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Abstract. The Green-Griffiths-Lang conjecture stipulates that for every projective variety
X of general type over C, there exists a proper algebraic subvariety of X containing all non
constant entire curves f : C → X. Using the formalism of directed varieties, we prove here
that this assertion holds true in case X satisfies a strong general type condition that is related
to a certain jet-semistability property of the tangent bundle TX .

0. Introduction

The goal of this note is to study the Green-Griffiths-Lang conjecture, as stated in [GG79]
and [Lan86]. It will be useful to work here in a more general context and consider the category
of directed projective manifolds (or varieties). Since the problems we consider are birationally
invariant, varieties can in fact always be replaced by nonsingular models whenever this is
needed. A directed projective manifold is a pair (X,V ) where X is a projective manifold
equipped with an analytic linear subspace V ⊂ TX , i.e. a closed irreducible complex analytic
subset V of the total space of TX , such that each fiber Vx = V ∩ TX,x is a complex vector
space. If X is not connected, V should rather be assumed to be irreducible merely over each
connected component of X, but we will hereafter assume that our manifolds are connected.
A morphism Φ : (X,V ) → (Y,W ) in the category of directed manifolds is an analytic map
Φ : X → Y such that Φ∗V ⊂ W . We refer to the case V = TX as being the absolute case,
and to the case V = TX/S = Ker dπ for a fibration π : X → S, as being the relative case; V
may also be taken to be the tangent space to the leaves of a singular analytic foliation on X,
or maybe even a non integrable linear subspace of TX .

We are especially interested in entire curves that are tangent to V , namely non constant
holomorphic morphisms f : (C, TC) → (X,V ) of directed manifolds. In the absolute case,
these are just arbitrary entire curves f : C→ X. The strong form of the Green-Griffiths-Lang
conjecture stipulates

0.1. GGL conjecture. Let X be a projective variety of general type. Then there exists a
proper algebraic variety Y ( X such that every entire curve f : C→ X satisfies f(C) ⊂ Y .

[The weaker form would state that entire curves are algebraically degenerate, so that
f(C) ⊂ Yf ( X where Yf might depend on f ]. The smallest admissible algebraic set Y ⊂ X
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is by definition the entire curve locus of X, defined as the Zariski closure

(0.2) ECL(X) =
⋃
f

f(C)
Zar

.

If X ⊂ PNC is defined over a number field K0 (i.e. by polynomial equations with equations with
coefficients in K0) and Y = ECL(X), it is expected that for every number field K ⊃ K0 the set
of K-points in X(K)rY is finite, and that this property characterizes ECL(X) as the smallest
algebraic subset Y of X that has the above property for all K ([Lan86]). This conjectural
arithmetical statement would be a vast generalization of the Mordell-Faltings theorem, and
is one of the strong motivations to study the purely geometric GGL conjecture as a first step.

0.3. Problem (generalized GGL conjecture). Let (X,V ) be a projective directed mani-
fold. Find geometric conditions on V ensuring that all entire curves f : (C, TC)→ (X,V ) are
contained in a proper algebraic subvariety Y ( X. Does this hold when (X,V ) is of general
type, in the sense that the canonical sheaf KV is big ?

As above, we define the entire curve locus set of a pair (X,V ) to be the smallest admissible
algebraic set Y ⊂ X, i.e.

(0.4) ECL(X,V ) =
⋃
f :(C,TC)→(X,V )

f(C)
Zar

.

In case V has no singularities, the canonical sheaf KV is defined to be (detO(V ))∗ where
O(V ) is the sheaf of holomorphic sections of V , but in general this naive definition would
not work. Take for instance a generic pencil of elliptic curves λP (z) + µQ(z) = 0 of degree
3 in P2

C, and the linear space V consisting of the tangents to the fibers of the rational map
P2
C > P1

C defined by z 7→ Q(z)/P (z). Then V is given by

0 −→ O(V ) −→ O(TP2
C
)
PdQ−QdP→ OP2

C
(6)⊗ JS −→ 0

where S = Sing(V ) consists of the 9 points {P (z) = 0} ∩ {Q(z) = 0}, and JS is the corre-
sponding ideal sheaf of S. Since detO(TP2) = O(3), we see that (det(O(V ))∗ = O(3) is ample,
thus Problem 0.3 would not have a positive answer (all leaves are elliptic or singular rational
curves and thus covered by entire curves). An even more “degenerate” example is obtained
with a generic pencil of conics, in which case (det(O(V ))∗ = O(1) and #S = 4.

