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Abstract The Green-Griffiths-Lang conjecture stipulates that for every projective

variety X of general type over C, there exists a proper algebraic subvariety of X

containing all non constant entire curves f : C → X. Using the formalism of

directed varieties, we prove here that this assertion holds true in case X satisfies a
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1 Introduction

The goal of this paper is to study the Green-Griffiths-Lang conjecture, as stated in

[7, 10]. It is useful to work in a more general context and consider the category of

directed projective manifolds (or varieties). Since the basic problems we deal with

are birationally invariant, the varieties under consideration can always be replaced

by nonsingular models. A directed projective manifold is a pair (X, V ) where X is a

projective manifold equipped with an analytic linear subspace V ⊂ TX , i.e. a closed

irreducible complex analytic subset V of the total space of TX , such that each fiber
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. We then give a sufficient criterion for the Kobayashi hyper�-
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Vx = V ∩TX,x is a complex vector space [If X is not irreducible, V should rather be

assumed to be irreducible merely over each component of X, but we will hereafter

assume that our varieties are irreducible]. A morphism ? : (X, V ) → (Y, W)

in the category of directed manifolds is an analytic map ? : X → Y such that

?∗V ⊂ W. We refer to the case V = TX as being the absolute case, and to the case

V = TX/S = Ker dπ for a fibration π : X → S, as being the relative case; V may

also be taken to be the tangent space to the leaves of a singular analytic foliation

on X, or maybe even a non integrable linear subspace of TX .

We are especially interested in entire curves that are tangent to V , namely non

constant holomorphic morphisms f : (C, TC) → (X, V ) of directed manifolds. In

the absolute case, these are just arbitrary entire curves f : C → X. The Green-

Griffiths-Lang conjecture, in its strong form, stipulates

1.1 GGL conjecture Let X be a projective variety of general type. Then there exists

a proper algebraic variety Y ? X such that every entire curve f : C → X satisfies

f (C) ⊂ Y .

[The weaker form would state that entire curves are algebraically degenerate, so that

f (C) ⊂ Y f ? X where Y f might depend on f ]. The smallest admissible algebraic

set Y ⊂ X is by definition the entire curve locus of X, defined as the Zariski closure

ECL(X) =
?

f

f (C)

Zar

. (1.1)

If X ⊂ PN
C
is defined over a number field K0 (i.e. by polynomial equations with

equations with coefficients in K0) and Y = ECL(X), it is expected that for every

number field K ⊃ K0 the set of K-points in X (K)?Y is finite, and that this property

characterizes ECL(X) as the smallest algebraic subset Y of X that has the above

property for all K [10]. This conjectural arithmetical statement would be a vast

generalization of the Mordell-Faltings theorem, and is one of the strong motivations

to study the geometric GGL conjecture as a first step.

1.2 Problem (generalized GGL conjecture) Let (X, V ) be a projective directed

manifold. Find geometric conditions on V ensuring that all entire curves f :

(C, TC) → (X, V ) are contained in a proper algebraic subvariety Y ? X. Does

this hold when (X, V ) is of general type, in the sense that the canonical sheaf KV is

big ?

As above, we define the entire curve locus set of a pair (X, V ) to be the smallest

admissible algebraic set Y ⊂ X in the above problem, i.e.

ECL(X, V ) =
?

f :(C,TC)→(X,V )

f (C)

Zar

. (1.2)

We say that (X, V ) is Brody hyperbolic if ECL(X, V ) = ∅ ; as is well-known, this

is equivalent to Kobayashi hyperbolicity whenever X is compact.
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In case V has no singularities, the canonical sheaf KV is defined to be (det O(V ))
∗

where O(V ) is the sheaf of holomorphic sections of V , but in general this naive

definition would not work. Take for instance a generic pencil of elliptic curves

λP(z) + μQ(z) = 0 of degree 3 in P2
C
, and the linear space V consisting of the

tangents to the fibers of the rational map P2
C

> P1
C
defined by z ?→ Q(z)/P(z).

Then V is given by

0 −→ O(V ) −→ O(T
P2

C

)

PdQ−QdP

−−−−−−−→ O
P2

C

(6) ⊗ JS −→ 0

where S = Sing(V ) consists of the 9 points {P(z) = 0} ∩ {Q(z) = 0}, and

JS is the corresponding ideal sheaf of S. Since det O(TP2) = O(3), we see that

(det(O(V ))
∗ = O(3) is ample, thus Problem1.2 would not have a positive answer

(all leaves are elliptic or singular rational curves and thus covered by entire curves).

An even more “degenerate” example is obtained with a generic pencil of conics, in

which case (det(O(V ))
∗ = O(1) and #S = 4.

If we want to get a positive answer to Problem1.2, it is therefore indispensable

to give a definition of KV that incorporates in a suitable way the singularities of V ;

this will be done in Definition2.1 (see also Proposition2.2). The goal is then to give

a positive answer to Problem 1.2 under some possibly more restrictive conditions for

the pair (X, V ). These conditions will be expressed in terms of the tower of Semple

jet bundles

(Xk, Vk) → (Xk−1, Vk−1) → · · · → (X1, V1) → (X0, V0) := (X, V ) (1.3)

which we define more precisely in Sect. 2, following [1]. It is constructed inductively

by setting Xk = P(Vk−1) (projective bundle of lines of Vk−1), and all Vk have the

same rank r = rankV , so that dim Xk = n + k(r − 1) where n = dim X. Entire

curve loci have their counterparts for all stages of the Semple tower, namely, one can

define

ECLk(X, V ) =
?

f :(C,TC)→(X,V )

f[k](C)

Zar

. (1.4)

where f[k] : (C, TC) → (Xk , Vk) is the k-jet of f . These are by definition algebraic

subvarieties of Xk , and if we denote by πk,? : Xk → X? the natural projection from

Xk to X?, 0 ≤ ? ≤ k, we get immediately

πk,?(ECLk(X, V )) = ECL?(X, V ), ECL0(X, V ) = ECL(X, V ). (1.5)

Let OXk (1) be the tautological line bundle over Xk associated with the projective

structure. We define the k-stage Green-Griffiths locus of (X, V ) to be

GGk(X, V ) = (Xk??k) ∩
?

m∈N

?

base locus of OXk (m) ⊗ π
∗
k,0A

−1
?

