∑

1≤k≤r
ajk(f(t))f ′k(t), j > r,

on a neighborhood of 0, with initial data f(0) = x. We denote by m = m(f, t0)
the multiplicity of f at any point t0 ∈ ∆R, that is, m(f, t0) is the smallest integer

m ∈ N∗ such that f
(m)
j (t0) 6= 0 for some j. By (5.10), we can always suppose

j ∈ {1, . . . , r}, for example f
(m)
r (t0) 6= 0. Then f ′(t) = (t − t0)m−1u(t) with

ur(t0) 6= 0, and the lifting f̃ is described in the coordinates of the affine chart
ξr 6= 0 of P (V )�Ω by

(5.11) f̃ '
(
f1, . . . , fn;

f ′1
f ′r
, . . . ,

f ′r−1

f ′r

)
.

5.C. Curvature properties of the 1-jet bundle

We end this section with a few curvature computations. Assume that V is
equipped with a smooth hermitian metric h. Denote by ∇h = ∇′h + ∇′′h the

associated Chern connection and by ΘV,h = i
2π∇

2
h its Chern curvature tensor.
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For every point x0 ∈ X, there exists a “normalized” holomorphic frame (eλ)1≤λ≤r
on a neighborhood of x0, such that

(5.12) 〈eλ, eµ〉h = δλµ −
∑

1≤j,k≤n
cjkλµzjzk +O(|z|3),

with respect to any holomorphic coordinate system (z1, . . . , zn) centered at x0.
A computation of d′〈eλ, eµ〉h = 〈∇′heλ, eµ〉h and ∇2

heλ = d′′∇′heλ then gives

∇′heλ = −
∑
j,k,µ

cjkλµzk dzj ⊗ eµ +O(|z|2),

ΘV,h(x0) =
i

2π

∑
j,k,λ,µ

cjkλµdzj ∧ dzk ⊗ e∗λ ⊗ eµ.(5.13)

The above curvature tensor can also be viewed as a hermitian form on TX ⊗ V .
In fact, one associates with ΘV,h the hermitian form 〈ΘV,h〉 on TX ⊗ V defined
for all (ζ, v) ∈ TX ×X V by

(5.14) 〈ΘV,h〉(ζ ⊗ v) =
∑

1≤j,k≤n, 1≤λ,µ≤r
cjkλµζjζkvλvµ.

Let h1 be the hermitian metric on the tautological line bundle OP (V )(−1) ⊂
π∗V induced by the metric h of V . We compute the curvature (1, 1)-form
Θh1(OP (V )(−1)) at an arbitrary point (x0, [v0]) ∈ P (V ), in terms of ΘV,h. For
simplicity, we suppose that the frame (eλ)1≤λ≤r has been chosen in such a way
that [er(x0)] = [v0] ∈ P (V ) and |v0|h = 1. We get holomorphic local coordinates
(z1, . . . , zn ; ξ1, . . . , ξr−1) on a neighborhood of (x0, [v0]) in P (V ) by assigning

(z1, . . . , zn ; ξ1, . . . , ξr−1) 7−→ (z, [ξ1e1(z) + · · ·+ ξr−1er−1(z) + er(z)]) ∈ P (V ).

Then the function

η(z, ξ) = ξ1e1(z) + · · ·+ ξr−1er−1(z) + er(z)

defines a holomorphic section of OP (V )(−1) in a neighborhood of (x0, [v0]). By
using the expansion (5.12) for h, we find

|η|2h1 = |η|2h = 1 + |ξ|2 −
∑

1≤j,k≤n
cjkrrzjzk +O((|z|+ |ξ|)3),

Θh1(OP (V )(−1))(x0,[v0]) = − i

2π
∂∂ log |η|2h1

=
i

2π

( ∑
1≤j,k≤n

cjkrrdzj ∧ dzk −
∑

1≤λ≤r−1

dξλ ∧ dξλ
)
.

(5.15)

§6. Jets of curves and Semple jet bundles

Let X be a complex n-dimensional manifold. Following ideas of Green-Griffiths
[GrGr80], we let Jk → X be the bundle of k-jets of germs of parametrized curves
in X, that is, the set of equivalence classes of holomorphic maps f : (C, 0) →
(X,x), with the equivalence relation f ∼ g if and only if all derivatives f (j)(0) =
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g(j)(0) coincide for 0 ≤ j ≤ k, when computed in some local coordinate system
of X near x. The projection map Jk → X is simply f 7→ f(0). If (z1, . . . , zn) are
local holomorphic coordinates on an open set Ω ⊂ X, the elements f of any fiber
Jk,x, x ∈ Ω, can be seen as Cn-valued maps

f = (f1, . . . , fn) : (C, 0)→ Ω ⊂ Cn,

and they are completely determined by their Taylor expansion of order k at
t = 0

f(t) = x+ t f ′(0) +
t2

2!
f ′′(0) + · · ·+ tk

k!
f (k)(0) +O(tk+1).

In these coordinates, the fiber Jk,x can thus be identified with the set of k-tuples

of vectors (ξ1, . . . , ξk) = (f ′(0), . . . , f (k)(0)) ∈ (Cn)k. It follows that Jk is a
holomorphic fiber bundle with typical fiber (Cn)k over X (however, Jk is not a
vector bundle for k ≥ 2, because of the nonlinearity of coordinate changes; see
formula (7.2) in §7).

According to the philosophy developed throughout this paper, we describe the
concept of jet bundle in the general situation of complex directed manifolds. If
X is equipped with a holomorphic subbundle V ⊂ TX , we associate to V a k-jet
bundle JkV as follows.

6.1. Definition. Let (X,V ) be a complex directed manifold. We define JkV →
X to be the bundle of k-jets of curves f : (C, 0)→ X which are tangent to V ,
i.e., such that f ′(t) ∈ Vf(t) for all t in a neighborhood of 0, together with the
projection map f 7→ f(0) onto X.

It is easy to check that JkV is actually a subbundle of Jk. In fact, by using
(5.8) and (5.10), we see that the fibers JkVx are parametrized by(

(f ′1(0), . . . , f ′r(0)); (f ′′1 (0), . . . , f ′′r (0)); . . . ; (f
(k)
1 (0), . . . , f (k)

r (0))
)
∈ (Cr)k

for all x ∈ Ω, hence JkV is a locally trivial (Cr)k-subbundle of Jk. Alternatively,
we can pick a local holomorphic connection ∇ on V , defined on some open set
Ω ⊂ X, and compute inductively the successive derivatives

∇f = f ′, ∇jf = ∇f ′(∇j−1f)

with respect to ∇ along the curve t 7→ f(t). Then

(ξ1, ξ2, . . . , ξk) = (∇f(0),∇2f(0), . . . ,∇kf(0)) ∈ V ⊕kx

provides a “trivialization” JkV|Ω ' V ⊕k|Ω . This identification depends of course
on the choice of ∇ and cannot be defined globally in general (unless we are in
the rare situation where V has a global holomorphic connection).

We now describe a convenient process for constructing “projectivized jet bun-
dles”, which will later appear as natural quotients of our jet bundles JkV (or rather,
as suitable desingularized compactifications of the quotients). Such spaces have
already been considered since a long time, at least in the special case X = P2,
V = TP2 (see Gherardelli [Ghe41], Semple [Sem54]), and they have been mostly
used as a tool for establishing enumerative formulas dealing with the order of
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contact of plane curves (see [Coll88], [CoKe94]); the article [ASS92] is also con-
cerned with such generalizations of jet bundles, as well as [LaTh96] by Laksov
and Thorup.

We define inductively the projectivized k-jet bundle PkV = Xk (or Semple k-jet
bundle) and the associated subbundle Vk ⊂ TXk by

(6.2) (X0, V0) = (X,V ), (Xk, Vk) = (X̃k−1, Ṽk−1).

In other words, (PkV, Vk) = (Xk, Vk) is obtained from (X,V ) by iterating k-times

the lifting construction (X,V ) 7→ (X̃, Ṽ ) described in §5. By (5.2)-(5.7), we find

(6.3) dimPkV = n+ k(r − 1), rankVk = r,

together with exact sequences

0 −→ TPkV/Pk−1V −→ Vk
(πk)∗−−−−→ OPkV (−1) −→ 0,(6.4)

0 −→ OPkV −→ π∗kVk−1 ⊗ OPkV (1) −→ TPkV/Pk−1V −→ 0,(6.4’)

where πk is the natural projection πk : PkV → Pk−1V and (πk)∗ its differential.
Formula (5.4) yields

(6.5) detVk = π∗k detVk−1 ⊗ OPkV (r − 1).

Every non constant tangent trajectory f : ∆R → X of (X,V ) lifts to a well defined
and unique tangent trajectory f[k] : ∆R → PkV of (PkV, Vk). Moreover, the
derivative f ′[k−1] gives rise to a section

(6.6) f ′[k−1] : T∆R
→ f∗[k]OPkV (−1).

In coordinates, one can compute f[k] in terms of its components in the various
affine charts (5.9) occurring at each step: we get inductively

(6.7) f[k] = (F1, . . . , FN ), f[k+1] =
(
F1, . . . , FN ,

F ′s1
F ′sr

, . . . ,
F ′sr−1

F ′sr

)
where N = n + k(r − 1) and {s1, . . . , sr} ⊂ {1, . . . , N}. If k ≥ 1, {s1, . . . , sr}
contains the last r− 1 indices of {1, . . . , N} corresponding to the “vertical” com-
ponents of the projection PkV → Pk−1V , and in general, sr is an index such that
m(Fsr , 0) = m(f[k], 0), that is, Fsr has the smallest vanishing order among all
components Fs (sr may be vertical or not, and the choice of {s1, . . . , sr} need not
be unique).

By definition, there is a canonical injection OPkV (−1) ↪→ π∗kVk−1, and a com-
position with the projection (πk−1)∗ (analogue for order k− 1 of the arrow (πk)∗
in sequence (6.4)) yields for all k ≥ 2 a canonical line bundle morphism

(6.8) OPkV (−1) ↪−→ π∗kVk−1
(πk)∗(πk−1)∗−−−−−−→ π∗kOPk−1V (−1),

which admits precisely Dk = P (TPk−1V/Pk−2V ) ⊂ P (Vk−1) = PkV as its zero divi-
sor (clearly, Dk is a hyperplane subbundle of PkV ). Hence we find

(6.9) OPkV (1) = π∗kOPk−1V (1)⊗ O(Dk).



464 JEAN-PIERRE DEMAILLY

Now, we consider the composition of projections

(6.10) πj,k = πj+1 ◦ · · · ◦ πk−1 ◦ πk : PkV −→ PjV.

Then π0,k : PkV → X = P0V is a locally trivial holomorphic fiber bundle over X,
and the fibers PkVx = π−1

0,k(x) are k-stage towers of Pr−1-bundles. Since we have
(in both directions) morphisms (Cr, TCr) ↔ (X,V ) of directed manifolds which
are bijective on the level of bundle morphisms, the fibers are all isomorphic to a
“universal” nonsingular projective algebraic variety of dimension k(r − 1) which
we will denote by Rr,k ; it is not hard to see that Rr,k is rational (as will indeed
follow from the proof of Theorem 7.11 below). The following proposition will
help us to understand a little bit more about the geometric structure of PkV .
As usual, we define the multiplicity m(f, t0) of a curve f : ∆R → X at a point

t ∈ ∆R to be the smallest integer s ∈ N∗ such that f (s)(t0) 6= 0, i.e., the largest
s such that δ(f(t), f(t0)) = O(|t− t0|s) for any hermitian or riemannian geodesic
distance δ on X. As f[k−1] = πk ◦ f[k], it is clear that the sequence m(f[k], t) is
non increasing with k.

6.11. Proposition. Let f : (C, 0)→ X be a non constant germ of curve tangent
to V . Then for all j ≥ 2 we have m(f[j−2], 0) ≥ m(f[j−1], 0) and the inequality is
strict if and only if f[j](0) ∈ Dj. Conversely, if w ∈ PkV is an arbitrary element
and m0 ≥ m1 ≥ · · · ≥ mk−1 ≥ 1 is a sequence of integers with the property that

∀j ∈ {2, . . . , k}, mj−2 > mj−1 if and only if πj,k(w) ∈ Dj,

there exists a germ of curve f : (C, 0) → X tangent to V such that f[k](0) = w
and m(f[j], 0) = mj for all j ∈ {0, . . . , k − 1}.

Proof. i) Suppose first that f is given and put mj = m(f[j], 0). By definition, we

have f[j] = (f[j−1], [uj−1]) where f ′[j−1](t) = tmj−1−1uj−1(t) ∈ Vj−1, uj−1(0) 6= 0.

By composing with the differential of the projection πj−1 : Pj−1V → Pj−2V , we
find f ′[j−2](t) = tmj−1−1(πj−1)∗uj−1(t). Therefore

mj−2 = mj−1 + ordt=0(πj−1)∗uj−1(t),

and so mj−2 > mj−1 if and only if (πj−1)∗uj−1(0) = 0, that is, if and only if
uj−1(0) ∈ TPj−1V/Pj−2V , or equivalently f[j](0) = (f[j−1](0), [uj−1(0)]) ∈ Dj .

ii) Suppose now that w ∈ PkV and m0, . . . ,mk−1 are given. We denote by wj+1 =
(wj , [ηj ]), wj ∈ PjV , ηj ∈ Vj , the projection of w to Pj+1V . Fix coordinates
(z1, . . . , zn) on X centered at w0 such that the r-th component η0,r of η0 is non
zero. We prove the existence of the germ f by induction on k, in the form of a
Taylor expansion

f(t) = a0 + t a1 + · · ·+ tdkadk +O(tdk+1), dk = m0 +m1 + · · ·+mk−1.

If k = 1 and w = (w0, [η0]) ∈ P1Vx, we simply take f(t) = w0 + tm0η0 +O(tm0+1).
In general, the induction hypothesis applied to PkV = Pk−1(V1) over X1 = P1V
yields a curve g : (C, 0) → X1 such that g[k−1] = w and m(g[j], 0) = mj+1 for
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0 ≤ j ≤ k − 2. If w2 /∈ D2, then [g′[1](0)] = [η1] is not vertical, thus f = π1 ◦ g
satisfies m(f, 0) = m(g, 0) = m1 = m0 and we are done.

If w2 ∈ D2, we express g = (G1, . . . , Gn;Gn+1, . . . , Gn+r−1) as a Taylor expan-
sion of order m1+· · ·+mk−1 in the coordinates (5.9) of the affine chart ξr 6= 0. As
η1 = limt→0 g

′(t)/tm1−1 is vertical, we must have m(Gs, 0) > m1 for 1 ≤ j ≤ n.
It follows from (6.7) that G1, . . . , Gn are never involved in the calculation of the
liftings g[j]. We can therefore replace g by f ' (f1, . . . , fn) where fr(t) = tm0 and
f1, . . . , fr−1 are obtained by integrating the equations f ′j(t)/f

′
r(t) = Gn+j(t), i.e.,

f ′j(t) = m0t
m0−1Gn+j(t), while fr+1, . . . , fn are obtained by integrating (5.10).

We then get the desired Taylor expansion of order dk for f . �

Since we can always take mk−1 = 1 without restriction, we get in particular:

6.12. Corollary. Let w ∈ PkV be an arbitrary element. Then there is a germ
of curve f : (C, 0)→ X such that f[k](0) = w and f ′[k−1](0) 6= 0 (thus the liftings
f[k−1] and f[k] are regular germs of curve). Moreover, if w0 ∈ PkV and w is taken
in a sufficiently small neighborhood of w0, then the germ f = fw can be taken to
depend holomorphically on w.

Proof. Only the holomorphic dependence of fw with respect to w has to be
guaranteed. If fw0 is a solution for w = w0, we observe that (fw0)′[k] is a non

vanishing section of Vk along the regular curve defined by (fw0)[k] in PkV . We
can thus find a non vanishing section ξ of Vk on a neighborhood of w0 in PkV
such that ξ = (fw0)′[k] along that curve. We define t 7→ Fw(t) to be the trajectory

of ξ with initial point w, and we put fw = π0,k ◦ Fw. Then fw is the required
family of germs. �

Now, we can take f : (C, 0) → X to be regular at the origin (by this, we
mean f ′(0) 6= 0) if and only if m0 = m1 = · · · = mk−1 = 1, which is possible
by Proposition 6.11 if and only if w ∈ PkV is such that πj,k(w) /∈ Dj for all
j ∈ {2, . . . , k}. For this reason, we define

PkV
reg =

⋂
2≤j≤k

π−1
j,k (PjV rDj),

PkV
sing =

⋃
2≤j≤k

π−1
j,k (Dj) = PkV r PkV

reg,(6.13)

in other words, PkV
reg is the set of values f[k](0) reached by all regular germs of

curves f . One should take care however that there are singular germs which reach
the same points f[k](0) ∈ PkV reg, e.g., any s-sheeted covering t 7→ f(ts). On the

other hand, if w ∈ PkV sing, we can reach w by a germ f with m0 = m(f, 0) as
large as we want.

