Metadata of the chapter that will be visualized in SpringerLink

Book Title	Analysis and Geometry		
Series Title			
Chapter Title	Towards The Green-Griffiths-Lang Conjecture		
Copyright Year	2015		
Copyright HolderName	Springer International Publishing Switzerland		
Corresponding Author	Family Name	Demailly	
	Particle		
	Given Name	Jean-Pierre	
	Prefix		
	Suffix		
	Division	Institut Fourier	
	Organization	Université Grenoble-Alpes	
	Address	BP74, 100 Rue des Maths, 38402, Saint-martin D'héres, France	
	Email	jean-pierre.demailly@ujf-grenoble.fr	
Abstract	The Green-Griffiths-Lang conjecture stipulates that for every projective variety X of general type over \mathbb{C} , there exists a proper algebraic subvariety of X containing all non constant entire curves $f : \mathbb{C} \to X$. Using the formalism of directed varieties, we prove here that this assertion holds true in case X satisfies a strong general type condition that is related to a ceain jet-semistitoperty of the tangent bundle T_X . We then give a sufficient criterion for the Kobayashi hyperbolicity of an arbitrary directed variety (X, V) .		
Keywords (separated by '-')	Projective algebraic variety - Variety of general type - Entire curve - Jet bundle - Semple tower - Green- griffiths-lang conjecture - Holomorphic morse inequality - Semistable vector bundle - Kobayashi hyperbolic		
2010 Mathematics Subject Classification. (separated by '-')	Primary 14C30 - 32J25 - Sec	ondary 14C20	

Towards The Green-Griffiths-Lang Conjecture

Jean-Pierre Demailly

In memory of M. Salah Baouendi

Abstract The Green-Griffiths-Lang conjecture stipulates that for every projective

² variety X of general type over \mathbb{C} , there exists a proper algebraic subvariety of X

³ containing all non constant entire curves $f : \mathbb{C} \to X$. Using the formalism of

4 directed varieties, we prove here that this assertion holds true in case X satisfies a

strong general type condition that is related to a ceain jet-semistitoperty of the tangent bundle T_X . We then give a sufficient criterion for the Kobayashi hyperbolicity of an

⁶ bundle T_X . We then give a sufficient cri ⁷ arbitrary directed variety (X, V).

⁸ Keywords Projective algebraic variety · Variety of general type · Entire curve ·

⁹ Jet bundle · Semple tower · Green-griffiths-lang conjecture · Holomorphic morse

¹⁰ inequality · Semistable vector bundle · Kobayashi hyperbolic

2010 Mathematics Subject Classification. Primary 14C30 · 32J25; Secondary
 14C20

13 1 Introduction

The goal of this paper is to study the Green-Griffiths-Lang conjecture, as stated in [7, 10]. It is useful to work in a more general context and consider the category of directed projective manifolds (or varieties). Since the basic problems we deal with are birationally invariant, the varieties under consideration can always be replaced by nonsingular models. A directed projective manifold is a pair (X, V) where X is a projective manifold equipped with an analytic linear subspace $V \subset T_X$, i.e. a closed irreducible complex analytic subset V of the total space of T_X , such that each fiber

J.-P. Demailly Institut Fourier, Université Grenoble-Alpes, BP74, 100 Rue des Maths, 38402 Saint-martin D'héres, France e-mail: jean-pierre.demailly@ujf-grenoble.fr

© Springer International Publishing Switzerland 2015 A. Baklouti et al. (eds.), *Analysis and Geometry*, Springer Proceedings in Mathematics & Statistics 127, DOI 10.1007/978-3-319-17443-3_8

 $V_x = V \cap T_{X,x}$ is a complex vector space [If X is not irreducible, V should rather be 21 assumed to be irreducible merely over each component of X, but we will hereafter 22 assume that our varieties are irreducible]. A morphism Φ : $(X, V) \rightarrow (Y, W)$ 23 in the category of directed manifolds is an analytic map $\Phi : X \to Y$ such that 24 $\Phi_* V \subset W$. We refer to the case $V = T_X$ as being the *absolute case*, and to the case 25 $V = T_{X/S} = \text{Ker} \, d\pi$ for a fibration $\pi : X \to S$, as being the *relative case*; V may 26 also be taken to be the tangent space to the leaves of a singular analytic foliation 27 on X, or maybe even a non integrable linear subspace of T_X . 28

We are especially interested in *entire curves* that are tangent to V, namely non constant holomorphic morphisms $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ of directed manifolds. In the absolute case, these are just arbitrary entire curves $f : \mathbb{C} \to X$. The Green-Griffiths-Lang conjecture, in its strong form, stipulates

1.1 GGL conjecture Let *X* be a projective variety of general type. Then there exists a proper algebraic variety $Y \subsetneq X$ such that every entire curve $f : \mathbb{C} \to X$ satisfies $f(\mathbb{C}) \subset Y$.

³⁶ [The weaker form would state that entire curves are algebraically degenerate, so that ³⁷ $f(\mathbb{C}) \subset Y_f \subsetneq X$ where Y_f might depend on f]. The smallest admissible algebraic ³⁸ set $Y \subset X$ is by definition the *entire curve locus* of X, defined as the Zariski closure

54

$$\mathrm{ECL}(X) = \overline{\bigcup_{f} f(\mathbb{C})}^{\mathrm{Zar}}.$$
(1.1)

If $X \subset \mathbb{P}^N_{\mathbb{C}}$ is defined over a number field \mathbb{K}_0 (i.e. by polynomial equations with equations with coefficients in \mathbb{K}_0) and Y = ECL(X), it is expected that for every number field $\mathbb{K} \supset \mathbb{K}_0$ the set of \mathbb{K} -points in $X(\mathbb{K}) \setminus Y$ is finite, and that this property characterizes ECL(X) as the smallest algebraic subset Y of X that has the above property for all \mathbb{K} [10]. This conjectural arithmetical statement would be a vast generalization of the Mordell-Faltings theorem, and is one of the strong motivations to study the geometric GGL conjecture as a first step.

1.2 Problem (generalized GGL conjecture) Let (X, V) be a projective directed manifold. Find geometric conditions on V ensuring that all entire curves f: $(\mathbb{C}, T_{\mathbb{C}}) \rightarrow (X, V)$ are contained in a proper algebraic subvariety $Y \subsetneq X$. Does this hold when (X, V) is of general type, in the sense that the canonical sheaf K_V is big ?

As above, we define the entire curve locus set of a pair (X, V) to be the smallest admissible algebraic set $Y \subset X$ in the above problem, i.e.

$$\operatorname{ECL}(X, V) = \overline{\bigcup_{f:(\mathbb{C}, T_{\mathbb{C}}) \to (X, V)} f(\mathbb{C})}^{\operatorname{Zar}}.$$
(1.2)

⁵⁵ We say that (X, V) is *Brody hyperbolic* if $ECL(X, V) = \emptyset$; as is well-known, this ⁵⁶ is equivalent to Kobayashi hyperbolicity whenever X is compact. Towards The Green-Griffiths-Lang Conjecture

In case *V* has no singularities, the *canonical sheaf* K_V is defined to be $(\det \mathcal{O}(V))^*$ where $\mathcal{O}(V)$ is the sheaf of holomorphic sections of *V*, but in general this naive definition would not work. Take for instance a generic pencil of elliptic curves $\lambda P(z) + \mu Q(z) = 0$ of degree 3 in $\mathbb{P}^2_{\mathbb{C}}$, and the linear space *V* consisting of the tangents to the fibers of the rational map $\mathbb{P}^2_{\mathbb{C}} \longrightarrow \mathbb{P}^1_{\mathbb{C}}$ defined by $z \mapsto Q(z)/P(z)$. Then *V* is given by

$$0 \longrightarrow \mathcal{O}(V) \longrightarrow \mathcal{O}(T_{\mathbb{P}^2_{\mathbb{C}}}) \xrightarrow{PdQ-QdP} \mathcal{O}_{\mathbb{P}^2_{\mathbb{C}}}(6) \otimes \mathcal{J}_S \longrightarrow 0$$

where S = Sing(V) consists of the 9 points $\{P(z) = 0\} \cap \{Q(z) = 0\}$, and \mathcal{J}_S is the corresponding ideal sheaf of S. Since det $\mathcal{O}(T_{\mathbb{P}^2}) = \mathcal{O}(3)$, we see that $(\det(\mathcal{O}(V))^* = \mathcal{O}(3)$ is ample, thus Problem 1.2 would not have a positive answer (all leaves are elliptic or singular rational curves and thus covered by entire curves). An even more "degenerate" example is obtained with a generic pencil of conics, in which case $(\det(\mathcal{O}(V))^* = \mathcal{O}(1) \text{ and } \#S = 4$.