If we want to get a positive answer to Problem 0.3, it is therefore indispensable to give a
definition of KV that incorporates in a suitable way the singularities of V ; this will be done
in Def. 1.2. The goal is then to give a positive answer to Problem 0.3 under some possibly
more restrictive conditions for the pair (X,V ). These conditions will be expressed in terms
of the tower of Semple jet bundles

(0.5) (Xk, Vk)→ (Xk−1, Vk−1)→ . . .→ (X1, V1)→ (X0, V0) := (X,V )

which we define more precisely in Section 1, following [Dem95]. It is constructed inductively
by setting Xk = P (Vk−1) (projective bundle of lines of Vk−1), and all Vk have the same rank
r = rankV , so that dimXk = n+k(r−1) where n = dimX. If OXk

(1) is the tautological line
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bundle over Xk associated with the projective structure, we define the k-stage Green-Griffiths
locus of (X,V ) to be

(0.6) GGk(X,V ) =
⋂
m∈N

(
base locus of OXk

(m)⊗ π∗k,0A−1
)

where A is any ample line bundle on X and πk,` : Xk → X` is the natural projection from
Xk to X`, 0 6 ` 6 k. Clearly, GGk(X,V ) does not depend on the choice of A. The basic
vanishing theorem for entire curves (cf. [GG79], [SY96] and [Dem95]) asserts that for every
entire curve f : (C, TC)→ (X,V ), then its k-jet f[k] : (C, TC)→ (Xk, Vk) satisfies

(0.7) f[k](C) ⊂ GGk(X,V ), hence f(C) ⊂ πk,0 (GGk(X,V )) .

It is therefore natural to define the global Green-Griffiths locus of (X,V ) to be

(0.8) GG(X,V ) =
⋂
k∈N

πk,0 (GGk(X,V )) .

By (0.7) we infer that

(0.9) ECL(X,V ) ⊂ GG(X,V ).

The main result of [Dem11] (Theorem 2.37 and Cor. 2.38) implies the following very useful
information:

0.10. Theorem. Assume that (X,V ) is of “general type”, i.e. that the canonical sheaf KV

is big on X. Then there exists an integer k0 such that GGk(X,V ) is a proper algebraic subset
of Xk for k > k0 [ though πk,0(GGk(X,V )) might still be equal to X for all k ].

In fact, if F is an invertible sheaf on X such that KV ⊗F is big, the probabilistic estimates
of [Dem11, Cor. 2.38] produce sections of

(0.11) OXk
(m)⊗ π∗k,0O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
)

for m � k � 1. The (long and involved) proof uses a curvature computation and singular
holomorphic Morse inequalities to show that the line bundles involved in (0.11) are big on
Xk for k � 1. One applies this to F = A−1 with A ample on X to produce sections and
conclude that GGk(X,V ) ( Xk.

Thanks to (0.9), the GGL conjecture is satisfied whenever GG(X,V ) ( X. By [DMR10],
this happens for instance in the absolute case when X is a generic hypersurface of de-
gree d > 2n
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in Pn+1. However, as [Lan86] already mentioned, very simple examples show
that one can have GG(X,V ) = X even when (X,V ) is of general type, and this already
occurs in the absolute case as soon as dimX > 2. A typical example is a product of directed
manifolds

(0.12) (X,V ) = (X ′, V ′)× (X ′′, V ′′), V = pr′ ∗ V ′ ⊕ pr′′ ∗ V ′′.

The absolute case V = TX , V ′ = TX′ , V
′′ = TX′′ on a product of curves is the simplest

instance. It is then easy to check that GG(X,V ) = X, cf. (3.2). Diverio and Rousseau
[DR13] have given many more such examples, including the case of indecomposable varieties
(X,TX), e.g. Hilbert modular surfaces, or more generally compact quotients of bounded
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symmetric domains of rank > 2. The problem here is the failure of some sort of stability
condition that is introduced in Section 3. This leads to a somewhat technical concept of more
manageable directed pairs (X,V ) that we call strongly of general type, see Def. 3.1. Our main
result can be stated

0.13. Theorem (partial solution to the GGL conjecture). Let (X,V ) be a directed
pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture holds true
for (X,V ), namely ECL(X,V ) is a proper algebraic subvariety of X.

The proof proceeds through a complicated induction on n = dimX and k = rankV ,
which is the main the main reason why we have to introduce directed varieties, even in the
absolute case. An interesting feature of this result is that the conclusion on ECL(X,V ) is
reached without implying to know anything about the Green-Griffiths locus GG(X,V ), even
a posteriori. Nevetherless, this is not yet enough to confirm the GGL conjecture. Our hope is
that pairs (X,V ) that are of general type without being strongly of general type – and thus
exhibit some sort of “jet-instability” – can be investigated by different methods, e.g. by the
diophantine approximation techniques of McQuillan [McQ98].

1. Semple jet bundles and associated canonical sheaves

Let (X,V ) be a directed projective manifold and r = rankV , that is, the dimension
of generic fibers. Then V is actually a holomorphic subbundle of TX on the complement
X r Vsing of a certain minimal analytic set Vsing ( X, called hereafter the singular set of V .
If µ : X̂ → X is a proper modification (a composition of blow-ups with smooth centers, say),
we get a directed manifold (X̂, V̂ ) by taking V̂ to be the closure of µ−1∗ (V ′), where V ′ = V|X′
is the restriction of V over a Zariski open set X ′ ⊂ XrVsing such that µ : µ−1(X ′)→ X ′ is a
biholomorphism. We will be interested in taking modifications realized by iterated blow-ups
of certain nonsingular subvarieties of the singular set Vsing, so as to eventually “improve” the
singularities of V ; outside of Vsing the effect of blowing-up will be irrelevant, as one can see
easily.

