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In memory of M. Salah Baouendi

Abstract The Green-Griffiths-Lang conjecture stipulates that for every projective1

variety X of general type over C, there exists a proper algebraic subvariety of X2

containing all non constant entire curves f : C → X . Using the formalism of3

directed varieties, we prove here that this assertion holds true in case X satisfies a4

strong general type condition that is related to a ceain jet-semistitoperty of the tangent5

bundle TX . We then give a sufficient criterion for the Kobayashi hyperbolicity of an6

arbitrary directed variety (X, V ).7
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Jet bundle · Semple tower · Green-griffiths-lang conjecture · Holomorphic morse9

inequality · Semistable vector bundle · Kobayashi hyperbolic10
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1 Introduction13

The goal of this paper is to study the Green-Griffiths-Lang conjecture, as stated in14

[7, 10]. It is useful to work in a more general context and consider the category of15

directed projective manifolds (or varieties). Since the basic problems we deal with16

are birationally invariant, the varieties under consideration can always be replaced17

by nonsingular models. A directed projective manifold is a pair (X, V ) where X is a18

projective manifold equipped with an analytic linear subspace V ⊂ TX , i.e. a closed19

irreducible complex analytic subset V of the total space of TX , such that each fiber20
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2 J.-P. Demailly

Vx = V ∩ TX,x is a complex vector space [If X is not irreducible, V should rather be21

assumed to be irreducible merely over each component of X , but we will hereafter22

assume that our varieties are irreducible]. A morphism � : (X, V ) → (Y, W )23

in the category of directed manifolds is an analytic map � : X → Y such that24

�∗V ⊂ W . We refer to the case V = TX as being the absolute case, and to the case25

V = TX/S = Ker dπ for a fibration π : X → S, as being the relative case; V may26

also be taken to be the tangent space to the leaves of a singular analytic foliation27

on X , or maybe even a non integrable linear subspace of TX .28

We are especially interested in entire curves that are tangent to V , namely non29

constant holomorphic morphisms f : (C, TC) → (X, V ) of directed manifolds. In30

the absolute case, these are just arbitrary entire curves f : C → X . The Green-31

Griffiths-Lang conjecture, in its strong form, stipulates32

1.1 GGL conjecture Let X be a projective variety of general type. Then there exists33

a proper algebraic variety Y � X such that every entire curve f : C → X satisfies34

f (C) ⊂ Y .35

[The weaker form would state that entire curves are algebraically degenerate, so that36

f (C) ⊂ Y f � X where Y f might depend on f ]. The smallest admissible algebraic37

set Y ⊂ X is by definition the entire curve locus of X , defined as the Zariski closure38

ECL(X) =
⋃

f

f (C)
Zar

. (1.1)39

If X ⊂ P
N
C

is defined over a number field K0 (i.e. by polynomial equations with40

equations with coefficients in K0) and Y = ECL(X), it is expected that for every41

number field K ⊃ K0 the set of K-points in X (K)�Y is finite, and that this property42

characterizes ECL(X) as the smallest algebraic subset Y of X that has the above43

property for all K [10]. This conjectural arithmetical statement would be a vast44

generalization of the Mordell-Faltings theorem, and is one of the strong motivations45

to study the geometric GGL conjecture as a first step.46

1.2 Problem (generalized GGL conjecture) Let (X, V ) be a projective directed47

manifold. Find geometric conditions on V ensuring that all entire curves f :48

(C, TC) → (X, V ) are contained in a proper algebraic subvariety Y � X . Does49

this hold when (X, V ) is of general type, in the sense that the canonical sheaf KV is50

big ?51

As above, we define the entire curve locus set of a pair (X, V ) to be the smallest52

admissible algebraic set Y ⊂ X in the above problem, i.e.53

ECL(X, V ) =
⋃

f :(C,TC)→(X,V )

f (C)
Zar

. (1.2)54

We say that (X, V ) is Brody hyperbolic if ECL(X, V ) = ∅ ; as is well-known, this55

is equivalent to Kobayashi hyperbolicity whenever X is compact.56
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Towards The Green-Griffiths-Lang Conjecture 3

In case V has no singularities, the canonical sheaf KV is defined to be (det O(V ))∗57

where O(V ) is the sheaf of holomorphic sections of V , but in general this naive58

definition would not work. Take for instance a generic pencil of elliptic curves59

λP(z) + μQ(z) = 0 of degree 3 in P
2
C

, and the linear space V consisting of the60

tangents to the fibers of the rational map P
2
C

> P
1
C

defined by z �→ Q(z)/P(z).61

Then V is given by62

0 −→ O(V ) −→ O(T
P2

C

)
Pd Q−Qd P

−−−−−−−→ O
P2

C

(6) ⊗ JS −→ 063

where S = Sing(V ) consists of the 9 points {P(z) = 0} ∩ {Q(z) = 0}, and64

JS is the corresponding ideal sheaf of S. Since det O(TP2) = O(3), we see that65

(det(O(V ))∗ = O(3) is ample, thus Problem 1.2 would not have a positive answer66

(all leaves are elliptic or singular rational curves and thus covered by entire curves).67

An even more “degenerate” example is obtained with a generic pencil of conics, in68

which case (det(O(V ))∗ = O(1) and #S = 4.69

If we want to get a positive answer to Problem 1.2, it is therefore indispensable70

to give a definition of KV that incorporates in a suitable way the singularities of V ;71

this will be done in Definition 2.1 (see also Proposition 2.2). The goal is then to give72

a positive answer to Problem 1.2 under some possibly more restrictive conditions for73

the pair (X, V ). These conditions will be expressed in terms of the tower of Semple74

jet bundles75

(Xk, Vk) → (Xk−1, Vk−1) → · · · → (X1, V1) → (X0, V0) := (X, V ) (1.3)76

which we define more precisely in Sect. 2, following [1]. It is constructed inductively77

by setting Xk = P(Vk−1) (projective bundle of lines of Vk−1), and all Vk have the78

same rank r = rankV , so that dim Xk = n + k(r − 1) where n = dim X . Entire79

curve loci have their counterparts for all stages of the Semple tower, namely, one can80

define81

ECLk(X, V ) =
⋃

f :(C,TC)→(X,V )

f[k](C)
Zar

. (1.4)82

where f[k] : (C, TC) → (Xk, Vk) is the k-jet of f . These are by definition algebraic83

subvarieties of Xk , and if we denote by πk,� : Xk → X� the natural projection from84