6.14. Corollary. Let w ∈ PkV
sing be given, and let m0 ∈ N be an arbitrary

integer larger than the number of components Dj such that πj,k(w) ∈ Dj. Then
there is a germ of curve f : (C, 0) → X with multiplicity m(f, 0) = m0 at the
origin, such that f[k](0) = w and f ′[k−1](0) 6= 0.
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§7. Jet differentials

7.A. Green-Griffiths jet differentials

We first introduce the concept of jet differentials in the sense of Green-Griffiths
[GrGr80]. The goal is to provide an intrinsic geometric description of holomorphic
differential equations that a germ of curve f : (C, 0) → X may satisfy. In the
sequel, we fix a directed manifold (X,V ) and suppose implicitly that all germs
of curves f are tangent to V .

Let Gk be the group of germs of k-jets of biholomorphisms of (C, 0), that is,
the group of germs of biholomorphic maps

t 7→ ϕ(t) = a1t+ a2t
2 + · · ·+ akt

k, a1 ∈ C∗, aj ∈ C, j ≥ 2,

in which the composition law is taken modulo terms tj of degree j > k. Then Gk

is a k-dimensional nilpotent complex Lie group, which admits a natural fiberwise
right action on JkV . The action consists of reparametrizing k-jets of maps f :
(C, 0)→ X by a biholomorphic change of parameter ϕ : (C, 0)→ (C, 0), that is,
(f, ϕ) 7→ f ◦ ϕ. There is an exact sequence of groups

1→ G′k → Gk → C∗ → 1

where Gk → C∗ is the obvious morphism ϕ 7→ ϕ′(0), and G′k = [Gk,Gk] is
the group of k-jets of biholomorphisms tangent to the identity. Moreover, the
subgroup H ' C∗ of homotheties ϕ(t) = λt is a (non normal) subgroup of Gk,
and we have a semidirect decomposition Gk = G′knH. The corresponding action
on k-jets is described in coordinates by

λ · (f ′, f ′′, . . . , f (k)) = (λf ′, λ2f ′′, . . . , λkf (k)).

Following [GrGr80], we introduce the vector bundle EGG
k,mV

∗ → X whose

fibers are complex valued polynomials Q(f ′, f ′′, . . . , f (k)) on the fibers of JkV ,
of weighted degree m with respect to the C∗ action defined by H, that is, such
that

(7.1) Q(λf ′, λ2f ′′, . . . , λkf (k)) = λmQ(f ′, f ′′, . . . , f (k))

for all λ ∈ C∗ and (f ′, f ′′, . . . , f (k)) ∈ JkV . Here we view (f ′, f ′′, . . . , f (k)) as
indeterminates with components(

(f ′1, . . . , f
′
r); (f ′′1 , . . . , f

′′
r ); . . . ; (f

(k)
1 , . . . , f (k)

r )
)
∈ (Cr)k.

Notice that the concept of polynomial on the fibers of JkV makes sense, for all
coordinate changes z 7→ w = Ψ(z) on X induce polynomial transition automor-
phisms on the fibers of JkV , given by a formula

(7.2) (Ψ ◦ f)(j) = Ψ′(f) · f (j) +

s=j∑
s=2

∑
j1+j2+···+js=j

cj1...jsΨ
(s)(f) · (f (j1), . . . , f (js))

with suitable integer constants cj1...js (this is easily checked by induction on s). In
the “absolute case” V = TX , we simply write EGG

k,mT
∗
X = EGG

k,m. If V ⊂W ⊂ TX
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are holomorphic subbundles, there are natural inclusions

JkV ⊂ JkW ⊂ Jk, PkV ⊂ PkW ⊂ Pk.
The restriction morphisms induce surjective arrows

EGG
k,m → EGG

k,mW
∗ → EGG

k,mV
∗,

in particular EGG
k,mV

∗ can be seen as a quotient of EGG
k,m. (The notation V ∗ is used

here to make the contravariance property implicit from the notation). Another
useful consequence of these inclusions is that one can extend the definition of
JkV and PkV to the case where V is an arbitrary linear space, simply by taking
the closure of JkVXrSing(V ) and PkVXrSing(V ) in the smooth bundles Jk and Pk,
respectively.

If Q ∈ EGG
k,mV

∗ is decomposed into multihomogeneous components of multide-

gree (`1, `2, . . . , `k) in f ′, f ′′, . . . , f (k) (the decomposition is of course coordinate
dependent), these multidegrees must satisfy the relation

`1 + 2`2 + · · ·+ k`k = m.

The bundle EGG
k,mV

∗ will be called the bundle of jet differentials of order k and

weighted degree m. It is clear from (7.2) that a coordinate change f 7→ Ψ ◦ f
transforms every monomial (f (•))` = (f ′)`1(f ′′)`2 · · · (f (k))`k of partial weighted

degree |`|s := `1 + 2`2 + · · · + s`s, 1 ≤ s ≤ k, into a polynomial ((Ψ ◦ f)(•))` in

(f ′, f ′′, . . . , f (k)) which has the same partial weighted degree of order s if `s+1 =
· · · = `k = 0, and a larger or equal partial degree of order s otherwise. Hence,
for each s = 1, . . . , k, we get a well defined (i.e., coordinate invariant) decreasing
filtration F •s on EGG

k,mV
∗ as follows:

(7.3) F ps (EGG
k,mV

∗) =

{
Q(f ′, f ′′, . . . , f (k)) ∈ EGG

k,mV
∗ involving

only monomials (f (•))` with |`|s ≥ p

}
∀p ∈ N.

The graded terms Grpk−1(EGG
k,mV

∗) associated with the filtration F pk−1(EGG
k,mV

∗)

are precisely the homogeneous polynomialsQ(f ′, . . . , f (k)) whose monomials (f•)`

all have partial weighted degree |`|k−1 = p (hence their degree `k in f (k) is such
that m − p = k`k, and Grpk−1(EGG

k,mV
∗) = 0 unless k|m − p). The transition

automorphisms of the graded bundle are induced by coordinate changes f 7→ Ψ◦f ,
and they are described by substituting the arguments of Q(f ′, . . . , f (k)) according

to formula (7.2), namely f (j) 7→ (Ψ ◦ f)(j) for j < k, and f (k) 7→ Ψ′(f) ◦ f (k) for

j = k (when j = k, the other terms fall in the next stage F p+1
k−1 of the filtration).

Therefore f (k) behaves as an element of V ⊂ TX under coordinate changes. We
thus find

(7.4) Gm−k`kk−1 (EGG
k,mV

∗) = EGG
k−1,m−k`kV

∗ ⊗ S`kV ∗.
Combining all filtrations F •s together, we find inductively a filtration F • on
EGG
k,mV

∗ such that the graded terms are

(7.5) Gr`(EGG
k,mV

∗) = S`1V ∗ ⊗ S`2V ∗ ⊗ · · · ⊗ S`kV ∗, ` ∈ Nk, |`|k = m.
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The bundles EGG
k,mV

∗ have other interesting properties. In fact,

EGG
k,• V

∗ :=
⊕
m≥0

EGG
k,mV

∗

is in a natural way a bundle of graded algebras (the product is obtained simply
by taking the product of polynomials). There are natural inclusions EGG

k,• V
∗ ⊂

EGG
k+1,•V

∗ of algebras, hence EGG
∞,•V

∗ =
⋃
k≥0E

GG
k,• V

∗ is also an algebra. Moreover,

the sheaf of holomorphic sections O(EGG
∞,•V

∗) admits a canonical derivation ∇GG

given by a collection of C-linear maps

∇GG : O(EGG
k,mV

∗)→ O(EGG
k+1,m+1V

∗),

constructed in the following way. A holomorphic section of EGG
k,mV

∗ on a coordi-
nate open set Ω ⊂ X can be seen as a differential operator on the space of germs
f : (C, 0)→ Ω of the form

(7.6) Q(f) =
∑

|α1|+2|α2|+···+k|αk|=m

aα1...αk(f) (f ′)α1(f ′′)α2 · · · (f (k))αk

in which the coefficients aα1...αk are holomorphic functions on Ω. Then ∇Q is
given by the formal derivative (∇Q)(f)(t) = d(Q(f))/dt with respect to the
1-dimensional parameter t in f(t). For example, in dimension 2, if

Q ∈ H0(Ω,O(EGG
2,4 ))

is the section of weighted degree 4

Q(f) = a(f1, f2) f ′31 f
′
2 + b(f1, f2) f ′′21 ,

we find that ∇Q ∈ H0(Ω,O(EGG
3,5 )) is given by

(∇Q)(f) =
∂a

∂z1
(f1, f2) f ′41 f

′
2 +

∂a

∂z2
(f1, f2) f ′31 f

′2
2 +

∂b

∂z1
(f1, f2) f ′1f

′′2
1

+
∂b

∂z2
(f1, f2) f ′2f

′′2
1 + a(f1, f2)

(
3f ′21 f

′′
1 f
′
2 + f ′31 f

′′
2 ) + b(f1, f2) 2f ′′1 f

′′′
1 .

Associated with the graded algebra bundle EGG
k,• V

∗, we have an analytic fiber
bundle

(7.7) XGG
k := Proj(EGG

k,• V
∗) = (JkV r {0})/C∗

over X, which has weighted projective spaces P(1[r], 2[r], . . . , k[r]) as fibers (these
weighted projective spaces are singular for k > 1, but they only have quotient
singularities, see [Dol81] ; here JkV r{0} is the set of non constant jets of order k ;
we refer e.g. to Hartshorne’s book [Har77] for a definition of the Proj fonctor). As
such, it possesses a canonical sheaf OXGG

k
(1) such that OXGG

k
(m) is invertible when

m is a multiple of lcm(1, 2, . . . , k). Under the natural projection πk : XGG
k → X,

the direct image (πk)∗OXGG
k

(m) coincides with polynomials

(7.8) P (z ; ξ1, . . . , ξk) =
∑

α`∈Nr, 1≤`≤k
aα1...αk(z) ξα1

1 . . . ξαkk
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of weighted degree |α1| + 2|α2| + · · · + k|αk| = m on JkV with holomorphic
coefficients; in other words, we obtain precisely the sheaf of sections of the bundle
EGG
k,mV

∗ of jet differentials of order k and degree m.

7.9. Proposition. By construction, if πk: X
GG
k → X is the natural projection,

we have the direct image formula

(πk)∗OXGG
k

(m) = O(EGG
k,mV

∗)

for all k and m.

7.B. Invariant jet differentials

In the geometric context, we are not really interested in the bundles (JkV r
{0})/C∗ themselves, but rather on their quotients (JkV r {0})/Gk (would such
nice complex space quotients exist!). We will see that the Semple bundle PkV
constructed in §6 plays the role of such a quotient. First we introduce a canonical
bundle subalgebra of EGG

k,• V
∗.

7.10. Definition. We introduce a subbundle Ek,mV
∗ ⊂ EGG

k,mV
∗, called the

bundle of invariant jet differentials of order k and degree m, defined as follows:
Ek,mV

∗ is the set of polynomial differential operators Q(f ′, f ′′, . . . , f (k)) which
are invariant under arbitrary changes of parametrization, i.e., for every ϕ ∈ Gk

Q
(
(f ◦ ϕ)′, (f ◦ ϕ)′′, . . . , (f ◦ ϕ)(k)) = ϕ′(0)mQ(f ′, f ′′, . . . , f (k)).

Alternatively, Ek,mV
∗ = (EGG

k,mV
∗)G

′
k is the set of invariants of EGG

k,mV
∗ un-

der the action of G′k. Clearly, E∞,•V
∗ =

⋃
k≥0

⊕
m≥0Ek,mV

∗ is a subalgebra

of EGG
k,mV

∗ (observe however that this algebra is not invariant under the deriva-

tion ∇GG, since e.g. f ′′j = ∇GGfj is not an invariant polynomial). In addition to

this, there are natural induced filtrations F ps (Ek,mV
∗) = Ek,mV

∗ ∩ F ps (EGG
k,mV

∗)

(all locally trivial over X). These induced filtrations will play an important role
later on.

7.11. Theorem. Suppose that V has rank r ≥ 2. Let π0,k : PkV −→ X be
the Semple jet bundles constructed in section 6, and let JkV

reg be the bundle of
regular k-jets of maps f : (C, 0)→ X, that is, jets f such that f ′(0) 6= 0.

i) The quotient JkV
reg/Gk has the structure of a locally trivial bundle over X,

and there is a holomorphic embedding JkV
reg/Gk ↪→ PkV over X, which

identifies JkV
reg/Gk with PkV

reg (thus PkV is a relative compactification
of JkV

reg/Gk over X).
ii) The direct image sheaf

(π0,k)∗OPkV (m) ' O(Ek,mV
∗)

can be identified with the sheaf of holomorphic sections of Ek,mV
∗.

iii) For every m > 0, the relative base locus of the linear system |OPkV (m)| is
equal to the set PkV

sing of singular k-jets. Moreover, OPkV (1) is relatively
big over X.
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Proof. i) For f ∈ JkV reg, the lifting f̃ is obtained by taking the derivative (f, [f ′])
without any cancellation of zeroes in f ′, hence we get a uniquely defined (k− 1)-

jet f̃ : (C, 0)→ X̃. Inductively, we get a well defined (k − j)-jet f[j] in PjV , and
the value f[k](0) is independent of the choice of the representative f for the k-jet.

As the lifting process commutes with reparametrization, i.e., (f ◦ ϕ)∼ = f̃ ◦ ϕ
and more generally (f ◦ ϕ)[k] = f[k] ◦ ϕ, we conclude that there is a well defined
set-theoretic map

JkV
reg/Gk → PkV

reg, f mod Gk 7→ f[k](0).

This map is better understood in coordinates as follows. Fix coordinates (z1, . . . ,
zn) near a point x0 ∈ X, such that Vx0 = Vect(∂/∂z1, . . . , ∂/∂zr). Let f =
(f1, . . . , fn) be a regular k-jet tangent to V . Then there exists i ∈ {1, 2, . . . , r}
such that f ′i(0) 6= 0, and there is a unique reparametrization t = ϕ(τ) such that
f ◦ ϕ = g = (g1, g2, . . . , gn) with gi(τ) = τ (we just express the curve as a graph
over the zi-axis, by means of a change of parameter τ = fi(t), i.e. t = ϕ(τ) =
f−1
i (τ)). Suppose i = r for the simplicity of notation. The space PkV is a k-stage

tower of Pr−1-bundles. In the corresponding inhomogeneous coordinates on these
Pr−1’s, the point f[k](0) is given by the collection of derivatives(

(g′1(0), . . . , g′r−1(0)); (g′′1(0), . . . , g′′r−1(0)); . . . ; (g
(k)
1 (0), . . . , g

(k)
r−1(0))

)
.

[Recall that the other components (gr+1, . . . , gn) can be recovered from (g1, . . . , gr)
by integrating the differential system (5.10)]. Thus the map JkV

reg/Gk → PkV
is a bijection onto PkV

reg, and the fibers of these isomorphic bundles can be
seen as unions of r affine charts ' (Cr−1)k, associated with each choice of the
axis zi used to describe the curve as a graph. The change of parameter formula
d
dτ = 1

f ′r(t)
d
dt expresses all derivatives g

(j)
i (τ) = djgi/dτ

j in terms of the derivatives

f
(j)
i (t) = djfi/dt

j

(g′1, . . . g
′
r−1) =

(f ′1
f ′r
, . . . ,

f ′r−1

f ′r

)
;

(g′′1 , . . . , g
′′
r−1) =

(f ′′1 f ′r − f ′′r f ′1
f ′3r

, . . . ,
f ′′r−1f

′
r − f ′′r f ′r−1

f ′3r

)
; . . . ;(7.12)

(g
(k)
1 , . . . , g

(k)
r−1) =

(f (k)
1 f ′r − f

(k)
r f ′1

f ′k+1
r

, . . . ,
f

(k)
r−1f

′
r − f

(k)
r f ′r−1

f ′k+1
r

)
+ (order < k).

Also, it is easy to check that f ′2k−1
r g

(k)
i is an invariant polynomial in f ′, f ′′, . . . , f (k)

of total degree 2k − 1, i.e., a section of Ek,2k−1.
ii) Since the bundles PkV and Ek,mV

∗ are both locally trivial over X, it is suffi-

cient to identify sections σ of OPkV (m) over a fiber PkVx = π−1
0,k(x) with the fiber

Ek,mV
∗
x , at any point x ∈ X. Let f ∈ JkV reg

x be a regular k-jet at x. By (6.6), the
derivative f ′[k−1](0) defines an element of the fiber of OPkV (−1) at f[k](0) ∈ PkV .

Hence we get a well defined complex valued operator

(7.13) Q(f ′, f ′′, . . . , f (k)) = σ(f[k](0)) · (f ′[k−1](0))m.
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Clearly, Q is holomorphic on JkV
reg
x (by the holomorphicity of σ), and the Gk-

invariance condition of Definition 7.10 is satisfied since f[k](0) does not depend

on reparametrization and (f ◦ ϕ)′[k−1](0) = f ′[k−1](0)ϕ′(0). Now, JkV
reg
x is the

complement of a linear subspace of codimension n in JkVx, hence Q extends
holomorphically to all of JkVx ' (Cr)k by Riemann’s extension theorem (here we
use the hypothesis r ≥ 2 ; if r = 1, the situation is anyway not interesting since
PkV = X for all k). Thus Q admits an everywhere convergent power series

Q(f ′, f ′′, . . . , f (k)) =
∑

α1,α2,...,αk∈Nr
aα1...αk (f ′)α1(f ′′)α2 · · · (f (k))αk .