(1.6)
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where A is any ample line bundle on X and ?k =
?

2≤?≤k π
−1
k,?(D?) is the union

of “vertical divisors” (see Sect. 2; the vertical divisors play no role and have to be

removed in this context). Clearly, GGk(X, V ) does not depend on the choice of A.

The basic vanishing theorem for entire curves (cf. [1, 7, 16]) asserts that every entire

curve f : (C, TC) → (X, V ) satisfies all differential equations P( f ) = 0 arising

from sections P ∈ H 0
(Xk, OXk (m) ⊗ π

∗
k,0A

−1
), hence

ECLk(X, V ) ⊂ GGk(X, V ). (1.7)

(For this, one uses the fact that f[k](C) is not contained in any component of ?k ,

cf. [1]). It is therefore natural to define the globalGreen-Griffiths locus of (X, V ) to be

GG(X, V ) =
?

k∈N

πk,0 (GGk(X, V )) . (1.8)

By (1.5) and (1.7) we infer that

ECL(X, V ) ⊂ GG(X, V ). (1.9)

The main result of [4] (Theorem 2.37 and Corollary4.4) implies the following useful

information:

1.3 Theorem Assume that (X, V ) is of “general type”, i.e. that the canonical sheaf

KV is big on X. Then there exists an integer k0 such that GGk(X, V ) is a proper

algebraic subset of Xk for k ≥ k0 [ though πk,0(GGk(X, V )) might still be equal to

X for all k ].

In fact, if F is an invertible sheaf on X such that KV ⊗ F is big, the probabilistic

estimates of [4, Corollarys2.38 and 4.4] produce sections of

OXk (m) ⊗ π
∗
k,0O

? m

kr

?

1 +
1

2
+ · · · +

1

k

?

F

?

(1.10)

for m ? k ? 1. The (long and involved) proof uses a curvature computation and

singular holomorphic Morse inequalities to show that the line bundles involved in

(0.11) are big on Xk for k ? 1. One applies this to F = A−1 with A ample on X to

produce sections and conclude that GGk(X, V ) ? Xk .

Thanks to (1.9), the GGL conjecture is satisfied whenever GG(X, V ) ? X. By

[5], this happens for instance in the absolute case when X is a generic hypersurface

of degree d ≥ 2n
5
in Pn+1 (see also [13] for better bounds in low dimensions, and

[14, 15]). However, as already mentioned in [10], very simple examples show that

one can have GG(X, V ) = X even when (X, V ) is of general type, and this already

occurs in the absolute case as soon as dim X ≥ 2. A typical example is a product of

directed manifolds

(X, V ) = (X ?
, V ?

) × (X ??
, V ??

), V = pr? ∗V ? ⊕ pr?? ∗V ??
. (1.11)
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The absolute case V = TX , V
? = TX ? , V ?? = TX ?? on a product of curves is the

simplest instance. It is then easy to check that GG(X, V ) = X, cf. (3.2). Diverio

and Rousseau [6] have given many more such examples, including the case of in-

decomposable varieties (X, TX ), e.g. Hilbert modular surfaces, or more generally

compact quotients of bounded symmetric domains of rank ≥ 2. The problem here is

the failure of some sort of stability condition that is introduced in Sect. 4. This leads

to a somewhat technical concept of more manageable directed pairs (X, V ) that we

call strongly of general type, see Definition4.1. Our main result can be stated

1.4 Theorem (partial solution to the generalized GGL conjecture) Let (X, V ) be

a directed pair that is strongly of general type. Then the Green-Griffiths-Lang con-

jecture holds true for (X, V ), namely ECL(X, V ) is a proper algebraic subvariety

of X.

The proof proceeds through a complicated induction on n = dim X and k =

rankV , which is the main reason why we have to introduce directed varieties, even

in the absolute case. An interesting feature of this result is that the conclusion on

ECL(X, V ) is reached without having to know anything about the Green-Griffiths

locus GG(X, V ), even a posteriori. Nevetheless, this is not yet enough to confirm

the GGL conjecture. Our hope is that pairs (X, V ) that are of general type without

being strongly of general type—and thus exhibit some sort of “jet-instability”—

can be investigated by different methods, e.g. by the diophantine approximation

techniques of McQuillan [11]. However, Theorem 1.4 provides a sufficient criterion

for Kobayashi hyperbolicity [8, 9], thanks to the following concept of algebraic

jet-hyperbolicity.

1.5 Definition A directed variety (X, V ) will be said to be algebraically jet-

hyperbolic if the induced directed variety structure (Z, W) on every irreducible

algebraic variety Z of X such that rankW ≥ 1 has a desingularization that is strongly

of general type [see Sects. 3 and 5 for the definition of induced directed structures

and further details]. We also say that a projective manifold X is algebraically jet-

hyperbolic if (X, TX ) is.

In this context, Theorem 1.4 yields the following connection between algebraic

jet-hyperbolicity and the analytic concept of Kobayashi hyperbolicity.

1.6 Theorem Let (X, V ) be a directed variety structure on a projective manifold

X. Assume that (X, V ) is algebraically jet-hyperbolic. Then (X, V ) is Kobayashi

hyperbolic.

I would like to thank Simone Diverio and Erwan Rousseau for very stimulating

discussions on these questions. I am grateful to Mihai Păun for an invitation at KIAS

(Seoul) in August 2014, during which further very fruitful exchanges took place, and

for his extremely careful reading of earlier drafts of the manuscript.
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2 Semple Jet Bundles and Associated Canonical Sheaves

Let (X, V ) be a directed projectivemanifold and r = rankV , that is, the dimension of

generic fibers. Then V is actually a holomorphic subbundle of TX on the complement

X?Sing(V ) of a certain minimal analytic set Sing(V ) ? X of codimension ≥ 2,

called hereafter the singular set of V . If μ : ?X → X is a proper modification

(a composition of blow-ups with smooth centers, say), we get a directed manifold

(?X, ?V ) by taking ?V to be the closure of μ
−1
∗ (V ?

), where V ? = V|X ? is the restriction

of V over a Zariski open set X ? ⊂ X?Sing(V ) such that μ : μ
−1

(X ?
) → X ? is a

biholomorphism. We will be interested in taking modifications realized by iterated

blow-ups of certain nonsingular subvarieties of the singular set Sing(V ), so as to

eventually “improve” the singularities of V ; outside of Sing(V ) the effect of blowing-

up will be irrelevant, as one can see easily. Following [4], the canonical sheaf KV is

defined as follows.