Xk to X�, 0 ≤ � ≤ k, we get immediately85

πk,�(ECLk(X, V )) = ECL�(X, V ), ECL0(X, V ) = ECL(X, V ). (1.5)86

Let OXk (1) be the tautological line bundle over Xk associated with the projective87

structure. We define the k-stage Green-Griffiths locus of (X, V ) to be88

GGk(X, V ) = (Xk��k) ∩
⋂

m∈N

(
base locus of OXk (m) ⊗ π∗

k,0 A−1
)

(1.6)89
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4 J.-P. Demailly

where A is any ample line bundle on X and �k = ⋃
2≤�≤k π−1

k,�(D�) is the union90

of “vertical divisors” (see Sect. 2; the vertical divisors play no role and have to be91

removed in this context). Clearly, GGk(X, V ) does not depend on the choice of A.92

The basic vanishing theorem for entire curves (cf. [1, 7, 16]) asserts that every entire93

curve f : (C, TC) → (X, V ) satisfies all differential equations P( f ) = 0 arising94

from sections P ∈ H0(Xk,OXk (m) ⊗ π∗
k,0 A−1), hence95

ECLk(X, V ) ⊂ GGk(X, V ). (1.7)96

(For this, one uses the fact that f[k](C) is not contained in any component of �k ,97

cf. [1]). It is therefore natural to define the global Green-Griffiths locus of (X, V ) to be98

GG(X, V ) =
⋂

k∈N

πk,0 (GGk(X, V )) . (1.8)99

By (1.5) and (1.7) we infer that100

ECL(X, V ) ⊂ GG(X, V ). (1.9)101

The main result of [4] (Theorem 2.37 and Corollary 4.4) implies the following useful102

information:103

1.3 Theorem Assume that (X, V ) is of “general type”, i.e. that the canonical sheaf104

KV is big on X. Then there exists an integer k0 such that GGk(X, V ) is a proper105

algebraic subset of Xk for k ≥ k0 [ though πk,0(GGk(X, V )) might still be equal to106

X for all k ].107

In fact, if F is an invertible sheaf on X such that KV ⊗ F is big, the probabilistic108

estimates of [4, Corollarys 2.38 and 4.4] produce sections of109

OXk (m) ⊗ π∗
k,0O

( m

kr

(
1 + 1

2
+ · · · + 1

k

)
F

)
(1.10)110

for m 
 k 
 1. The (long and involved) proof uses a curvature computation and111

singular holomorphic Morse inequalities to show that the line bundles involved in112

(0.11) are big on Xk for k 
 1. One applies this to F = A−1 with A ample on X to113

produce sections and conclude that GGk(X, V ) � Xk .114

Thanks to (1.9), the GGL conjecture is satisfied whenever GG(X, V ) � X . By115

[5], this happens for instance in the absolute case when X is a generic hypersurface116

of degree d ≥ 2n5
in P

n+1 (see also [13] for better bounds in low dimensions, and117

[14, 15]). However, as already mentioned in [10], very simple examples show that118

one can have GG(X, V ) = X even when (X, V ) is of general type, and this already119

occurs in the absolute case as soon as dim X ≥ 2. A typical example is a product of120

directed manifolds121

(X, V ) = (X ′, V ′) × (X ′′, V ′′), V = pr′ ∗V ′ ⊕ pr′′ ∗V ′′. (1.11)122
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Towards The Green-Griffiths-Lang Conjecture 5

The absolute case V = TX , V ′ = TX ′ , V ′′ = TX ′′ on a product of curves is the123

simplest instance. It is then easy to check that GG(X, V ) = X , cf. (3.2). Diverio124

and Rousseau [6] have given many more such examples, including the case of in-125

decomposable varieties (X, TX ), e.g. Hilbert modular surfaces, or more generally126

compact quotients of bounded symmetric domains of rank ≥ 2. The problem here is127

the failure of some sort of stability condition that is introduced in Sect. 4. This leads128

to a somewhat technical concept of more manageable directed pairs (X, V ) that we129

call strongly of general type, see Definition 4.1. Our main result can be stated130

1.4 Theorem (partial solution to the generalized GGL conjecture) Let (X, V ) be131

a directed pair that is strongly of general type. Then the Green-Griffiths-Lang con-132

jecture holds true for (X, V ), namely ECL(X, V ) is a proper algebraic subvariety133

of X.134

The proof proceeds through a complicated induction on n = dim X and k =135

rankV , which is the main reason why we have to introduce directed varieties, even136

in the absolute case. An interesting feature of this result is that the conclusion on137

ECL(X, V ) is reached without having to know anything about the Green-Griffiths138

locus GG(X, V ), even a posteriori. Nevetheless, this is not yet enough to confirm139

the GGL conjecture. Our hope is that pairs (X, V ) that are of general type without140

being strongly of general type—and thus exhibit some sort of “jet-instability”—141

can be investigated by different methods, e.g. by the diophantine approximation142

techniques of McQuillan [11]. However, Theorem 1.4 provides a sufficient criterion143

for Kobayashi hyperbolicity [8, 9], thanks to the following concept of algebraic144

jet-hyperbolicity.145

1.5 Definition A directed variety (X, V ) will be said to be algebraically jet-146

hyperbolic if the induced directed variety structure (Z , W ) on every irreducible147

algebraic variety Z of X such that rankW ≥ 1 has a desingularization that is strongly148

of general type [see Sects. 3 and 5 for the definition of induced directed structures149

and further details]. We also say that a projective manifold X is algebraically jet-150

hyperbolic if (X, TX ) is.151

In this context, Theorem 1.4 yields the following connection between algebraic152

jet-hyperbolicity and the analytic concept of Kobayashi hyperbolicity.153

1.6 Theorem Let (X, V ) be a directed variety structure on a projective manifold154

X. Assume that (X, V ) is algebraically jet-hyperbolic. Then (X, V ) is Kobayashi155

hyperbolic.156

I would like to thank Simone Diverio and Erwan Rousseau for very stimulating157

discussions on these questions. I am grateful to Mihai Păun for an invitation at KIAS158

(Seoul) in August 2014, during which further very fruitful exchanges took place, and159

for his extremely careful reading of earlier drafts of the manuscript.160
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6 J.-P. Demailly

2 Semple Jet Bundles and Associated Canonical Sheaves161

Let (X, V ) be a directed projective manifold and r = rankV , that is, the dimension of162

generic fibers. Then V is actually a holomorphic subbundle of TX on the complement163

X�Sing(V ) of a certain minimal analytic set Sing(V ) � X of codimension ≥ 2,164

called hereafter the singular set of V . If μ : X̂ → X is a proper modification165