The Gk-invariance (7.10) implies in particular that Q must be multihomogeneous
in the sense of (7.1), and thus Q must be a polynomial. We conclude that
Q ∈ Ek,mV ∗x , as desired.

Conversely, Corollary 6.12 implies that there is a holomorphic family of germs
fw : (C, 0) → X such that (fw)[k](0) = w and (fw)′[k−1](0) 6= 0, for all w in a

neighborhood of any given point w0 ∈ PkVx. Then every Q ∈ Ek,mV ∗x yields a
holomorphic section σ of OPkV (m) over the fiber PkVx by putting

(7.14) σ(w) = Q(f ′w, f
′′
w, . . . , df

(k)
w )(0)

(
(fw)′[k−1](0)

)−m
.

iii) By what we saw in i-ii), every section σ of OPkV (m) over the fiber PkVx is
given by a polynomial Q ∈ Ek,mV ∗x , and this polynomial can be expressed on the
Zariski open chart f ′r 6= 0 of PkV

reg
x as

(7.15) Q(f ′, f ′′, . . . f (k)) = f ′mr Q̂(g′, g′′, . . . , g(k)),

where Q̂ is a polynomial and g is the reparametrization of f such that gr(τ) = τ .

In fact Q̂ is obtained from Q by substituting f ′r = 1 and f
(j)
r = 0 for j ≥ 2, and

conversely Q can be recovered easily from Q̂ by using the substitutions (7.12).
In this context, the jet differentials f 7→ f ′1, . . . , f 7→ f ′r can be viewed as

sections of OPkV (1) on a neighborhood of the fiber PkVx. Since these sections
vanish exactly on PkV

sing, the relative base locus of OPkV (m) is contained in
PkV

sing for every m > 0. We see that OPkV (1) is big by considering the sections

of OPkV (2k − 1) associated with the polynomials Q(f ′, . . . f (k)) = f ′2k−1
r g

(j)
i , 1 ≤

i ≤ r − 1, 1 ≤ j ≤ k; indeed, these sections separate all points in the open chart
f ′r 6= 0 of PkV

reg
x .

Now, we check that every section σ of OPkV (m) over PkVx must vanish on

PkV
sing
x . Pick an arbitrary element w ∈ PkV sing and a germ of curve f : (C, 0)→ X

such that f[k](0) = w, f ′[k−1](0) 6= 0 and s = m(f, 0) � 0 (such an f exists

by Corollary 6.14). There are local coordinates (z1, . . . , zn) on X such that
f(t) = (f1(t), . . . , fn(t)) where fr(t) = ts. Let Q, Q̂ be the polynomials associated

with σ in these coordinates and let (f ′)α1(f ′′)α2 · · · (f (k))αk be a monomial occur-
ring in Q, with αj ∈ Nr, |αj | = `j , `1 + 2`2 + · · ·+ k`k = m. Putting τ = ts, the
curve t 7→ f(t) becomes a Puiseux expansion τ 7→ g(τ) = (g1(τ), . . . , gr−1(τ), τ)

in which gi is a power series in τ1/s, starting with exponents of τ at least equal
to 1. The derivative g(j)(τ) may involve negative powers of τ , but the exponent
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is always ≥ 1+ 1
s − j. Hence the Puiseux expansion of Q̂(g′, g′′, . . . , g(k)) can only

involve powers of τ of exponent ≥ −max`((1− 1
s )`2 + · · ·+ (k − 1− 1

s )`k). Fi-

nally f ′r(t) = sts−1 = sτ1−1/s, thus the lowest exponent of τ in Q(f ′, . . . , f (k)) is
at least equal to(

1− 1

s

)
m−max

`

((
1− 1

s

)
`2 + · · ·+

(
k − 1− 1

s

)
`k

)
≥ min

`

(
1− 1

s

)
`1 +

(
1− 1

s

)
`2 + · · ·+

(
1− k − 1

s

)
`k

where the minimum is taken over all monomials (f ′)α1(f ′′)α2 · · · (f (k))αk , |αj | =
`j , occurring in Q. Choosing s ≥ k, we already find that the minimal exponent

is positive, hence Q(f ′, . . . , f (k))(0) = 0 and σ(w) = 0 by (7.14). �

Theorem (7.11 iii) shows that OPkV (1) is never relatively ample over X for k ≥
2. In order to overcome this difficulty, we define for every a = (a1, . . . , ak) ∈ Zk
a line bundle OPkV (a) on PkV such that

(7.16) OPkV (a) = π∗1,kOP1V (a1)⊗ π∗2,kOP2V (a2)⊗ · · · ⊗ OPkV (ak).

By (6.9), we have π∗j,kOPjV (1) = OPkV (1)⊗OPkV (−π∗j+1,kDj+1 − · · · −Dk), thus
by putting D∗j = π∗j+1,kDj+1 for 1 ≤ j ≤ k − 1 and D∗k = 0, we find an identity

OPkV (a) = OPkV (bk)⊗ OPkV (−b ·D∗), where(7.17)

b = (b1, . . . , bk) ∈ Zk, bj = a1 + · · ·+ aj ,

b ·D∗ =
∑

1≤j≤k−1

bj π
∗
j+1,kDj+1.

In particular, if b ∈ Nk, i.e., a1 + · · ·+ aj ≥ 0, we get a morphism

(7.18) OPkV (a) = OPkV (bk)⊗ OPkV (−b ·D∗)→ OPkV (bk).

7.19. Remark. As in Green-Griffiths [GrGr80], Riemann’s extension theorem
shows that for every meromorphic map Φ : X 99K Y there are well-defined
pullback morphisms

Φ∗ : H0(Y,EGG
k,m)→ H0(X,EGG

k,m), Φ∗ : H0(Y,Ek,m)→ H0(X,Ek,m).

In particular the dimensions h0(X,EGG
k,m) and h0(X,EGG

k,m) are bimeromorphic

invariants of X. The same is true for spaces of sections of any subbundle of EGG
k,m

or Ek,m constructed by means of the canonical filtrations F •s .

7.20. Remark. As Gk is a non reductive group, it is not a priori clear that
the graded ring An,k,r =

⊕
m∈ZEk,mV

? is finitely generated (pointwise). This
can be checked by hand ([Dem07a], [Dem07b]) for n = 2 and k ≥ 4. Rousseau
[Rou06b] also checked the case n = 3, k = 3, and then Merker [Mer08] proved
the finiteness for n = 2, k = 5. Recently, Bérczi and Kirwan [BeKi10] found a
nice geometric argument proving the finiteness in full generality.
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§8. k-jet metrics with negative curvature

The goal of this section is to show that hyperbolicity is closely related to the
existence of k-jet metrics with suitable negativity properties of the curvature.
The connection between these properties is in fact a simple consequence of the
Ahlfors-Schwarz lemma. Such ideas have been already developed long ago by
Grauert-Reckziegel [GRec65], Kobayashi [Kob75] for 1-jet metrics (i.e., Finsler
metrics on TX) and by Cowen-Griffiths [CoGr76], Green-Griffiths [GrGr80] and
Grauert [Gra89] for higher order jet metrics.

8.A. Definition of k-jet metrics

Even in the standard case V = TX , the definition given below differs from
that of [GrGr80], in which the k-jet metrics are not supposed to be G′k-invariant.
We prefer to deal here with G′k-invariant objects, because they reflect better the
intrinsic geometry. Grauert [Gra89] actually deals with G′k-invariant metrics, but
he apparently does not take care of the way the quotient space J reg

k V/Gk can be
compactified; also, his metrics are always induced by the Poincaré metric, and it
is not at all clear whether these metrics have the expected curvature properties
(see 8.14 below). In the present situation, it is important to allow also hermitian
metrics possessing some singularities (“singular hermitian metrics” in the sense
of [Dem90]).

8.1. Definition. Let L → X be a holomorphic line bundle over a complex
manifold X. We say that h is a singular metric on L if for any trivialization
L�U ' U × C of L, the metric is given by |ξ|2h = |ξ|2e−ϕ for some real valued
weight function ϕ ∈ L1

loc(U). The curvature current of L is then defined to be

the closed (1, 1)-current ΘL,h = i
2π∂∂ϕ, computed in the sense of distributions.

We say that h admits a closed subset Σ ⊂ X as its degeneration set if ϕ is locally
bounded on X r Σ and is unbounded on a neighborhood of any point of Σ.

An especially useful situation is the case when the curvature of h is positive
definite. By this, we mean that there exist a smooth positive definite hermitian
metric ω and a continuous positive function ε on X such that ΘL,h ≥ εω in the
sense of currents, and we write in this case ΘL,h � 0. We need the following basic
fact (quite standard when X is projective algebraic; however we want to avoid
any algebraicity assumption here, so as to be able to cover the case of general
complex tori in §10).

8.2. Proposition. Let L be a holomorphic line bundle on a compact complex
manifold X.

(i) L admits a singular hermitian metric h with positive definite curvature
current ΘL,h � 0 if and only if L is big.
Now, define Bm to be the base locus of the linear system |H0(X,L⊗m)|
and let

Φm : X rBm → PN



474 JEAN-PIERRE DEMAILLY

be the corresponding meromorphic map. Let Σm be the closed analytic set
equal to the union of Bm and of the set of points x ∈ X r Bm such that
the fiber Φ−1

m (Φm(x)) is positive dimensional.
(ii) If Σm 6= X and G is any line bundle, the base locus of L⊗k ⊗ G−1 is

contained in Σm for k large. As a consequence, L admits a singular her-
mitian metric h with degeneration set Σm and with ΘL,h positive definite
on X.

(iii) Conversely, if L admits a hermitian metric h with degeneration set Σ and
positive definite curvature current ΘL,h, there exists an integer m > 0
such that the base locus Bm is contained in Σ and Φm : X r Σ → Pm is
an embedding.

Proof. i) is proved e.g. in [Dem90, 92], and ii) and iii) are well-known results in
the basic theory of linear systems. �

We now come to the main definitions. By (6.6), every regular k-jet f ∈ JkV
gives rise to an element f ′[k−1](0) ∈ OPkV (−1). Thus, measuring the “norm of

k-jets” is the same as taking a hermitian metric on OPkV (−1).

8.3. Definition. A smooth, (resp. continuous, resp. singular) k-jet metric on
a complex directed manifold (X,V ) is a hermitian metric hk on the line bundle
OPkV (−1) over PkV (i.e. a Finsler metric on the vector bundle Vk−1 over Pk−1V ),
such that the weight functions ϕ representing the metric are smooth (resp. conti-
nuous, L1

loc). We let Σhk ⊂ PkV be the singularity set of the metric, i.e., the
closed subset of points in a neighborhood of which the weight ϕ is not locally
bounded.

We will always assume here that the weight function ϕ is quasi psh. Recall that
a function ϕ is said to be quasi psh if ϕ is locally the sum of a plurisubharmonic
function and of a smooth function (so that in particular ϕ ∈ L1

loc). Then the
curvature current

Θh−1
k

(OPkV (1)) =
i

2π
∂∂ϕ

is well defined as a current and is locally bounded from below by a negative
(1, 1)-form with constant coefficients.

8.4. Definition. Let hk be a k-jet metric on (X,V ). We say that hk has
negative jet curvature (resp. negative total jet curvature) if Θhk(OPkV (−1)) is
negative definite along the subbundle Vk ⊂ TPkV (resp. on all of TPkV ), i.e., if
there are ε > 0 and a smooth hermitian metric ωk on TPkV such that

〈Θh−1
k

(OPkV (1))〉(ξ) ≥ ε|ξ|2ωk ∀ξ ∈ Vk ⊂ TPkV (resp. ∀ξ ∈ TPkV ).

(If the metric hk is not smooth, we suppose that its weights ϕ are quasi psh, and
the curvature inequality is taken in the sense of distributions.)

It is important to observe that for k ≥ 2 there cannot exist any smooth her-
mitian metric hk on OPkV (1) with positive definite curvature along TXk/X , since
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OPkV (1) is not relatively ample over X. However, it is relatively big, and Propo-
sition 8.2 i) shows that OPkV (−1) admits a singular hermitian metric with nega-
tive total jet curvature (whatever the singularities of the metric are) if and only
if OPkV (1) is big over PkV . It is therefore crucial to allow singularities in the
metrics in Definition 8.4.

8.B. Special case of 1-jet metrics

A 1-jet metric h1 on OP1V (−1) is the same as a Finsler metric N =
√
h1

on V ⊂ TX . Assume until the end of this paragraph that h1 is smooth. By the
well known Kodaira embedding theorem, the existence of a smooth metric h1

such that Θh−1
1

(OP1V (1)) is positive on all of TP1V is equivalent to OP1V (1) being

ample, that is, V ∗ ample.

8.5. Remark. In the absolute case V = TX , there are only few examples of
varieties X such that T ∗X is ample, mainly quotients of the ball Bn ⊂ Cn by a
discrete cocompact group of automorphisms.

The 1-jet negativity condition considered in Definition 8.4 is much weaker. For
example, if the hermitian metric h1 comes from a (smooth) hermitian metric h
on V , then formula (5.15) implies that h1 has negative total jet curvature (i.e.
Θh−1

1
(OP1V (1)) is positive) if and only if 〈ΘV,h〉(ζ ⊗ v) < 0 for all ζ ∈ TX r {0},

v ∈ V r {0}, that is, if (V, h) is negative in the sense of Griffiths. On the other
hand, V1 ⊂ TP1V consists by definition of tangent vectors τ ∈ TP1V,(x,[v]) whose

horizontal projection Hτ is proportional to v, thus Θh1(OP1V (−1)) is negative
definite on V1 if and only if ΘV,h satisfies the much weaker condition that the
holomorphic sectional curvature 〈ΘV,h〉(v ⊗ v) is negative on every complex line.

8.C. Vanishing theorem for invariant jet differentials

We now come back to the general situation of jets of arbitrary order k. Our
first observation is the fact that the k-jet negativity property of the curvature
becomes actually weaker and weaker as k increases.

8.6. Lemma. Let (X,V ) be a compact complex directed manifold. If (X,V ) has
a (k− 1)-jet metric hk−1 with negative jet curvature, then there is a k-jet metric
hk with negative jet curvature such that Σhk ⊂ π

−1
k (Σhk−1

)∪Dk. (The same holds
true for negative total jet curvature).

Proof. Let ωk−1, ωk be given smooth hermitian metrics on TPk−1V and TPkV . The
hypothesis implies

〈Θh−1
k−1

(OPk−1V (1))〉(ξ) ≥ ε|ξ|2ωk−1
∀ξ ∈ Vk−1

for some constant ε > 0. On the other hand, as OPkV (Dk) is relatively ample

over Pk−1V (Dk is a hyperplane section bundle), there exists a smooth metric h̃
on OPkV (Dk) such that

〈Θ
h̃
(OPkV (Dk))〉(ξ) ≥ δ|ξ|2ωk − C|(πk)∗ξ|

2
ωk−1

∀ξ ∈ TPkV
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for some constants δ, C > 0. Combining both inequalities (the second one being
applied to ξ ∈ Vk and the first one to (πk)∗ξ ∈ Vk−1), we get

〈Θ
(π∗khk−1)−ph̃

(π∗kOPk−1V (p)⊗ OPkV (Dk))〉(ξ) ≥

≥ δ|ξ|2ωk + (pε− C)|(πk)∗ξ|2ωk−1
∀ξ ∈ Vk.

Hence, for p large enough, (π∗khk−1)−ph̃ has positive definite curvature along Vk.
Now, by (6.9), there is a sheaf injection

OPkV (−p) = π∗kOPk−1V (−p)⊗ OPkV (−pDk) ↪→
(
π∗kOPk−1V (p)⊗ OPkV (Dk)

)−1

obtained by twisting with OPkV ((p−1)Dk). Therefore hk := ((π∗khk−1)−ph̃)−1/p =

(π∗khk−1)h̃−1/p induces a singular metric on OPkV (1) in which an additional de-

generation divisor p−1(p − 1)Dk appears. Hence we get Σhk = π−1
k Σhk−1

∪ Dk

and

Θh−1
k

(OPkV (1)) =
1

p
Θ

(π∗khk−1)−ph̃
+
p− 1

p
[Dk]

is positive definite along Vk. The same proof works in the case of negative total
jet curvature. �

One of the main motivations for the introduction of k-jets metrics is the fol-
lowing list of algebraic sufficient conditions.

8.7. Algebraic sufficient conditions. We suppose here that X is projective
algebraic, and we make one of the additional assumptions i), ii) or iii) below.

i) Assume that there exist integers k,m > 0 and b ∈ Nk such that the line bundle
OPkV (m)⊗OPkV (−b ·D∗) is ample over PkV . Set A = OPkV (m)⊗OPkV (−b ·D∗).
Then there is a smooth hermitian metric hA on A with positive definite curvature
on PkV . By means of the morphism µ : OPkV (−m) → A−1, we get an induced

metric hk = (µ∗h−1
A )1/m on OPkV (−1) which is degenerate on the support of the

zero divisor div(µ) = b ·D∗. Hence Σhk = Supp(b ·D∗) ⊂ PkV sing and

Θh−1
k

(OPkV (1)) =
1

m
ΘhA(A) +

1

m
[b ·D∗] ≥ 1

m
ΘhA(A) > 0.