If we want to get a positive answer to Problem 1.2, it is therefore indispensable to give a definition of K_V that incorporates in a suitable way the singularities of V; this will be done in Definition 2.1 (see also Proposition 2.2). The goal is then to give a positive answer to Problem 1.2 under some possibly more restrictive conditions for the pair (X, V). These conditions will be expressed in terms of the tower of Semple jet bundles

76
$$(X_k, V_k) \to (X_{k-1}, V_{k-1}) \to \dots \to (X_1, V_1) \to (X_0, V_0) := (X, V)$$
 (1.3)

⁷⁷ which we define more precisely in Sect. 2, following [1]. It is constructed inductively ⁷⁸ by setting $X_k = P(V_{k-1})$ (projective bundle of *lines* of V_{k-1}), and all V_k have the ⁷⁹ same rank $r = \operatorname{rank} V$, so that dim $X_k = n + k(r - 1)$ where $n = \dim X$. Entire ⁸⁰ curve loci have their counterparts for all stages of the Semple tower, namely, one can ⁸¹ define

89

$$\operatorname{ECL}_{k}(X, V) = \overline{\bigcup_{f:(\mathbb{C}, T_{\mathbb{C}}) \to (X, V)} f_{[k]}(\mathbb{C})}^{\operatorname{Zar}}.$$
(1.4)

where $f_{[k]} : (\mathbb{C}, T_{\mathbb{C}}) \to (X_k, V_k)$ is the *k*-jet of *f*. These are by definition algebraic subvarieties of X_k , and if we denote by $\pi_{k,\ell} : X_k \to X_\ell$ the natural projection from X_k to $X_\ell, 0 \le \ell \le k$, we get immediately

⁸⁶
$$\pi_{k,\ell}(\text{ECL}_k(X,V)) = \text{ECL}_\ell(X,V), \quad \text{ECL}_0(X,V) = \text{ECL}(X,V).$$
 (1.5)

⁸⁷ Let $\mathcal{O}_{X_k}(1)$ be the tautological line bundle over X_k associated with the projective ⁸⁸ structure. We define the *k*-stage Green-Griffiths locus of (X, V) to be

$$GG_k(X, V) = (X_k \setminus \Delta_k) \cap \bigcap_{m \in \mathbb{N}} \left(\text{base locus of } \mathcal{O}_{X_k}(m) \otimes \pi_{k,0}^* A^{-1} \right)$$
(1.6)

335317_1_En_8_Chapter 🗸 TYPESET 🗌 DISK 🔄 LE 🗹 CP Disp.:15/6/2015 Pages: 20 Layout: T1-Standard

where *A* is any ample line bundle on *X* and $\Delta_k = \bigcup_{2 \le \ell \le k} \pi_{k,\ell}^{-1}(D_\ell)$ is the union of "vertical divisors" (see Sect. 2; the vertical divisors play no role and have to be removed in this context). Clearly, $GG_k(X, V)$ does not depend on the choice of *A*. The basic vanishing theorem for entire curves (cf. [1, 7, 16]) asserts that every entire curve $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ satisfies all differential equations P(f) = 0 arising from sections $P \in H^0(X_k, \mathcal{O}_{X_k}(m) \otimes \pi_{k=0}^* A^{-1})$, hence

$$\mathrm{ECL}_k(X, V) \subset \mathrm{GG}_k(X, V). \tag{1.7}$$

⁹⁷ (For this, one uses the fact that $f_{[k]}(\mathbb{C})$ is not contained in any component of Δ_k , ⁹⁸ cf. [1]). It is therefore natural to define the global Green-Griffiths locus of (X, V) to be

$$GG(X, V) = \bigcap_{k \in \mathbb{N}} \pi_{k,0} \left(GG_k(X, V) \right).$$
(1.8)

By (1.5) and (1.7) we infer that

 $\operatorname{ECL}(X, V) \subset \operatorname{GG}(X, V).$ (1.9)

The main result of [4] (Theorem 2.37 and Corollary 4.4) implies the following useful
 information:

1.3 Theorem Assume that (X, V) is of "general type", i.e. that the canonical sheaf K_V is big on X. Then there exists an integer k_0 such that $GG_k(X, V)$ is a proper algebraic subset of X_k for $k \ge k_0$ [though $\pi_{k,0}(GG_k(X, V))$ might still be equal to X for all k].

In fact, if *F* is an invertible sheaf on *X* such that $K_V \otimes F$ is big, the probabilistic estimates of [4, Corollarys 2.38 and 4.4] produce sections of

$$\mathcal{O}_{X_k}(m) \otimes \pi_{k,0}^* \mathcal{O}\left(\frac{m}{kr} \left(1 + \frac{1}{2} + \dots + \frac{1}{k}\right)F\right)$$
(1.10)

for $m \gg k \gg 1$. The (long and involved) proof uses a curvature computation and singular holomorphic Morse inequalities to show that the line bundles involved in (0.11) are big on X_k for $k \gg 1$. One applies this to $F = A^{-1}$ with A ample on X to produce sections and conclude that $GG_k(X, V) \subsetneq X_k$.

Thanks to (1.9), the GGL conjecture is satisfied whenever GG($X, V) \subsetneq X$. By [5], this happens for instance in the absolute case when X is a generic hypersurface of degree $d \ge 2^{n^5}$ in \mathbb{P}^{n+1} (see also [13] for better bounds in low dimensions, and [14, 15]). However, as already mentioned in [10], very simple examples show that one can have GG(X, V) = X even when (X, V) is of general type, and this already occurs in the absolute case as soon as dim $X \ge 2$. A typical example is a product of directed manifolds

$$(X, V) = (X', V') \times (X'', V''), \quad V = \mathrm{pr}'^* V' \oplus \mathrm{pr}''^* V''.$$
 (1.11)

96

99

101

and Rousseau [6] have given many more such examples, including the case of indecomposable varieties (X, T_X) , e.g. Hilbert modular surfaces, or more generally compact quotients of bounded symmetric domains of rank ≥ 2 . The problem here is the failure of some sort of stability condition that is introduced in Sect. 4. This leads to a somewhat technical concept of more manageable directed pairs (X, V) that we call *strongly of general type*, see Definition 4.1. Our main result can be stated

The absolute case $V = T_X$, $V' = T_{X'}$, $V'' = T_{X''}$ on a product of curves is the

simplest instance. It is then easy to check that GG(X, V) = X, cf. (3.2). Diverio

1.4 Theorem (partial solution to the generalized GGL conjecture) Let (X, V) be a directed pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture holds true for (X, V), namely ECL(X, V) is a proper algebraic subvariety of X.

The proof proceeds through a complicated induction on $n = \dim X$ and k =135 rank V, which is the main reason why we have to introduce directed varieties, even 136 in the absolute case. An interesting feature of this result is that the conclusion on 137 ECL(X, V) is reached without having to know anything about the Green-Griffiths 138 locus GG(X, V), even a posteriori. Nevetheless, this is not yet enough to confirm 139 the GGL conjecture. Our hope is that pairs (X, V) that are of general type without 140 being strongly of general type-and thus exhibit some sort of "jet-instability"-141 can be investigated by different methods, e.g. by the diophantine approximation 142 techniques of McQuillan [11]. However, Theorem 1.4 provides a sufficient criterion 143 for Kobayashi hyperbolicity [8, 9], thanks to the following concept of algebraic 144 jet-hyperbolicity. 145

1.5 Definition A directed variety (X, V) will be said to be algebraically jethyperbolic if the induced directed variety structure (Z, W) on every irreducible algebraic variety Z of X such that rank $W \ge 1$ has a desingularization that is strongly of general type [see Sects. 3 and 5 for the definition of induced directed structures and further details]. We also say that a projective manifold X is algebraically jethyperbolic if (X, T_X) is.

In this context, Theorem 1.4 yields the following connection between algebraic jet-hyperbolicity and the analytic concept of Kobayashi hyperbolicity.

1.6 Theorem Let (X, V) be a directed variety structure on a projective manifold X. Assume that (X, V) is algebraically jet-hyperbolic. Then (X, V) is Kobayashi hyperbolic.

I would like to thank Simone Diverio and Erwan Rousseau for very stimulating
 discussions on these questions. I am grateful to Mihai Păun for an invitation at KIAS
 (Seoul) in August 2014, during which further very fruitful exchanges took place, and
 for his extremely careful reading of earlier drafts of the manuscript.

123

124

161 **2** Semple Jet Bundles and Associated Canonical Sheaves

Let (X, V) be a directed projective manifold and $r = \operatorname{rank} V$, that is, the dimension of 162 generic fibers. Then V is actually a holomorphic subbundle of T_X on the complement 163 $X \setminus \text{Sing}(V)$ of a certain minimal analytic set $\text{Sing}(V) \subseteq X$ of codimension ≥ 2 , 164 called hereafter the singular set of V. If $\mu : \hat{X} \to X$ is a proper modification 165 (a composition of blow-ups with smooth centers, say), we get a directed manifold 166 $(\widehat{X}, \widehat{V})$ by taking \widehat{V} to be the closure of $\mu_*^{-1}(V')$, where $V' = V_{|X'|}$ is the restriction 167 of V over a Zariski open set $X' \subset X \setminus \text{Sing}(V)$ such that $\mu : \mu^{-1}(X') \to X'$ is a 168 biholomorphism. We will be interested in taking modifications realized by iterated 169 blow-ups of certain nonsingular subvarieties of the singular set Sing(V), so as to 170 eventually "improve" the singularities of V; outside of Sing(V) the effect of blowing-171 up will be irrelevant, as one can see easily. Following [4], the canonical sheaf K_V is 172 defined as follows. 173

2.1 Definition For any directed pair (X, V) with X nonsingular, we define K_V to be the rank 1 analytic sheaf such that

 $K_V(U)$ = sheaf of locally bounded sections of $\mathcal{O}_X(\Lambda^r V'^*)(U \cap X')$

where $r = \operatorname{rank}(V)$, $X' = X \setminus \operatorname{Sing}(V)$, $V' = V_{|X'}$, and "bounded" means bounded with respect to a smooth hermitian metric *h* on T_X .