Following [Dem11], the canonical sheaf KV is defined to be the rank 1 analytic sheaf such
that

(1.1) KV (U) = sheaf of locally bounded sections of OX(ΛrV ′∗)(U ∩X ′)

where r = rank(V ), X ′ = X r Vsing, V ′ = V|X′ , and “bounded” means bounded with respect

to a smooth hermitian metric h on TX . This is easily seen to be the same as LV ⊗ JV , where
LV is the invertible sheaf OX(ΛrV ∗)∗∗, JV ⊂ OX is the ideal sheaf such that LV ⊗ JV is the
image of the natural morphism O(ΛrT ∗X) → O(ΛrV ∗) → LV , and JV is the integral closure
of JV in OX . The reason is that the integral closure G of a coherent ideal G = (gk) ⊂ OX
can be defined analytically as the set of germs f such that |f | 6 C

∑
|gk| for some constant

C > 0. It follows in particular that KV is a coherent sheaf. By blowing-up JV and taking a
desingularization X̂, one can always find a log-resolution of JV (or KV ), i.e. a modification
µ : X̂ → X such that µ∗JV ⊂ O

X̂
is an invertible ideal sheaf (hence integrally closed);

it follows that µ∗JV = µ∗JV and µ∗KV = µ∗LV ⊗ µ∗JV are invertible sheaves on X̂. Notice
that for any modification µ′ : (X ′, V ′) → (X,V ), there is always a well defined natural
morphism

(1.2) µ′ ∗KV → KV ′

4



(though it need not be an isomorphism, and KV ′ is possibly non invertible even when µ′ is
taken to be a log-resolution of KV ). Indeed (µ′)∗ = dµ′ : V ′ → µ∗V is continuous with respect
to ambient hermitian metrics on X and X ′, and going to the dual reverses the arrows while
preserving boundedness with respect to the metrics. If µ′′ : X ′′ → X ′ provides a simultaneous
log-resolution of KV ′ and µ′ ∗KV , we get a non trivial morphism of invertible sheaves

(1.3) (µ′ ◦ µ′′)∗KV = µ′′ ∗µ′ ∗KV −→ µ′′ ∗KV ′ ,

hence the bigness of µ′ ∗KV with imply that of µ′′ ∗KV ′ .

1.4. Definition. We say that the rank 1 sheaf KV is “big” if the invertible sheaf µ∗KV is
big in the usual sense for any log resolution µ : X̂ → X of KV . Finally, we say that (X,V )
is of general type if there exists a modification µ′ : (X ′, V ′) → (X,V ) such that KV ′ is big ;
any higher blow-up µ′′ : (X ′′, V ′′)→ (X ′, V ′) then also yields a big canonical sheaf by (1.2).

Clearly, “general type” is a birationally (or bimeromorphically) invariant concept, by the
very definition. When dimX = n and V ⊂ TX is a subbundle of rank r, one constructs a
tower of “Semple k-jet bundles” πk,k−1 : (Xk, Vk) → (Xk−1, Vk−1) that are Pr−1-bundles,
with dimXk = n+ k(r − 1) and rank(Vk) = r. For this, we take (X0, V0) = (X,V ), and for
every k > 1, we set inductively Xk := P (Vk−1) and

Vk := (πk,k−1)−1∗ OXk
(−1) ⊂ TXk

,

where OXk
(1) is the tautological line bundle on Xk, πk,k−1 : Xk = P (Vk−1) → Xk−1 the

natural projection and (πk,k−1)∗ = dπk,k−1 : TXk
→ π∗k,k−1TXk−1

its differential (cf. [Dem95]).
In other terms, we have exact sequences

0 −→ TXk/Xk−1
−→ Vk

(πk,k−1)∗−→ OXk
(−1) −→ 0,(1.5)

0 −→ OXk
−→ π∗Vk−1 ⊗ OXk

(1) −→ TXk/Xk−1
−→ 0,(1.6)

where the last line is the Euler exact sequence associated with the relative tangent bundle of
P (Vk−1)→ Xk−1. Notice that we by definition of the tautological line bundle we have

OXk
(−1) ⊂ π∗k,k−1Vk−1 ⊂ π∗k,k−1TXk−1

,

and also rank(Vk) = r. Let us recall also that for k > 2, there are “vertical divisors”
Dk = P (TXk−1/Xk−2

) ⊂ P (Vk−1) = Xk, and that Dk is the zero divisor of the section of
OXk

(1) ⊗ π∗k,k−1OXk−1
(−1) induced by the second arrow of the first exact sequence (1.5),

when k is replaced by k − 1. This yields in particular

(1.7) OXk
(1) = π∗k,k−1OXk−1

(1)⊗ O(Dk).