In particular hk has negative total jet curvature.

ii) Assume more generally that there exist integers k,m > 0 and an ample line
bundle L on X such that H0(PkV,OPkV (m) ⊗ π∗0,kL

−1) has non zero sections
σ1, . . . , σN . Let Z ⊂ PkV be the base locus of these sections; necessarily Z ⊃
PkV

sing by 7.11 iii). By taking a smooth metric hL with positive curvature on L,
we get a singular metric h′k on OPkV (−1) such that

h′k(ξ) =
( ∑

1≤j≤N
|σj(w) · ξm|2

h−1
L

)1/m
, w ∈ PkV, ξ ∈ OPkV (−1)w.

Then Σh′k
= Z, and by computing i

2π∂∂ log h′k(ξ) we obtain

Θh′ −1
k

(OPkV (1)) ≥ 1

m
π∗0,kΘL.



HYPERBOLIC ALGEBRAIC VARIETIES & HOLOMORPHIC DIFFERENTIAL EQUATIONS477

By (7.17) and an induction on k, there exists b ∈ Qk
+ such that OPkV (1) ⊗

OPkV (−b · D∗) is relatively ample over X. Hence A = OPkV (1) ⊗ OPkV (−b ·
D∗) ⊗ π∗0,kL⊗p is ample on X for p � 0. The arguments used in i) show that

there is a k-jet metric h′′k on OPkV (−1) with Σh′′k
= Supp(b ·D∗) = PkV

sing and

Θh′′ −1
k

(OPkV (1)) = ΘA + [b ·D∗]− p π∗0,kΘL,

where ΘA is positive definite on PkV . The metric hk = (h′mpk h′′k)
1/(mp+1) then

satisfies Σhk = Σh′k
= Z and

Θh−1
k

(OPkV (1)) ≥ 1

mp+ 1
ΘA > 0.

iii) If Ek,mV
∗ is ample, there is an ample line bundle L and a sufficiently high

symmetric power such that Sp(Ek,mV
∗) ⊗ L−1 is generated by sections. These

sections can be viewed as sections of OPkV (mp)⊗π∗0,kL−1 over PkV , and their base

locus is exactly Z = PkV
sing by 7.11 iii). Hence the k-jet metric hk constructed

in ii) has negative total jet curvature and satisfies Σhk = PkV
sing.

An important fact, first observed by [GRe65] for 1-jet metrics and by [GrGr80]
in the higher order case, is that k-jet negativity implies hyperbolicity. In partic-
ular, the existence of enough global jet differentials implies hyperbolicity.

8.8. Theorem. Let (X,V ) be a compact complex directed manifold. If (X,V )
has a k-jet metric hk with negative jet curvature, then every entire curve f : C→
X tangent to V is such that f[k](C) ⊂ Σhk . In particular, if Σhk ⊂ PkV sing, then
(X,V ) is hyperbolic.

Proof. The main idea is to use the Ahlfors-Schwarz lemma, following the approach
of [GrGr80]. However we will give here all necessary details because our setting
is slightly different. Assume that there is a k-jet metric hk as in the hypotheses
of Theorem 8.8. Let ωk be a smooth hermitian metric on TPkV . By hypothesis,
there exists ε > 0 such that

〈Θh−1
k

(OPkV (1))〉(ξ) ≥ ε|ξ|2ωk ∀ξ ∈ Vk.

Moreover, by (6.4), (πk)∗ maps Vk continuously to OPkV (−1) and the weight eϕ

of hk is locally bounded from above. Hence there is a constant C > 0 such that

|(πk)∗ξ|2hk ≤ C|ξ|
2
ωk

∀ξ ∈ Vk.
Combining these inequalities, we find

〈Θh−1
k

(OPkV (1))〉(ξ) ≥ ε

C
|(πk)∗ξ|2hk ∀ξ ∈ Vk.

Now, let f : ∆R → X be a non constant holomorphic map tangent to V on the
disk ∆R. We use the line bundle morphism (6.6)

F = f ′[k−1] : T∆R
→ f∗[k]OPkV (−1)

to obtain a pullback metric

γ = γ0(t) dt⊗ dt = F ∗hk on T∆R
.
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If f[k](∆R) ⊂ Σhk then γ ≡ 0. Otherwise, F (t) has isolated zeroes at all singular
points of f[k−1] and so γ(t) vanishes only at these points and at points of the

degeneration set (f[k])
−1(Σhk) which is a polar set in ∆R. At other points, the

Gaussian curvature of γ satisfies

i ∂∂ log γ0(t)

γ(t)
=
−2π (f[k])

∗Θhk(OPkV (−1))

F ∗hk
=
〈Θh−1

k
(OPkV (1))〉(f ′[k](t))

|f ′[k−1](t)|
2
hk

≥ ε

C
,

since f ′[k−1](t) = (πk)∗f
′
[k](t). The Ahlfors-Schwarz lemma 4.2 implies that γ can

be compared with the Poincaré metric as follows:

γ(t) ≤ 2C

ε

R−2|dt|2

(1− |t|2/R2)2
=⇒ |f ′[k−1](t)|

2
hk
≤ 2C

ε

R−2

(1− |t|2/R2)2
.

If f : C→ X is an entire curve tangent to V such that f[k](C) 6⊂ Σhk , the above
estimate implies as R→ +∞ that f[k−1] must be a constant, hence also f . Now,

if Σhk ⊂ PkV
sing, the inclusion f[k](C) ⊂ Σhk implies f ′(t) = 0 at every point,

hence f is a constant and (X,V ) is hyperbolic. �

Combining Theorem 8.8 with 8.7 ii) and iii), we get the following consequences.

8.9. Corollary.Assume that there exist integers k,m > 0 and an ample line
bundle L on X such that H0(PkV,OPkV (m)⊗π∗0,kL−1) ' H0(X,Ek,m(V ∗)⊗L−1)
has non zero sections σ1, . . . , σN . Let Z ⊂ PkV be the base locus of these sections.
Then every entire curve f : C → X tangent to V is such that f[k](C) ⊂ Z. In
other words, for every global Gk-invariant polynomial differential operator P with
values in L−1, every entire curve f must satisfy the algebraic differential equation
P (f) = 0.

8.10. Corollary. Let (X,V ) be a compact complex directed manifold. If Ek,mV
∗

is ample for some positive integers k,m, then (X,V ) is hyperbolic.

8.11. Remark. Green and Griffiths [GrGr80] stated that Corollary 8.9 is even
true with sections σj ∈ H0(X,EGG

k,m(V ∗)⊗L−1), in the special case V = TX they

consider. We refer to [SiYe97] by Siu and Yeung for a detailed proof of this fact,
based on a use of the well-known logarithmic derivative lemma in Nevanlinna
theory (the original proof given in [GrGr80] does not seem to be complete, as it
relies on an unsettled pointwise version of the Ahlfors-Schwarz lemma for general
jet differentials); other proofs seem to have been circulating in the literature in
the last years. We give here a very short proof for the case when f is supposed to
have a bounded derivative (thanks to the Brody criterion, this is enough if one
is merely interested in proving hyperbolicity, thus Corollary 8.10 will be valid
with EGG

k,mV
∗ in place of Ek,mV

∗). In fact, if f ′ is bounded, one can apply the
Cauchy inequalities to all components fj of f with respect to a finite collection of
coordinate patches covering X. As f ′ is bounded, we can do this on sufficiently
small discs D(t, δ) ⊂ C of constant radius δ > 0. Therefore all derivatives f ′, f ′′,

. . . f (k) are bounded. From this we conclude that σj(f) is a bounded section of
f∗L−1. Its norm |σj(f)|L−1 (with respect to any positively curved metric | |L on
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L) is a bounded subharmonic function, which is moreover strictly subharmonic
at all points where f ′ 6= 0 and σj(f) 6= 0. This is a contradiction unless f is
constant or σj(f) ≡ 0.

The above results justify the following definition and problems.

8.12. Definition. We say that X, resp. (X,V ), has non degenerate negative
k-jet curvature if there exists a k-jet metric hk on OPkV (−1) with negative jet
curvature such that Σhk ⊂ PkV sing.

8.13. Conjecture. Let (X,V ) be a compact directed manifold. Then (X,V ) is
hyperbolic if and only if (X,V ) has nondegenerate negative k-jet curvature for k
large enough.

This is probably a hard problem. In fact, we will see in the next section
that the smallest admissible integer k must depend on the geometry of X and
need not be uniformly bounded as soon as dimX ≥ 2 (even in the absolute
case V = TX). On the other hand, if (X,V ) is hyperbolic, we get for each
integer k ≥ 1 a generalized Kobayashi-Royden metric k(Pk−1V,Vk−1) on Vk−1 (see
Definition 2.1), which can be also viewed as a k-jet metric hk on OPkV (−1) ; we
will call it the Grauert k-jet metric of (X,V ), although it formally differs from the
jet metric considered in [Gra89] (see also [DGr91]). By looking at the projection
πk : (PkV, Vk)→ (Pk−1V, Vk−1), we see that the sequence hk is monotonic, namely
π∗khk ≤ hk+1 for every k. If (X,V ) is hyperbolic, then h1 is nondegenerate and
therefore by monotonicity Σhk ⊂ PkV

sing for k ≥ 1. Conversely, if the Grauert
metric satisfies Σhk ⊂ PkV

sing, it is easy to see that (X,V ) is hyperbolic. The
following problem is thus especially meaningful.

8.14 Problem. Estimate the k-jet curvature Θh−1
k

(OPkV (1)) of the Grauert met-

ric hk on (PkV, Vk) as k tends to +∞.

8.D. Vanishing theorem for non invariant k-jet differentials

We prove here a more general vanishing theorem which strengthens Theorem
8.8 and Corollary 8.9. In this form, the result is due to Siu and Yeung ([SiYe96a,
SiYe97], [Siu97], cf. also [Dem97] for a more detailed account (in French)).

8.15. Fundamental vanishing theorem. Let (X,V ) be a directed projective
variety and f : (C, TC) → (X,V ) an entire curve tangent to V . Then for every
global section P ∈ H0(X,EGG

k,mV
∗ ⊗ O(−A)) where A is an ample divisor of X,

one has P (f ; f ′, f ′′, . . . , f (k)) = 0.

Proof. After raising P to a power P s and replacing O(−A) with O(−sA), one
can always assume that A is very ample divisor. We interpret EGG

k,mV
∗ ⊗ O(−A)

as the bundle of complex valued differential operators whose coefficients aα(z)
vanish along A.

Let us first give the proof of (8.15) in the special case where f is a Brody
curve, i.e. supt∈C ‖f ′(t)‖ω < +∞ with respect to a given Hermitian metric ω
on X. Fix a finite open covering of X by coordinate balls B(pj , Rj) such that
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the balls Bj(pj , Rj/4) still cover X. As f ′ is bounded, there exists δ > 0 such
that for f(t0) ∈ B(pj , Rj/4) we have f(t) ∈ B(pj , Rj/2) whenever |t − t0| < δ,
uniformly for every t0 ∈ C. The Cauchy inequalities applied to the components
of f in each of the balls imply that the derivatives f (j)(t) are bounded on C, and
therefore, since the coefficients aα(z) of P are also uniformly bounded on each of

the balls B(pj , Rj/2) we conclude that g := P (f ; f ′, f ′′, . . . , f (k)) is a bounded
holomorphic function on C. After moving A in the linear system |A|, we may
further assume that SuppA intersects f(C). Then g vanishes somewhere, hence
g ≡ 0 by Liouville’s theorem, as expected.

The proof for the general case where f ′ is unbounded is slightly more subtle (cf.
[Siu87]), and makes use of Nevanlinna theory, especially the logarithmic derivative

lemma. Assume that g = P (f ′, . . . , f (k)) does not vanish identically. Fix a
hermitian metric h on O(−A) such that ω := ΘO(A),h−1 > 0 is a Kähler metric.
The starting point is the inequality

i

2π
∂∂ log ‖g‖2h =

i

2π
∂∂ log ‖P (f ′, . . . , f (k))‖2h ≥ f∗ω.

In fact, as we are on C, the Lelong-Poincaré equation shows that the left hand
side is equal to the right hand side plus a certain linear combination of Dirac
measures at points where P (f ′, . . . , f (k)) vanishes. Let us consider the growth
and proximity functions

Tf,ω(r) :=

∫ r

r0

dρ

ρ

∫
D(0,ρ)

f∗ω,(8.16)

mg(r) :=
1

2π

∫ 2π

0
log+ ‖g(r eiθ)‖2h dθ.(8.17)

We get

(8.18) Tf,ω(r) ≤
∫ r

r0

dρ

ρ

∫
D(0,ρ)

i

2π
∂∂ log ‖g‖2h = mg(r) + Const

thanks to the Jensen formula. Now, consider a (finite) family of rational functions
(uj) on X such that one can extract local coordinates from local determinations
of the logarithms log uj at any point of X (if X is embedded in some projective
space, it is sufficient to take rational functions of the form uj(z) = `j(z)/`

′
j(z)

where `j , `
′
j are linear forms; we also view the uj ’s as rational maps uj : X 99K P1).

One can then express locally P (f ′, . . . , f (k)) as a polynomial Q in the logarithmic
derivatives Dp(log uj ◦ f), with holomorphic coefficients in f , i.e.,

g = P (f ′, . . . , f (k)) = Q
(
f,Dp(log uj ◦ f)p,j

)
, Q(z, vp,j) =

∑
aα(z)vα.

By compactness of X, we infer

(8.19) mg(r) =
1

2π

∫ 2π

0
log+ ‖g(r eiθ)‖2h dθ ≤ C1

∑
j, 1≤p≤k

mDp(log uj◦f)(r) + C2
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with suitable constants C1, C2. The logarithmic derivative lemma states that for
every meromorphic function h : C→ P1 we have

mDp log h(r) ≤ log r + (1 + ε) log+ Th,ωFS
(r) +O(1) //,

where the notation // indicates as usual that the inequality holds true outside a
set of finite Lebesgue measure in [0,+∞[. We apply this to h = uj ◦ f and use
the standard fact that Tuj◦f,ωFS

(r) ≤ CjTf,ω(r). We find in this way

(8.20) mDp(log uj◦f)(r) ≤ C3

(
log r + log+ Tf,ω(r)

)
//.

By putting (8.18)-(8.20) together, one obtains

Tf,ω(r) ≤ C
(

log r + log+ Tf,ω(r)
)

//.

We infer from here that Tf,ω(r) = O(log r), hence f(C) has a finite total area. By

well known facts of Nevanlinna theory, we conclude that C = f(C) is a rational
curve and that f extends as a rational map P1 → X. In particular the derivative
f ′ is bounded, but then the first case of the proof can be applied to conclude that
g = P (f ′, . . . , f (k)) ≡ 0. �

8.E. Bloch theorem

The core of the result can be expressed as a characterization of the Zariski
closure of an entire curve drawn on a complex torus. The proof is a simple conse-
quence of the Ahlfors-Schwarz lemma (more specifically Theorem 8.8), combined
with a jet bundle argument. We refer to [Och], [GrG80] (also [Dem95]) for a
detailed proof.

8.21. Theorem. Let Z be a complex torus and let f : C→ Z be a holomorphic
map. Then the (analytic) Zariski closure f(C)Zar is a translate of a subtorus, i.e.
of the form a+ Z ′, a ∈ Z, where Z ′ ⊂ Z is a subtorus.

The converse is of course also true: for any subtorus Z ′ ⊂ Z, we can choose a
dense line L ⊂ Z ′, and the corresponding map f : C ' a + L ↪→ Z has Zariski
closure f(C)Zar = a+ Z ′.

§9. Morse inequalities and the Green-Griffiths-Lang conjecture

The goal of this section is to study the existence and properties of entire curves
f : C → X drawn in a complex irreducible n-dimensional variety X, and more
specifically to show that they must satisfy certain global algebraic or differential
equations as soon as X is projective of general type. By means of holomorphic
Morse inequalities and a probabilistic analysis of the cohomology of jet spaces,
we are able to prove a significant step of a generalized version of the Green-
Griffiths-Lang conjecture on the algebraic degeneracy of entire curves. The use of
holomorphic Morse inequalities was first suggested in [Dem07a], and then carried
out in an algebraic context by S. Diverio in his PhD work ([Div08, Div09]). The
general more analytic and more powerful results presented here first appeared in
[Dem11]. We refer to [Dem12] for a more detailed exposition.

9.A. Introduction
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Our main target is the following deep conjecture concerning the algebraic de-
generacy of entire curves, which generalizes the similar absolute statements given
in §4 (see also [GrGr79], [Lang86, Lang87]).