For r = 0, one can set $K_V = \mathcal{O}_X$, but this case is trivial: clearly ECL $(X, V) = \emptyset$. The above definition of K_V may look like an analytic one, but it can easily be turned into an equivalent algebraic definition:

179 **2.2 Proposition** Consider the natural morphism $\mathcal{O}(\Lambda^r T_X^*) \to \mathcal{O}(\Lambda^r V^*)$ where 180 $r = \operatorname{rank} V [\mathcal{O}(\Lambda^r V^*) \text{ being defined here as the quotient of } \mathcal{O}(\Lambda^r T_X^*) \text{ by } r \text{-forms that}$ 181 have zero restrictions to $\mathcal{O}(\Lambda^r V^*)$ on $X \setminus \operatorname{Sing}(V)$]. The bidual $\mathcal{L}_V = \mathcal{O}_X(\Lambda^r V^*)^{**}$ 182 is an invertible sheaf, and our natural morphism can be written

183

$$\mathcal{O}(\Lambda^r T_X^*) \to \mathcal{O}(\Lambda^r V^*) = \mathcal{L}_V \otimes \mathcal{J}_V \subset \mathcal{L}_V$$
(2.1)

¹⁸⁴ where \mathcal{J}_V is a certain ideal sheaf of \mathcal{O}_X whose zero set is contained in Sing(V) and ¹⁸⁵ the arrow on the left is surjective by definition. Then

186

$$K_V = \mathcal{L}_V \otimes \overline{\mathcal{J}}_V \tag{2.2}$$

¹⁸⁷ where $\overline{\mathcal{J}}_V$ is the integral closure of \mathcal{J}_V in \mathcal{O}_X . In particular, K_V is always a coherent ¹⁸⁸ sheaf.

¹⁸⁹ Proof Let (u_k) be a set of generators of $\mathcal{O}(\Lambda^r V^*)$ obtained (say) as the images of ¹⁹⁰ a basis $(dz_I)_{|I|=r}$ of $\Lambda^r T_X^*$ in some local coordinates near a point $x \in X$. Write ¹⁹¹ $u_k = g_k \ell$ where ℓ is a local generator of \mathcal{L}_V at x. Then $\mathcal{J}_V = (g_k)$ by definition. ¹⁹² The boundedness condition expressed in Definition 2.1 means that we take sections of the form $f \ell$ where f is a holomorphic function on $U \cap X'$ (and U a neighborhood of x), such that

195

204

211

$$|f| \le C \sum |g_k| \tag{2.3}$$

for some constant C > 0. But then f extends holomorphically to U into a function that lies in the integral closure $\overline{\mathcal{J}}_V$, and the latter is actually characterized analytically by condition (2.3). This proves Proposition 2.2.

By blowing-up \mathcal{J}_V and taking a desingularization \widehat{X} , one can always find a *log resolution* of \mathcal{J}_V (or K_V), i.e. a modification $\mu : \widehat{X} \to X$ such that $\mu^* \mathcal{J}_V \subset \mathcal{O}_{\widehat{X}}$ is an invertible ideal sheaf (hence integrally closed); it follows that $\mu^* \overline{\mathcal{J}}_V = \mu^* \mathcal{J}_V$ and $\mu^* K_V = \mu^* \mathcal{L}_V \otimes \mu^* \mathcal{J}_V$ are invertible sheaves on \widehat{X} . Notice that for any modification $\mu' : (X', V') \to (X, V)$, there is always a well defined natural morphism

$$\mu'^* K_V \to K_{V'} \tag{2.4}$$

(though it need not be an isomorphism, and $K_{V'}$ is possibly non invertible even when μ' is taken to be a log-resolution of K_V). Indeed $(\mu')_* = d\mu' : V' \to \mu^* V$ is continuous with respect to ambient hermitian metrics on X and X', and going to the duals reverses the arrows while preserving boundedness with respect to the metrics. If $\mu'' : X'' \to X'$ provides a simultaneous log-resolution of $K_{V'}$ and $\mu'^* K_V$, we get a non trivial morphism of invertible sheaves

$$(\mu' \circ \mu'')^* K_V = \mu''^* \mu'^* K_V \longrightarrow \mu''^* K_{V'}, \tag{2.5}$$

hence the bigness of $\mu'^* K_V$ with imply that of $\mu''^* K_{V'}$. This is a general principle that we would like to refer to as the "monotonicity principle" for canonical sheaves: one always get more sections by going to a higher level through a (holomorphic) modification.

216 2.3 Definition We say that the rank 1 sheaf K_V is "big" if the invertible sheaf $\mu^* K_V$ 217 is big in the usual sense for any log resolution $\mu : \hat{X} \to X$ of K_V . Finally, we say 218 that (X, V) is of *general type* if there exists a modification $\mu' : (X', V') \to (X, V)$ 219 such that $K_{V'}$ is big; any higher blow-up $\mu'' : (X'', V'') \to (X', V')$ then also yields 220 a big canonical sheaf by (2.4).

Clearly, "general type" is a birationally (or bimeromorphically) invariant concept, by the very definition. When dim X = n and $V \subset T_X$ is a subbundle of rank $r \ge 1$, one constructs a tower of "Semple *k*-jet bundles" $\pi_{k,k-1} : (X_k, V_k) \to (X_{k-1}, V_{k-1})$ that are \mathbb{P}^{r-1} -bundles, with dim $X_k = n + k(r-1)$ and rank $(V_k) = r$. For this, we take $(X_0, V_0) = (X, V)$, and for every $k \ge 1$, we set inductively $X_k := P(V_{k-1})$ and

$$V_k := (\pi_{k,k-1})_*^{-1} \mathcal{O}_{X_k}(-1) \subset T_{X_k},$$

where $\mathcal{O}_{X_k}(1)$ is the tautological line bundle on X_k , $\pi_{k,k-1}: X_k = P(V_{k-1}) \rightarrow X_{k-1}$ the natural projection and $(\pi_{k,k-1})_* = d\pi_{k,k-1}: T_{X_k} \rightarrow \pi^*_{k,k-1}T_{X_{k-1}}$ its

²²³ differential (cf. [1]). In other terms, we have exact sequences

$$0 \longrightarrow T_{X_k/X_{k-1}} \longrightarrow V_k \xrightarrow{(\pi_{k,k-1})_*} \mathcal{O}_{X_k}(-1) \longrightarrow 0,$$
(2.6)

$$0 \longrightarrow \mathcal{O}_{X_k} \longrightarrow (\pi_{k,k-1})^* V_{k-1} \otimes \mathcal{O}_{X_k}(1) \longrightarrow T_{X_k/X_{k-1}} \longrightarrow 0,$$
(2.7)

where the last line is the Euler exact sequence associated with the relative tangent bundle of $P(V_{k-1}) \rightarrow X_{k-1}$. Notice that we by definition of the tautological line bundle we have

$$\mathcal{O}_{X_k}(-1) \subset \pi^*_{k,k-1} V_{k-1} \subset \pi^*_{k,k-1} T_{X_{k-1}},$$

and also rank $(V_k) = r$. Let us recall also that for $k \ge 2$, there are "vertical divisors" $D_k = P(T_{X_{k-1}/X_{k-2}}) \subset P(V_{k-1}) = X_k$, and that D_k is the zero divisor of the section of $\mathcal{O}_{X_k}(1) \otimes \pi_{k,k-1}^* \mathcal{O}_{X_{k-1}}(-1)$ induced by the second arrow of the first exact sequence (2.6), when k is replaced by k - 1. This yields in particular

231

$$\mathcal{O}_{X_k}(1) = \pi_{k,k-1}^* \mathcal{O}_{X_{k-1}}(1) \otimes \mathcal{O}(D_k).$$
(2.8)

By composing the projections we get for all pairs of indices $0 \le j \le k$ natural morphisms

$$\pi_{k,j}: X_k \to X_j, \quad (\pi_{k,j})_* = (d\pi_{k,j})_{|V_k}: V_k \to (\pi_{k,j})^* V_j,$$

and for every *k*-tuple $\mathbf{a} = (a_1, \ldots, a_k) \in \mathbb{Z}^k$ we define

$$\mathcal{O}_{X_k}(\mathbf{a}) = \bigotimes_{1 \le j \le k} \pi_{k,j}^* \mathcal{O}_{X_j}(a_j), \quad \pi_{k,j} : X_k \to X_j.$$

We extend this definition to all weights $\mathbf{a} \in \mathbb{Q}^k$ to get a \mathbb{Q} -line bundle in $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$. Now, Formula (2.8) yields

$$\mathcal{O}_{X_k}(\mathbf{a}) = \mathcal{O}_{X_k}(m) \otimes \mathcal{O}(-\mathbf{b} \cdot D) \quad \text{where } m = |\mathbf{a}| = \sum a_j, \, \mathbf{b} = (0, b_2, \dots, b_k)$$
(2.9)

234

and $b_j = a_1 + \dots + a_{j-1}, 2 \le j \le k$.