By composing the projections we get for all pairs of indices 0 6 j 6 k natural morphisms

πk,j : Xk → Xj , (πk,j)∗ = (dπk,j)|Vk
: Vk → (πk,j)

∗Vj ,

and for every k-tuple a = (a1, . . . , ak) ∈ Zk we define

OXk
(a) =

⊗
16j6k

π∗k,jOXj (aj), πk,j : Xk → Xj .

5



We extend this definition to all weights a ∈ Qk to get a Q-line bundle in Pic(X)⊗Z Q. Now,
Formula (1.7) yields

(1.8) OXk
(a) = OXk

(m)⊗ O(−b ·D) where m = |a| =
∑
aj , b = (0, b2, . . . , bk)

and bj = a1 + . . .+ aj−1, 2 6 j 6 k.

When Vsing 6= ∅, one can always define Xk and Vk to be the respective closures of X ′k, V ′k
associated with X ′ = X r Vsing and V ′ = V|X′ , where the closure is taken in the nonsingular
“absolute” Semple tower (Xk,Ak) obtained from (X0,A0) = (X,TX). We can then replace
(Xk, Vk) by a modification (X̂k, V̂ k) if we want to work with a non singular model X̂k of Xk.
The exceptional set of X̂k over Xk can be chosen to lie above Vsing ⊂ X, and proceeding
inductively with respect to k, we can also arrange the modifications in such a way that we
get a tower structure (X̂k+1, V̂k+1)→ (X̂k, V̂k) ; however, in general, it will not be possible to
achieve that V̂k is a subbundle of TXk

.

It is not true that KV̂ k
is big in case (X,V ) is of general type (especially since the fibers

of Xk → X are towers of Pr−1 bundles, and the canonical bundles of projective spaces are
always negative !). However, a “twisted version” holds true.

1.9. Lemma. If (X,V ) is of general type, then all pairs (Xk, Vk) have a twisted canonical
bundle KVk

⊗ OXk
(p) that is still big when one multiplies KVk

by a suitable Q-line bundle
OXk

(p), p ∈ Q+.

Proof. First assume that V has no singularities. The exact sequences (1.5) and (1.6) provide

KVk
:= detV ∗k = det(T ∗Xk/Xk−1

)⊗ OXk
(1) = π∗k,k−1KVk−1

⊗ OXk
(−(r − 1))

where r = rank(V ). Inductively we get

(1.10) KVk
= π∗k,0KV ⊗ OXk

(−(r − 1)1), 1 = (1, ..., 1) ∈ Nk.

We know by [Dem95] that OXk
(c) is relatively ample over X when we take the special weight

c = (2 3k−2, ..., 2 3k−j−1, ..., 6, 2, 1), hence

KVk
⊗ OXk

((r − 1)1 + εc) = π∗k,0KV ⊗ OXk
(εc)

is big over Xk for any sufficiently small positive rational number ε ∈ Q∗+. Thanks to For-
mula (1.8), we can in fact replace the weight (r−1)1+εc by its total degree p = (r−1)k+ε|c| ∈
Q+. The general case of a singular linear space follows by considering suitable modifications
of X (notice that the condition for a section of V̂∗k to be bounded with respect to the dual
of a metric on Xk is less restrictive than saying that is is bounded with respect to the dual
of the pull-back of a metric taken downstairs on a birational model X of X, so we eventually
get even more sections than those coming from downstairs in the above formula).

2. Induced directed structure on a subvariety of a jet space.

Let Z be an irreducible algebraic subset of some k-jet bundle Xk over X, such that Z
projects onto Xk−1, i.e. πk,k−1(Z) = Xk−1. We define the linear subspace W ⊂ TZ ⊂ TXk|Z
to be the closure

(2.1) W := TZ′ ∩ Vk
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taken on a suitable Zariski open set Z ′ ⊂ Zreg where the intersection TZ′ ∩ Vk has constant
rank and is a subbundle of TZ′ . Alternatively, we could also take W to be the closure of
TZ′ ∩ Vk in the k-th stage (Xk,Ak) of the absolute Semple tower. We say that (Z,W ) is the
induced directed variety structure. In the sequel, we always consider such a subvariety Z of
Xk as a directed pair (Z,W ) by taking the induced structure described above. Let us first
quote the following easy observation.

2.2. Observation. For k > 1, let Z ( Xk be an irreducible algebraic subset of Xk that
projects onto Xk−1. Then the induced directed structure (Z,W ) ⊂ (Xk, Vk), satisfies

1 6 rankW < r := rank(Vk).

Proof. Take a Zariski open subset Z ′ ⊂ Zreg such that W ′ = TZ′ ∩ Vk is a vector bundle
over Z ′. Since Xk → Xk−1 is a Pr−1-bundle, Z has codimension at most r − 1 in Xk.
Therefore rankW > rankVk − (r − 1) > 1. On the other hand, if we had rankW = rankVk
generically, then TZ′ would contain Vk|Z′ , in particular it would contain all vertical directions
TXk/Xk−1

⊂ Vk that are tangent to the fibers of Xk → Xk−1. By taking the flow along vertical
vector fields, we would conclude that Z ′ is a union of fibers of Xk → Xk−1 up to an algebraic
set of smaller dimension, but this is excluded since Z projects onto Xk−1 and Z ( Xk.