(a composition of blow-ups with smooth centers, say), we get a directed manifold166

(X̂ , V̂ ) by taking V̂ to be the closure of μ−1∗ (V ′), where V ′ = V|X ′ is the restriction167

of V over a Zariski open set X ′ ⊂ X�Sing(V ) such that μ : μ−1(X ′) → X ′ is a168

biholomorphism. We will be interested in taking modifications realized by iterated169

blow-ups of certain nonsingular subvarieties of the singular set Sing(V ), so as to170

eventually “improve” the singularities of V ; outside of Sing(V ) the effect of blowing-171

up will be irrelevant, as one can see easily. Following [4], the canonical sheaf KV is172

defined as follows.173

2.1 Definition For any directed pair (X, V ) with X nonsingular, we define KV to
be the rank 1 analytic sheaf such that

KV (U ) = sheaf of locally bounded sections of OX (�r V ′∗)(U ∩ X ′)

where r = rank(V ), X ′ = X�Sing(V ), V ′ = V|X ′ , and “bounded” means bounded174

with respect to a smooth hermitian metric h on TX .175

For r = 0, one can set KV = OX , but this case is trivial: clearly ECL(X, V ) = ∅.176

The above definition of KV may look like an analytic one, but it can easily be turned177

into an equivalent algebraic definition:178

2.2 Proposition Consider the natural morphism O(�r T ∗
X ) → O(�r V ∗) where179

r = rankV [O(�r V ∗) being defined here as the quotient of O(�r T ∗
X ) by r-forms that180

have zero restrictions to O(�r V ∗) on X�Sing(V ) ]. The bidual LV = OX (�r V ∗)∗∗
181

is an invertible sheaf, and our natural morphism can be written182

O(�r T ∗
X ) → O(�r V ∗) = LV ⊗ JV ⊂ LV (2.1)183

where JV is a certain ideal sheaf of OX whose zero set is contained in Sing(V ) and184

the arrow on the left is surjective by definition. Then185

KV = LV ⊗ J V (2.2)186

where J V is the integral closure of JV in OX . In particular, KV is always a coherent187

sheaf.188

Proof Let (uk) be a set of generators of O(�r V ∗) obtained (say) as the images of189

a basis (dzI )|I |=r of �r T ∗
X in some local coordinates near a point x ∈ X . Write190

uk = gk� where � is a local generator of LV at x . Then JV = (gk) by definition.191

The boundedness condition expressed in Definition 2.1 means that we take sections192
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Towards The Green-Griffiths-Lang Conjecture 7

of the form f � where f is a holomorphic function on U ∩ X ′ (and U a neighborhood193

of x), such that194

| f | ≤ C
∑

|gk | (2.3)195

for some constant C > 0. But then f extends holomorphically to U into a function196

that lies in the integral closure J V , and the latter is actually characterized analytically197

by condition (2.3). This proves Proposition 2.2. �198

By blowing-up JV and taking a desingularization X̂ , one can always find a log-199

resolution of JV (or KV ), i.e. a modification μ : X̂ → X such that μ∗JV ⊂ OX̂ is200

an invertible ideal sheaf (hence integrally closed); it follows that μ∗J V = μ∗JV and201

μ∗KV = μ∗LV ⊗μ∗JV are invertible sheaves on X̂ . Notice that for any modification202

μ′ : (X ′, V ′) → (X, V ), there is always a well defined natural morphism203

μ′ ∗KV → KV ′ (2.4)204

(though it need not be an isomorphism, and KV ′ is possibly non invertible even205

when μ′ is taken to be a log-resolution of KV ). Indeed (μ′)∗ = dμ′ : V ′ → μ∗V is206

continuous with respect to ambient hermitian metrics on X and X ′, and going to the207

duals reverses the arrows while preserving boundedness with respect to the metrics.208

If μ′′ : X ′′ → X ′ provides a simultaneous log-resolution of KV ′ and μ′ ∗KV , we get209

a non trivial morphism of invertible sheaves210

(μ′ ◦ μ′′)∗KV = μ′′ ∗μ′ ∗KV −→ μ′′ ∗KV ′ , (2.5)211

hence the bigness of μ′ ∗KV with imply that of μ′′ ∗KV ′ . This is a general principle212

that we would like to refer to as the “monotonicity principle” for canonical sheaves:213

one always get more sections by going to a higher level through a (holomorphic)214

modification.215

2.3 Definition We say that the rank 1 sheaf KV is “big” if the invertible sheaf μ∗KV216

is big in the usual sense for any log resolution μ : X̂ → X of KV . Finally, we say217

that (X, V ) is of general type if there exists a modification μ′ : (X ′, V ′) → (X, V )218

such that KV ′ is big; any higher blow-up μ′′ : (X ′′, V ′′) → (X ′, V ′) then also yields219

a big canonical sheaf by (2.4).220

Clearly, “general type” is a birationally (or bimeromorphically) invariant concept,
by the very definition. When dim X = n and V ⊂ TX is a subbundle of rank r ≥ 1,
one constructs a tower of “Semple k-jet bundles” πk,k−1 : (Xk, Vk) → (Xk−1, Vk−1)

that are P
r−1-bundles, with dim Xk = n + k(r − 1) and rank(Vk) = r . For this, we

take (X0, V0) = (X, V ), and for every k ≥ 1, we set inductively Xk := P(Vk−1)

and
Vk := (πk,k−1)

−1∗ OXk (−1) ⊂ TXk ,

where OXk (1) is the tautological line bundle on Xk , πk,k−1 : Xk = P(Vk−1) →221

Xk−1 the natural projection and (πk,k−1)∗ = dπk,k−1 : TXk → π∗
k,k−1TXk−1 its222
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8 J.-P. Demailly

differential (cf. [1]). In other terms, we have exact sequences223

0 −→ TXk/Xk−1 −→ Vk
(πk,k−1)∗−→ OXk (−1) −→ 0, (2.6)224

0 −→ OXk −→ (πk,k−1)
∗Vk−1 ⊗ OXk (1) −→ TXk/Xk−1 −→ 0, (2.7)225

226

where the last line is the Euler exact sequence associated with the relative tangent
bundle of P(Vk−1) → Xk−1. Notice that we by definition of the tautological line
bundle we have

OXk (−1) ⊂ π∗
k,k−1Vk−1 ⊂ π∗

k,k−1TXk−1 ,

and also rank(Vk) = r . Let us recall also that for k ≥ 2, there are “vertical divisors”227

Dk = P(TXk−1/Xk−2) ⊂ P(Vk−1) = Xk , and that Dk is the zero divisor of the228

section of OXk (1)⊗π∗
k,k−1OXk−1(−1) induced by the second arrow of the first exact229

sequence (2.6), when k is replaced by k − 1. This yields in particular230

OXk (1) = π∗
k,k−1OXk−1(1) ⊗ O(Dk). (2.8)231

By composing the projections we get for all pairs of indices 0 ≤ j ≤ k natural
morphisms

πk, j : Xk → X j , (πk, j )∗ = (dπk, j )|Vk : Vk → (πk, j )
∗Vj ,

and for every k-tuple a = (a1, . . . , ak) ∈ Z
k we define

OXk (a) =
⊗

1≤ j≤k

π∗
k, jOX j (a j ), πk, j : Xk → X j .