2.1 Definition For any directed pair (X, V ) with X nonsingular, we define KV to

be the rank 1 analytic sheaf such that

KV (U) = sheaf of locally bounded sections of OX (?
rV ?∗

)(U ∩ X ?
)

where r = rank(V ), X ? = X?Sing(V ), V ? = V|X ? , and “bounded” means bounded

with respect to a smooth hermitian metric h on TX .

For r = 0, one can set KV = OX , but this case is trivial: clearly ECL(X, V ) = ∅.

The above definition of KV may look like an analytic one, but it can easily be turned

into an equivalent algebraic definition:

2.2 Proposition Consider the natural morphism O(?
rT ∗

X ) → O(?
rV ∗

) where

r = rankV [O(?
rV ∗

) being defined here as the quotient ofO(?
rT ∗

X ) by r-forms that

have zero restrictions toO(?
rV ∗

) on X?Sing(V ) ]. The bidual LV = OX (?
rV ∗

)
∗∗

is an invertible sheaf, and our natural morphism can be written

O(?
rT ∗

X ) → O(?
rV ∗

) = LV ⊗ JV ⊂ LV (2.1)

where JV is a certain ideal sheaf of OX whose zero set is contained in Sing(V ) and

the arrow on the left is surjective by definition. Then

KV = LV ⊗ J V (2.2)

where J V is the integral closure of JV in OX . In particular, KV is always a coherent

sheaf.

Proof Let (uk) be a set of generators of O(?
rV ∗

) obtained (say) as the images of

a basis (dz I )|I |=r of ?
rT ∗

X in some local coordinates near a point x ∈ X. Write

uk = gk? where ? is a local generator of LV at x. Then JV = (gk) by definition.

The boundedness condition expressed in Definition2.1 means that we take sections
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of the form f ? where f is a holomorphic function on U ∩ X ? (and U a neighborhood

of x), such that

| f | ≤ C
?

|gk | (2.3)

for some constant C > 0. But then f extends holomorphically to U into a function

that lies in the integral closure J V , and the latter is actually characterized analytically

by condition (2.3). This proves Proposition2.2. ?

By blowing-up JV and taking a desingularization ?X, one can always find a log-

resolution of JV (or KV ), i.e. a modification μ : ?X → X such that μ
∗JV ⊂ O?X is

an invertible ideal sheaf (hence integrally closed); it follows that μ∗J V = μ
∗JV and

μ
∗KV = μ

∗LV ⊗μ
∗JV are invertible sheaves on ?X. Notice that for anymodification

μ
? : (X ?

, V ?
) → (X, V ), there is always a well defined natural morphism

μ
? ∗KV → KV ? (2.4)

(though it need not be an isomorphism, and KV ? is possibly non invertible even

when μ
? is taken to be a log-resolution of KV ). Indeed (μ

?
)∗ = dμ

? : V ? → μ
∗V is

continuous with respect to ambient hermitian metrics on X and X ?, and going to the

duals reverses the arrows while preserving boundedness with respect to the metrics.

If μ
?? : X ?? → X ? provides a simultaneous log-resolution of KV ? and μ

? ∗KV , we get

a non trivial morphism of invertible sheaves

(μ
? ◦ μ

??
)
∗KV = μ

?? ∗
μ

? ∗KV −→ μ
?? ∗KV ? , (2.5)

hence the bigness of μ
? ∗KV with imply that of μ

?? ∗KV ? . This is a general principle

that we would like to refer to as the “monotonicity principle” for canonical sheaves:

one always get more sections by going to a higher level through a (holomorphic)

modification.

2.3 Definition We say that the rank 1 sheaf KV is “big” if the invertible sheaf μ∗KV

is big in the usual sense for any log resolution μ : ?X → X of KV . Finally, we say

that (X, V ) is of general type if there exists a modification μ
? : (X ?

, V ?
) → (X, V )

such that KV ? is big; any higher blow-up μ
?? : (X ??

, V ??
) → (X ?

, V ?
) then also yields

a big canonical sheaf by (2.4).

Clearly, “general type” is a birationally (or bimeromorphically) invariant concept,

by the very definition. When dim X = n and V ⊂ TX is a subbundle of rank r ≥ 1,

one constructs a tower of “Semple k-jet bundles” πk,k−1 : (Xk, Vk) → (Xk−1, Vk−1)

that are Pr−1-bundles, with dim Xk = n + k(r − 1) and rank(Vk) = r. For this, we

take (X0, V0) = (X, V ), and for every k ≥ 1, we set inductively Xk := P(Vk−1)

and

Vk := (πk,k−1)
−1
∗ OXk (−1) ⊂ TXk ,

where OXk (1) is the tautological line bundle on Xk , πk,k−1 : Xk = P(Vk−1) →

Xk−1 the natural projection and (πk,k−1)∗ = dπk,k−1 : TXk → π
∗
k,k−1TXk−1

its
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differential (cf. [1]). In other terms, we have exact sequences

0 −→ TXk/Xk−1
−→ Vk

(πk,k−1)∗
−→ OXk (−1) −→ 0, (2.6)

0 −→ OXk −→ (πk,k−1)
∗Vk−1 ⊗ OXk (1) −→ TXk/Xk−1

−→ 0, (2.7)

where the last line is the Euler exact sequence associated with the relative tangent

bundle of P(Vk−1) → Xk−1. Notice that we by definition of the tautological line

bundle we have

OXk (−1) ⊂ π
∗
k,k−1Vk−1 ⊂ π

∗
k,k−1TXk−1

,

and also rank(Vk) = r. Let us recall also that for k ≥ 2, there are “vertical divisors”

Dk = P(TXk−1/Xk−2
) ⊂ P(Vk−1) = Xk , and that Dk is the zero divisor of the

section of OXk (1)⊗π
∗
k,k−1OXk−1

(−1) induced by the second arrow of the first exact

sequence (2.6), when k is replaced by k − 1. This yields in particular

OXk (1) = π
∗
k,k−1OXk−1

(1) ⊗ O(Dk). (2.8)

By composing the projections we get for all pairs of indices 0 ≤ j ≤ k natural

morphisms

πk, j : Xk → X j , (πk, j )∗ = (dπk, j )|Vk : Vk → (πk, j )
∗V j ,

and for every k-tuple a = (a1, . . . , ak) ∈ Zk we define

OXk (a) =
?