2.3. Definition. For k > 1, let Z ⊂ Xk be an irreducible algebraic subset of Xk that projects
onto Xk−1. We assume moreover that Z 6⊂ Dk = P (TXk−1/Xk−2

) (and put here D1 = ∅ in
what follows to avoid to have to single out the case k = 1). In this situation we say that
(Z,W ) is of general type modulo Xk → X if there exists p ∈ Q+ such that KW ⊗ OXk

(p)|Z
is big over Z, possibly after replacing Z by a suitable nonsingular model Ẑ (and pulling-back
W and OXk

(p)|Z to the non singular variety Ẑ ).

The main result of [Dem11] mentioned in the introduction as Theorem 0.10 implies the
following important “induction step”.

2.4. Proposition. Let (X,V ) be a directed pair where X is projective algebraic. Take an
irreducible algebraic subset Z 6⊂ Dk of the associated k-jet Semple bundle Xk that projects
onto Xk−1, k > 1, and assume that the induced directed space (Z,W ) ⊂ (Xk, Vk) is of general
type modulo Xk → X. Then there exists a divisor Σ ⊂ Z` in a sufficiently high stage of the
Semple tower (Z`,W`) associated with (Z,W ), such that every non constant holomorphic map
f : C→ X tangent to V that satisfies f[k](C) ⊂ Z also satisfies f[k+`](C) ⊂ Σ.

Proof. Let E ⊂ Z be a divisor containing Zsing ∪ (Z ∩ π−1k,0(Vsing)), chosen so that on the
nonsingular Zariski open set Z ′ = Z r E all linear spaces TZ′ , Vk|Z′ and W ′ = TZ′ ∩ Vk are
subbundles of TXk|Z′ , the first two having a transverse intersection on Z ′. By taking closures
over Z ′ in the absolute Semple tower of X, we get (singular) directed pairs (Z`,W`) ⊂
(Xk+`, Vk+`), which we eventually resolve into (Ẑ`, Ŵ `) ⊂ (X̂k+`, V̂ k+`) over nonsingular
bases. By construction, locally bounded sections of OX̂k+`

(m) restrict to locally bounded
sections of OẐ`

(m) over Ẑ`.

Since Theorem 0.10 and the related estimate (0.11) are universal in the category of directed
varieties, we can apply them by replacing X with Ẑ ⊂ X̂k, the order k by a new index `, and
F by

Fk = µ∗
((

OXk
(p)⊗ π∗k,0OX(−εA)

)
|Z

)
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where µ : Ẑ → Z is the desingularization, p ∈ Q+ is chosen such that KW ⊗ Oxk
(p)|Z is big,

A is an ample bundle on X and ε ∈ Q∗+is small enough. The assumptions show that K
Ŵ
⊗Fk

is big on Ẑ, therefore, by applying our theorem and taking m� `� 1, we get in fine a large
number of (metric bounded) sections of

O
Ẑ`

(m)⊗ π̂∗k+`,kO
( m
`r′

(
1 +

1

2
+ . . .+

1

`

)
Fk

)
= O

X̂k+`
(ma′)⊗ π̂∗k+`,0O

(
− mε

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
|Ẑ`

where a′ ∈ Qk+`+ is a positive weight (of the form (0, . . . , λ, . . . , 0, 1) with some non zero
component λ ∈ Q+ at index k). These sections descend to metric bounded sections of

OXk+`
((1 + λ)m)⊗ π̂∗k+`,0O

(
− mε

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
|Z`

.

Since A is ample on X, we can apply the fundamental vanishing theorem (see e.g. [Dem97] or
[Dem11], Statement 8.15), or rather an “embedded” version for curves satisfying f[k](C) ⊂ Z,
proved exactly by the same arguments. The vanishing theorem implies that the divisor Σ
of any such section satisfies the conclusions of Proposition 2.4, possibly modulo exceptional
divisors of Ẑ → Z; to take care of these, it is enough to add to Σ the inverse image of the
divisor E = Z r Z ′ initially selected.

3. Strong general type condition for directed manifolds

Our main result is the following partial solution to the Green-Griffiths-Lang conjecture,
providing a sufficient algebraic condition for the analytic conclusion to hold true. We first
give an ad hoc definition.

3.1. Definition. Let (X,V ) be a directed pair where X is projective algebraic. We say
that that (X,V ) is “strongly of general type” if it is of general type and for every irreducible
algebraic set Z ( Xk, Z 6⊂ Dk, that projects onto Xk−1, k > 1, the induced directed structure
(Z,W ) ⊂ (Xk, Vk) is of general type modulo Xk → X.