We extend this definition to all weights a ∈ Q
k to get a Q-line bundle in Pic(X)⊗ZQ.232

Now, Formula (2.8) yields233

OXk (a) = OXk (m) ⊗ O(−b · D) where m = |a| =
∑

a j , b = (0, b2, . . . , bk)

(2.9)234

and b j = a1 + · · · + a j−1, 2 ≤ j ≤ k.235

When Sing(V ) �= ∅, one can always define Xk and Vk to be the respective clo-236

sures of X ′
k , V ′

k associated with X ′ = X�Sing(V ) and V ′ = V|X ′ , where the clo-237

sure is taken in the nonsingular “absolute” Semple tower (Xa
k , V a

k ) obtained from238

(Xa
0 , V a

0 ) = (X, TX ). We leave the reader check the following easy (but important)239

observation.240

2.4 Fonctoriality If � : (X, V ) → (Y, W ) is a morphism of directed varieties241

such that �∗ : TX → �∗TY is injective (i.e. � is an immersion ), then there is a242

corresponding natural morphism �[k] : (Xk, Vk) → (Yk, Wk) at the level of Semple243

bundles. If one merely assumes that the differential �∗ : V → �∗W is non zero,244
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Towards The Green-Griffiths-Lang Conjecture 9

there is still a well defined meromorphic map �[k] : (Xk, Vk) > (Yk, Wk) for245

all k ≥ 0.246

In case V is singular, the k-th Semple bundle Xk will also be singular, but we247

can still replace (Xk, Vk) by a suitable modification (X̂ k, V̂ k) if we want to work248

with a nonsingular model X̂ k of Xk . The exceptional set of X̂ k over Xk can be249

chosen to lie above Sing(V ) ⊂ X , and proceeding inductively with respect to k,250

we can also arrange the modifications in such a way that we get a tower structure251

(X̂k+1, V̂k+1) → (X̂k, V̂k) ; however, in general, it will not be possible to achieve252

that V̂k is a subbundle of TX̂k
.253

It is not true that KV̂ k is big in case (X, V ) is of general type (especially since254

the fibers of Xk → X are towers of P
r−1 bundles, and the canonical bundles of255

projective spaces are always negative !). However, a twisted version holds true, that256

can be seen as another instance of the “monotonicity principle” when going to higher257

stages in the Semple tower.258

2.5 Lemma If (X, V ) is of general type, then there is a modification (X̂ , V̂ ) such259

that all pairs (X̂k, V̂k) of the associated Semple tower have a twisted canonical260

bundle KV̂k
⊗ OX̂k

(p) that is still big when one multiplies KV̂k
by a suitable Q-line261

bundle OX̂k
(p), p ∈ Q+.262

Proof. First assume that V has no singularities. The exact sequences (2.6) and (2.7)
provide

KVk := det V ∗
k = det(T ∗

Xk/Xk−1
) ⊗ OXk (1) = π∗

k,k−1 KVk−1 ⊗ OXk (−(r − 1))

where r = rank(V ). Inductively we get263

KVk = π∗
k,0 KV ⊗ OXk (−(r − 1)1), 1 = (1, . . . , 1) ∈ N

k . (2.10)264

We know by [1] that OXk (c) is relatively ample over X when we take the special
weight c = (2 3k−2, . . . , 2 3k− j−1, . . . , 6, 2, 1), hence

KVk ⊗ OXk ((r − 1)1 + εc) = π∗
k,0 KV ⊗ OXk (εc)

is big over Xk for any sufficiently small positive rational number ε ∈ Q
∗+. Thanks265

to Formula (2.9), we can in fact replace the weight (r − 1)1 + εc by its total degree266

p = (r − 1)k + ε|c| ∈ Q+. The general case of a singular linear space follows by267

considering suitable “sufficiently high” modifications X̂ of X , the related directed268

structure V̂ on X̂ , and embedding (X̂k, V̂k) in the absolute Semple tower (X̂a
k , V̂ a

k )269

of X̂ . We still have a well defined morphism of rank 1 sheaves270

π∗
k,0 KV̂ ⊗ OX̂k

(−(r − 1)1) → KV̂k
(2.11)271

because the multiplier ideal sheaves involved at each stage behave according to272

the monotonicity principle applied to the projections πa
k,k−1 : X̂a

k → X̂a
k−1 and their273
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10 J.-P. Demailly

differentials (πa
k,k−1)∗, which yield well-defined transposed morphisms from the274

(k − 1)-st stage to the k-th stage at the level of exterior differential forms. Our275

contention follows. �276

3 Induced Directed Structure on a Subvariety of a Jet Space277

Let Z be an irreducible algebraic subset of some k-jet bundle Xk over X , k ≥ 0. We278

define the linear subspace W ⊂ TZ ⊂ TXk |Z to be the closure279

W := TZ ′ ∩ Vk (3.1)280

taken on a suitable Zariski open set Z ′ ⊂ Zreg where the intersection TZ ′ ∩ Vk has281

constant rank and is a subbundle of TZ ′ . Alternatively, we could also take W to be the282

closure of TZ ′ ∩ Vk in the k-th stage (Xa
k , V a

k ) of the absolute Semple tower, which283

has the advantage of being nonsingular. We say that (Z , W ) is the induced directed284

variety structure; this concept of induced structure already applies of course in the285

case k = 0. If f : (C, TC) → (X, V ) is such that f[k](C) ⊂ Z , then286

either f[k](C) ⊂ Zα or f ′[k](C) ⊂ W, (3.2)287

where Zα is one of the connected components of Z�Z ′ and Z ′ is chosen as in (3.1);288

especially, if W = 0, we conclude that f[k](C) must be contained in one of the289

Zα’s. In the sequel, we always consider such a subvariety Z of Xk as a directed pair290

(Z , W ) by taking the induced structure described above. By (3.2), if we proceed by291

induction on dim Z , the study of curves tangent to V that have a k-lift f[k](C) ⊂ Z292

is reduced to the study of curves tangent to (Z , W ). Let us first quote the following293

easy observation.294

3.1 Observation For k ≥ 1, let Z � Xk be an irreducible algebraic subset that
projects onto Xk−1, i.e. πk,k−1(Z) = Xk−1. Then the induced directed variety
(Z , W ) ⊂ (Xk, Vk), satisfies

1 ≤ rankW < r := rank(Vk).