9.1. Generalized Green-Griffiths-Lang conjecture. Let (X,V ) be a projec-
tive directed manifold such that the canonical sheaf KV is big (in the absolute case
V = TX , this means that X is a variety of general type, and in the relative case
we will say that (X,V ) is of general type). Then there should exist an algebraic
subvariety Y ( X such that every non constant entire curve f : C→ X tangent
to V is contained in Y .

The precise meaning of KV and of its bigness will be explained below – our
definition does not coincide with other frequently used definitions and is in our
view better suited to the study of entire curves of (X,V ). One says that (X,V )
is Brody-hyperbolic when there are no entire curves tangent to V . According to
(generalized versions of) conjectures of Kobayashi [Kob70, Kob76] the hyperbol-
icity of (X,V ) should imply that KV is big, and even possibly ample, in a suitable
sense. It would then follow from conjecture (9.1) that (X,V ) is hyperbolic if and
only if for every irreducible variety Y ⊂ X, the linear subspace

(9.2) V
Ỹ

= T
Ỹ rE ∩ µ

−1
∗ V ⊂ T

Ỹ

has a big canonical sheaf whenever µ : Ỹ → Y is a desingularization and E is the
exceptional locus.

By definition, proving the algebraic degeneracy means finding a non zero poly-
nomial P on X such that all entire curves f : C → X satisfy P (f) = 0. As al-
ready explained in §8, all known methods of proof are based on establishing first
the existence of certain algebraic differential equations P (f ; f ′, f ′′, . . . , f (k)) = 0
of some order k, and then trying to find enough such equations so that they
cut out a proper algebraic locus Y ( X. We use for this global sections of
H0(X,EGG

k,mV
∗⊗O(−A)) where A is ample, and apply the fundamental vanishing

Theorem 8.15. It is expected that the global sections of H0(X,EGG
k,mV

∗⊗O(−A))
are precisely those which ultimately define the algebraic locus Y ( X where the
curve f should lie. The problem is then reduced to (i) showing that there are
many non zero sections of H0(X,EGG

k,mV
∗⊗O(−A)) and (ii) understanding what

is their joint base locus. The first part of this program is the main result of this
section.

9.3. Theorem. Let (X,V ) be a directed projective variety such that KV is
big and let A be an ample divisor. Then for k � 1 and δ ∈ Q+ small enough,
δ ≤ c(log k)/k, the number of sections h0(X,EGG

k,mV
∗ ⊗ O(−mδA)) has maximal

growth, i.e. is larger that ckm
n+kr−1 for some m ≥ mk, where c, ck > 0, n =

dimX and r = rankV . In particular, entire curves f : (C, TC) → (X,V ) satisfy
(many) algebraic differential equations.

The statement is very elementary to check when r = rankV = 1, and therefore
when n = dimX = 1. In higher dimensions n ≥ 2, only very partial results
were known at this point, concerning merely the absolute case V = TX . In
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dimension 2, Theorem 9.3 is a consequence of the Riemann-Roch calculation of
Green-Griffiths [GrGr79], combined with a vanishing theorem due to Bogomolov
[Bog79] – the latter actually only applies to the top cohomology group Hn, and
things become much more delicate when extimates of intermediate cohomology
groups are needed. In higher dimensions, Diverio [Div08, Div09] proved the
existence of sections of H0(X,EGG

k,mV
∗⊗O(−1)) whenever X is a hypersurface of

Pn+1
C of high degree d ≥ dn, assuming k ≥ n and m ≥ mn. More recently, Merker

[Mer10] was able to treat the case of arbitrary hypersurfaces of general type, i.e.
d ≥ n + 3, assuming this time k to be very large. The latter result is obtained
through explicit algebraic calculations of the spaces of sections, and the proof is
computationally very intensive. Bérczi [Ber10] also obtained related results with
a different approach based on residue formulas, assuming d ≥ 27n logn.

All these approaches are algebraic in nature. Here, however, our techniques
are based on more elaborate curvature estimates in the spirit of Cowen-Griffiths
[CoGr76]. They require holomorphic Morse inequalities (see 9.10 below) -and
we do not know how to translate our method in an algebraic setting. Notice
that holomorphic Morse inequalities are essentially insensitive to singularities,
as we can pass to non singular models and blow-up X as much as we want: if
µ : X̃ → X is a modification then µ∗OX̃ = OX and Rqµ∗OX̃ is supported on a
codimension 1 analytic subset (even codimension 2 if X is smooth). It follows
from the Leray spectral sequence that the cohomology estimates for L on X or
for L̃ = µ∗L on X̃ differ by negligible terms, i.e.

(9.4) hq(X̃, L̃⊗m)− hq(X,L⊗m) = O(mn−1).

Finally, singular holomorphic Morse inequalities (in the form obtained by L.
Bonavero [Bon93]) allow us to work with singular Hermitian metrics h; this is
the reason why we will only require to have big line bundles rather than ample
line bundles. In the case of linear subspaces V ⊂ TX , we introduce singular
Hermitian metrics as follows.

9.5. Definition. A singular Hermitian metric on a linear subspace V ⊂ TX is
a metric h on the fibers of V such that the function log h : ξ 7→ log |ξ|2h is locally
integrable on the total space of V .

Such a metric can also be viewed as a singular Hermitian metric on the tauto-
logical line bundle OP (V )(−1) on the projectivized bundle P (V ) = V r {0}/C∗,
and therefore its dual metric h∗ defines a curvature current ΘOP (V )(1),h∗ of type

(1, 1) on P (V ) ⊂ P (TX), such that

p∗ΘOP (V )(1),h∗ =
i

2π
∂∂ log h, where p : V r {0} → P (V ).

If log h is quasi-plurisubharmonic (or quasi-psh, which means psh modulo addi-
tion of a smooth function) on V , then log h is indeed locally integrable, and we
have moreover

(9.6) ΘOP (V )(1),h∗ ≥ −Cω
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for some smooth positive (1, 1)-form on P (V ) and some constant C > 0 ; con-
versely, if (9.6) holds, then log h is quasi-psh.

9.7. Definition. We will say that a singular Hermitian metric h on V is ad-
missible if h can be written as h = eϕh0|V where h0 is a smooth positive definite
Hermitian on TX and ϕ is a quasi-psh weight with analytic singularities on X, as
in Definition 9.5. Then h can be seen as a singular Hermitian metric on OP (V )(1),
with the property that it induces a smooth positive definite metric on a Zariski
open set X ′ ⊂ XrSing(V ) ; we will denote by Sing(h) ⊃ Sing(V ) the complement
of the largest such Zariski open set X ′.

If h is an admissible metric, we define Oh(V ∗) to be the sheaf of germs of
holomorphic sections of V ∗|XrSing(h) which are h∗-bounded near Sing(h); by the
assumption on the analytic singularities, this is a coherent sheaf (as the direct
image of some coherent sheaf on P (V )), and actually, since h∗ = e−ϕh∗0, it is a
subsheaf of the sheaf O(V ∗) := Oh0(V ∗) associated with a smooth positive definite
metric h0 on TX . If r is the generic rank of V and m a positive integer, we define
similarly Km

V,h to be sheaf of germs of holomorphic sections of (detV ∗|X′)
⊗m =

(ΛrV ∗|X′)
⊗m which are deth∗-bounded, and Km

V := Km
V,h0

.

If V is defined by α : X 99K Gr(TX), there always exists a modification µ :
X̃ → X such that the composition α ◦ µ : X̃ → Gr(µ

∗TX) becomes holomorphic,
and then µ∗V|µ−1(XrSing(V )) extends as a locally trivial subbundle of µ∗TX which
we will simply denote by µ∗V . If h is an admissible metric on V , then µ∗V
can be equipped with the metric µ∗h = eϕ◦µµ∗h0 where µ∗h0 is smooth and
positive definite. We may assume that ϕ◦µ has divisorial singularities (otherwise
just perform further blow-ups of X̃ to achieve this). We then see that there is
an integer m0 such that for all multiples m = pm0 the pull-back µ∗Km

V,h is an
invertible sheaf on X̃, and deth∗ induces a smooth non singular metric on it
(when h = h0, we can even take m0 = 1). By definition we always have Km

V,h =

µ∗(µ
∗Km

V,h) for any m ≥ 0. In the sequel, however, we think of KV,h not really as
a coherent sheaf, but rather as the “virtual” Q-line bundle µ∗(µ

∗Km0
V,h)1/m0 , and

we say that KV,h is big if h0(X,Km
V,h) ≥ cmn for m ≥ m1, with c > 0 , i.e. if the

invertible sheaf µ∗Km0
V,h is big in the usual sense.

At this point, it is important to observe that “our” canonical sheaf KV differs
from the sheaf KV := i∗O(KV ) associated with the injection i : XrSing(V ) ↪→ X,
which is usually referred to as being the “canonical sheaf”, at least when V is the
space of tangents to a foliation. In fact, KV is always an invertible sheaf and there
is an obvious inclusion KV ⊂ KV . More precisely, the image of O(ΛrT ∗X)→ KV

is equal to KV ⊗OX J for a certain coherent ideal J ⊂ OX , and the condition
to have h0-bounded sections on X r Sing(V ) precisely means that our sections
are bounded by Const

∑
|gj | in terms of the generators (gj) of KV ⊗OX J, i.e.

KV = KV ⊗OX J where J is the integral closure of J. More generally,

(9.8) Km
V,h = Km

V ⊗OX J
m/m0

h,m0

where J
m/m0

h,m0
⊂ OX is the (m/m0)-integral closure of a certain ideal sheaf Jh,m0 ⊂
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OX , which can itself be assumed to be integrally closed; in our previous discussion,
µ is chosen so that µ∗Jh,m0 is invertible on X̃.

The discrepancy already occurs e.g. with the rank 1 linear space V ⊂ TPnC
consisting at each point z 6= 0 of the tangent to the line (0z) (so that necessarily
V0 = TPnC ,0). As a sheaf (and not as a linear space), i∗O(V ) is the invertible sheaf

generated by the vector field ξ =
∑
zj∂/∂zj on the affine open set Cn ⊂ PnC, and

therefore KV := i∗O(V ∗) is generated over Cn by the unique 1-form u such that
u(ξ) = 1. Since ξ vanishes at 0, the generator u is unbounded with respect to
a smooth metric h0 on TPnC , and it is easily seen that KV is the non invertible
sheaf KV = KV ⊗ mPnC ,0. We can make it invertible by considering the blow-up

µ : X̃ → X of X = PnC at 0, so that µ∗KV is isomorphic to µ∗KV ⊗ O
X̃

(−E)
where E is the exceptional divisor. The integral curves C of V are of course lines
through 0, and when a standard parametrization is used, their derivatives do
not vanish at 0, while the sections of i∗O(V ) do – another sign that i∗O(V ) and
i∗O(V ∗) are the wrong objects to consider. Another standard example is obtained
by taking a generic pencil of elliptic curves λP (z) + µQ(z) = 0 of degree 3 in
P2
C, and the linear space V consisting of the tangents to the fibers of the rational

map P2
C 99K P1

C defined by z 7→ Q(z)/P (z). Then V is given by

0 −→ i∗O(V ) −→ O(TP2
C
)
PdQ−QdP−−−−−−−→ OP2

C
(6)⊗ JS −→ 0

where S = Sing(V ) consists of the 9 points {P (z) = 0}∩{Q(z) = 0}, and JS is the
corresponding ideal sheaf of S. Since detO(TP2) = O(3), we see that KV = O(3)
is ample, which seems to contradict 9.1 since all leaves are elliptic curves. There is
however no such contradiction, because KV = KV ⊗ JS is not big in our sense (it
has degree 0 on all members of the elliptic pencil). A similar example is obtained
with a generic pencil of conics, in which case KV = O(1) and card S = 4.

For a given admissible Hermitian structure (V, h), we define similarly the sheaf
EGG
k,mV

∗
h to be the sheaf of polynomials defined over X r Sing(h) which are

“h-bounded”. This means that when they are viewed as polynomials P (z ; ξ1, . . . ,

ξk) in terms of ξj = (∇1,0
h0

)jf(0) where ∇1,0
h0

is the (1, 0)-component of the induced

Chern connection on (V, h0), there is a uniform bound

(9.9)
∣∣P (z ; ξ1, . . . , ξk)

∣∣ ≤ C(∑ ‖ξj‖1/jh

)m
near points of X r X ′ (see section 2 for more details on this). Again, by a
direct image argument, one sees that EGG

k,mV
∗
h is always a coherent sheaf. The

sheaf EGG
k,mV

∗ is defined to be EGG
k,mV

∗
h when h = h0 (it is actually independent of

the choice of h0, as follows from arguments similar to those given in section 2).
Notice that this is exactly what is needed to extend the proof of the vanishing
Theorem 8.15 to the case of a singular linear space V ; the value distribution
theory argument can only work when the functions P (f ; f ′, . . . , f (k))(t) do not
exhibit poles, and this is guaranteed here by the boundedness assumption.

Our strategy can be described as follows. We consider the Green-Griffiths
bundle of k-jets XGG

k = JkV r {0}/C∗, which by (9.3) consists of a fibration in
weighted projective spaces, and its associated tautological sheaf
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L = OXGG
k

(1),

viewed rather as a virtual Q-line bundle OXGG
k

(m0)1/m0 withm0 = lcm(1, 2, ... , k).
Then, if πk : XGG

k → X is the natural projection, we have

EGG
k,m = (πk)∗OXGG

k
(m) and Rq(πk)∗OXGG

k
(m) = 0 for q ≥ 1.

Hence, by the Leray spectral sequence we get for every invertible sheaf F on X
the isomorphism

Hq(X,EGG
k,mV

∗ ⊗ F ) ' Hq(XGG
k ,OXGG

k
(m)⊗ π∗kF ).

The latter group can be evaluated thanks to holomorphic Morse inequalities. Let
us recall the main statement.

9.10. Holomorphic Morse inequalities ([Dem85]). Let X be a compact
complex manifolds, E → X a holomorphic vector bundle of rank r, and (L, h) a
hermitian line bundle. The dimensions hq(X,E ⊗ Lk) of cohomology groups of
the tensor powers E⊗Lk satisfy the following asymptotic estimates as k → +∞ :
(WM) Weak Morse inequalities :

hq(X,E ⊗ Lk) ≤ rk
n

n!

∫
X(L,h,q)

(−1)qΘn
L,h + o(kn) .

(SM) Strong Morse inequalities :∑
0≤j≤q

(−1)q−jhj(X,E ⊗ Lk) ≤ rk
n

n!

∫
X(L,h,≤q)

(−1)qΘn
L,h + o(kn) .

(RR) Asymptotic Riemann-Roch formula :

χ(X,E ⊗ Lk) :=
∑

0≤j≤n
(−1)jhj(X,E ⊗ Lk) = r

kn

n!

∫
X

Θn
L,h + o(kn) .

Moreover (cf. Bonavero’s PhD thesis [Bon93]), if h = e−ϕ is a singular hermitian
metric with analytic singularities, the estimates are still true provided all coho-
mology groups are replaced by cohomology groups Hq(X,E⊗Lk⊗I(hk)) twisted
with the multiplier ideal sheaves

I(hk) = I(kϕ) =

{
f ∈ OX,x, ∃V 3 x,

∫
V
|f(z)|2e−kϕ(z)dλ(z) < +∞

}
.

The special case of 9.10 (SM) when q = 1 yields a very useful criterion for the
existence of sections of large multiples of L.

9.11. Corollary. Under the above hypotheses, we have

h0(X,E ⊗ Lk) ≥ h0(X,E ⊗ Lk)− h1(X,E ⊗ Lk) ≥ rk
n

n!

∫
X(L,h,≤1)

Θn
L,h − o(kn) .

Especially L is big as soon as
∫
X(L,h,≤1) Θn

L,h > 0 for some hermitian metric h

on L.
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Now, given a directed manifold (X,V ), we can associate with any admissible
metric h on V a metric (or rather a natural family) of metrics on L = OXGG

k
(1).

The space XGG
k always possesses quotient singularities if k ≥ 2 (and even some

more if V is singular), but we do not really care since Morse inequalities still
work in this setting thanks to Bonavero’s generalization. As we will see, it is
then possible to get nice asymptotic formulas as k → +∞. They appear to
be of a probabilistic nature if we take the components of the k-jet (i.e. the suc-

cessive derivatives ξj = f (j)(0), 1 ≤ j ≤ k) as random variables. This prob-
abilistic behavior was somehow already visible in the Riemann-Roch calcula-
tion of [GrGr79]. In this way, assuming KV big, we produce a lot of sections
σj = H0(XGG

k ,OXGG
k

(m) ⊗ π∗kF ), corresponding to certain divisors Zj ⊂ XGG
k .

The hard problem which is left in order to complete a proof of the generalized
Green-Griffiths-Lang conjecture is to compute the base locus Z =

⋂
Zj and to

show that Y = πk(Z) ⊂ X must be a proper algebraic variety.

9.B. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kähler metrics on weighted
projective spaces, and to evaluate the corresponding volume forms. Here we put
dc = i

4π (∂−∂) so that ddc = i
2π∂∂. The normalization of the dc operator is chosen

such that we have precisely (ddc log |z|2)n = δ0 for the Monge-Ampère operator
in Cn. Given a k-tuple of “weights” a = (a1, . . . , ak), i.e. of integers as > 0 with
gcd(a1, . . . , ak) = 1, we introduce the weighted projective space P (a1, . . . , ak) to
be the quotient of Ck r {0} by the corresponding weighted C∗ action:

(9.12) P (a1, . . . , ak) = Ck r {0}/C∗, λ · z = (λa1z1, . . . , λ
akzk).