3.2. Example. The situation of a product (X,V ) = (X ′, V ′)× (X ′′, V ′′) described in (0.12)
shows that (X,V ) can be of general type without being strongly of general type. In fact, if
(X ′, V ′) and (X ′′, V ′′) are of general type, then KV = pr′ ∗KV ′ ⊗ pr′′ ∗KV ′′ is big, so (X,V )
is again of general type. However

Z = P (pr′ ∗ V ′) = X ′1 ×X ′′ ⊂ X1

has a directed structure W = pr′ ∗ V ′1 which does not possess a big canonical bundle over Z,
since the restriction of KW to any fiber {x′}×X ′′ is trivial. The higher stages (Zk,Wk) of the
Semple tower of (Z,W ) are given by Zk = X ′k+1 ×X ′′ and Wk = pr′ ∗ V ′k+1, so it is easy to
see that GGk(X,V ) contains Zk−1. Since Zk projects onto X, we have here GG(X,V ) = X
(see [DR13] for more sophisticated indecomposable examples).

3.3. Remark. It follows from Definition 2.3 that (Z,W ) ⊂ (Xk, Vk) is automatically of
general type modulo Xk → X if OXk

(1)|Z is big. Notice further that

OXk
(1 + ε)|Z =

(
OXk

(ε)⊗ π∗k,k−1OXk−1
(1)⊗ O(Dk)

)
|Z
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where O(Dk)|Z is effective and OXk
(1) is relatively ample with respect to the projection

Xk → Xk−1. Therefore the bigness of OXk−1
(1) on Xk−1 also implies that every directed

subvariety (Z,W ) ⊂ (Xk, Vk) is of general type modulo Xk → X. If (X,V ) is of general
type, we know by the main result of [Dem11] that OXk

(1) is big for k > k0 large enough, and
actually the precise estimates obtained therein give explicit bounds for such a k0. The above
observations show that we need to check the condition of Definition 3.1 only for Z ⊂ Xk,
k 6 k0. Moreover, at least in the case where V , Z, and W = TZ ∩ Vk are nonsingular, we
have

KW ' KZ ⊗ det(TZ/W ) ' KZ ⊗ det(TXk
/Vk)|Z ' KZ/Xk−1

⊗ OXk
(1)|Z .

Thus we see that, in some sense, it is only needed to check the bigness of KW modulo Xk → X
for “rather special subvarieties” Z ⊂ Xk over Xk−1, such that KZ/Xk−1

is not relatively big
over Xk−1.

3.4. Hypersurface case. Assume that Z 6= Dk is an irreducible hypersurface of Xk

that projects onto Xk−1. To simplify things further, also assume that V is nonsingular.
Since the Semple jet-bundles Xk form a tower of Pr−1-bundles, their Picard groups satisfy
Pic(Xk) ' Pic(X) ⊕ Zk and we have OXk

(Z) ' OXk
(a) ⊗ π∗k,0B for some a ∈ Zk and

B ∈ Pic(X), where ak = d > 0 is the relative degree of the hypersurface over Xk−1. Let
σ ∈ H0(Xk,OXk

(Z)) be the section defining Z in Xk. The induced directed variety (Z,W )
has rankW = r−1 = rankV −1 and formula (1.10) yields KVk

= OXk
(−(r−1)1)⊗π∗k,0(KV ).

We claim that

(3.5) KW ⊃
(
KVk

⊗ OXk
(Z)
)
|Z ⊗ JS =

(
OXk

(a− (r − 1)1)⊗ π∗k,0(B ⊗KV )
)
|Z ⊗ JS

where S ( Z is the set (containing Zsing) where σ and dσ|Vk
both vanish, and JS is the

ideal locally generated by the coefficients of dσ|Vk
along Z = σ−1(0). In fact, the intersection

W = TZ ∩ Vk is transverse on Z r S ; then (3.5) can be seen by looking at the morphism

Vk|Z
dσ|Vk→ OXk

(Z)|Z ,

and observing that the contraction by KVk
= ΛrV ∗k provides a metric bounded section of

the canonical sheaf KW . In order to investigate the positivity properties of KW , one has to
show that B cannot be too negative, and in addition to control the singularity set S. The
second point is a priori very challenging, but we get useful information for the first point by
observing that σ provides a morphism π∗k,0OX(−B)→ OXk

(a), hence a nontrivial morphism

OX(−B)→ Ea := (πk,0)∗OXk
(a)

By [Dem95, Section 12], there exists a filtration on Ea such that the graded pieces are irre-
ducible representations of GL(V ) contained in (V ∗)⊗`, ` 6 |a|. Therefore we get a nontrivial
morphism

(3.6) OX(−B)→ (V ∗)⊗`, ` 6 |a|.

If we know about certain (semi-)stability properties of V , this can be used to control the
negativity of B.

We further need the following useful concept that generalizes entire curve loci.
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3.7. Definition. If Z is an algebraic set contained in some stage Xk of the Semple tower
of (X,V ), we define its “induced entire curve locus” IEL(Z) ⊂ Z to be the Zariski closure of
the union

⋃
f[k](C) of all jets of entire curves f : (C, TC)→ (X,V ) such that f[k](C) ⊂ Z.

We have of course IEL(IEL(Z)) = IEL(Z) by definition. It is not hard to check that
modulo certain “vertical divisors” of Xk, the IEL(Z) locus is essentially the same as the
entire curve locus ECL(Z,W ) of the induced directed variety, but we will not use this fact
here. Since IEL(X) = ECL(X,V ), Proving the Green-Griffiths-Lang property amounts to
showing that IEL(X) ( X in the k = 0 stage of the tower.