1≤ j≤k

π
∗
k, jOX j

(a j ), πk, j : Xk → X j .

We extend this definition to all weights a ∈ Qk to get aQ-line bundle in Pic(X)⊗ZQ.

Now, Formula (2.8) yields

OXk (a) = OXk (m) ⊗ O(−b · D) where m = |a| =
?

a j , b = (0, b2, . . . , bk)

(2.9)

and b j = a1 + · · · + a j−1, 2 ≤ j ≤ k.

When Sing(V ) ?= ∅, one can always define Xk and Vk to be the respective clo-

sures of X ?
k , V

?
k associated with X ? = X?Sing(V ) and V ? = V|X ? , where the clo-

sure is taken in the nonsingular “absolute” Semple tower (Xa
k , V

a
k ) obtained from

(Xa
0 , V

a
0 ) = (X, TX ). We leave the reader check the following easy (but important)

observation.

2.4 Fonctoriality If ? : (X, V ) → (Y, W) is a morphism of directed varieties

such that ?∗ : TX → ?
∗TY is injective (i.e. ? is an immersion ), then there is a

corresponding natural morphism ?[k] : (Xk , Vk) → (Yk , Wk) at the level of Semple

bundles. If one merely assumes that the differential ?∗ : V → ?
∗W is non zero,
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there is still a well defined meromorphic map ?[k] : (Xk, Vk) > (Yk , Wk) for

all k ≥ 0.

In case V is singular, the k-th Semple bundle Xk will also be singular, but we

can still replace (Xk, Vk) by a suitable modification (?X k ,
?V k) if we want to work

with a nonsingular model ?X k of Xk . The exceptional set of ?X k over Xk can be

chosen to lie above Sing(V ) ⊂ X, and proceeding inductively with respect to k,

we can also arrange the modifications in such a way that we get a tower structure

(?Xk+1,
?Vk+1) → (?Xk ,

?Vk) ; however, in general, it will not be possible to achieve

that ?Vk is a subbundle of T?Xk
.

It is not true that K?V k
is big in case (X, V ) is of general type (especially since

the fibers of Xk → X are towers of Pr−1 bundles, and the canonical bundles of

projective spaces are always negative !). However, a twisted version holds true, that

can be seen as another instance of the “monotonicity principle” when going to higher

stages in the Semple tower.

2.5 Lemma If (X, V ) is of general type, then there is a modification (?X, ?V ) such

that all pairs (?Xk ,
?Vk) of the associated Semple tower have a twisted canonical

bundle K?Vk
⊗ O?Xk

(p) that is still big when one multiplies K?Vk
by a suitable Q-line

bundle O?Xk
(p), p ∈ Q+.

Proof. First assume that V has no singularities. The exact sequences (2.6) and (2.7)

provide

KVk := det V ∗
k = det(T ∗

Xk/Xk−1
) ⊗ OXk (1) = π

∗
k,k−1KVk−1

⊗ OXk (−(r − 1))

where r = rank(V ). Inductively we get

KVk = π
∗
k,0KV ⊗ OXk (−(r − 1)1), 1 = (1, . . . , 1) ∈ Nk

. (2.10)

We know by [1] that OXk (c) is relatively ample over X when we take the special

weight c = (2 3k−2
, . . . , 2 3k− j−1

, . . . , 6, 2, 1), hence

KVk ⊗ OXk ((r − 1)1 + εc) = π
∗
k,0KV ⊗ OXk (εc)

is big over Xk for any sufficiently small positive rational number ε ∈ Q∗
+. Thanks

to Formula (2.9), we can in fact replace the weight (r − 1)1 + εc by its total degree

p = (r − 1)k + ε|c| ∈ Q+. The general case of a singular linear space follows by

considering suitable “sufficiently high” modifications ?X of X, the related directed

structure ?V on ?X, and embedding (?Xk ,
?Vk) in the absolute Semple tower (?Xa

k ,
?V a
k )

of ?X. We still have a well defined morphism of rank 1 sheaves

π
∗
k,0K?V ⊗ O?Xk

(−(r − 1)1) → K?Vk
(2.11)

because the multiplier ideal sheaves involved at each stage behave according to

the monotonicity principle applied to the projections π
a
k,k−1 : ?Xa

k → ?Xa
k−1 and their
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differentials (π
a
k,k−1)∗, which yield well-defined transposed morphisms from the

(k − 1)-st stage to the k-th stage at the level of exterior differential forms. Our

contention follows. ?

3 Induced Directed Structure on a Subvariety of a Jet Space

Let Z be an irreducible algebraic subset of some k-jet bundle Xk over X, k ≥ 0. We

define the linear subspace W ⊂ TZ ⊂ TXk |Z to be the closure

W := TZ ? ∩ Vk (3.1)

taken on a suitable Zariski open set Z ? ⊂ Zreg where the intersection TZ ? ∩ Vk has

constant rank and is a subbundle of TZ ? . Alternatively, we could also take W to be the

closure of TZ ? ∩ Vk in the k-th stage (Xak , V
a
k ) of the absolute Semple tower, which

has the advantage of being nonsingular. We say that (Z, W) is the induced directed

variety structure; this concept of induced structure already applies of course in the

case k = 0. If f : (C, TC) → (X, V ) is such that f[k](C) ⊂ Z, then

either f[k](C) ⊂ Zα or f ?[k](C) ⊂ W, (3.2)

where Zα is one of the connected components of Z?Z ? and Z ? is chosen as in (3.1);

especially, if W = 0, we conclude that f[k](C) must be contained in one of the

Zα’s. In the sequel, we always consider such a subvariety Z of Xk as a directed pair

(Z, W) by taking the induced structure described above. By (3.2), if we proceed by

induction on dim Z, the study of curves tangent to V that have a k-lift f[k](C) ⊂ Z

is reduced to the study of curves tangent to (Z, W). Let us first quote the following

easy observation.