As is well known, this defines a toric (k − 1)-dimensional algebraic variety with
quotient singularities. On this variety, we introduce the possibly singular (but
almost everywhere smooth and non degenerate) Kähler form ωa,p defined by

(9.13) π∗aωa,p = ddcϕa,p, ϕa,p(z) =
1

p
log

∑
1≤s≤k

|zs|2p/as ,

where πa : Ck r {0} → P (a1, . . . , ak) is the canonical projection and p > 0 is
a positive constant. It is clear that ϕp,a is real analytic on Ck r {0} if p is an
integer and a common multiple of all weights as, and we will implicitly pick such
a p later on to avoid any difficulty. Elementary calculations give the following
well-known formula for the volume

(9.14)

∫
P (a1,...,ak)

ωk−1
a,p =

1

a1 . . . ak

(notice that this is independent of p, as it is obvious by Stokes theorem, since the
cohomology class of ωa,p does not depend on p).

Our later calculations will require a slightly more general setting. Instead of
looking at Ck, we consider the weighted C∗ action defined by

(9.15) C|r| = Cr1 × . . .× Crk , λ · z = (λa1z1, . . . , λ
akzk).
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Here zs ∈ Crs for some k-tuple r = (r1, . . . , rk) and |r| = r1 + . . .+ rk. This gives
rise to a weighted projective space

P (a
[r1]
1 , . . . , a

[rk]
k ) = P (a1, . . . , a1, . . . , ak, . . . , ak),

πa,r : Cr1 × . . .× Crk r {0} −→ P (a
[r1]
1 , . . . , a

[rk]
k )(9.16)

obtained by repeating rs times each weight as. On this space, we introduce the
degenerate Kähler metric ωa,r,p such that

(9.17) π∗a,rωa,r,p = ddcϕa,r,p, ϕa,r,p(z) =
1

p
log

∑
1≤s≤k

|zs|2p/as

where |zs| stands now for the standard Hermitian norm (
∑

1≤j≤rs |zs,j |
2)1/2 on Crs .

This metric is cohomologous to the corresponding “polydisc-like” metric ωa,p al-
ready defined, and therefore Stokes theorem implies

(9.18)

∫
P (a

[r1]
1 ,...,a

[rk]

k )
ω|r|−1
a,r,p =

1

ar11 . . . arkk
.

Using standard results of integration theory (Fubini, change of variable for-
mula...), one obtains:

9.19. Proposition. Let f(z) be a bounded function on P (a
[r1]
1 , . . . , a

[rk]
k ) which

is continuous outside of the hyperplane sections zs = 0. We also view f as a
C∗-invariant continuous function on

∏
(Crs r {0}). Then∫

P (a
[r1]
1 ,...,a

[rk]

k )
f(z)ω|r|−1

a,r,p

=
(|r| − 1)!∏

s a
rs
s

∫
(x,u)∈∆k−1×

∏
S2rs−1

f(x
a1/2p
1 u1, . . . , x

ak/2p
k uk)

∏
1≤s≤k

xrs−1
s

(rs − 1)!
dx dµ(u)

where ∆k−1 is the (k− 1)-simplex {xs ≥ 0,
∑
xs = 1}, dx = dx1 ∧ . . .∧ dxk−1 its

standard measure, and where dµ(u) = dµ1(u1) . . . dµk(uk) is the rotation invari-
ant probability measure on the product

∏
s S

2rs−1 of unit spheres in Cr1×. . .×Crk .
As a consequence

lim
p→+∞

∫
P (a

[r1]
1 ,...,a

[rk]

k )
f(z)ω|r|−1

a,r,p =
1∏
s a

rs
s

∫
∏
S2rs−1

f(u) dµ(u).

Also, by elementary integrations by parts and induction on k, r1, . . . , rk, it can
be checked that

(9.20)

∫
x∈∆k−1

∏
1≤s≤k

xrs−1
s dx1 . . . dxk−1 =

1

(|r| − 1)!

∏
1≤s≤k

(rs − 1)! .

This implies that (|r| − 1)!
∏

1≤s≤k
xrs−1
s

(rs−1)! dx is a probability measure on ∆k−1.

9.C. Probabilistic estimate of the curvature of k-jet bundles
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Let (X,V ) be a compact complex directed non singular variety. To avoid any
technical difficulty at this point, we first assume that V is a holomorphic vector
subbundle of TX , equipped with a smooth Hermitian metric h.

According to the notation already specified in §7, we denote by JkV the bundle
of k-jets of holomorphic curves f : (C, 0)→ X tangent to V at each point. Let us
set n = dimCX and r = rankC V . Then JkV → X is an algebraic fiber bundle
with typical fiber Crk, and we get a projectivized k-jet bundle

(9.21) XGG
k := (JkV r {0})/C∗, πk : XGG

k → X

which is a P (1[r], 2[r], . . . , k[r]) weighted projective bundle over X, and we have
the direct image formula (πk)∗OXGG

k
(m) = O(EGG

k,mV
∗) (cf. Proposition 7.9). In

the sequel, we do not make a direct use of coordinates, because they need not be
related in any way to the Hermitian metric h of V . Instead, we choose a local
holomorphic coordinate frame (eα(z))1≤α≤r of V on a neighborhood U of x0, such
that

(9.22) 〈eα(z), eβ(z)〉 = δαβ +
∑

1≤i,j≤n, 1≤α,β≤r
cijαβzizj +O(|z|3)

for suitable complex coefficients (cijαβ). It is a standard fact that such a nor-
malized coordinate system always exists, and that the Chern curvature tensor
i

2πD
2
V,h of (V, h) at x0 is then given by

(9.23) ΘV,h(x0) = − i

2π

∑
i,j,α,β

cijαβ dzi ∧ dzj ⊗ e∗α ⊗ eβ.

Consider a local holomorphic connection ∇ on V|U (e.g. the one which turns

(eα) into a parallel frame), and take ξk = ∇kf(0) ∈ Vx defined inductively by
∇1f = f ′ and ∇sf = ∇f ′(∇s−1f). This gives a local identification

JkV|U → V ⊕k|U , f 7→ (ξ1, . . . , ξk) = (∇f(0), . . . ,∇fk(0)),

and the weighted C∗ action on JkV is expressed in this setting by

λ · (ξ1, ξ2, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk).

Now, we fix a finite open covering (Uα)α∈I of X by open coordinate charts such
that V|Uα is trivial, along with holomorphic connections ∇α on V|Uα . Let θα be
a partition of unity of X subordinate to the covering (Uα). Let us fix p > 0 and
small parameters 1 = ε1 � ε2 � . . .� εk > 0. Then we define a global weighted
Finsler metric on JkV by putting for any k-jet f ∈ JkxV

(9.24) Ψh,p,ε(f) :=
(∑
α∈I

θα(x)
∑

1≤s≤k
ε2p
s ‖∇sαf(0)‖2p/sh(x)

)1/p

where ‖ ‖h(x) is the Hermitian metric h of V evaluated on the fiber Vx, x = f(0).
The function Ψh,p,ε satisfies the fundamental homogeneity property

(9.25) Ψh,p,ε(λ · f) = Ψh,p,ε(f) |λ|2
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with respect to the C∗ action on JkV , in other words, it induces a Hermitian
metric on the dual L∗ of the tautological Q-line bundle Lk = OXGG

k
(1) over XGG

k .

The curvature of Lk is given by

(9.26) π∗kΘLk,Ψ
∗
h,p,ε

= ddc log Ψh,p,ε.

Our next goal is to compute precisely the curvature and to apply holomorphic
Morse inequalities to L→ XGG

k with the above metric. It might look a priori like
an untractable problem, since the definition of Ψh,p,ε is a rather unnatural one.
However, the “miracle” is that the asymptotic behavior of Ψh,p,ε as εs/εs−1 → 0
is in some sense uniquely defined and very natural. It will lead to a computable
asymptotic formula, which is moreover simple enough to produce useful results.

9.27. Lemma. On each coordinate chart U equipped with a holomorphic connec-
tion ∇ of V|U , let us define the components of a k-jet f ∈ JkV by ξs = ∇sf(0),
and consider the rescaling transformation

ρ∇,ε(ξ1, ξ2, . . . , ξk) = (ε1
1ξ1, ε

2
2ξ2, . . . , ε

k
kξk) on JkxV , x ∈ U

(it commutes with the C∗-action but is otherwise unrelated and not canonically
defined over X as it depends on the choice of ∇). Then, if p is a multiple
of lcm(1, 2, . . . , k) and εs/εs−1 → 0 for all s = 2, . . . , k, the rescaled function
Ψh,p,ε ◦ ρ−1

∇,ε(ξ1, . . . , ξk) converges towards( ∑
1≤s≤k

‖ξs‖2p/sh

)1/p

on every compact subset of JkV|U r {0}, uniformly in C∞ topology.

Proof. Let U ⊂ X be an open set on which V|U is trivial and equipped with
some holomorphic connection ∇. Let us pick another holomorphic connection

∇̃ = ∇+ Γ where Γ ∈ H0(U,Ω1
X ⊗Hom(V, V ). Then ∇̃2f = ∇2f + Γ(f)(f ′) · f ′,

and inductively we get

∇̃sf = ∇sf + Ps(f ; ∇1f, . . . ,∇s−1f)

where P (x ; ξ1, . . . , ξs−1) is a polynomial with holomorphic coefficients in x ∈ U
which is of weighted homogeneous degree s in (ξ1, . . . , ξs−1). In other words,
the corresponding change in the parametrization of JkV|U is given by a C∗-
homogeneous transformation

ξ̃s = ξs + Ps(x ; ξ1, . . . , ξs−1).

Let us introduce the corresponding rescaled components

(ξ1,ε, . . . , ξk,ε) = (ε1
1ξ1, . . . , ε

k
kξk), (ξ̃1,ε, . . . , ξ̃k,ε) = (ε1

1ξ̃1, . . . , ε
k
kξ̃k).

Then

ξ̃s,ε = ξs,ε + εss Ps(x ; ε−1
1 ξ1,ε, . . . , ε

−(s−1)
s−1 ξs−1,ε)

= ξs,ε +O(εs/εs−1)sO(‖ξ1,ε‖+ . . .+ ‖ξs−1,ε‖1/(s−1))s
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and the error terms are thus polynomials of fixed degree with arbitrarily small
coefficients as εs/εs−1 → 0. Now, the definition of Ψh,p,ε consists of glueing the
sums ∑

1≤s≤k
ε2p
s ‖ξk‖

2p/s
h =

∑
1≤s≤k

‖ξk,ε‖
2p/s
h

corresponding to ξk = ∇sαf(0) by means of the partition of unity
∑
θα(x) =

1. We see that by using the rescaled variables ξs,ε the changes occurring when
replacing a connection ∇α by an alternative one ∇β are arbitrary small in C∞

topology, with error terms uniformly controlled in terms of the ratios εs/εs−1

on all compact subsets of V k r {0}. This shows that in C∞ topology, Ψh,p,ε ◦
ρ−1
∇,ε(ξ1, . . . , ξk) converges uniformly towards (

∑
1≤s≤k ‖ξk‖

2p/s
h )1/p, whatever the

trivializing open set U and the holomorphic connection ∇ used to evaluate the
components and perform the rescaling are. �

Now, we fix a point x0 ∈ X and a local holomorphic frame (eα(z))1≤α≤r satis-
fying (9.22) on a neighborhood U of x0. We introduce the rescaled components
ξs = εss∇sf(0) on JkV|U and compute the curvature of

Ψh,p,ε ◦ ρ−1
∇,ε(z ; ξ1, . . . , ξk) '

( ∑
1≤s≤k

‖ξs‖2p/sh

)1/p

(by Lemma 9.27, the errors can be taken arbitrary small in C∞ topology). We
write ξs =

∑
1≤α≤r ξsαeα. By (9.22) we have

‖ξs‖2h =
∑
α

|ξsα|2 +
∑
i,j,α,β

cijαβzizjξsαξsβ +O(|z|3|ξ|2).

The question is to evaluate the curvature of the weighted metric defined by

Ψ(z ; ξ1, . . . , ξk) =

(∑
1≤s≤k ‖ξs‖

2p/s
h

)1/p

=

( ∑
1≤s≤k

(∑
α

|ξsα|2 +
∑
i,j,α,β

cijαβzizjξsαξsβ

)p/s)1/p

+O(|z|3).

We set |ξs|2 =
∑

α |ξsα|2. A straightforward calculation yields

log Ψ(z ; ξ1, . . . , ξk) =

=
1

p
log

∑
1≤s≤k

|ξs|2p/s +
∑

1≤s≤k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑
i,j,α,β

cijαβzizj
ξsαξsβ
|ξs|2

+O(|z|3).

By (9.26), the curvature form of Lk = OXGG
k

(1) is given at the central point x0

by the following formula.

9.28. Proposition. With the above choice of coordinates and with respect to
the rescaled components ξs = εss∇sf(0) at x0 ∈ X, we have the approximate
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expression

ΘLk,Ψ
∗
h,p,ε

(x0, [ξ]) ' ωa,r,p(ξ) +
i

2π

∑
1≤s≤k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑
i,j,α,β

cijαβ
ξsαξsβ
|ξs|2

dzi ∧ dzj

where the error terms are O(max2≤s≤k(εs/εs−1)s) uniformly on the compact vari-
ety XGG

k . Here ωa,r,p is the (degenerate) Kähler metric associated with the weight

a = (1[r], 2[r], . . . , k[r]) of the canonical C∗ action on JkV .

Thanks to the uniform approximation, we can (and will) neglect the error
terms in the calculations below. Since ωa,r,p is positive definite on the fibers of
XGG
k → X (at least outside of the axes ξs = 0), the index of the (1, 1) curvature

form ΘLk,Ψ
∗
h,p,ε

(z, [ξ]) is equal to the index of the (1, 1)-form

(9.29) γk(z, ξ) :=
i

2π

∑
1≤s≤k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑
i,j,α,β

cijαβ(z)
ξsαξsβ
|ξs|2

dzi ∧ dzj

depending only on the differentials (dzj)1≤j≤n on X. The q-index integral of
(Lk,Ψ

∗
h,p,ε) on XGG

k is therefore equal to∫
XGG
k (Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(kr − 1)!

∫
z∈X

∫
ξ∈P (1[r],...,k[r])

ωkr−1
a,r,p (ξ)1lγk,q(z, ξ)γk(z, ξ)

n

where 1lγk,q(z, ξ) is the characteristic function of the open set of points where
γk(z, ξ) has signature (n−q, q) in terms of the dzj ’s. Notice that since γk(z, ξ)

n is a
determinant, the product 1lγk,q(z, ξ)γk(z, ξ)

n gives rise to a continuous function
on XGG

k . Formula (9.20) with r1 = . . . = rk = r and as = s yields the slightly
more explicit integral∫
XGG
k (Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(k!)r

×
∫
z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

1lgk,q(z, x, u)gk(z, x, u)n
(x1 . . . xk)

r−1

(r − 1)!k
dx dµ(u),

where gk(z, x, u) = γk(z, x
1/2p
1 u1, . . . , x

k/2p
k uk) is given by

(9.30) gk(z, x, u) =
i

2π

∑
1≤s≤k

1

s
xs
∑
i,j,α,β

cijαβ(z)usαusβ dzi ∧ dzj

and 1lgk,q(z, x, u) is the characteristic function of its q-index set. Here

(9.31) dνk,r(x) = (kr − 1)!
(x1 . . . xk)

r−1

(r − 1)!k
dx

is a probability measure on ∆k−1, and we can rewrite
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∫
XGG
k (Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(k!)r(kr − 1)!

×
∫
z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

1lgk,q(z, x, u)gk(z, x, u)n dνk,r(x) dµ(u).(9.32)

Now, formula (9.30) shows that gk(z, x, u) is a “Monte Carlo” evaluation of
the curvature tensor, obtained by averaging the curvature at random points
us ∈ S2r−1 with certain positive weights xs/s ; we should then think of the
k-jet f as some sort of random variable such that the derivatives ∇kf(0) are
uniformly distributed in all directions. Let us compute the expected value of
(x, u) 7→ gk(z, x, u) with respect to the probability measure dνk,r(x) dµ(u). Since∫
S2r−1 usαusβdµ(us) = 1

r δαβ and
∫

∆k−1
xs dνk,r(x) = 1

k , we find

E(gk(z, •, •)) =
1

kr

∑
1≤s≤k

1

s
· i

2π

∑
i,j,α

cijαα(z) dzi ∧ dzj .

In other words, we get the normalized trace of the curvature, i.e.

(9.33) E(gk(z, •, •)) =
1

kr

(
1 +

1

2
+ . . .+

1

k

)
Θdet(V ∗),deth∗ ,

where Θdet(V ∗),deth∗ is the (1, 1)-curvature form of det(V ∗) with the metric in-
duced by h. It is natural to guess that gk(z, x, u) behaves asymptotically as its
expected value E(gk(z, •, •)) when k tends to infinity. If we replace brutally gk
by its expected value in (9.32), we get the integral

(n+ kr − 1)!

n!(k!)r(kr − 1)!