Proof. Take a Zariski open subset Z ′ ⊂ Zreg such that W ′ = TZ ′ ∩ Vk is a vector295

bundle over Z ′. Since Xk → Xk−1 is a P
r−1-bundle, Z has codimension at most296

r − 1 in Xk . Therefore rankW ≥ rankVk − (r − 1) ≥ 1. On the other hand, if297

we had rankW = rankVk generically, then TZ ′ would contain Vk|Z ′ , in particular it298

would contain all vertical directions TXk/Xk−1 ⊂ Vk that are tangent to the fibers of299

Xk → Xk−1. By taking the flow along vertical vector fields, we would conclude that300

Z ′ is a union of fibers of Xk → Xk−1 up to an algebraic set of smaller dimension,301

but this is excluded since Z projects onto Xk−1 and Z � Xk . �302

335317_1_En_8_Chapter � TYPESET DISK LE � CP Disp.:15/6/2015 Pages: 20 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Towards The Green-Griffiths-Lang Conjecture 11

3.2 Definition For k ≥ 1, let Z ⊂ Xk be an irreducible algebraic subset of Xk . We303

assume moreover that Z �⊂ Dk = P(TXk−1/Xk−2) (and put here D1 = ∅ in what304

follows to avoid to have to single out the case k = 1). In this situation we say that305

(Z , W ) is of general type modulo Xk → X if either W = 0, or rankW ≥ 1 and there306

exists p ∈ Q+ such that KW ⊗ OXk (p)|Z is big over Z , possibly after replacing307

Z by a suitable nonsingular model Ẑ (and pulling-back W and OXk (p)|Z to the308

nonsingular variety Ẑ ).309

The main result of [4] mentioned in the introduction as Theorem 1.3 implies the310

following important “induction step”.311

3.3 Proposition Let (X, V ) be a directed pair where X is projective algebraic.312

Take an irreducible algebraic subset Z �⊂ Dk of the associated k-jet Semple bundle313

Xk that projects onto Xk−1, k ≥ 1, and assume that the induced directed space314

(Z , W ) ⊂ (Xk, Vk) is of general type modulo Xk → X, rankW ≥ 1. Then there315

exists a divisor � ⊂ Z� in a sufficiently high stage of the Semple tower (Z�, W�)316

associated with (Z , W ), such that every non constant holomorphic map f : C → X317

tangent to V that satisfies f[k](C) ⊂ Z also satisfies f[k+�](C) ⊂ �.318

Proof Let E ⊂ Z be a divisor containing Zsing ∪ (Z ∩ π−1
k,0(Sing(V ))), chosen so319

that on the nonsingular Zariski open set Z ′ = Z�E all linear spaces TZ ′ , Vk|Z ′320

and W ′ = TZ ′ ∩ Vk are subbundles of TXk |Z ′ , the first two having a transverse321

intersection on Z ′. By taking closures over Z ′ in the absolute Semple tower of X , we322

get (singular) directed pairs (Z�, W�) ⊂ (Xk+�, Vk+�), which we eventually resolve323

into (Ẑ�, Ŵ �) ⊂ (X̂ k+�, V̂ k+�) over nonsingular bases. By construction, locally324

bounded sections of OX̂ k+�
(m) restrict to locally bounded sections of OẐ�

(m) over325

Ẑ�.326

Since Theorem 1.3 and the related estimate (1.10) are universal in the category
of directed varieties, we can apply them by replacing X with Ẑ ⊂ X̂ k , the order k
by a new index �, and F by

Fk = μ∗((OXk (p) ⊗ π∗
k,0OX (−εA)

)
|Z

)

where μ : Ẑ → Z is the desingularization, p ∈ Q+ is chosen such that KW ⊗327

Oxk (p)|Z is big, A is an ample bundle on X and ε ∈ Q
∗+is small enough. The328

assumptions show that KŴ ⊗ Fk is big on Ẑ , therefore, by applying our theorem and329

taking m 
 � 
 1, we get in fine a large number of (metric bounded) sections of330

OẐ�
(m) ⊗ π̂∗

k+�,kO
( m

�r ′
(

1 + 1

2
+ · · · + 1

�

)
Fk

)
331

= OX̂k+�
(ma′) ⊗ π̂∗

k+�,0O
(

− mε

kr

(
1 + 1

2
+ · · · + 1

k

)
A
)

|Ẑ�

332

333

334
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12 J.-P. Demailly

where a′ ∈ Q
k+�+ is a positive weight (of the form (0, . . . ,λ, . . . , 0, 1) with some

non zero component λ ∈ Q+ at index k). These sections descend to metric bounded
sections of

OXk+�
((1 + λ)m) ⊗ π̂∗

k+�,0O
(

− mε

kr

(
1 + 1

2
+ · · · + 1

k

)
A
)

|Z�

.

Since A is ample on X , we can apply the fundamental vanishing theorem (see e.g.335

[2] or [4], Statement 8.15), or rather an “embedded” version for curves satisfying336

f[k](C) ⊂ Z , proved exactly by the same arguments. The vanishing theorem implies337

that the divisor � of any such section satisfies the conclusions of Proposition 3.3,338

possibly modulo exceptional divisors of Ẑ → Z ; to take care of these, it is enough339

to add to � the inverse image of the divisor E = Z�Z ′ initially selected. �340

4 Strong General Type Condition for Directed Manifolds341

Our main result is the following partial solution to the Green-Griffiths-Lang conjec-342

ture, providing a sufficient algebraic condition for the analytic conclusion to hold343

true. We first give an ad hoc definition.344

4.1 Definition Let (X, V ) be a directed pair where X is projective algebraic. We345

say that that (X, V ) is “strongly of general type” if it is of general type and for every346

irreducible algebraic set Z � Xk , Z �⊂ Dk , that projects onto X , the induced directed347

structure (Z , W ) ⊂ (Xk, Vk) is of general type modulo Xk → X .348

4.2 Example The situation of a product (X, V ) = (X ′, V ′)× (X ′′, V ′′) described in
(1.11) shows that (X, V ) can be of general type without being strongly of general type.
In fact, if (X ′, V ′) and (X ′′, V ′′) are of general type, then KV = pr′ ∗KV ′ ⊗pr′′ ∗KV ′′
is big, so (X, V ) is again of general type. However