3.1 Observation For k ≥ 1, let Z ? Xk be an irreducible algebraic subset that

projects onto Xk−1, i.e. πk,k−1(Z) = Xk−1. Then the induced directed variety

(Z, W) ⊂ (Xk, Vk), satisfies

1 ≤ rankW < r := rank(Vk).

Proof. Take a Zariski open subset Z ? ⊂ Zreg such that W
? = TZ ? ∩ Vk is a vector

bundle over Z ?. Since Xk → Xk−1 is a Pr−1-bundle, Z has codimension at most

r − 1 in Xk . Therefore rankW ≥ rankVk − (r − 1) ≥ 1. On the other hand, if

we had rankW = rankVk generically, then TZ ? would contain Vk|Z ? , in particular it

would contain all vertical directions TXk/Xk−1 ⊂ Vk that are tangent to the fibers of

Xk → Xk−1. By taking the flow along vertical vector fields, we would conclude that

Z ? is a union of fibers of Xk → Xk−1 up to an algebraic set of smaller dimension,

but this is excluded since Z projects onto Xk−1 and Z ? Xk . ?



Towards The Green-Griffiths-Lang Conjecture 11

3.2 Definition For k ≥ 1, let Z ⊂ Xk be an irreducible algebraic subset of Xk . We

assume moreover that Z ?⊂ Dk = P(TXk−1/Xk−2) (and put here D1 = ∅ in what

follows to avoid to have to single out the case k = 1). In this situation we say that

(Z, W) is of general type modulo Xk → X if either W = 0, or rankW ≥ 1 and there

exists p ∈ Q+ such that KW ⊗ OXk (p)|Z is big over Z, possibly after replacing

Z by a suitable nonsingular model ?Z (and pulling-back W and OXk (p)|Z to the

nonsingular variety ?Z ).

The main result of [4] mentioned in the introduction as Theorem 1.3 implies the

following important “induction step”.

3.3 Proposition Let (X, V ) be a directed pair where X is projective algebraic.

Take an irreducible algebraic subset Z ?⊂ Dk of the associated k-jet Semple bundle

Xk that projects onto Xk−1, k ≥ 1, and assume that the induced directed space

(Z, W) ⊂ (Xk , Vk) is of general type modulo Xk → X, rankW ≥ 1. Then there

exists a divisor ? ⊂ Z? in a sufficiently high stage of the Semple tower (Z?, W?)

associated with (Z, W), such that every non constant holomorphic map f : C → X

tangent to V that satisfies f[k](C) ⊂ Z also satisfies f[k+?](C) ⊂ ?.

Proof Let E ⊂ Z be a divisor containing Zsing ∪ (Z ∩ π
−1
k,0(Sing(V ))), chosen so

that on the nonsingular Zariski open set Z ? = Z?E all linear spaces TZ ? , Vk|Z ?

and W ? = TZ ? ∩ Vk are subbundles of TXk |Z ? , the first two having a transverse

intersection on Z ?. By taking closures over Z ? in the absolute Semple tower of X, we

get (singular) directed pairs (Z?, W?) ⊂ (Xk+?, Vk+?), which we eventually resolve

into (?Z ?,
?W ?) ⊂ (?X k+?,

?V k+?) over nonsingular bases. By construction, locally

bounded sections of O?X k+?
(m) restrict to locally bounded sections of O?Z?

(m) over
?Z ?.

Since Theorem 1.3 and the related estimate (1.10) are universal in the category

of directed varieties, we can apply them by replacing X with ?Z ⊂ ?X k , the order k

by a new index ?, and F by

Fk = μ
∗
??

OXk (p) ⊗ π
∗
k,0OX (−εA)

?

|Z

?

where μ : ?Z → Z is the desingularization, p ∈ Q+ is chosen such that KW ⊗

Oxk (p)|Z is big, A is an ample bundle on X and ε ∈ Q∗
+is small enough. The

assumptions show that K ?W ⊗ Fk is big on ?Z, therefore, by applying our theorem and

taking m ? ? ? 1, we get in fine a large number of (metric bounded) sections of

O?Z?
(m) ⊗?π

∗
k+?,kO

? m

?r ?

?

1 +
1

2
+ · · · +

1

?

?

Fk

?

= O?Xk+?
(ma?

) ⊗?π
∗
k+?,0O

?

−
mε

kr

?

1 +
1

2
+ · · · +

1

k

?

A

?

|?Z?
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where a? ∈ Qk+?

+ is a positive weight (of the form (0, . . . , λ, . . . , 0, 1) with some

non zero component λ ∈ Q+ at index k). These sections descend to metric bounded

sections of

OXk+?
((1 + λ)m) ⊗?π

∗
k+?,0O

?

−
mε

kr

?

1 +
1

2
+ · · · +

1

k

?

A

?

|Z?

.

Since A is ample on X, we can apply the fundamental vanishing theorem (see e.g.

[2] or [4], Statement 8.15), or rather an “embedded” version for curves satisfying

f[k](C) ⊂ Z, proved exactly by the same arguments. The vanishing theorem implies

that the divisor ? of any such section satisfies the conclusions of Proposition 3.3,

possibly modulo exceptional divisors of ?Z → Z; to take care of these, it is enough

to add to ? the inverse image of the divisor E = Z?Z ? initially selected. ?

4 Strong General Type Condition for Directed Manifolds

Our main result is the following partial solution to the Green-Griffiths-Lang conjec-

ture, providing a sufficient algebraic condition for the analytic conclusion to hold

true. We first give an ad hoc definition.

4.1 Definition Let (X, V ) be a directed pair where X is projective algebraic. We

say that that (X, V ) is “strongly of general type” if it is of general type and for every

irreducible algebraic set Z ? Xk , Z ?⊂ Dk , that projects onto X, the induced directed

structure (Z, W) ⊂ (Xk, Vk) is of general type modulo Xk → X.

4.2 Example The situation of a product (X, V ) = (X ?
, V ?

)× (X ??
, V ??

) described in

(1.11) shows that (X, V ) canbe of general typewithout being strongly of general type.

In fact, if (X ?
, V ?

) and (X ??
, V ??

) are of general type, then KV = pr? ∗KV ? ⊗pr?? ∗KV ??

is big, so (X, V ) is again of general type. However

Z = P(pr? ∗V ?
) = X ?