1

(kr)n

(
1 +

1

2
+ . . .+

1

k

)n ∫
X

1lη,qη
n,

where η := Θdet(V ∗),deth∗ and 1lη,q is the characteristic function of its q-index
set in X. The leading constant is equivalent to (log k)n/n!(k!)r modulo a mul-
tiplicative factor 1 + O(1/ log k). By working out a more precise analysis of the
deviation, the following result has been proved in [Dem11] and [Dem12].

9.34. Probabilistic estimate. Fix smooth Hermitian metrics h on V and
ω = i

2π

∑
ωijdzi ∧ dzj on X. Denote by ΘV,h = − i

2π

∑
cijαβdzi ∧ dzj ⊗ e∗α ⊗ eβ

the curvature tensor of V with respect to an h-orthonormal frame (eα), and put

η(z) = Θdet(V ∗),deth∗ =
i

2π

∑
1≤i,j≤n

ηijdzi ∧ dzj , ηij =
∑

1≤α≤r
cijαα.

Finally consider the k-jet line bundle Lk = OXGG
k

(1) → XGG
k equipped with the

induced metric Ψ∗h,p,ε (as defined above, with 1 = ε1 � ε2 � . . . � εk > 0).
When k tends to infinity, the integral of the top power of the curvature of Lk on
its q-index set XGG

k (Lk, q) is given by∫
XGG
k (Lk,q)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(log k)n

n! (k!)r

(∫
X

1lη,qη
n +O((log k)−1)

)



494 JEAN-PIERRE DEMAILLY

for all q = 0, 1, . . . , n, and the error term O((log k)−1) can be bounded explicitly
in terms of ΘV , η and ω. Moreover, the left hand side is identically zero for
q > n.

The final statement follows from the observation that the curvature of Lk is
positive along the fibers of XGG

k → X, by the plurisubharmonicity of the weight
(this is true even when the partition of unity terms are taken into account, since
they depend only on the base); therefore the q-index sets are empty for q > n. It
will be useful to extend the above estimates to the case of sections of

(9.35) Lk = OXGG
k

(1)⊗ π∗kO
( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)

where F ∈ PicQ(X) is an arbitrary Q-line bundle on X and πk : XGG
k → X is the

natural projection. We assume here that F is also equipped with a smooth Her-
mitian metric hF . In formulas (9.32–9.34), the renormalized curvature ηk(z, x, u)
of Lk takes the form

(9.36) ηk(z, x, u) =
1

1
kr (1 + 1

2 + . . .+ 1
k )
gk(z, x, u) + ΘF,hF (z),

and by the same calculations its expected value is

(9.37) η(z) := E(ηk(z, •, •)) = ΘdetV ∗,deth∗(z) + ΘF,hF (z).

Then the variance estimate for ηk − η is unchanged, and the Lp bounds for ηk
are still valid, since our forms are just shifted by adding the constant smooth
term ΘF,hF (z). The probabilistic estimate 9.34 is therefore still true in exactly
the same form, provided we use (9.35–9.37) instead of the previously defined Lk,
ηk and η. An application of holomorphic Morse inequalities gives the desired
cohomology estimates for

hq
(
X,EGG

k,mV
∗ ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

= hq(XGG
k ,OXGG

k
(m)⊗ π∗kO

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))
,

provided m is sufficiently divisible to give a multiple of F which is a Z-line bundle.

9.38. Theorem. Let (X,V ) be a directed manifold, F → X a Q-line bundle,
(V, h) and (F, hF ) smooth Hermitian structure on V and F respectively. We
define

Lk = OXGG
k

(1)⊗ π∗kO
( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)
,

η = ΘdetV ∗,deth∗ + ΘF,hF .

Then for all q ≥ 0 and all m � k � 1 such that m is sufficiently divisible, we
have
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hq(XGG
k ,O(L⊗mk )) ≤ mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫
X(η,q)

(−1)qηn +O((log k)−1)

)
,

(a)

h0(XGG
k ,O(L⊗mk )) ≥ mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫
X(η,≤1)

ηn −O((log k)−1)

)
,

(b)

χ(XGG
k ,O(L⊗mk )) =

mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r
(
c1(V ∗ ⊗ F )n +O((log k)−1)

)
.

(c)

Green and Griffiths [GrGr79] already checked the Riemann-Roch calculation
(9.38 c) in the special case V = T ∗X and F = OX . Their proof is much simpler
since it relies only on Chern class calculations, but it cannot provide any infor-
mation on the individual cohomology groups, except in very special cases where
vanishing theorems can be applied; in fact in dimension 2, the Euler characteris-
tic satisfies χ = h0−h1 +h2 ≤ h0 +h2, hence it is enough to get the vanishing of
the top cohomology group H2 to infer h0 ≥ χ ; this works for surfaces by means
of a well-known vanishing theorem of Bogomolov which implies in general

Hn

(
X,EGG

k,mT
∗
X ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

= 0

as soon as KX ⊗ F is big and m� 1.
In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [Bon93],

everything works almost unchanged in the case where V ⊂ TX has singularities
and h is an admissible metric on V (see Definition 9.7). We only have to find
a blow-up µ : X̃k → Xk so that the resulting pull-backs µ∗Lk and µ∗V are
locally free, and µ∗ deth∗, µ∗Ψh,p,ε only have divisorial singularities. Then η is a
(1, 1)-current with logarithmic poles, and we have to deal with smooth metrics on
µ∗L⊗mk ⊗ O(−mEk) where Ek is a certain effective divisor on Xk (which, by our
assumption in 9.7, does not project onto X). The cohomology groups involved
are then the twisted cohomology groups

Hq(XGG
k ,O(L⊗mk )⊗ Jk,m)

where Jk,m = µ∗(O(−mEk)) is the corresponding multiplier ideal sheaf, and the
Morse integrals need only be evaluated in the complement of the poles, that is
on X(η, q) r S where S = Sing(V ) ∪ Sing(h). Since

(πk)∗
(
O(L⊗mk )⊗ Jk,m

)
⊂ EGG

k,mV
∗ ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
)

we still get a lower bound for the H0 of the latter sheaf (or for the H0 of the
un-twisted line bundle O(L⊗mk ) on XGG

k ). If we assume that KV ⊗F is big, these
considerations also allow us to obtain a strong estimate in terms of the volume,
by using an approximate Zariski decomposition on a suitable blow-up of (X,V ).
The following corollary implies in particular Theorem 9.3.
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9.39. Corollary. If F is an arbitrary Q-line bundle over X, one has

h0

(
XGG
k ,OXGG

k
(m)⊗ π∗kO

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

≥ mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(
Vol(KV ⊗ F )−O((log k)−1)

)
− o(mn+kr−1),

when m� k � 1, in particular there are many sections of the k-jet differentials
of degree m twisted by the appropriate power of F if KV ⊗ F is big.

Proof. The volume is computed here as usual, i.e. after performing a suitable
modification µ : X̃ → X which converts KV into an invertible sheaf. There is of
course nothing to prove if KV ⊗F is not big, so we can assume Vol(KV ⊗F ) > 0.
Let us fix smooth Hermitian metrics h0 on TX and hF on F . They induce a metric
µ∗(deth−1

0 ⊗ hF ) on µ∗(KV ⊗ F ) which, by our definition of KV , is a smooth
metric. By the result of Fujita [Fuj94] on approximate Zariski decomposition, for
every δ > 0, one can find a modification µδ : X̃δ → X dominating µ such that

µ∗δ(KV ⊗ F ) = O
X̃δ

(A+ E)

where A and E are Q-divisors, A ample and E effective, with

Vol(A) = An ≥ Vol(KV ⊗ F )− δ.
If we take a smooth metric hA with positive definite curvature form ΘA,hA , then
we get a singular Hermitian metric hAhE on µ∗δ(KV ⊗F ) with poles along E, i.e.

the quotient hAhE/µ
∗(deth−1

0 ⊗hF ) is of the form e−ϕ where ϕ is quasi-psh with
log poles log |σE |2 (mod C∞(X̃δ)) precisely given by the divisor E. We then only
need to take the singular metric h on TX defined by

h = h0e
1
r

(µδ)
∗ϕ

(the choice of the factor 1
r is there to correct adequately the metric on detV ).

By construction h induces an admissible metric on V and the resulting curvature
current η = ΘKV ,deth∗ + ΘF,hF is such that

µ∗δη = ΘA,hA + [E], [E] = current of integration on E.

Then the 0-index Morse integral in the complement of the poles is given by∫
X(η,0)rS

ηn =

∫
X̃δ

Θn
A,hA

= An ≥ Vol(KV ⊗ F )− δ

and (9.39) follows from the fact that δ can be taken arbitrary small. �

9.40. Example. In some simple cases, the above estimates can lead to very
explicit results. Take for instance X to be a smooth complete intersection of
multidegree (d1, d2, . . . , ds) in Pn+s

C and consider the absolute case V = TX . Then
KX = OX(d1 + . . .+ ds− n− s− 1) and one can check via explicit bounds of the
error terms (cf. [Dem11], [Dem12]) that a sufficient condition for the existence of
sections is

k ≥ exp
(

7.38nn+1/2
( ∑

dj + 1∑
dj − n− s− a− 1

)n)
.
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This is good in view of the fact that we can cover arbitrary smooth complete
intersections of general type. On the other hand, even when the degrees dj tend

to +∞, we still get a large lower bound k ∼ exp(7.38nn+1/2) on the order of jets,
and this is far from being optimal : Diverio [Div08, Div09] has shown e.g. that
one can take k = n for smooth hypersurfaces of high degree, using the algebraic
Morse inequalities of Trapani [Tra95]. The next paragraph uses essentially the
same idea, in our more analytic setting.

10.D. Non probabilistic estimate of the Morse integrals

We assume here that the curvature tensor (cijαβ) satisfies a lower bound

(9.41)
∑
i,j,α,β

cijαβξiξjuαuβ ≥ −
∑

γijξiξj |u|2 ∀ξ ∈ TX , u ∈ X

for some semipositive (1, 1)-form γ = i
2π

∑
γij(z) dzi ∧ dzj on X. This is the

same as assuming that the curvature tensor of (V ∗, h∗) satisfies the semipositivity
condition

(9.41’) ΘV ∗,h∗ + γ ⊗ IdV ∗ ≥ 0

in the sense of Griffiths, or equivalently ΘV,h − γ ⊗ IdV ≤ 0. Thanks to the
compactness of X, such a form γ always exists if h is an admissible metric on V .

Now, instead of replacing ΘV with its trace free part Θ̃V and exploiting a Monte
Carlo convergence process, we replace ΘV with Θγ

V = ΘV − γ ⊗ IdV ≤ 0, i.e.
cijαβ by cγijαβ = cijαβ + γijδαβ. Also, we take a line bundle F = A−1 with

ΘA,hA ≥ 0, i.e. F seminegative. Then our earlier formulas (9.28), (9.35), (9.36)
become instead

(9.42) gγk (z, x, u) =
i

2π

∑
1≤s≤k

1

s
xs
∑
i,j,α,β

cγijαβ(z)usαusβ dzi ∧ dzj ≥ 0,

(9.43) Lk = OXGG
k

(1)⊗ π∗kO
(
− 1

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
,

(9.44) ΘLk = ηk(z, x, u) =
1

1
kr (1 + 1

2 + . . .+ 1
k )
gγk (z, x, u)− (ΘA,hA(z) + rγ(z)).

In fact, replacing ΘV by ΘV −γ⊗IdV has the effect of replacing ΘdetV ∗ = Tr ΘV ∗

by ΘdetV ∗+rγ. The major gain that we have is that ηk = ΘLk is now expressed as
a difference of semipositive (1, 1)-forms, and we can exploit the following simple
lemma, which is the key to derive algebraic Morse inequalities from their analytic
form (cf. [Dem94], Theorem 12.3).

9.45. Lemma. Let η = α− β be a difference of semipositive (1, 1)-forms on an
n-dimensional complex manifold X, and let 1lη,≤q be the characteristic function
of the open set where η is non degenerate with a number of negative eigenvalues
at most equal to q. Then

(−1)q1lη,≤q η
n ≤

∑
0≤j≤q

(−1)q−jαn−jβj ,
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in particular

1lη,≤1 η
n ≥ αn − nαn−1 ∧ β for q = 1.

Proof. Without loss of generality, we can assume α > 0 positive definite, so that
α can be taken as the base hermitian metric on X. Let us denote by

λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0

the eigenvalues of β with respect to α. The eigenvalues of η = α − β are then
given by

1− λ1 ≤ . . . ≤ 1− λq ≤ 1− λq+1 ≤ . . . ≤ 1− λn,
hence the open set {λq+1 < 1} coincides with the support of 1lη,≤q, except that
it may also contain a part of the degeneration set ηn = 0. On the other hand we
have (

n

j

)
αn−j ∧ βj = σjn(λ)αn,

where σjn(λ) is the j-th elementary symmetric function in the λj ’s. Thus, to prove
the lemma, we only have to check that∑

0≤j≤q
(−1)q−jσjn(λ)− 1l{λq+1<1}(−1)q

∏
1≤j≤n

(1− λj) ≥ 0.

This is easily done by induction on n (just split apart the parameter λn and write

σjn(λ) = σjn−1(λ) + σj−1
n−1(λ)λn). �

We apply here Lemma 9.45 with

α = gγk (z, x, u), β = βk =
1

kr

(
1 +

1

2
+ . . .+

1

k

)
(ΘA,hA + rγ),

which are both semipositive by our assumption. The analogue of (9.32) leads to∫
XGG
k (Lk,≤1)

Θn+kr−1
Lk,Ψ

∗
h,p,ε

=
(n+ kr − 1)!

n!(k!)r(kr − 1)!

∫
z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

1lgγk−βk,≤1 (gγk − βk)
n dνk,r(x) dµ(u)

≥ (n+ kr − 1)!

n!(k!)r(kr − 1)!

∫
z∈X

∫
(x,u)∈∆k−1×(S2r−1)k

((gγk )n − n(gγk )n−1 ∧ βk) dνk,r(x) dµ(u).

The resulting integral now produces a “closed formula” which can be expressed
solely in terms of Chern classes (at least if we assume that γ is the Chern form of
some semipositive line bundle). It is just a matter of routine to find a sufficient
condition for the positivity of the integral. One can first observe that gγk is
bounded from above by taking the trace of (cijαβ), in this way we get

0 ≤ gγk ≤
( ∑

1≤s≤k

xs
s

)(
ΘdetV ∗ + rγ

)
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where the right hand side no longer depends on u ∈ (S2r−1)k. Also, gγk can be
written as a sum of semipositive (1, 1)-forms

gγk =
∑

1≤s≤k

xs
s
θγ(us), θγ(u) =

∑
i,j,α,β

cγijαβuαuβ dzi ∧ dzj ,

hence for k ≥ n we have

(gγk )n ≥ n!
∑

1≤s1<...<sn≤k

xs1 . . . xsn
s1 . . . sn

θγ(us1) ∧ θγ(us2) ∧ . . . ∧ θγ(usn).

Since
∫
S2r−1 θ

γ(u) dµ(u) = 1
r Tr(ΘV ∗ + γ) = 1

rΘdetV ∗ + γ, we infer from this∫
(x,u)∈∆k−1×(S2r−1)k

(gγk )n dνk,r(x) dµ(u)

≥ n!
∑

1≤s1<...<sn≤k

1

s1 . . . sn

(∫
∆k−1

x1 . . . xn dνk,r(x)
)(1

r
ΘdetV ∗ + γ

)n
.

By putting everything together, we conclude:

9.46. Theorem. Assume that ΘV ∗ ≥ −γ ⊗ IdV ∗ with a semipositive (1, 1)-form
γ on X. Then the Morse integral of the line bundle

Lk = OXGG
k

(1)⊗ π∗kO
(
− 1

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
, A ≥ 0

satisfies for k ≥ n the inequality

1

(n+ kr − 1)!

∫
XGG
k (Lk,≤1)

Θn+kr−1
Lk,Ψ

∗
h,p,ε
≥ 1

n!(k!)r(kr − 1)!

∫
X
cn,r,k

(
ΘdetV ∗ + rγ

)n
− c′n,r,k

(
ΘdetV ∗ + rγ

)n−1 ∧
(
ΘA,hA + rγ

)
(*)

where

cn,r,k =
n!

rn

( ∑
1≤s1<...<sn≤k

1

s1 . . . sn

)∫
∆k−1

x1 . . . xn dνk,r(x),

c′n,r,k =
n

kr

(
1 +

1

2
+ . . .+

1

k

)∫
∆k−1

( ∑
1≤s≤k

xs
s

)n−1
dνk,r(x).

Especially we have a lot of sections in H0(XGG
k ,mLk), m � 1, as soon as the

difference occurring in (∗) is positive.