3.8. Theorem. Let (X,V ) be a directed pair of general type. Assume that there is an integer
k0 > 0 such that for every k > k0 and every irreducible algebraic set Z ( Xk, Z 6⊂ Dk, that
projects onto Xk−1, the induced directed structure (Z,W ) ⊂ (Xk, Vk) is of general type modulo
Xk → X. Then IEL(Xk0) ( Xk0 .

Proof. We argue here by contradiction, assuming that IEL(Xk0) = Xk0 . The main argument
consists of producing inductively an increasing sequence of integers

k0 < k1 < . . . < kj < . . .

and directed varieties (Zj ,W j) ⊂ (Xkj , Vkj ) satisfying the following properties :

(a) (Z0,W 0) = (Xk0 , Vk0) ;

(b) for all j > 0, IEL(Zj) = Zj ;

(c) Zj is an irreducible algebraic variety such that Zj ( Xkj for j > 1, Zj is not contained
in the vertical divisor Dkj = P (TXkj−1/Xkj−2

) of Xkj , and (Zj ,W j) is of general type
modulo Xkj → X (i.e. some nonsingular model is) ;

(d) for all j > 0, the directed variety (Zj+1,W j+1) is contained in some stage (of order
`j = kj+1 − kj) of the Semple tower of (Zj ,W j), namely

(Zj+1,W j+1) ⊂ (Zj`j ,W
j
`j

) ⊂ (Xkj+1
, Vkj+1

)

and
W j+1 = TZj+1 ′ ∩W j

`j
= TZj+1 ′ ∩ Vkj

is the induced directed structure.

(e) for all j > 0, we have Zj+1 ( Zj`j but πkj+1,kj+1−1(Zj+1) = Zj`j−1.

For j = 0, we have nothing to do by our hypotheses. Assume that (Zj ,W j) has been
constructed. By Proposition 2.4, we get an algebraic subset Σ ( Zj` in some stage of the
semple tower (Zj` ) of Zj such that every entire curve f : (C, TC)→ (X,V ) satisfying f[kj ](C) ⊂
Zj also satisfies f[kj+`](C) ⊂ Σ. By definition, this implies the first inclusion in the sequence

Zj = IEL(Zj) ⊂ πkj+`,kj (IEL(Σ)) ⊂ πkj+`,kj (Σ) ⊂ Zj

(the other ones being obvious), so we have in fact an equality throughout. Let (Sα) be the
irreducible components of IEL(Σ). We have IEL(Sα) = Sα and one of the components Sα
must already satisfy πkj+`,kj (Sα) = Zj = Zj0 . We take `j ∈ [1, `] to be the smallest order
such that Zj+1 := πkj+`,kj+`j (Sα) ( Zj`j , and set kj+1 = kj + `j > kj . By definition of
`j , we have πkj+1,kj+1−1(Zj+1) = Zj`j−1, otherwise `j would not be minimal. The fact that
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IEL(Sα) = Sα immediately implies IEL(Zj+1) = Zj+1. Also Zj+1 cannot be contained in
the vertical divisor Dkj+1 . In fact no irreducible algebraic set Z such that IEL(Z) = Z
can be contained in a vertical divisor Dk, because πk,k−2(Dk) corresponds to stationary jets
in Xk−2 ; as every non constant curve f has non stationary points, its k-jet f[k] cannot be
entirely contained in Dk. Finally, the induced directed structure (Zj+1,W j+1) must be of
general type modulo Xkj+1

→ X, by the assumption that (X,V ) is strongly of general type.
The inductive procedure is therefore complete.

By Observation 2.2, we have

rankW j < rankW j−1 < . . . < rankW 1 < rankW 0 = rankV.

After a sufficient number of iterations we reach rankW j = 1. In this situation the Semple
tower of Zj is trivial, KW j = W j ∗ ⊗ JW j is big, and Proposition 2.4 produces a divisor
Σ ( Zj` = Zj containing all jets of entire curves with f[kj ](C) ⊂ Zj . This contradicts the fact
that IEL(Zj) = Zj . We have reached a contradiction, and the theorem is thus proved.

3.9. Remark. As it proceeds by contradiction, the proof is unfortunately non constructive –
especially it does not give any information on the degree of the locus Y ( Xk0 whose existence
is asserted. On the other hand, and this is a bit surprising, the conclusion is obtained even
though the conditions to be checked do not involve cutting down the dimensions of the base
loci of jet differentials; in fact, the contradiction is obtained even though the integers kj may
increase and dimZj may become very large.

The special case k0 = 0 of Theorem 3.8 yields the following

3.10. Partial solution to the GGL conjecture. Let (X,V ) be a directed pair that is
strongly of general type. Then the Green-Griffiths-Lang conjecture holds true for (X,V ),
namely ECL(X,V ) ( X, in other words there exists a proper algebraic variety Y ( X such
that every non constant holomorphic curve f : C→ X tangent to V satisfies f(C) ⊂ Y .