1 × X ?? ⊂ X1

has a directed structure W = pr? ∗V ?
1 which does not possess a big canonical bundle

over Z, since the restriction of KW to any fiber {x ?} × X ?? is trivial. The higher

stages (Zk, Wk) of the Semple tower of (Z, W) are given by Zk = X ?
k+1 × X ?? and

Wk = pr? ∗V ?
k+1, so it is easy to see that GGk(X, V ) contains Zk−1. Since Zk projects

onto X,we have hereGG(X, V ) = X (see [6] formore sophisticated indecomposable

examples).

4.3 Remark It follows from Definition 3.2 that (Z, W) ⊂ (Xk, Vk) is automatically

of general type modulo Xk → X if OXk (1)|Z is big. Notice further that

OXk (1 + ε)|Z =
?
OXk (ε) ⊗ π

∗
k,k−1OXk−1(1) ⊗ O(Dk)

?

|Z
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where O(Dk)|Z is effective and OXk (1) is relatively ample with respect to the pro-

jection Xk → Xk−1. Therefore the bigness of OXk−1(1) on Xk−1 also implies that

every directed subvariety (Z, W) ⊂ (Xk , Vk) is of general type modulo Xk → X.

If (X, V ) is of general type, we know by the main result of [4] that OXk (1) is big

for k ≥ k0 large enough, and actually the precise estimates obtained therein give

explicit bounds for such a k0. The above observations show that we need to check

the condition of Definition 4.1 only for Z ⊂ Xk , k ≤ k0. Moreover, at least in the

case where V , Z , and W = TZ ∩ Vk are nonsingular, we have

KW ? KZ ⊗ det(TZ/W) ? KZ ⊗ det(TXk/Vk)|Z ? KZ/Xk−1 ⊗ OXk (1)|Z .

Thus we see that, in some sense, it is only needed to check the bigness of KW modulo

Xk → X for “rather special subvarieties” Z ⊂ Xk over Xk−1, such that KZ/Xk−1 is

not relatively big over Xk−1. ?

4.4 Hypersurface case Assume that Z ?= Dk is an irreducible hypersurface of Xk
that projects onto Xk−1. To simplify things further, also assume that V is nonsingular.

Since the Semple jet-bundles Xk form a tower of Pr−1-bundles, their Picard groups

satisfy Pic(Xk) ? Pic(X) ⊕ Zk and we have OXk (Z) ? OXk (a) ⊗ π
∗
k,0B for some

a ∈ Zk and B ∈ Pic(X), where ak = d > 0 is the relative degree of the hypersurface

over Xk−1. Let σ ∈ H 0
(Xk , OXk (Z)) be the section defining Z in Xk . The induced

directed variety (Z, W) has rankW = r − 1 = rankV − 1 and formula (2.11) yields

KVk = OXk (−(r − 1)1) ⊗ π
∗
k,0(KV ). We claim that

KW ⊃
?
KVk⊗OXk (Z)

?

|Z
⊗JS =

?
OXk (a−(r−1)1)⊗π

∗
k,0(B⊗KV )

?

|Z
⊗JS (4.1)

where S ? Z is the set (containing Zsing) where σ and dσ|Vk both vanish, and JS is

the ideal locally generated by the coefficients of dσ|Vk along Z = σ−1
(0). In fact, the

intersection W = TZ ∩ Vk is transverse on Z?S ; then (4.1) can be seen by looking

at the morphism

Vk|Z

dσ|Vk

−−−−→OXk (Z)|Z ,

andobserving that the contraction by KVk = ?
rV ∗
k provides ametric bounded section

of the canonical sheaf KW . In order to investigate the positivity properties of KW , one

has to show that B cannot be too negative, and in addition to control the singularity

set S. The second point is a priori very challenging, but we get useful information for

the first point by observing that σ provides a morphism π
∗
k,0OX (−B) → OXk (a),

hence a nontrivial morphism

OX (−B) → Ea := (πk,0)∗OXk (a)

By [1, ,Section12] , there exists a filtration on Ea such that the graded pieces are

irreducible representations of GL(V ) contained in (V ∗
)
⊗?, ? ≤ |a|. Therefore we

get a nontrivial morphism
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OX (−B) → (V ∗
)
⊗?

, ? ≤ |a|. (4.2)

If we know about certain (semi-)stability properties of V , this can be used to control

the negativity of B. ?

We further need the following useful concept that slightly generalizes entire curve

loci.

4.5 Definition If Z is an algebraic set contained in some stage Xk of the Semple

tower of (X, V ), we define its “induced entire curve locus” IELX,V (Z) ⊂ Z to be

the Zariski closure of the union
?
f[k](C) of all jets of entire curves f : (C, TC) →

(X, V ) such that f[k](C) ⊂ Z.

We have of course IELX,V (IELX,V (Z)) = IELX,V (Z) by definition. It is not

hard to check that modulo certain “vertical divisors ” of Xk , the IELX,V (Z) locus

is essentially the same as the entire curve locus ECL(Z, W) of the induced directed

variety, but we will not use this fact here. Notice that if Z =
?
Zα is a decomposition

of Z into irreducible divisors, then

IELX,V (Z) =
?

α

IELX,V (Zα).

Since IELX,V (Xk) = ECLk(X, V ), proving the Green-Griffiths-Lang property

amounts to showing that IELX,V (X) ? X in the stage k = 0 of the tower. The

basic step of our approach is expressed in the following statement.

4.6 Proposition Let (X, V ) be a directed variety and p0 ≤ n = dim X, p0 ≥ 1.

Assume that there is an integer k0 ≥ 0 such that for every k ≥ k0 and every

irreducible algebraic set Z ? Xk , Z ?⊂ Dk , such that dim πk,k0(Z) ≥ p0, the

induced directed structure (Z, W) ⊂ (Xk , Vk) is of general type modulo Xk → X.

Then dim ECLk0(X, V ) < p0.

Proof We argue here by contradiction, assuming that dim ECLk0(X, V ) ≥ p0. If

p?
0 := dim ECLk0(X, V ) > p0

and if we can prove the result for p?
0, we will already get a contradiction, hence

we can assume without loss of generality that dim ECLk0(X, V ) = p0. The main

argument consists of producing inductively an increasing sequence of integers

k0 < k1 < · · · < k j < · · ·

and directed varieties (Z j , W j
) ⊂ (Xk j , Vk j ) satisfying the following properties :

(3.6.1) Z0 is one of the irreducible components of ECLk0(X, V ) and dim Z0 = p0.