The statement is also true for k < n, but then cn,r,k = 0 and the lower bound
(∗) cannot be positive. By Corollary 9.11, it still provides a non trivial lower
bound for h0(XGG

k ,mLk)−h1(XGG
k ,mLk), though. For k ≥ n we have cn,r,k > 0

and (∗) will be positive if ΘdetV ∗ is large enough. By Formula (9.20) we have

(9.47) cn,r,k =
n! (kr − 1)!

(n+ kr − 1)!

∑
1≤s1<...<sn≤k

1

s1 . . . sn
≥ (kr − 1)!

(n+ kr − 1)!
,
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(with equality for k = n), and by ([Dem11], Lemma 2.20 (b)) we get the upper
bound

c′n,k,r
cn,k,r

≤ (kr + n− 1)rn−2

k/n

(
1 +

1

2
+ . . .+

1

k

)n
×
[
1 +

1

3

n−1∑
m=2

2m(n− 1)!

(n− 1−m)!

(
1 +

1

2
+ . . .+

1

k

)−m]
.

The case k = n is especially interesting. For k = n ≥ 2 one can show (with r ≤ n
and Hn denoting the harmonic sequence) that
(9.48)
c′n,k,r
cn,k,r

≤ n2 + n− 1

3
nn−2 exp

(2(n− 1)

Hn
+ n logHn

)
≤ 1

3

(
n log(n log 24n)

)n
.

We will later need the particular values that can be obtained by direct calculations
(cf. Formula (9.20) and [Dem11, Lemma 2.20]).

c2,2,2 =
1

20
, c′2,2,2 =

9

16
,

c′2,2,2
c2,2,2

=
45

4
,(9.492)

c3,3,3 =
1

990
, c′3,3,3 =

451

4860
,

c′3,3,3
c3,3,3

=
4961

54
.(9.493)

§10. Hyperbolicity properties of hypersurfaces of high degree

10.A. Global generation of the twisted tangent space of the universal
family

In [Siu02, Siu04], Y. T. Siu developed a new stategy to produce jet differentials,
involving meromorphic vector fields on the total space of jet bundles – these
vector fields are used to differentiate the sections of EGG

k,m so as to produce new
ones with less zeroes. The approach works especially well on universal families
of hypersurfaces in projective space, thanks to the good positivity properties of
the relative tangent bundle, as shown by L. Ein [Ein88, Ein91] and C. Voisin
[Voi96]. This allows at least to prove the hyperbolicity of generic surfaces and
generic 3-dimensional hypersurfaces of sufficiently high degree. We reproduce
here the improved approach given by [Pau08] for the twisted global generation
of the tangent space of the space of vertical two jets. The situation of k-jets
in arbitrary dimension n is substantially more involved, details can be found in
[Mer09].

Consider the universal hypersurface X ⊂ Pn+1 × PNd of degree d given by the
equation ∑

|α|=d

Aα Z
α = 0,

where [Z] ∈ Pn+1, [A] ∈ PNd , α = (α0, . . . , αn+1) ∈ Nn+2 and

Nd =

(
n+ d+ 1

d

)
− 1.
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Finally, we denote by V ⊂ X the vertical tangent space, i.e. the kernel of the
projection

π : X→ U ⊂ PNd

where U is the Zariski open set parametrizing smooth hypersurfaces, and by JkV
the bundle of k-jets of curves tangent to V, i.e. curves contained in the fibers
Xs = π−1(s). The goal is to describe certain meromorphic vector fields on the
total space of JkV. In the special case n = 2, k = 2 considered by Păun [Pau08],
one fixes the affine open set

U0 = {Z0 6= 0} × {A0d00 6= 0} ' C3 × CNd

in P3×PNd with the corresponding inhomogeneous coordinates (zj = Zj/Z0)j=1,2,3

and (aα = Aα/A0d00)|α|=d,α1<d. Since α0 is determined by α0 = d−(α1+α2+α3),
with a slight abuse of notation in the sequel, α will be seen as a multiindex
(α1, α2, α3) in N3, with moreover the convention that ad00 = 1. On this affine
open set we have

X0 := X ∩ U0 =

{
zd1 +

∑
|α|≤d,α1<d

aα z
α = 0

}
.

We now write down equations for the open variety J2V0, where we indicated with
V0 the restriction of V ⊂ TX, the kernel of the differential of the second projection,
to X0: elements in J2V0 are therefore 2-jets of germs of “vertical” holomorphic
curves in X0, that is curves tangent to vertical fibers. The equations, which live
in a natural way in C3

zj × CNdaα × C3
z′j
× C3

z′′j
, stand as follows.

∑
|α|≤d

aα z
α = 0,

∑
1≤j≤3

∑
|α|≤d

aα
∂zα

∂zj
z′j = 0,

∑
1≤j≤3

∑
|α|≤d

aα
∂zα

∂zj
z′′j +

∑
1≤j,k≤3

∑
|α|≤d

aα
∂2zα

∂zj∂zk
z′jz
′
k = 0.

Let W0 be the closed algebraic subvariety of J2V0 defined by

W0 = {(z, a, z′, z′′) ∈ J2V0 | z′ ∧ z′′ = 0}
and let W be the Zariski closure of W0 in J2V: we call this set the Wronskian
locus of J2V. Explicit calculations (cf. [Pau08]) then produce the following vector
fields:
First family of tangent vector fields. For any multiindex α such that α1 ≥ 3,
consider the vector field

θ300
α =

∂

∂aα
− 3z1

∂

∂aα−δ1
+ 3z2

1

∂

∂aα−2δ1

− z3
1

∂

∂aα−3δ1

,

where δj ∈ N4 is the multiindex whose j-th component is equal to 1 and the
others are zero. For the multiindices α which verify α1 ≥ 2 and α2 ≥ 1, define
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θ210
α =

∂

∂aα
− 2z1

∂

∂aα−δ1
− z2

∂

∂aα−δ2
+ z2

1

∂

∂aα−2δ1

+ 2z1z2
∂

∂aα−δ1−δ2
− z2

1z2
∂

∂aα−2δ1−δ2
.

Finally, for those α for which α1, α2, α3 ≥ 1, set

θ111
α =

∂

∂aα
− z1

∂

∂aα−δ1
− z2

∂

∂aα−δ2
− z3

∂

∂aα−δ3

+ z1z2
∂

∂aα−δ1−δ2
+ z1z3

∂

∂aα−δ1−δ3
+ z2z3

∂

∂aα−δ2−δ3

− z1z2z3
∂

∂aα−δ1−δ2−δ3
.

Second family of tangent vector fields. We construct here the holomorphic vector
fields in order to span the ∂/∂zj-directions. For j = 1, 2, 3, consider the vector
field

∂

∂zj
−

∑
|α+δj |≤d

(αj + 1)aα+δj

∂

∂aα
.

Third family of tangent vector fields. In order to span the jet directions, consider
a vector field of the following form:

θB =
∑

|α|≤d,α1<d

pα(z, a, b)
∂

∂aα
+
∑

1≤j≤3

2∑
k=1

ξ
(k)
j

∂

∂z
(k)
j

,

where ξ(k) = B · z(k), k = 1, 2, and B = (bjk) varies among 3 × 3 invertible
matrices with complex entries. By studying more carefully these three families
of vector fields, one obtains:

10.1. Theorem. The twisted tangent space TJ2V⊗OP3(7)⊗OPNd (1) is generated
over by its global sections over the complement J2VrW of the Wronskian locus W.
Moreover, one can choose generating global sections that are invariant with respect
to the action of G2 on J2V.

By similar, but more computationally intensive arguments [Mer09], one can
investigate the higher dimensional case. The following result strengthens the
initial announcement of [Siu04].

10.2. Theorem. Let Jvert
k (X) be the space of vertical k-jets of the universal

hypersurface

X ⊂ Pn+1 × PNd

parametrizing all projective hypersurfaces X ⊂ Pn+1 of degree d. Then for k = n,
there exist constants cn and c′n such that the twisted tangent bundle

TJvert
k (X) ⊗ OPn+1(cn)⊗ OPNd (c′n)

is generated by its global Gk-invariant sections outside a certain exceptional al-
gebraic subset Σ ⊂ Jvert

k (X). One can take either cn = 1
2(n2 + 5n), c′n = 1 and Σ
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defined by the vanishing of certain Wronskians, or cn = n2 + 2n and a smaller

set Σ̃ ⊂ Σ defined by the vanishing of the 1-jet part.

10.B. General strategy of proof

Let again X ⊂ Pn+1 × PNd be the universal hypersurface of degree d in Pn+1.

(10.3) Assume that we can prove the existence of a non zero polynomial differential
operator

P ∈ H0(X, EGG
k,mT

∗
X ⊗ O(−A)),

where A is an ample divisor on X, at least over some Zariski open set U in the
base of the projection π : X→ U ⊂ PNd.

Observe that we now have a lot of techniques to do this; the existence of P
over the family follows from lower semicontinuity in the Zariski topology, once we
know that such a section P exists on a generic fiber Xs = π−1(s). Let Y ⊂ X be
the set of points x ∈ X where P (x) = 0, as an element in the fiber of the vector
bundle EGG

k,mT
∗
X ⊗ O(−A)) at x. Then Y is a proper algebraic subset of X, and

after shrinking U we may assume that Ys = Y ∩Xs is a proper algebraic subset
of Xs for every s ∈ U .

(10.4) Assume also, according to Theorems 10.1 and 10.2, that we have enough
global holomorphic Gk-invariant vector fields θi on JkV with values in the pull-
back of some ample divisor B on X, in such a way that they generate TJkV⊗ p∗kB
over the dense open set (JkV)reg of regular k-jets, i.e. k-jets with non zero first
derivative (here pk : JkV→ X is the natural projection).

Considering jet differentials P as functions on JkV, the idea is to produce new
ones by taking differentiations

Qj := θj1 . . . θj`P, 0 ≤ ` ≤ m, j = (j1, . . . , j`).

Since the θj ’s are Gk-invariant, they are in particular C∗-invariant, thus

Qj ∈ H0(X, EGG
k,mT

∗
X ⊗ O(−A+ `B))

(and Q is in fact G′k invariant as soon as P is). In order to be able to apply
the vanishing theorems of §8, we need A − mB to be ample, so A has to be
large compared to B. If f : C → Xs is an entire curve contained in some fiber
Xs ⊂ X, its lifting jk(f) : C → JkV has to lie in the zero divisors of all sections
Qj . However, every non zero polynomial of degree m has at any point some non
zero derivative of order ` ≤ m. Therefore, at any point where the θi generate
the tangent space to JkV, we can find some non vanishing section Qj . By the
assumptions on the θi, the base locus of the Qj ’s is contained in the union of

p−1
k (Y) ∪ (JkV)sing; there is of course no way of getting a non zero polynomial

at points of Y where P vanishes. Finally, we observe that jk(f)(C) 6⊂ (JkV
sing

(otherwise f is constant). Therefore jk(f)(C) ⊂ p−1
k (Y) and thus f(C) ⊂ Y, i.e.

f(C) ⊂ Ys = Y ∩Xs.

10.5. Corollary. Let X ⊂ Pn+1 × PNd be the universal hypersurface of degree
d in Pn+1. If d ≥ dn is taken so large that conditions (10.3) and (10.4) are met
with A − mB ample, then the generic fiber Xs of the universal family X → U
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satisfies the Green-Griffiths conjecture, namely all entire curves f : C → Xs are
contained in a proper algebraic subvariety Ys ⊂ Xs, and the Ys can be taken to
form an algebraic subset Y ⊂ X.

This is unfortunately not enough to get the hyperbolicity of Xs, because we
would have to know that Ys itself is hyperbolic. However, one can use the follow-
ing simple observation due to Diverio and Trapani [DT10]. The starting point
is the following general, straightforward remark. Let E → X be a holomorphic
vector bundle let σ ∈ H0(X,E) 6= 0; then, up to factorizing by an effective divisor
D contained in the common zeroes of the components of σ, one can view σ as a
section

σ ∈ H0(X,E⊗ OX(−D)),

and this section now has a zero locus without divisorial components. Here, when
n ≥ 2, the very generic fiber Xs has Picard number one by the Noether-Lefschetz
theorem, and so, after shrinking U if necessary, we can assume that OX(−D) is
the restriction of OPn+1(−p), p ≥ 0 by the effectivity of D. Hence D can be
assumed to be nef. After performing this simplification, A −mB is replaced by
A−mB+D, which is still ample if A−mB is ample. As a consequence, we may
assume codim Y ≥ 2, and after shrinking U again, that all Ys have codim Ys ≥ 2.

10.6. Additional statement In Corollary 10.5, under the same hypotheses
(10.3) and (10.4), one can take all fibers Ys to have codimYs ≥ 2.

This is enough to conclude that Xs is hyperbolic if n = dimXs ≤ 3. In fact,
this is clear if n = 2 since the Ys are then reduced to points. If n = 3, the Ys
are at most curves, but we know by Ein and Voisin that a generic hypersurface
Xs ⊂ P4 of degree d ≥ 7 does not possess any rational or elliptic curve. Hence
Ys is hyperbolic and so is Xs, for s generic.

10.7. Corollary. Assume that n = 2 or n = 3, and that X ⊂ Pn+1 × PNd is the
universal hypersurface of degree d ≥ dn ≥ 2n + 1 so large that conditions (10.3)
and (10.4) are met with A − mB ample. Then the very generic hypersurface
Xs ⊂ Pn+1 of degree d is hyperbolic.

10.C. Proof of the Green-griffiths conjecture for generic hypersurfaces
in Pn+1

The most striking progress made at this date on the Green-Griffiths conjecture
itself is a recent result of Diverio, Merker and Rousseau [DMR10], confirming the
statement when X ⊂ Pn+1

C is a generic hypersurface of large degree d, with a (non
optimal) sufficient lower bound d ≥ 2n

5
. Their proof is based in an essential way

on Siu’s strategy as developed in 10.B, combined with the earlier techniques of
[Dem95]. Using our improved bounds from 9.D, we obtain here a better estimate
(actually of exponential order one O(exp(n1+ε) rather than order 5).

10.8. Theorem. A generic hypersurface X ⊂ Pn+1 of degree d ≥ dn with

d2 = 286, d3 = 7316, dn =

⌊
n4

3

(
n log(n log(24n))

)n⌋
for n ≥ 4,
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satisfies the Green-Griffiths conjecture.

Proof. Let us apply Theorem 9.46 with V = TX , r = n and k = n. The main
starting point is the well known fact that T ∗Pn+1 ⊗ OPn+1(2) is semipositive (in
fact, generated by its sections). Hence the exact sequence

0→ OPn+1(−d)→ T ∗Pn+1|X → T ∗X → 0

implies that T ∗X ⊗ OX(2) ≥ 0. We can therefore take γ = ΘO(2) = 2ω where ω is
the Fubini-Study metric. Moreover detV ∗ = KX = OX(d− n− 2) has curvature
(d−n−2)ω, hence ΘdetV ∗+rγ = (d+n−2)ω. The Morse integral to be computed
when A = OX(p) is∫

X

(
cn,n,n(d+ n− 2)n − c′n,n,n(d+ n− 2)n−1(p+ 2n)

)
ωn,

so the critical condition we need is

d+ n− 2 >
c′n,n,n
cn,n,n

(p+ 2n).

On the other hand, Siu’s differentiation technique requires m
n2 (1+ 1

2 + . . .+ 1
n)A−

mB to be ample, where B = OX(n2+2n) by Merker’s result 10.2. This ampleness
condition yields

1

n2

(
1 +

1

2
+ . . .+

1

n

)
p− (n2 + 2n) > 0,

so one easily sees that it is enough to take p = n4 − 2n for n ≥ 3. Our estimates
(9.48) and (9.49) give the expected bound dn. �

Thanks to 10.6, one also obtains the generic hyperbolicity of 2 and 3-dimensional
hypersurfaces of large degree.

10.9. Theorem. For n = 2 or n = 3, a generic hypersurface X ⊂ Pn+1 of
degree d ≥ dn is Kobayashi hyperbolic.

By using more explicit calculations of Chern classes (and invariant jets rather
than Green-Griffiths jets) Diverio-Trapani [DT10] obtained the better lower bound
d ≥ d3 = 593 in dimension 3. In the case of surfaces, Paun [Pau08] obtained
d ≥ d2 = 18, using deep results of McQuillan [McQ98].

One may wonder whether it is possible to use jets of order k < n in the proof
of 10.8 and 10.9. Diverio [Div08] showed that the answer is negative (his proof
is based on elementary facts of representation theory and a vanishing theorem of
Brückmann-Rackwitz [BR90]):

10.10. Proposition ([Div08]). Let X ⊂ Pn+1 be a smooth hypersurface. Then

H0(X,EGG
k,mT

∗
X) = 0

for m ≥ 1 and 1 ≤ k < n. More generally, if X ⊂ Pn+s is a smooth complete
intersection of codimension s, there are no global jet differentials for m ≥ 1 and
k < n/s.
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[Ber10] G. Bérczi, Thom polynomials and the Green-Griffiths conjecture, arXiv:1011.4710, 61p.
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Math. 73 (1997), 3-23.

[Dem07a] J.-P. Demailly, Structure of jet differential rings and holomorphic Morse inequalities,
Talk at the CRM Workshop “The geometry of holomorphic and algebraic curves in complex
algebraic varieties”, Montréal, May 2007.
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