When $\operatorname{Sing}(V) \neq \emptyset$, one can always define X_k and V_k to be the respective closures of X'_k , V'_k associated with $X' = X \setminus \operatorname{Sing}(V)$ and $V' = V_{|X'}$, where the closure is taken in the nonsingular "absolute" Semple tower (X^a_k, V^a_k) obtained from $(X^a_0, V^a_0) = (X, T_X)$. We leave the reader check the following easy (but important) observation.

241 **2.4 Fonctoriality** If Φ : $(X, V) \rightarrow (Y, W)$ is a morphism of directed varieties 242 such that $\Phi_* : T_X \rightarrow \Phi^*T_Y$ is injective (i.e. Φ is an immersion), then there is a 243 corresponding natural morphism $\Phi_{[k]} : (X_k, V_k) \rightarrow (Y_k, W_k)$ at the level of Semple 244 bundles. If one merely assumes that the differential $\Phi_* : V \rightarrow \Phi^*W$ is non zero,

8

224 335 there is still a well defined meromorphic map $\Phi_{[k]}$: $(X_k, V_k) \dashrightarrow (Y_k, W_k)$ for all $k \ge 0$.

In case V is singular, the k-th Semple bundle X_k will also be singular, but we can still replace (X_k, V_k) by a suitable modification $(\widehat{X}_k, \widehat{V}_k)$ if we want to work with a nonsingular model \widehat{X}_k of X_k . The exceptional set of \widehat{X}_k over X_k can be chosen to lie above $\operatorname{Sing}(V) \subset X$, and proceeding inductively with respect to k, we can also arrange the modifications in such a way that we get a tower structure $(\widehat{X}_{k+1}, \widehat{V}_{k+1}) \rightarrow (\widehat{X}_k, \widehat{V}_k)$; however, in general, it will not be possible to achieve that \widehat{V}_k is a subbundle of $T_{\widehat{X}_k}$.

It is not true that $K_{\widehat{V}_k}$ is big in case (X, V) is of general type (especially since the fibers of $X_k \to X$ are towers of \mathbb{P}^{r-1} bundles, and the canonical bundles of projective spaces are always negative !). However, a twisted version holds true, that can be seen as another instance of the "monotonicity principle" when going to higher stages in the Semple tower.

259 2.5 Lemma If (X, V) is of general type, then there is a modification $(\widehat{X}, \widehat{V})$ such that all pairs $(\widehat{X}_k, \widehat{V}_k)$ of the associated Semple tower have a twisted canonical bundle $K_{\widehat{V}_k} \otimes \mathcal{O}_{\widehat{X}_k}(p)$ that is still big when one multiplies $K_{\widehat{V}_k}$ by a suitable \mathbb{Q} -line bundle $\mathcal{O}_{\widehat{X}_k}(p)$, $p \in \mathbb{Q}_+$.

Proof. First assume that V has no singularities. The exact sequences (2.6) and (2.7) provide

$$K_{V_k} := \det V_k^* = \det(T_{X_k/X_{k-1}}^*) \otimes \mathcal{O}_{X_k}(1) = \pi_{k,k-1}^* K_{V_{k-1}} \otimes \mathcal{O}_{X_k}(-(r-1))$$

where $r = \operatorname{rank}(V)$. Inductively we get

$$K_{V_k} = \pi_{k,0}^* K_V \otimes \mathcal{O}_{X_k}(-(r-1)\mathbf{1}), \qquad \mathbf{1} = (1, \dots, 1) \in \mathbb{N}^k.$$
(2.10)

We know by [1] that $\mathcal{O}_{X_k}(\mathbf{c})$ is relatively ample over X when we take the special weight $\mathbf{c} = (2 \, 3^{k-2}, \dots, 2 \, 3^{k-j-1}, \dots, 6, 2, 1)$, hence

$$K_{V_k} \otimes \mathcal{O}_{X_k}((r-1)\mathbf{1} + \varepsilon \mathbf{c}) = \pi_{k,0}^* K_V \otimes \mathcal{O}_{X_k}(\varepsilon \mathbf{c})$$

is big over X_k for any sufficiently small positive rational number $\varepsilon \in \mathbb{Q}_+^*$. Thanks to Formula (2.9), we can in fact replace the weight $(r-1)\mathbf{1} + \varepsilon \mathbf{c}$ by its total degree $p = (r-1)k + \varepsilon |\mathbf{c}| \in \mathbb{Q}_+$. The general case of a singular linear space follows by considering suitable "sufficiently high" modifications \widehat{X} of X, the related directed structure \widehat{V} on \widehat{X} , and embedding $(\widehat{X}_k, \widehat{V}_k)$ in the absolute Semple tower $(\widehat{X}_k^a, \widehat{V}_k^a)$ of \widehat{X} . We still have a well defined morphism of rank 1 sheaves

because the multiplier ideal sheaves involved at each stage behave according to the monotonicity principle applied to the projections $\pi^a_{k,k-1}: \widehat{X}^a_k \to \widehat{X}^a_{k-1}$ and their

 $\pi_{k}^* K_{\widehat{V}} \otimes \mathcal{O}_{\widehat{X}_k}(-(r-1)\mathbf{1}) \to K_{\widehat{V}_k}$

335317_1_En_8_Chapter 🗸 TYPESET 🗌 DISK 🦳 LE 🗸 CP Disp.:15/6/2015 Pages: 20 Layout: T1-Standard

264

(2.11)

differentials $(\pi_{k,k-1}^a)_*$, which yield well-defined transposed morphisms from the (k - 1)-st stage to the k-th stage at the level of exterior differential forms. Our contention follows.

277 3 Induced Directed Structure on a Subvariety of a Jet Space

Let Z be an irreducible algebraic subset of some k-jet bundle X_k over $X, k \ge 0$. We define the linear subspace $W \subset T_Z \subset T_{X_k|Z}$ to be the closure

10

 $W := \overline{T_{Z'} \cap V_k} \tag{3.1}$

taken on a suitable Zariski open set $Z' \subset Z_{reg}$ where the intersection $T_{Z'} \cap V_k$ has constant rank and is a subbundle of $T_{Z'}$. Alternatively, we could also take W to be the closure of $T_{Z'} \cap V_k$ in the *k*-th stage (X_k^a, V_k^a) of the absolute Semple tower, which has the advantage of being nonsingular. We say that (Z, W) is the *induced* directed variety structure; this concept of induced structure already applies of course in the case k = 0. If $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ is such that $f_{[k]}(\mathbb{C}) \subset Z$, then

either
$$f_{[k]}(\mathbb{C}) \subset Z_{\alpha}$$
 or $f'_{[k]}(\mathbb{C}) \subset W$, (3.2)

where Z_{α} is one of the connected components of $Z \setminus Z'$ and Z' is chosen as in (3.1); especially, if W = 0, we conclude that $f_{[k]}(\mathbb{C})$ must be contained in one of the Z_{α} 's. In the sequel, we always consider such a subvariety Z of X_k as a directed pair (Z, W) by taking the induced structure described above. By (3.2), if we proceed by induction on dim Z, the study of curves tangent to V that have a k-lift $f_{[k]}(\mathbb{C}) \subset Z$ is reduced to the study of curves tangent to (Z, W). Let us first quote the following easy observation.

3.1 Observation For $k \ge 1$, let $Z \subsetneq X_k$ be an irreducible algebraic subset that projects onto X_{k-1} , i.e. $\pi_{k,k-1}(Z) = X_{k-1}$. Then the induced directed variety $(Z, W) \subset (X_k, V_k)$, satisfies

 $1 \leq \operatorname{rank} W < r := \operatorname{rank}(V_k).$

Proof. Take a Zariski open subset $Z' \subset Z_{\text{reg}}$ such that $W' = T_{Z'} \cap V_k$ is a vector bundle over Z'. Since $X_k \to X_{k-1}$ is a \mathbb{P}^{r-1} -bundle, Z has codimension at most 295 296 r-1 in X_k . Therefore rank $W \ge \operatorname{rank} V_k - (r-1) \ge 1$. On the other hand, if 297 we had rank $W = \operatorname{rank} V_k$ generically, then $T_{Z'}$ would contain $V_{k|Z'}$, in particular it 298 would contain all vertical directions $T_{X_k/X_{k-1}} \subset V_k$ that are tangent to the fibers of 299 $X_k \rightarrow X_{k-1}$. By taking the flow along vertical vector fields, we would conclude that 300 Z' is a union of fibers of $X_k \to X_{k-1}$ up to an algebraic set of smaller dimension, 301 but this is excluded since Z projects onto X_{k-1} and $Z \subsetneq X_k$. 302

3.2 Definition For $k \ge 1$, let $Z \subset X_k$ be an irreducible algebraic subset of X_k . We assume moreover that $Z \not\subset D_k = P(T_{X_{k-1}/X_{k-2}})$ (and put here $D_1 = \emptyset$ in what follows to avoid to have to single out the case k = 1). In this situation we say that (Z, W) is of general type modulo $X_k \to X$ if either W = 0, or rank $W \ge 1$ and there exists $p \in \mathbb{Q}_+$ such that $K_W \otimes \mathcal{O}_{X_k}(p)_{|Z}$ is big over Z, possibly after replacing Z by a suitable nonsingular model \widehat{Z} (and pulling-back W and $\mathcal{O}_{X_k}(p)_{|Z}$ to the nonsingular variety \widehat{Z}).