(3.6.2) Z j is one of the irreducible components of ECLk j (X, V ) and πk j ,k0(Z
j
) =

Z0.
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(3.6.3) For all j ≥ 0, IELX,V (Z j ) = Z j and rankW j ≥ 1.

(3.6.4) For all j ≥ 0, the directed variety (Z j+1, W j+1
) is contained in some stage

(of order ? j = k j+1 − k j ) of the Semple tower of (Z j , W j
), namely

(Z j+1, W j+1
) ? (Z

j

? j
, W

j

? j
) ⊂ (Xk j+1 , Vk j+1)

and

W j+1 = TZ j+1 ? ∩ W
j

? j
= TZ j+1 ? ∩ Vk j (4.3)

is the induced directed structure; moreover πk j+1,k j (Z
j+1

) = Z j .

(3.6.5) For all j ≥ 0, we have Z j+1 ? Z
j

? j
but πk j+1,k j+1−1(Z

j+1
) = Z

j

? j−1
.

For j = 0, we simply take Z0 to be one of the irreducible components Sα
of ECLk0(X, V ) such that dim Sα = p0, which exists by our hypothesis that

dim ECLk0(X, V ) = p0. Clearly, ECLk0(X, V ) is the union of the IELX,V (Sα) and

we have IELX,V (Sα) = Sα for all those components, thus IELX,V (Z0) = Z0 and

dim Z0 = p0. Assume that (Z
j
, W j

) has been constructed. The subvariety Z j can-

not be contained in the vertical divisor Dk j . In fact no irreducible algebraic set Z such

that IELX,V (Z) = Z can be contained in a vertical divisor Dk , because πk,k−2(Dk)

corresponds to stationary jets in Xk−2 ; as every non constant curve f has non station-

ary points, its k-jet f[k] cannot be entirely contained in Dk ; also the induced directed

structure (Z, W) must satisfy rankW ≥ 1 otherwise IELX,V (Z) ? Z. Condition

(3.6.2) implies that dim πk j ,k0(Z
j
) ≥ p0, thus (Z j , W j

) is of general type modulo

Xk j → X by the assumptions of the proposition. Thanks to Proposition 3.3, we get

an algebraic subset ? ? Z
j

?
in some stage of the Semple tower (Z

j

?
) of Z j such that

every entire curve f : (C, TC) → (X, V ) satisfying f[k j ](C) ⊂ Z j also satisfies

f[k j+?](C) ⊂ ?. By definition, this implies the first inclusion in the sequence

Z j = IELX,V (Z j ) ⊂ πk j+?,k j (IELX,V (?)) ⊂ πk j+?,k j (?) ⊂ Z j

(the other ones being obvious), so we have in fact an equality throughout. Let (S?
α)

be the irreducible components of IELX,V (?). We have IELX,V (S?
α) = S?

α and one

of the components S?
α must satisfy

πk j+?,k j (S
?
α) = Z j = Z

j

0 .

We take ? j ∈ [1, ?] to be the smallest order such that Z j+1 := πk j+?,k j+? j
(S?

α) ?

Z
j

? j
, and set k j+1 = k j + ? j > k j . By definition of ? j , we have

πk j+1,k j+1−1(Z
j+1

) = Z
j

? j−1
, otherwise ? j would not be minimal. Then πk j+1,k j

(Z j+1) = Z j , hence πk j+1,k0(Z
j+1

) = Z0 by induction, and all properties (3.6.1–

3.6.5) follow easily. Now, by Observation 3.1, we have



16 J.-P. Demailly

rankW j
< rankW j−1

< · · · < rankW 1
< rankW 0 = rankV.

This is a contradiction because we cannot have such an infinite sequence. Proposi-

tion 4.6 is proved. ?

The special case k0 = 0, p0 = n of Proposition 4.6 yields the following conse-

quence.

4.7 Partial solution to the generalized GGL conjecture Let (X, V ) be a directed

pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture holds

true for (X, V ), namely ECL(X, V ) ? X, in other words there exists a proper

algebraic variety Y ? X such that every non constant holomorphic curve f : C → X

tangent to V satisfies f (C) ⊂ Y .

4.8 Remark The proof is not very constructive, but it is however theoretically ef-

fective. By this we mean that if (X, V ) is strongly of general type and is taken in a

bounded family of directed varieties, i.e. X is embedded in some projective space

PN with some bound δ on the degree, and P(V ) also has bounded degree ≤ δ?

when viewed as a subvariety of P(TPN ), then one could theoretically derive bounds

dY (n, δ, δ?
) for the degree of the locus Y . Also, there would exist bounds k0(n, δ, δ

?
)

for the orders k and bounds dk(n, δ, δ
?
) for the degrees of subvarieties Z ⊂ Xk that

have to be checked in the definition of a pair of strong general type. In fact, [4]

produces more or less explicit bounds for the order k such that Proposition 3.3 holds

true. The degree of the divisor ? is given by a section of a certain twisted line bundle

OXk (m) ⊗ π
∗
k,0OX (−A) that we know to be big by an application of holomorphic

Morse inequalities – and the bounds for the degrees of (Xk, Vk) then provide bounds

for m. ?

4.9 Remark The condition that (X, V ) is strongly of general type seems to be related

to some sort of stability condition. We are unsure what is the most appropriate

definition, but here is one that makes sense. Fix an ample divisor A on X. For every

irreducible subvariety Z ⊂ Xk that projects onto Xk−1 for k ≥ 1, and Z = X = X0
for k = 0, we define the slope μA(Z, W) of the corresponding directed variety

(Z, W) to be

μA(Z, W) =
inf λ

rankW
,

where λ runs over all rational numbers such that there exists m ∈ Q+ for which

KW ⊗
?
OXk (m) ⊗ π

∗
k,0O(λA)

?

|Z
is big on Z

(again, we assume here that Z ?⊂ Dk for k ≥ 2). Notice that (X, V ) is of general

type if and only if μA(X, V ) < 0, and that μA(Z, W) = −∞ if OXk (1)|A is big.