Z = P(pr′ ∗V ′) = X ′
1 × X ′′ ⊂ X1

has a directed structure W = pr′ ∗V ′
1 which does not possess a big canonical bundle349

over Z , since the restriction of KW to any fiber {x ′} × X ′′ is trivial. The higher350

stages (Zk, Wk) of the Semple tower of (Z , W ) are given by Zk = X ′
k+1 × X ′′ and351

Wk = pr′ ∗V ′
k+1, so it is easy to see that GGk(X, V ) contains Zk−1. Since Zk projects352

onto X , we have here GG(X, V ) = X (see [6] for more sophisticated indecomposable353

examples).354

4.3 Remark It follows from Definition 3.2 that (Z , W ) ⊂ (Xk, Vk) is automatically
of general type modulo Xk → X if OXk (1)|Z is big. Notice further that

OXk (1 + ε)|Z = (OXk (ε) ⊗ π∗
k,k−1OXk−1(1) ⊗ O(Dk)

)
|Z
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Towards The Green-Griffiths-Lang Conjecture 13

where O(Dk)|Z is effective and OXk (1) is relatively ample with respect to the pro-
jection Xk → Xk−1. Therefore the bigness of OXk−1(1) on Xk−1 also implies that
every directed subvariety (Z , W ) ⊂ (Xk, Vk) is of general type modulo Xk → X .
If (X, V ) is of general type, we know by the main result of [4] that OXk (1) is big
for k ≥ k0 large enough, and actually the precise estimates obtained therein give
explicit bounds for such a k0. The above observations show that we need to check
the condition of Definition 4.1 only for Z ⊂ Xk , k ≤ k0. Moreover, at least in the
case where V , Z , and W = TZ ∩ Vk are nonsingular, we have

KW � K Z ⊗ det(TZ/W ) � K Z ⊗ det(TXk /Vk)|Z � K Z/Xk−1 ⊗ OXk (1)|Z .

Thus we see that, in some sense, it is only needed to check the bigness of KW modulo355

Xk → X for “rather special subvarieties” Z ⊂ Xk over Xk−1, such that K Z/Xk−1 is356

not relatively big over Xk−1. �357

4.4 Hypersurface case Assume that Z �= Dk is an irreducible hypersurface of Xk358

that projects onto Xk−1. To simplify things further, also assume that V is nonsingular.359

Since the Semple jet-bundles Xk form a tower of P
r−1-bundles, their Picard groups360

satisfy Pic(Xk) � Pic(X) ⊕ Z
k and we have OXk (Z) � OXk (a) ⊗ π∗

k,0 B for some361

a ∈ Z
k and B ∈ Pic(X), where ak = d > 0 is the relative degree of the hypersurface362

over Xk−1. Let σ ∈ H0(Xk,OXk (Z)) be the section defining Z in Xk . The induced363

directed variety (Z , W ) has rankW = r − 1 = rankV − 1 and formula (2.11) yields364

KVk = OXk (−(r − 1)1) ⊗ π∗
k,0(KV ). We claim that365

KW ⊃ (
KVk ⊗OXk (Z)

)
|Z ⊗JS = (OXk (a−(r−1)1)⊗π∗

k,0(B⊗KV )
)
|Z ⊗JS (4.1)366

where S � Z is the set (containing Zsing) where σ and dσ|Vk both vanish, and JS is
the ideal locally generated by the coefficients of dσ|Vk along Z = σ−1(0). In fact, the
intersection W = TZ ∩ Vk is transverse on Z�S ; then (4.1) can be seen by looking
at the morphism

Vk|Z
dσ|Vk−−−−→OXk (Z)|Z ,

and observing that the contraction by KVk = �r V ∗
k provides a metric bounded section

of the canonical sheaf KW . In order to investigate the positivity properties of KW , one
has to show that B cannot be too negative, and in addition to control the singularity
set S. The second point is a priori very challenging, but we get useful information for
the first point by observing that σ provides a morphism π∗

k,0OX (−B) → OXk (a),
hence a nontrivial morphism

OX (−B) → Ea := (πk,0)∗OXk (a)

By [1, ,Section 12] , there exists a filtration on Ea such that the graded pieces are367

irreducible representations of GL(V ) contained in (V ∗)⊗�, � ≤ |a|. Therefore we368

get a nontrivial morphism369
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14 J.-P. Demailly

OX (−B) → (V ∗)⊗�, � ≤ |a|. (4.2)370

If we know about certain (semi-)stability properties of V , this can be used to control371

the negativity of B. �372

We further need the following useful concept that slightly generalizes entire curve373

loci.374

4.5 Definition If Z is an algebraic set contained in some stage Xk of the Semple375

tower of (X, V ), we define its “induced entire curve locus” IELX,V (Z) ⊂ Z to be376

the Zariski closure of the union
⋃

f[k](C) of all jets of entire curves f : (C, TC) →377

(X, V ) such that f[k](C) ⊂ Z .378

We have of course IELX,V (IELX,V (Z)) = IELX,V (Z) by definition. It is not
hard to check that modulo certain “vertical divisors ” of Xk , the IELX,V (Z) locus
is essentially the same as the entire curve locus ECL(Z , W ) of the induced directed
variety, but we will not use this fact here. Notice that if Z = ⋃

Zα is a decomposition
of Z into irreducible divisors, then

IELX,V (Z) =
⋃

α

IELX,V (Zα).