The main result of [4] mentioned in the introduction as Theorem 1.3 implies the following important "induction step".

3.3 Proposition Let (X, V) be a directed pair where X is projective algebraic. Take an irreducible algebraic subset $Z \not\subset D_k$ of the associated k-jet Semple bundle X_k that projects onto X_{k-1} , $k \ge 1$, and assume that the induced directed space $(Z, W) \subset (X_k, V_k)$ is of general type modulo $X_k \to X$, rank $W \ge 1$. Then there exists a divisor $\Sigma \subset Z_\ell$ in a sufficiently high stage of the Semple tower (Z_ℓ, W_ℓ) associated with (Z, W), such that every non constant holomorphic map $f : \mathbb{C} \to X$ tangent to V that satisfies $f_{[k]}(\mathbb{C}) \subset Z$ also satisfies $f_{[k+\ell]}(\mathbb{C}) \subset \Sigma$.

Proof Let $E \subset Z$ be a divisor containing $Z_{sing} \cup (Z \cap \pi_{k,0}^{-1}(Sing(V)))$, chosen so 319 that on the nonsingular Zariski open set $Z' = Z \setminus E$ all linear spaces $T_{Z'}$, $V_{k|Z'}$ 320 and $W' = T_{Z'} \cap V_k$ are subbundles of $T_{X_k|Z'}$, the first two having a transverse 321 intersection on Z'. By taking closures over Z' in the absolute Semple tower of X, we 322 get (singular) directed pairs $(Z_{\ell}, W_{\ell}) \subset (X_{k+\ell}, V_{k+\ell})$, which we eventually resolve 323 into $(\widehat{Z}_{\ell}, \widehat{W}_{\ell}) \subset (\widehat{X}_{k+\ell}, \widehat{V}_{k+\ell})$ over nonsingular bases. By construction, locally 324 bounded sections of $\mathcal{O}_{\widehat{X}_{k+\ell}}(m)$ restrict to locally bounded sections of $\mathcal{O}_{\widehat{Z}_{\ell}}(m)$ over 325 $Z_{\ell}.$ 326

Since Theorem 1.3 and the related estimate (1.10) are universal in the category of directed varieties, we can apply them by replacing X with $\widehat{Z} \subset \widehat{X}_k$, the order k by a new index ℓ , and F by

$$F_{k} = \mu^{*} \left(\left(\mathcal{O}_{X_{k}}(p) \otimes \pi_{k,0}^{*} \mathcal{O}_{X}(-\varepsilon A) \right)_{|Z} \right)$$

where $\mu : \widehat{Z} \to Z$ is the desingularization, $p \in \mathbb{Q}_+$ is chosen such that $K_W \otimes \mathcal{O}_{x_k}(p)_{|Z}$ is big, A is an ample bundle on X and $\varepsilon \in \mathbb{Q}_+^*$ is small enough. The assumptions show that $K_{\widehat{W}} \otimes F_k$ is big on \widehat{Z} , therefore, by applying our theorem and taking $m \gg \ell \gg 1$, we get in fine a large number of (metric bounded) sections of

$$\mathcal{O}_{\widehat{Z}_{\ell}}(m) \otimes \widehat{\pi}_{k+\ell,k}^{*} \mathcal{O}\left(\frac{m}{\ell r'}\left(1+\frac{1}{2}+\dots+\frac{1}{\ell}\right)F_{k}\right)$$

$$= \mathcal{O}_{\widehat{X}_{k+\ell}}(m\mathbf{a}') \otimes \widehat{\pi}_{k+\ell,0}^{*} \mathcal{O}\left(-\frac{m\varepsilon}{kr}\left(1+\frac{1}{2}+\dots+\frac{1}{k}\right)A\right)_{|\widehat{Z}_{\ell}|}$$

334

where $\mathbf{a}' \in \mathbb{Q}^{k+\ell}_+$ is a positive weight (of the form $(0, \ldots, \lambda, \ldots, 0, 1)$ with some non zero component $\lambda \in \mathbb{Q}_+$ at index *k*). These sections descend to metric bounded sections of

$$\mathcal{O}_{X_{k+\ell}}((1+\lambda)m)\otimes \widehat{\pi}^*_{k+\ell,0}\mathcal{O}\Big(-\frac{m\varepsilon}{kr}\Big(1+\frac{1}{2}+\cdots+\frac{1}{k}\Big)A\Big)_{|Z_\ell}.$$

Since *A* is ample on *X*, we can apply the fundamental vanishing theorem (see e.g. [2] or [4], Statement 8.15), or rather an "embedded" version for curves satisfying $f_{[k]}(\mathbb{C}) \subset Z$, proved exactly by the same arguments. The vanishing theorem implies that the divisor Σ of any such section satisfies the conclusions of Proposition 3.3, possibly modulo exceptional divisors of $\widehat{Z} \to Z$; to take care of these, it is enough to add to Σ the inverse image of the divisor $E = Z \setminus Z'$ initially selected.

4 Strong General Type Condition for Directed Manifolds

Our main result is the following partial solution to the Green-Griffiths-Lang conjecture, providing a sufficient algebraic condition for the analytic conclusion to hold true. We first give an ad hoc definition.

4.1 Definition Let (X, V) be a directed pair where X is projective algebraic. We say that that (X, V) is "strongly of general type" if it is of general type and for every irreducible algebraic set $Z \subsetneq X_k, Z \not\subset D_k$, that projects onto X, the induced directed structure $(Z, W) \subset (X_k, V_k)$ is of general type modulo $X_k \to X$.

4.2 *Example* The situation of a product $(X, V) = (X', V') \times (X'', V'')$ described in (1.11) shows that (X, V) can be of general type without being strongly of general type. In fact, if (X', V') and (X'', V'') are of general type, then $K_V = \text{pr}'^* K_{V'} \otimes \text{pr}''^* K_{V''}$ is big, so (X, V) is again of general type. However

$$Z = P(\mathrm{pr}'^*V') = X_1' \times X'' \subset X_1$$

has a directed structure $W = \text{pr}'^* V'_1$ which does not possess a big canonical bundle over *Z*, since the restriction of K_W to any fiber $\{x'\} \times X''$ is trivial. The higher stages (Z_k, W_k) of the Semple tower of (Z, W) are given by $Z_k = X'_{k+1} \times X''$ and $W_k = \text{pr}'^* V'_{k+1}$, so it is easy to see that $GG_k(X, V)$ contains Z_{k-1} . Since Z_k projects onto *X*, we have here GG(X, V) = X (see [6] for more sophisticated indecomposable examples).

4.3 Remark It follows from Definition 3.2 that $(Z, W) \subset (X_k, V_k)$ is automatically of general type modulo $X_k \to X$ if $\mathcal{O}_{X_k}(1)_{|Z}$ is big. Notice further that

$$\mathcal{O}_{X_k}(1+\varepsilon)|_{Z} = \left(\mathcal{O}_{X_k}(\varepsilon) \otimes \pi^*_{k,k-1}\mathcal{O}_{X_{k-1}}(1) \otimes \mathcal{O}(D_k)\right)|_{Z}$$

Author Proof

where $\mathcal{O}(D_k)_{|Z}$ is effective and $\mathcal{O}_{X_k}(1)$ is relatively ample with respect to the projection $X_k \to X_{k-1}$. Therefore the bigness of $\mathcal{O}_{X_{k-1}}(1)$ on X_{k-1} also implies that every directed subvariety $(Z, W) \subset (X_k, V_k)$ is of general type modulo $X_k \to X$. If (X, V) is of general type, we know by the main result of [4] that $\mathcal{O}_{X_k}(1)$ is big for $k \ge k_0$ large enough, and actually the precise estimates obtained therein give explicit bounds for such a k_0 . The above observations show that we need to check the condition of Definition 4.1 only for $Z \subset X_k, k \le k_0$. Moreover, at least in the case where V, Z, and $W = T_Z \cap V_k$ are nonsingular, we have

$$K_W \simeq K_Z \otimes \det(T_Z/W) \simeq K_Z \otimes \det(T_{X_k}/V_k)|_Z \simeq K_{Z/X_{k-1}} \otimes \mathcal{O}_{X_k}(1)|_Z.$$

Thus we see that, in some sense, it is only needed to check the bigness of K_W modulo $X_k \rightarrow X$ for "rather special subvarieties" $Z \subset X_k$ over X_{k-1} , such that $K_{Z/X_{k-1}}$ is not relatively big over X_{k-1} .