3.11. Remark. The condition that (X,V ) is strongly of general type seems to be related to
some sort of stability condition. We are unsure what is the most appropriate definition, but
here is one that makes sense. Fix an ample divisor A on X. For every irreducible subvariety
Z ⊂ Xk that projects onto Xk−1 for k > 1, and Z = X = X0 for k = 0, we define the slope
µA(Z,W ) of the corresponding directed variety (Z,W ) to be

µA(Z,W ) =
inf λ

rankW
,

where λ runs over all rational numbers such that there exists m ∈ Q+ for which

KW ⊗
(
OXk

(m)⊗ π∗k,0O(λA)
)
|Z is big on Z

(again, we assume here that Z 6⊂ Dk for k > 2). Notice that (X,V ) is of general type if
and only if µA(X,V ) < 0, and that µA(Z,W ) = −∞ if OXk

(1)|A is big. Also, the proof of
Lemma 1.9 shows that

µA(Xk, Vk) 6 µA(Xk−1, Vk−1) 6 . . . 6 µA(X,V ) for all k

(with µA(Xk, Vk) = −∞ for k > k0 � 1 if (X,V ) is of general type). We say that (X,V ) is
A-jet-stable (resp. A-jet-semi-stable) if µA(Z,W ) < µA(X,V ) (resp. µA(Z,W ) 6 µA(X,V ))
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for all Z ( Xk as above. It is then clear that if (X,V ) is of general type and A-jet-semi-stable,
then it is strongly of general type in the sense of Definition 3.1. It would be useful to have a
better understanding of this condition of stability (or any other one that would have better
properties).

3.12. Example: case of surfaces. Assume that X is a minimal complex surface of general
type and V = TX (absolute case). Then KX is nef and big and the Chern classes of X satisfy
c1 6 0 (−c1 is big and nef) and c2 > 0. The Semple jet-bundles Xk form here a tower of P1-
bundles and dimXk = k + 2. Since detV ∗ = KX is big, the strong general type assumption
of 3.8 and 3.10 need only be checked for irreducible hypersurfaces Z ⊂ Xk distinct from Dk

that project onto Xk−1, of relative degree m. The projection πk,k−1 : Z → Xk−1 is a ramified
m : 1 cover. Putting OXk

(Z) ' OXk
(a)⊗ πk,0(B), B ∈ Pic(X), we can apply (3.5) to get an

inclusion

KW ⊃
(
OXk

(a− 1)⊗ π∗k,0(B ⊗KX)
)
|Z ⊗ JS , a ∈ Zk, ak = m.

Let us assume k = 1 and S = ∅ to make things even simpler, and let us perform numerical
calculations in the cohomology ring

H•(X1,Z) = H•(X)[u]/(u2 + c1u+ c2), u = c1(OX1(1))

(cf. [DEG00, Section 2] for similar calculations and more details). We have

Z ≡ mu+ b where b = c1(B) and KW ≡ (m− 1)u+ b− c1.

We are allowed here to add to KW an arbitrary multiple OX1
(p), p > 0, which we rather

write p = mt + 1 −m, t > 1 − 1/m. An evaluation of the Euler-Poincaré characteristic of
KW + OX1(p)|Z requires computing the intersection number(

KW + OX1
(p)|Z

)2 · Z =
(
mtu+ b− c1

)2
(mu+ b)

= m2t2
(
m(c21 − c2)− bc1

)
+ 2mt(b−mc1)(b− c1) +m(b− c1)2,

taking into account that u3 ·X1 = c21 − c2. In case S 6= ∅, there is an additional (negative)
contribution from the ideal JS which is O(t) since S is at most a curve. In any case, for
t � 1, the leading term in the expansion is m2t2(m(c21 − c2) − bc1) and the other terms
are negligible with respect to t2, including the one coming from S. We know that TX is
semistable with respect to c1(KX) = −c1 > 0. Multiplication by the section σ yields a
morphism π∗1,0OX(−B) → OX1

(m), hence by direct image, a morphism OX(−B) → SmT ∗X .
Evaluating slopes against KX (a big nef class), the semistability condition implies bc1 6 m

2 c
2
1,

and our leading term is bigger that m3t2( 1
2c

2
1 − c2). We get a positive anwer in the well-

known case where c21 > 2c2, corresponding to TX being almost ample. Analyzing positivity
for the full range of values (k,m, t) and of singular sets S seems an unsurmountable task at
this point; in general, calculations made in [DEG00] and [McQ99] indicate that the Chern
class and semistability conditions become less demanding for higher order jets (e.g. c21 > c2
is enough for Z ⊂ X2, and c21 >

9
13c2 suffices for Z ⊂ X3). However, when rankV = 1,

the major gains come from the use of Ahlfors currents in combination with McQuillan’s
tautological inequalities [McQ98]. We therefore hope for a substantial strengthening of the
above sufficient conditions, and a better understanding of the stability issues, possibly in
combination with a use of Ahlfors currents and tautological inequalities.
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