Also, the proof of Lemma 2.5 shows that

μA(Xk, Vk) ≤ μA(Xk−1, Vk−1) ≤ . . . ≤ μA(X, V ) for all k
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(with μA(Xk, Vk) = −∞ for k ≥ k0 ? 1 if (X, V ) is of general type). We say

that (X, V ) is A-jet-stable (resp. A-jet-semi-stable) if μA(Z, W) < μA(X, V ) (resp.

μA(Z, W) ≤ μA(X, V )) for all Z ? Xk as above. It is then clear that if (X, V ) is of

general type and A-jet-semi-stable, then it is strongly of general type in the sense of

Definition 4.1. It would be useful to have a better understanding of this condition of

stability (or any other one that would have better properties). ?

4.10 Example (case of surfaces) Assume that X is a minimal complex surface of

general type and V = TX (absolute case). Then KX is nef and big and the Chern

classes of X satisfy c1 ≤ 0 (−c1 is big and nef) and c2 ≥ 0. The Semple jet-bundles

Xk form here a tower of P1-bundles and dim Xk = k + 2. Since det V ∗ = KX
is big, the strong general type assumption of 4.6 and 4.8 need only be checked

for irreducible hypersurfaces Z ⊂ Xk distinct from Dk that project onto Xk−1, of

relative degree m. The projection πk,k−1 : Z → Xk−1 is a ramified m : 1 cover.

Putting OXk (Z) ? OXk (a) ⊗ πk,0(B), B ∈ Pic(X), we can apply (4.1) to get an

inclusion

KW ⊃
?
OXk (a − 1) ⊗ π

∗
k,0(B ⊗ KX )

?

|Z
⊗ JS, a ∈ Zk, ak = m.

Let us assume k = 1 and S = ∅ to make things even simpler, and let us perform

numerical calculations in the cohomology ring

H •
(X1, Z) = H •

(X)[u]/(u2 + c1u + c2), u = c1(OX1(1))

(cf. [3, Section2] for similar calculations and more details). We have

Z ≡ mu + b where b = c1(B) and KW ≡ (m − 1)u + b − c1.

We are allowed here to add to KW an arbitrary multiple OX1(p), p ≥ 0, which we

rather write p = mt + 1 − m, t ≥ 1 − 1/m. An evaluation of the Euler-Poincaré

characteristic of KW + OX1(p)|Z requires computing the intersection number

?
KW + OX1(p)|Z

?2
· Z =

?
mt u + b − c1

?2
(mu + b)

= m2t2
?
m(c21 − c2) − bc1

?
+ 2mt(b − mc1)(b − c1)

+ m(b − c1)
2
, (4.4)

taking into account that u3 · X1 = c21 − c2. In case S ?= ∅, there is an additional

(negative) contribution from the ideal JS which is O(t) since S is at most a curve. In

any case, for t ? 1, the leading term in the expansion is m2t2(m(c21 −c2)−bc1) and

the other terms are negligible with respect to t2, including the one coming from S.

We know that TX is semistable with respect to c1(KX ) = −c1 ≥ 0.Multiplication by

the section σ yields a morphism π
∗
1,0OX (−B) → OX1(m), hence by direct image,

a morphism OX (−B) → SmT ∗
X . Evaluating slopes against KX (a big nef class),

the semistability condition implies bc1 ≤ m
2
c21 , and our leading term is bigger that
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m3t2( 1
2
c21 − c2). We get a positive answer in the well-known case where c

2
1 > 2c2,

corresponding to TX being almost ample. Analyzing positivity for the full range of

values (k, m, t) and of singular sets S seems an unsurmountable task at this point; in

general, calculations made in [3, 12] indicate that the Chern class and semistability

conditions become less demanding for higher order jets (e.g. c21 > c2 is enough for

Z ⊂ X2, and c
2
1 >

9
13
c2 suffices for Z ⊂ X3). When rankV = 1, major gains

come from the use of Ahlfors currents in combination with McQuillan’s tautological

inequalities [11]. We therefore hope for a substantial strengthening of the above

sufficient conditions, and a better understanding of the stability issues, possibly

in combination with a use of Ahlfors currents and tautological inequalities. In the

case of surfaces, an application of Proposition4.6 for k0 = 1 and an analysis of

the behaviour of rank 1 (multi-)foliations on the surface X (with the crucial use of

[11]) was the main argument used in [3] to prove the hyperbolicity of very general

surfaces of degree d ≥ 21 in P3. For these surfaces, one has c21 < c2 and c
2
1/c2 → 1

as d → +∞. Applying Proposition4.6 for higher values k0 ≥ 2 might allow to

enlarge the range of tractable surfaces, if the behavior of rank 1 (multi)-foliations on

Xk0−1 can be analyzed independently.

5 Algebraic Jet-Hyperbolicity Implies Kobayashi

Hyperbolicity

Let (X, V ) be a directed variety, where X is an irreducible projective variety; the

concept still makes sense when X is singular, by embedding (X, V ) in a projective

space (PN , TPN ) and taking the linear space V to be an irreducible algebraic subset

of TPn that is contained in TX at regular points of X.

5.1 Definition Let (X, V ) be a directed variety. We say that (X, V ) is algebraically

jet-hyperbolic if for every k ≥ 0 and every irreducible algebraic subvariety Z ⊂ Xk
that is not contained in the union?k of vertical divisors, the induced directed structure

(Z, W) either satisfies W = 0, or is of general type modulo Xk → X, i.e. has a

desingularization (?Z, ?W), μ : ?Z → Z, such that some twisted canonical sheaf

K ?W ⊗ μ∗
(OXk (a)|Z ), a ∈ Nk , is big.

Proposition 4.6 then gives

5.2 Theorem Let (X, V ) be an irreducible projective directed variety that is alge-

braically jet-hyperbolic in the sense of the above definition. Then (X, V ) is Brody

(or Kobayashi ) hyperbolic, i.e. ECL(X, V ) = ∅.

Proof Here we apply Proposition 4.6 with k0 = 0 and p0 = 1. It is enough to deal

with subvarieties Z ⊂ Xk such that dim πk,0(Z) ≥ 1, otherwise W = 0 and can

reduce Z to a smaller subvariety by (3.2). Then we conclude that dim ECL(X, V ) <

1. All entire curves tangent to V have to be constant, and we conclude in fact that

ECL(X, V ) = ∅. ?
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