4.4 Hypersurface case Assume that $Z \neq D_k$ is an irreducible hypersurface of X_k 358 that projects onto X_{k-1} . To simplify things further, also assume that V is nonsingular. 359 Since the Semple jet-bundles X_k form a tower of \mathbb{P}^{r-1} -bundles, their Picard groups 360 satisfy $\operatorname{Pic}(X_k) \simeq \operatorname{Pic}(X) \oplus \mathbb{Z}^k$ and we have $\mathcal{O}_{X_k}(Z) \simeq \mathcal{O}_{X_k}(\mathbf{a}) \otimes \pi_{k,0}^* B$ for some 361 $\mathbf{a} \in \mathbb{Z}^k$ and $B \in \operatorname{Pic}(X)$, where $a_k = d > 0$ is the relative degree of the hypersurface 362 over X_{k-1} . Let $\sigma \in H^0(X_k, \mathcal{O}_{X_k}(Z))$ be the section defining Z in X_k . The induced 363 directed variety (Z, W) has rank $W = r - 1 = \operatorname{rank} V - 1$ and formula (2.11) yields 364 $K_{V_k} = \mathcal{O}_{X_k}(-(r-1)\mathbf{1}) \otimes \pi^*_{k,0}(K_V)$. We claim that 365

$$K_W \supset \left(K_{V_k} \otimes \mathcal{O}_{X_k}(Z) \right)_{|Z} \otimes \mathcal{J}_S = \left(\mathcal{O}_{X_k}(\mathbf{a} - (r-1)\mathbf{1}) \otimes \pi_{k,0}^*(B \otimes K_V) \right)_{|Z} \otimes \mathcal{J}_S$$
(4.1)

where $S \subsetneq Z$ is the set (containing Z_{sing}) where σ and $d\sigma_{|V_k}$ both vanish, and \mathcal{J}_S is the ideal locally generated by the coefficients of $d\sigma_{|V_k}$ along $Z = \sigma^{-1}(0)$. In fact, the intersection $W = T_Z \cap V_k$ is transverse on $Z \smallsetminus S$; then (4.1) can be seen by looking at the morphism

$$V_{k|Z} \xrightarrow{d\sigma_{|V_k}} \mathcal{O}_{X_k}(Z)_{|Z},$$

and observing that the contraction by $K_{V_k} = \Lambda^r V_k^*$ provides a metric bounded section of the canonical sheaf K_W . In order to investigate the positivity properties of K_W , one has to show that *B* cannot be too negative, and in addition to control the singularity set *S*. The second point is a priori very challenging, but we get useful information for the first point by observing that σ provides a morphism $\pi_{k,0}^* \mathcal{O}_X(-B) \to \mathcal{O}_{X_k}(\mathbf{a})$, hence a nontrivial morphism

$$\mathcal{O}_X(-B) \to E_{\mathbf{a}} := (\pi_{k,0})_* \mathcal{O}_{X_k}(\mathbf{a})$$

³⁶⁷ By [1, ,Section 12], there exists a filtration on $E_{\mathbf{a}}$ such that the graded pieces are ³⁶⁸ irreducible representations of GL(V) contained in $(V^*)^{\otimes \ell}$, $\ell \leq |\mathbf{a}|$. Therefore we ³⁶⁹ get a nontrivial morphism

335317_1_En_8_Chapter 🗸 TYPESET 🔄 DISK 🔄 LE 🗹 CP Disp.:15/6/2015 Pages: 20 Layout: T1-Standard

370

14

$$\mathcal{O}_X(-B) \to (V^*)^{\otimes \ell}, \quad \ell \le |\mathbf{a}|.$$
 (4.2)

If we know about certain (semi-)stability properties of V, this can be used to control the negativity of B.

We further need the following useful concept that slightly generalizes entire curve loci.

4.5 Definition If *Z* is an algebraic set contained in some stage X_k of the Semple tower of (X, V), we define its "induced entire curve locus" $\operatorname{IEL}_{X,V}(Z) \subset Z$ to be the Zariski closure of the union $\bigcup f_{[k]}(\mathbb{C})$ of all jets of entire curves $f : (\mathbb{C}, T_{\mathbb{C}}) \to$ (X, V) such that $f_{[k]}(\mathbb{C}) \subset Z$.

We have of course $\operatorname{IEL}_{X,V}(\operatorname{IEL}_{X,V}(Z)) = \operatorname{IEL}_{X,V}(Z)$ by definition. It is not hard to check that modulo certain "vertical divisors" of X_k , the $\operatorname{IEL}_{X,V}(Z)$ locus is essentially the same as the entire curve locus $\operatorname{ECL}(Z, W)$ of the induced directed variety, but we will not use this fact here. Notice that if $Z = \bigcup Z_{\alpha}$ is a decomposition of Z into irreducible divisors, then

$$\operatorname{IEL}_{X,V}(Z) = \bigcup_{\alpha} \operatorname{IEL}_{X,V}(Z_{\alpha}).$$

Since $\text{IEL}_{X,V}(X_k) = \text{ECL}_k(X, V)$, proving the Green-Griffiths-Lang property amounts to showing that $\text{IEL}_{X,V}(X) \subsetneq X$ in the stage k = 0 of the tower. The basic step of our approach is expressed in the following statement.

4.6 Proposition Let (X, V) be a directed variety and $p_0 \le n = \dim X$, $p_0 \ge 1$. Assume that there is an integer $k_0 \ge 0$ such that for every $k \ge k_0$ and every irreducible algebraic set $Z \subsetneq X_k$, $Z \not\subset D_k$, such that $\dim \pi_{k,k_0}(Z) \ge p_0$, the induced directed structure $(Z, W) \subset (X_k, V_k)$ is of general type modulo $X_k \to X$. Then $\dim \text{ECL}_{k_0}(X, V) < p_0$.

Proof We argue here by contradiction, assuming that dim $ECL_{k_0}(X, V) \ge p_0$. If

$$p'_0 := \dim \operatorname{ECL}_{k_0}(X, V) > p_0$$

and if we can prove the result for p'_0 , we will already get a contradiction, hence we can assume without loss of generality that dim $\text{ECL}_{k_0}(X, V) = p_0$. The main argument consists of producing inductively an increasing sequence of integers

$$k_0 < k_1 < \cdots < k_j < \cdots$$

and directed varieties $(Z^j, W^j) \subset (X_{k_i}, V_{k_j})$ satisfying the following properties :

(3.6.1) Z^0 is one of the irreducible components of $ECL_{k_0}(X, V)$ and dim $Z^0 = p_0$. (3.6.2) Z^j is one of the irreducible components of $ECL_{k_j}(X, V)$ and $\pi_{k_j,k_0}(Z^j) = Z^0$.

Towards The Green-Griffiths-Lang Conjecture

391 (3.6.3) For all $j \ge 0$, $\operatorname{IEL}_{X,V}(Z^j) = Z^j$ and $\operatorname{rank} W_j \ge 1$.

(3.6.4) For all $j \ge 0$, the directed variety (Z^{j+1}, W^{j+1}) is contained in some stage (of order $\ell_j = k_{j+1} - k_j$) of the Semple tower of (Z^j, W^j) , namely

$$(Z^{j+1}, W^{j+1}) \subsetneq (Z^{j}_{\ell_{j}}, W^{j}_{\ell_{j}}) \subset (X_{k_{j+1}}, V_{k_{j+1}})$$

and

$$W^{j+1} = \overline{T_{Z^{j+1}} \cap W^{j}_{\ell_{j}}} = \overline{T_{Z^{j+1}} \cap V_{k_{j}}}$$
(4.3)

394 395

392

393

is the induced directed structure; moreover
$$\pi_{k_{j+1},k_j}(Z^{j+1}) = Z^j$$
.

95 (3.6.5) For all
$$j \ge 0$$
, we have $Z^{j+1} \subsetneq Z^j_{\ell_j}$ but $\pi_{k_{j+1},k_{j+1}-1}(Z^{j+1}) = Z^j_{\ell_j-1}$.