Since IELX,V (Xk) = ECLk(X, V ), proving the Green-Griffiths-Lang property379

amounts to showing that IELX,V (X) � X in the stage k = 0 of the tower. The380

basic step of our approach is expressed in the following statement.381

4.6 Proposition Let (X, V ) be a directed variety and p0 ≤ n = dim X, p0 ≥ 1.382

Assume that there is an integer k0 ≥ 0 such that for every k ≥ k0 and every383

irreducible algebraic set Z � Xk, Z �⊂ Dk, such that dim πk,k0(Z) ≥ p0, the384

induced directed structure (Z , W ) ⊂ (Xk, Vk) is of general type modulo Xk → X.385

Then dim ECLk0(X, V ) < p0.386

Proof We argue here by contradiction, assuming that dim ECLk0(X, V ) ≥ p0. If

p′
0 := dim ECLk0(X, V ) > p0

and if we can prove the result for p′
0, we will already get a contradiction, hence

we can assume without loss of generality that dim ECLk0(X, V ) = p0. The main
argument consists of producing inductively an increasing sequence of integers

k0 < k1 < · · · < k j < · · ·

and directed varieties (Z j , W j ) ⊂ (Xk j , Vk j ) satisfying the following properties :387

(3.6.1) Z0 is one of the irreducible components of ECLk0(X, V ) and dim Z0 = p0.388

(3.6.2) Z j is one of the irreducible components of ECLk j (X, V ) and πk j ,k0(Z j ) =389

Z0.390
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Towards The Green-Griffiths-Lang Conjecture 15

(3.6.3) For all j ≥ 0, IELX,V (Z j ) = Z j and rankW j ≥ 1.391

(3.6.4) For all j ≥ 0, the directed variety (Z j+1, W j+1) is contained in some stage
(of order � j = k j+1 − k j ) of the Semple tower of (Z j , W j ), namely

(Z j+1, W j+1) � (Z j
� j

, W j
� j

) ⊂ (Xk j+1 , Vk j+1)

and392

W j+1 = TZ j+1 ′ ∩ W j
� j

= TZ j+1 ′ ∩ Vk j (4.3)393

is the induced directed structure; moreover πk j+1,k j (Z j+1) = Z j .394

(3.6.5) For all j ≥ 0, we have Z j+1
� Z j

� j
but πk j+1,k j+1−1(Z j+1) = Z j

� j −1.395

For j = 0, we simply take Z0 to be one of the irreducible components Sα

of ECLk0(X, V ) such that dim Sα = p0, which exists by our hypothesis that
dim ECLk0(X, V ) = p0. Clearly, ECLk0(X, V ) is the union of the IELX,V (Sα) and
we have IELX,V (Sα) = Sα for all those components, thus IELX,V (Z0) = Z0 and
dim Z0 = p0. Assume that (Z j , W j ) has been constructed. The subvariety Z j can-
not be contained in the vertical divisor Dk j . In fact no irreducible algebraic set Z such
that IELX,V (Z) = Z can be contained in a vertical divisor Dk , because πk,k−2(Dk)

corresponds to stationary jets in Xk−2 ; as every non constant curve f has non station-
ary points, its k-jet f[k] cannot be entirely contained in Dk ; also the induced directed
structure (Z , W ) must satisfy rankW ≥ 1 otherwise IELX,V (Z) � Z . Condition
(3.6.2) implies that dim πk j ,k0(Z j ) ≥ p0, thus (Z j , W j ) is of general type modulo
Xk j → X by the assumptions of the proposition. Thanks to Proposition 3.3, we get

an algebraic subset � � Z j
� in some stage of the Semple tower (Z j

� ) of Z j such that
every entire curve f : (C, TC) → (X, V ) satisfying f[k j ](C) ⊂ Z j also satisfies
f[k j +�](C) ⊂ �. By definition, this implies the first inclusion in the sequence

Z j = IELX,V (Z j ) ⊂ πk j +�,k j (IELX,V (�)) ⊂ πk j +�,k j (�) ⊂ Z j

(the other ones being obvious), so we have in fact an equality throughout. Let (S′
α)

be the irreducible components of IELX,V (�). We have IELX,V (S′
α) = S′

α and one
of the components S′

α must satisfy

πk j +�,k j (S′
α) = Z j = Z j

0 .

We take � j ∈ [1, �] to be the smallest order such that Z j+1 := πk j +�,k j +� j (S′
α) �

Z j
� j

, and set k j+1 = k j + � j > k j . By definition of � j , we have
πk j+1,k j+1−1(Z j+1) = Z j

� j −1, otherwise � j would not be minimal. Then πk j+1,k j

(Z j+1) = Z j , hence πk j+1,k0(Z j+1) = Z0 by induction, and all properties (3.6.1–
3.6.5) follow easily. Now, by Observation 3.1, we have
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16 J.-P. Demailly

rankW j < rankW j−1 < · · · < rankW 1 < rankW 0 = rankV .

This is a contradiction because we cannot have such an infinite sequence. Proposi-396

tion 4.6 is proved. �397

The special case k0 = 0, p0 = n of Proposition 4.6 yields the following conse-398

quence.399

4.7 Partial solution to the generalized GGL conjecture Let (X, V ) be a directed400

pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture holds401

true for (X, V ), namely ECL(X, V ) � X, in other words there exists a proper402

algebraic variety Y � X such that every non constant holomorphic curve f : C → X403

tangent to V satisfies f (C) ⊂ Y .404

4.8 Remark The proof is not very constructive, but it is however theoretically ef-405

fective. By this we mean that if (X, V ) is strongly of general type and is taken in a406

bounded family of directed varieties, i.e. X is embedded in some projective space407

P
N with some bound δ on the degree, and P(V ) also has bounded degree ≤ δ′

408

when viewed as a subvariety of P(TPN ), then one could theoretically derive bounds409

dY (n, δ, δ′) for the degree of the locus Y . Also, there would exist bounds k0(n, δ, δ′)410

for the orders k and bounds dk(n, δ, δ′) for the degrees of subvarieties Z ⊂ Xk that411

have to be checked in the definition of a pair of strong general type. In fact, [4]412

produces more or less explicit bounds for the order k such that Proposition 3.3 holds413

true. The degree of the divisor � is given by a section of a certain twisted line bundle414

OXk (m) ⊗ π∗
k,0OX (−A) that we know to be big by an application of holomorphic415

Morse inequalities – and the bounds for the degrees of (Xk, Vk) then provide bounds416

for m. �417

4.9 Remark The condition that (X, V ) is strongly of general type seems to be related
to some sort of stability condition. We are unsure what is the most appropriate
definition, but here is one that makes sense. Fix an ample divisor A on X . For every
irreducible subvariety Z ⊂ Xk that projects onto Xk−1 for k ≥ 1, and Z = X = X0
for k = 0, we define the slope μA(Z , W ) of the corresponding directed variety
(Z , W ) to be

μA(Z , W ) = inf λ

rankW
,

where λ runs over all rational numbers such that there exists m ∈ Q+ for which

KW ⊗ (OXk (m) ⊗ π∗
k,0O(λA)

)
|Z is big on Z

(again, we assume here that Z �⊂ Dk for k ≥ 2). Notice that (X, V ) is of general
type if and only if μA(X, V ) < 0, and that μA(Z , W ) = −∞ if OXk (1)|A is big.
Also, the proof of Lemma 2.5 shows that

