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Abstract

Chinese checkers is a game played on a hexagonal
grid. This regular hexagonal tesselation is an artifact
of Euclidean geometry that provides a fair playing
�eld only for games of two, three, four or six players.
Hyperbolic geometry allows tessallations of the plane
by regular polygons with any number of sides. Hy-
perbolic versions of the chinese checkers board permit
fair games with �ve, seven and even more players.

1 Introduction

Chinese checkers is a game for two to six players.
Each player has ten marbles arranged in a triangle.
The goal of the game is to move these marbles to
the opposite triangle. In each turn, the player may
move one marble to any adjacent position or jump the
marble over any adjacent marble into an empty space,
and that marble may continue jumping as permitted.
Chinese checkers is played on a hexagonal grid ar-

ranges as in Figure 1. This board provides a fair
playing �eld for games of two, three, four and six
players. In �ve player games, the goal triangles of
the four players are �lled whereas whereas the goal
triangle of the �fth player is empty. We have called
this the \tainted win1" since this position provides
an unfair advantage over the other.
This paper attempts to create a fair playing grid

for �ve players, and new fair playing grids for seven or
more players. Triangulating a pentagon can produce
such a fair grid, though sacri�ces the straightness of
edges across vertices, as shown in Figure 2.

2 Hyperbolic Geometry

Euclid de�ned the geometry that now shares his name
with �ve axioms. The �fth axiom states that given

1Wayne Cochran, personal communication, lunchtime 1995.

Figure 1: The chinese checkers playing board.

Figure 2: Pentagon triangulation.
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a line and a point not on the line, then there exists
only one line passing through the point that does not
intersect the original line. This �fth axiom was long
believed to be a consequence of the �rst four axioms,
until hyperbolic geometry was devised, which follows
the �rst four of Euclid's axioms but not the �fth.
There are several Euclidean models of hyperbolic

geometry that make it easier to visualize the relation-
ship between hyperbolic points and lines. Typically,
the hyperbolic plane is represented by the unit open
disk D centered at the origin. The unit-radius cir-
cle that forms the boundary of this disk is called the
circle at in�nity C1:
The projective Klein model represents hyperbolic

lines with Euclidean lines. This model is popular
for computer rendering of 3-D hyperbolic structures,
such as those in the animated educational short \Not
Knot" [Gunn, 1993], because it can be incorporated
into the standard homogeneous 4� 4 transformation
matrix implemented in computer graphics hardware
[Phillips & Gunn, 1992].
An alternative representation of hyperbolic geom-

etry is the conformal Poincare model. This wass the
model used by M.C. Escher [Dunham et al., 1981].
The Poincare model represents hyperbolic lines with
Euclidean circles such that the hyperbolic line pass-
ing through any two points is uniquely representing
by the Euclidean circle piercing the two points that
intersects the in�nity disk orthogonally. The angle
formed by the intersection of two circular arcs is the
angle formed by their tangents at the intersection.
Given two points a;b 2 D the origin o of the circle
passing through a and b, orthogonal to C1 is given
by

ox =
ay(1 + b � b)� by(1 + a � a)

2(aybx � axby)

oy =
bx(1 + a � a) � ax(1 + b � b)

2(aybx � axby)
(1)

The radius r of this circle is then the Euclidean dis-
tance between a and o: If the hyperbolic line passes
through the origin, then its representation is a Eu-
clidean line (a diameter of the circle at in�nity). An
example is shown in Figure 3
The property of hyperbolic space that makes it so

appealing for chinese checkers is that the hyperbolic
plane can be tessellated by regular polygons with any
number of sides. Tessellations of the hyperbolic plane
are denoted fp; qg which indicates a tesselation with
p-gons, and q of these p-gons meet at each vertex.
The only restriction is that

(p� 2)(q � 2) > 4: (2)

o

(0,0)

a

b

Figure 3: Geometry of the hyperbolic line piercing
points a and b:

The angles of hyperbolic triangles sum to less than
�: Regular hyperbolic tesselations are described by a
single right triangle with angles of �=p and �=q: The
�=p vertex is placed at the origin, which causes two
of the triangle's three hyperbolic sides to be straight
Euclidean lines in the Poincare model. The only re-
maining degree of freedom is the scale of the triangle.
The length of the edge from the �=p vertex to the �=q
vertex is given by d as

r = acosh
cos �

p
cos �

q
+ 1

sin �

p
sin �

q

(3)

d =
er � 1

er + 1
: (4)

Successive re
ections of this triangle about its
\straight" (non-circular) edges form an initial p-sided
polygon. Successive re
ections of the p-gon about
its circular edge tessellate space. The re
ection of a
point about a Euclidean line is straightforward. The
re
ection of a point x about a circle of radius r cen-
tered at the point o is the point y that lies on a
Euclidean ray extending from o through x and satis-
�es

d(o;x)d(o;y) = r2 (5)

where d returns the Euclidean distance.

3 Some Results

We can apply the regular hyperbolic polygon tessela-
tion to solve the problem of providing a fair playing
�eld for 5, 7 or more players. Figure 4 shows a fair
playing �eld for �ve players whereas Figure 5 shows
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a fair playing �eld for seven players. These tessella-
tions contain the polygons that �t within a Euclidean
circle of radius .97.

Figure 4: A fair playing �eld for �ve players generated
by the tessellation f5,4g.

Small \start" and \goal" triangles need to be
placed around the perimiter of the playing �eld. For
the pentagonal tessellation, ten triangles would be
placed, facing the ends of the �ve diameters (straight
Euclidean lines). Likewise, for the septagonal tessel-
lation, fourteen triangles would appear, placed at the
ends of the seven diameters.
Unlike the pentagon triangulation in Figure 2, the

conformal property of the Poincare model of hyper-
bolic geometry clearly de�nes the direction of each
jump. Each hyperbolic polygon contains an extra
vertex at its center. Line segments connect its ver-
tices and edges (at their midpoints) to its center. For
odd-sided polygons, jumping over a marble at the
polygon's center takes a marble from the polygon's
corner to its opposing edge.

4 Future Work

We've never actually played a chinese checkers game
on one of these boards. The next obvious step is
implementation, either in software or cardboard.
The standard chinese checkers board (Figure 1) or-

ganizes marbles into four distinct phase spaces2. A
phase space is the set of all positions a marble could

2Bart Stander, personal communication, lunchtime, 1995.

Figure 5: A fair playing �eld for seven players gener-
ated by the tessellation f7,3g.

ever jump into. Such analysis of hyperbolic chinese
checkers boards remains open.
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