For j = 0, we simply take Z^0 to be one of the irreducible components S_α of $\operatorname{ECL}_{k_0}(X, V)$ such that dim $S_\alpha = p_0$, which exists by our hypothesis that dim $\operatorname{ECL}_{k_0}(X, V) = p_0$. Clearly, $\operatorname{ECL}_{k_0}(X, V)$ is the union of the $\operatorname{IEL}_{X,V}(S_\alpha)$ and we have $\operatorname{IEL}_{X,V}(S_\alpha) = S_\alpha$ for all those components, thus $\operatorname{IEL}_{X,V}(Z^0) = Z^0$ and dim $Z^0 = p_0$. Assume that (Z^j, W^j) has been constructed. The subvariety Z^j cannot be contained in the vertical divisor D_{k_j} . In fact no irreducible algebraic set Z such that $\operatorname{IEL}_{X,V}(Z) = Z$ can be contained in a vertical divisor D_k , because $\pi_{k,k-2}(D_k)$ corresponds to stationary jets in X_{k-2} ; as every non constant curve f has non stationary points, its k-jet $f_{[k]}$ cannot be entirely contained in D_k ; also the induced directed structure (Z, W) must satisfy rank $W \ge 1$ otherwise $\operatorname{IEL}_{X,V}(Z) \subsetneq Z$. Condition (3.6.2) implies that dim $\pi_{k_j,k_0}(Z^j) \ge p_0$, thus (Z^j, W^j) is of general type modulo $X_{k_j} \to X$ by the assumptions of the proposition. Thanks to Proposition 3.3, we get an algebraic subset $\Sigma \subsetneq Z_\ell^j$ in some stage of the Semple tower (Z_ℓ^j) of Z^j such that every entire curve $f : (\mathbb{C}, T_{\mathbb{C}}) \to (X, V)$ satisfying $f_{[k_j]}(\mathbb{C}) \subset Z^j$ also satisfies $f_{[k_i+\ell]}(\mathbb{C}) \subset \Sigma$. By definition, this implies the first inclusion in the sequence

$$Z^{j} = \operatorname{IEL}_{X,V}(Z^{j}) \subset \pi_{k_{j}+\ell,k_{j}}(\operatorname{IEL}_{X,V}(\Sigma)) \subset \pi_{k_{j}+\ell,k_{j}}(\Sigma) \subset Z^{j}$$

(the other ones being obvious), so we have in fact an equality throughout. Let (S'_{α}) be the irreducible components of $\operatorname{IEL}_{X,V}(\Sigma)$. We have $\operatorname{IEL}_{X,V}(S'_{\alpha}) = S'_{\alpha}$ and one of the components S'_{α} must satisfy

$$\pi_{k_j+\ell,k_j}(S'_\alpha)=Z^j=Z^j_0.$$

We take $\ell_j \in [1, \ell]$ to be the smallest order such that $Z^{j+1} := \pi_{k_j+\ell, k_j+\ell_j}(S'_{\alpha}) \subsetneq Z^j_{\ell_j}$, and set $k_{j+1} = k_j + \ell_j > k_j$. By definition of ℓ_j , we have $\pi_{k_{j+1}, k_{j+1}-1}(Z^{j+1}) = Z^j_{\ell_j-1}$, otherwise ℓ_j would not be minimal. Then $\pi_{k_{j+1}, k_j}(Z^{j+1}) = Z^j$, hence $\pi_{k_{j+1}, k_0}(Z^{j+1}) = Z^0$ by induction, and all properties (3.6.1–3.6.5) follow easily. Now, by Observation 3.1, we have

$$\operatorname{rank} W^{j} < \operatorname{rank} W^{j-1} < \cdots < \operatorname{rank} W^{1} < \operatorname{rank} W^{0} = \operatorname{rank} V.$$

This is a contradiction because we cannot have such an infinite sequence. Proposition 4.6 is proved.

The special case $k_0 = 0$, $p_0 = n$ of Proposition 4.6 yields the following consequence.

4.7 Partial solution to the generalized GGL conjecture *Let* (X, V) *be a directed pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture holds true for* (X, V), *namely* ECL $(X, V) \subseteq X$, *in other words there exists a proper algebraic variety* $Y \subseteq X$ *such that every non constant holomorphic curve* $f : \mathbb{C} \to X$ *tangent to* V *satisfies* $f(\mathbb{C}) \subset Y$.

4.8 Remark The proof is not very constructive, but it is however theoretically ef-405 fective. By this we mean that if (X, V) is strongly of general type and is taken in a 406 bounded family of directed varieties, i.e. X is embedded in some projective space 407 \mathbb{P}^N with some bound δ on the degree, and P(V) also has bounded degree $\leq \delta'$ 408 when viewed as a subvariety of $P(T_{\mathbb{P}^N})$, then one could theoretically derive bounds 409 $d_Y(n, \delta, \delta')$ for the degree of the locus Y. Also, there would exist bounds $k_0(n, \delta, \delta')$ 410 for the orders k and bounds $d_k(n, \delta, \delta')$ for the degrees of subvarieties $Z \subset X_k$ that 411 have to be checked in the definition of a pair of strong general type. In fact, [4] 412 produces more or less explicit bounds for the order k such that Proposition 3.3 holds 413 true. The degree of the divisor Σ is given by a section of a certain twisted line bundle 414 $\mathcal{O}_{X_k}(m) \otimes \pi_{k=0}^* \mathcal{O}_X(-A)$ that we know to be big by an application of holomorphic 415 Morse inequalities – and the bounds for the degrees of (X_k, V_k) then provide bounds 416 for *m*. 417

4.9 Remark The condition that (X, V) is strongly of general type seems to be related to some sort of stability condition. We are unsure what is the most appropriate definition, but here is one that makes sense. Fix an ample divisor A on X. For every irreducible subvariety $Z \subset X_k$ that projects onto X_{k-1} for $k \ge 1$, and $Z = X = X_0$ for k = 0, we define the slope $\mu_A(Z, W)$ of the corresponding directed variety (Z, W) to be

$$\mu_A(Z, W) = \frac{\inf \lambda}{\operatorname{rank} W},$$

where λ runs over all rational numbers such that there exists $m \in \mathbb{Q}_+$ for which

$$K_W \otimes \left(\mathcal{O}_{X_k}(m) \otimes \pi_{k,0}^* \mathcal{O}(\lambda A) \right)_{|Z|}$$
 is big on Z

(again, we assume here that $Z \not\subset D_k$ for $k \ge 2$). Notice that (X, V) is of general type if and only if $\mu_A(X, V) < 0$, and that $\mu_A(Z, W) = -\infty$ if $\mathcal{O}_{X_k}(1)_{|A|}$ is big. Also, the proof of Lemma 2.5 shows that

$$\mu_A(X_k, V_k) \le \mu_A(X_{k-1}, V_{k-1}) \le \ldots \le \mu_A(X, V)$$
 for all k

(with $\mu_A(X_k, V_k) = -\infty$ for $k \ge k_0 \gg 1$ if (X, V) is of general type). We say 418 that (X, V) is A-jet-stable (resp. A-jet-semi-stable) if $\mu_A(Z, W) < \mu_A(X, V)$ (resp. 419 $\mu_A(Z, W) \leq \mu_A(X, V)$ for all $Z \subsetneq X_k$ as above. It is then clear that if (X, V) is of 420 general type and A-jet-semi-stable, then it is strongly of general type in the sense of 421 Definition 4.1. It would be useful to have a better understanding of this condition of 422 stability (or any other one that would have better properties). \square 423

4.10 Example (case of surfaces) Assume that X is a minimal complex surface of general type and $V = T_X$ (absolute case). Then K_X is nef and big and the Chern classes of X satisfy $c_1 \le 0$ ($-c_1$ is big and nef) and $c_2 \ge 0$. The Semple jet-bundles X_k form here a tower of \mathbb{P}^1 -bundles and dim $X_k = k + 2$. Since det $V^* = K_X$ is big, the strong general type assumption of 4.6 and 4.8 need only be checked for irreducible hypersurfaces $Z \subset X_k$ distinct from D_k that project onto X_{k-1} , of relative degree m. The projection $\pi_{k,k-1}: Z \to X_{k-1}$ is a ramified m: 1 cover. Putting $\mathcal{O}_{X_k}(Z) \simeq \mathcal{O}_{X_k}(\mathbf{a}) \otimes \pi_{k,0}(B), B \in \operatorname{Pic}(X)$, we can apply (4.1) to get an inclusion

$$K_W \supset \left(\mathcal{O}_{X_k}(\mathbf{a}-\mathbf{1}) \otimes \pi_{k,0}^*(B \otimes K_X)\right)_{|Z} \otimes \mathcal{J}_S, \quad \mathbf{a} \in \mathbb{Z}^k, \ a_k = m.$$

Let us assume k = 1 and $S = \emptyset$ to make things even simpler, and let us perform numerical calculations in the cohomology ring

$$H^{\bullet}(X_1, \mathbb{Z}) = H^{\bullet}(X)[u]/(u^2 + c_1u + c_2), \quad u = c_1(O_{X_1}(1))$$

(cf. [3, Section 2] for similar calculations and more details). We have

$$Z \equiv mu + b$$
 where $b = c_1(B)$ and $K_W \equiv (m-1)u + b - c_1$.