μA(Xk, Vk) ≤ μA(Xk−1, Vk−1) ≤ . . . ≤ μA(X, V ) for all k
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Towards The Green-Griffiths-Lang Conjecture 17

(with μA(Xk, Vk) = −∞ for k ≥ k0 
 1 if (X, V ) is of general type). We say418

that (X, V ) is A-jet-stable (resp. A-jet-semi-stable) if μA(Z , W ) < μA(X, V ) (resp.419

μA(Z , W ) ≤ μA(X, V )) for all Z � Xk as above. It is then clear that if (X, V ) is of420

general type and A-jet-semi-stable, then it is strongly of general type in the sense of421

Definition 4.1. It would be useful to have a better understanding of this condition of422

stability (or any other one that would have better properties). �423

4.10 Example (case of surfaces) Assume that X is a minimal complex surface of
general type and V = TX (absolute case). Then K X is nef and big and the Chern
classes of X satisfy c1 ≤ 0 (−c1 is big and nef) and c2 ≥ 0. The Semple jet-bundles
Xk form here a tower of P

1-bundles and dim Xk = k + 2. Since det V ∗ = K X

is big, the strong general type assumption of 4.6 and 4.8 need only be checked
for irreducible hypersurfaces Z ⊂ Xk distinct from Dk that project onto Xk−1, of
relative degree m. The projection πk,k−1 : Z → Xk−1 is a ramified m : 1 cover.
Putting OXk (Z) � OXk (a) ⊗ πk,0(B), B ∈ Pic(X), we can apply (4.1) to get an
inclusion

KW ⊃ (OXk (a − 1) ⊗ π∗
k,0(B ⊗ K X )

)
|Z ⊗ JS, a ∈ Z

k, ak = m.

Let us assume k = 1 and S = ∅ to make things even simpler, and let us perform
numerical calculations in the cohomology ring

H•(X1, Z) = H•(X)[u]/(u2 + c1u + c2), u = c1(OX1(1))

(cf. [3, Section 2] for similar calculations and more details). We have

Z ≡ mu + b where b = c1(B) and KW ≡ (m − 1)u + b − c1.

We are allowed here to add to KW an arbitrary multiple OX1(p), p ≥ 0, which we424

rather write p = mt + 1 − m, t ≥ 1 − 1/m. An evaluation of the Euler-Poincaré425

characteristic of KW + OX1(p)|Z requires computing the intersection number426

(
KW + OX1(p)|Z

)2 · Z = (
mt u + b − c1

)2
(mu + b)427

= m2t2(m(c2
1 − c2) − bc1

) + 2mt (b − mc1)(b − c1)428

+ m(b − c1)
2, (4.4)429

430

taking into account that u3 · X1 = c2
1 − c2. In case S �= ∅, there is an additional431

(negative) contribution from the ideal JS which is O(t) since S is at most a curve. In432

any case, for t 
 1, the leading term in the expansion is m2t2(m(c2
1 −c2)−bc1) and433

the other terms are negligible with respect to t2, including the one coming from S.434

We know that TX is semistable with respect to c1(K X ) = −c1 ≥ 0. Multiplication by435

the section σ yields a morphism π∗
1,0OX (−B) → OX1(m), hence by direct image,436

a morphism OX (−B) → Sm T ∗
X . Evaluating slopes against K X (a big nef class),437

the semistability condition implies bc1 ≤ m
2 c2

1, and our leading term is bigger that438
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18 J.-P. Demailly

m3t2( 1
2 c2

1 − c2). We get a positive answer in the well-known case where c2
1 > 2c2,439

corresponding to TX being almost ample. Analyzing positivity for the full range of440

values (k, m, t) and of singular sets S seems an unsurmountable task at this point; in441

general, calculations made in [3, 12] indicate that the Chern class and semistability442

conditions become less demanding for higher order jets (e.g. c2
1 > c2 is enough for443

Z ⊂ X2, and c2
1 > 9

13 c2 suffices for Z ⊂ X3). When rankV = 1, major gains444

come from the use of Ahlfors currents in combination with McQuillan’s tautological445

inequalities [11]. We therefore hope for a substantial strengthening of the above446

sufficient conditions, and a better understanding of the stability issues, possibly447

in combination with a use of Ahlfors currents and tautological inequalities. In the448

case of surfaces, an application of Proposition 4.6 for k0 = 1 and an analysis of449

the behaviour of rank 1 (multi-)foliations on the surface X (with the crucial use of450

[11]) was the main argument used in [3] to prove the hyperbolicity of very general451

surfaces of degree d ≥ 21 in P
3. For these surfaces, one has c2

1 < c2 and c2
1/c2 → 1452

as d → +∞. Applying Proposition 4.6 for higher values k0 ≥ 2 might allow to453

enlarge the range of tractable surfaces, if the behavior of rank 1 (multi)-foliations on454

Xk0−1 can be analyzed independently.455

5 Algebraic Jet-Hyperbolicity Implies Kobayashi456

Hyperbolicity457

Let (X, V ) be a directed variety, where X is an irreducible projective variety; the458

concept still makes sense when X is singular, by embedding (X, V ) in a projective459

space (PN , TPN ) and taking the linear space V to be an irreducible algebraic subset460

of TPn that is contained in TX at regular points of X .461

5.1 Definition Let (X, V ) be a directed variety. We say that (X, V ) is algebraically462

jet-hyperbolic if for every k ≥ 0 and every irreducible algebraic subvariety Z ⊂ Xk463

that is not contained in the union �k of vertical divisors, the induced directed structure464

(Z , W ) either satisfies W = 0, or is of general type modulo Xk → X , i.e. has a465

desingularization (Ẑ , Ŵ ), μ : Ẑ → Z , such that some twisted canonical sheaf466

KŴ ⊗ μ∗(OXk (a)|Z ), a ∈ N
k , is big.467

Proposition 4.6 then gives468

5.2 Theorem Let (X, V ) be an irreducible projective directed variety that is alge-469

braically jet-hyperbolic in the sense of the above definition. Then (X, V ) is Brody470

(or Kobayashi ) hyperbolic, i.e. ECL(X, V ) = ∅.471

Proof Here we apply Proposition 4.6 with k0 = 0 and p0 = 1. It is enough to deal472

with subvarieties Z ⊂ Xk such that dim πk,0(Z) ≥ 1, otherwise W = 0 and can473

reduce Z to a smaller subvariety by (3.2). Then we conclude that dim ECL(X, V ) <474

1. All entire curves tangent to V have to be constant, and we conclude in fact that475

ECL(X, V ) = ∅. �476
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