We are allowed here to add to K_W an arbitrary multiple $\mathcal{O}_{X_1}(p), p \ge 0$, which we 424 rather write p = mt + 1 - m, $t \ge 1 - 1/m$. An evaluation of the Euler-Poincaré 425 characteristic of $K_W + \mathcal{O}_{X_1}(p)|_Z$ requires computing the intersection number 426

$$\begin{cases} K_W + \mathcal{O}_{X_1}(p)_{|Z} \end{pmatrix}^2 \cdot Z = (mt \, u + b - c_1)^2 (mu + b) \\ = m^2 t^2 (m(c_1^2 - c_2) - bc_1) + 2mt (b - mc_1)(b - c_1) \\ + m(b - c_1)^2, \end{cases}$$

$$(4.4)$$

taking into account that $u^3 \cdot X_1 = c_1^2 - c_2$. In case $S \neq \emptyset$, there is an additional 431 (negative) contribution from the ideal \mathcal{J}_S which is O(t) since S is at most a curve. In 432 any case, for $t \gg 1$, the leading term in the expansion is $m^2 t^2 (m(c_1^2 - c_2) - bc_1)$ and 433 the other terms are negligible with respect to t^2 , including the one coming from S. 434 We know that T_X is semistable with respect to $c_1(K_X) = -c_1 \ge 0$. Multiplication by 435 the section σ yields a morphism $\pi_{1,0}^* \mathcal{O}_X(-B) \to \mathcal{O}_{X_1}(m)$, hence by direct image, 436 a morphism $\mathcal{O}_X(-B) \to S^m T^*_X$. Evaluating slopes against K_X (a big nef class), 437 the semistability condition implies $bc_1 \leq \frac{m}{2}c_1^2$, and our leading term is bigger that 438

Author Proof

 $m^3 t^2 (\frac{1}{2}c_1^2 - c_2)$. We get a positive answer in the well-known case where $c_1^2 > 2c_2$, 439 corresponding to T_X being almost ample. Analyzing positivity for the full range of 440 values (k, m, t) and of singular sets S seems an unsurmountable task at this point; in 441 general, calculations made in [3, 12] indicate that the Chern class and semistability 442 conditions become less demanding for higher order jets (e.g. $c_1^2 > c_2$ is enough for $Z \subset X_2$, and $c_1^2 > \frac{9}{13}c_2$ suffices for $Z \subset X_3$). When rank V = 1, major gains 443 444 come from the use of Ahlfors currents in combination with McQuillan's tautological 445 inequalities [11]. We therefore hope for a substantial strengthening of the above 446 sufficient conditions, and a better understanding of the stability issues, possibly 447 in combination with a use of Ahlfors currents and tautological inequalities. In the 448 case of surfaces, an application of Proposition 4.6 for $k_0 = 1$ and an analysis of 449 the behaviour of rank 1 (multi-)foliations on the surface X (with the crucial use of 450 [11]) was the main argument used in [3] to prove the hyperbolicity of very general 451 surfaces of degree $d \ge 21$ in \mathbb{P}^3 . For these surfaces, one has $c_1^2 < c_2$ and $c_1^2/c_2 \to 1$ 452 as $d \to +\infty$. Applying Proposition 4.6 for higher values $k_0 \ge 2$ might allow to 453 enlarge the range of tractable surfaces, if the behavior of rank 1 (multi)-foliations on 454 X_{k_0-1} can be analyzed independently. 455

⁴⁵⁶ 5 Algebraic Jet-Hyperbolicity Implies Kobayashi ⁴⁵⁷ Hyperbolicity

Let (X, V) be a directed variety, where X is an irreducible projective variety; the concept still makes sense when X is singular, by embedding (X, V) in a projective space $(\mathbb{P}^N, T_{\mathbb{P}^N})$ and taking the linear space V to be an irreducible algebraic subset of $T_{\mathbb{P}^n}$ that is contained in T_X at regular points of X.

462 **5.1 Definition** Let (X, V) be a directed variety. We say that (X, V) is algebraically 463 jet-hyperbolic if for every $k \ge 0$ and every irreducible algebraic subvariety $Z \subset X_k$ 464 that is not contained in the union Δ_k of vertical divisors, the induced directed structure 465 (Z, W) either satisfies W = 0, or is of general type modulo $X_k \to X$, i.e. has a 466 desingularization $(\widehat{Z}, \widehat{W}), \mu : \widehat{Z} \to Z$, such that some twisted canonical sheaf 467 $K_{\widehat{W}} \otimes \mu^*(\mathcal{O}_{X_k}(\mathbf{a})|_Z), \mathbf{a} \in \mathbb{N}^k$, is big.

⁴⁶⁸ Proposition 4.6 then gives

5.2 Theorem Let (X, V) be an irreducible projective directed variety that is algebraically jet-hyperbolic in the sense of the above definition. Then (X, V) is Brody (or Kobayashi) hyperbolic, i.e. $ECL(X, V) = \emptyset$.

Proof Here we apply Proposition 4.6 with $k_0 = 0$ and $p_0 = 1$. It is enough to deal with subvarieties *Z* ⊂ *X_k* such that dim $\pi_{k,0}(Z) \ge 1$, otherwise *W* = 0 and can reduce *Z* to a smaller subvariety by (3.2). Then we conclude that dim ECL(*X*, *V*) < 1. All entire curves tangent to *V* have to be constant, and we conclude in fact that ECL(*X*, *V*) = Ø.

477 **References**

- J.-P. Demailly, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials. AMS Summer School on Algebraic Geometry, Santa Cruz 1995, in *Proceedings Symposia in Pure Mathematics*, ed. by J. Kollár, R. Lazarsfeld, Am. Math. Soc. Providence, RI, 285–360 (1997)
- J.-P. Demailly, Variétés hyperboliques et équations différentielles algébriques. Gaz. Math. 73,
 3–23 (juillet 1997). http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/cartanaugm.
 pdf
- 3. J.-P. Demailly, J. El Goul, Hyperbolicity of generic surfaces of high degree in projective 3-space.
 Am. J. Math. 122, 515–546 (2000)
- 4. J.-P. Demailly, Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture. Pure
 App. Math. Q. 7, 1165–1208 (2011). November 2010, arxiv:math.AG/1011.3636, dedicated
 to the memory of Eckart Viehweg
- 5. S. Diverio, J. Merker, E. Rousseau, Effective algebraic degeneracy. Invent. Math. 180, 161–223
 (2010)
- S. Diverio, E. Rousseau, The exceptional set and the Green-Griffiths locus do not always
 coincide. arxiv:math.AG/1302.4756 (v2)
- M. Green, P. Griffiths, Two applications of algebraic geometry to entire holomorphic mappings, in *The Chern Symposium, Proceedings of the International Symposium Berkeley, CA, 1979.* Springer, New York, pp. 41–74 (1980)
- 8. S. Kobayashi, *Hyperbolic Manifolds and Holomorphic Mappings*, Pure and Applied Mathematics, vol. 2 (Marcel Dekker Inc., New York, 1970)
- 9. S. Kobayashi, *Hyperbolic complex spaces*, Grundlehren der Mathematischen Wissenschaften,
 vol. 318 (Springer, Berlin, 1998)
- 10. S. Lang, Hyperbolic and Diophantine analysis. Bull. Am. Math. Soc. 14, 159–205 (1986)
- 11. M. McQuillan, Diophantine approximation and foliations. Inst. Hautes Études Sci. Publ. Math.
 87, 121–174 (1998)
- M. McQuillan, Holomorphic curves on hyperplane sections of 3-folds. Geom. Funct. Anal. 9,
 370–392 (1999)
- M. Păun, Vector fields on the total space of hypersurfaces in the projective space and hyper bolicity. Math. Ann. 340, 875–892 (2008)
- Y.T. Siu, Some recent transcendental techniques in algebraic and complex geometry, in *Proceedings of the International Congress of Mathematicians, Vol. I*, Higher Ed. Press, Beijing, 2002, pp. 439–448
- 15. Y.T. Siu, *Hyperbolicity in Complex Geometry*, The legacy of Niels Henrik Abel (Springer, Berlin, 2004), pp. 543–566
- 16. Y.T. Siu, S.K. Yeung, Hyperbolicity of the complement of a generic smooth curve of high
- degree in the complex projective plane. Invent. Math. **124**, 573–618 (1996)

Author Queries

Chapter 8

Query Refs.	Details Required	Author's response
	No queries.	
	no queres.	

MARKED PROOF

Please correct and return this set

Please use the proof correction marks shown below for all alterations and corrections. If you wish to return your proof by fax you should ensure that all amendments are written clearly in dark ink and are made well within the page margins.

Instruction to printer	Textual mark	Marginal mark
Leave unchanged Insert in text the matter indicated in the margin	••• under matter to remain k	
Delete	 / through single character, rule or underline or ⊢ through all characters to be deleted 	of or of
Substitute character or substitute part of one or more word(s)	/ through letter or	new character / or new characters /
Change to italics Change to capitals	 under matter to be changed under matter to be changed 	
Change to small capitals Change to bold type	$=$ under matter to be changed \sim under matter to be changed	~
Change to bold italic	$\overline{\nabla}$ under matter to be changed	
Change italic to upright type	(As above)	<i>₹</i> 4⁄
Change bold to non-bold type	(As above)	
Insert 'superior' character	/ through character or k where required	y or X under character e.g. y or X →
Insert 'inferior' character	(As above)	k over character e.g. $\frac{1}{2}$
Insert full stop	(As above)	0
Insert comma	(As above)	,
Insert single quotation marks	(As above)	Ý or ¼ and/or Ý or ¼
Insert double quotation marks	(As above)	У́ог Х́and/or У́ог Х́
Insert hyphen	(As above)	H
Start new paragraph	_ _	_ _
No new paragraph	ے	<u>(</u>
Transpose		
Close up	linking characters	\bigcirc
Insert or substitute space between characters or words	/ through character or k where required	Y
Reduce space between characters or words	between characters or words affected	\uparrow