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Abstract. The study of entire holomorphic curves contained in projective algebraic varieties is
intimately related to fascinating questions of geometry and number theory—especially through
the concepts of curvature and positivity which are central themes in Kodaira’s contributions to
mathematics. The aim of these lectures is to present recent results concerning the geometric side
of the problem. The Green–Griffiths–Lang conjecture stipulates that for every projective variety
X of general type over C, there exists a proper algebraic subvariety Y of X containing all entire
curves f W C ! X . Using the formalism of directed varieties and jet bundles, we show that this
assertion holds true in case X satisfies a strong general type condition that is related to a certain
jet-semi-stability property of the tangent bundle TX . It is possible to exploit similar techniques
to investigate a famous conjecture of Shoshichi Kobayashi (1970), according to which a generic
algebraic hypersurface of dimension n and of sufficiently large degree d � dn in the complex
projective space PnC1 is hyperbolic: in the early 2000’s, Yum-Tong Siu proposed a strategy that
led in 2015 to a proof based on a clever use of slanted vector fields on jet spaces, combined
with Nevanlinna theory arguments. In 2016, the conjecture has been settled in a different way by
Damian Brotbek, making a more direct use of Wronskian differential operators and associated
multiplier ideals; shortly afterwards, Ya Deng showed how the proof could be modified to yield
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an explicit value of dn. We give here a short proof based on a substantial simplification of their
ideas, producing a bound very similar to Deng’s original estimate, namely dn D b 1

3 .en/
2nC2c.
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0. Introduction

The goal of these lectures is to study the conjecture of Kobayashi [Kob70] on
the hyperbolicity of generic hypersurfaces of high degree in projective space,
and the related conjecture by Green–Griffiths [GrGr80] and Lang [Lang86] on
the structure of entire curve loci.

Let us recall that a complex space X is said to be hyperbolic in the sense of
Kobayashi if analytic disks f W D ! X through a given point form a normal
family. By a well-known result of Brody [Bro78], a compact complex space is
Kobayashi hyperbolic if and only if it does not contain any entire holomorphic
curve f W C ! X (“Brody hyperbolicity”).

In this paper entire holomorphic curves are assumed to be non-constant and
simply called entire curves. If X is not hyperbolic, a basic question is thus to
analyze the geometry of entire holomorphic curves f W C ! X , and especially
to understand the entire curve locus of X , defined as the Zariski closure

(0.1) ECL.X/ D
[
f

f .C/
Zar
:

The Green–Griffiths–Lang conjecture, in its strong form, can be stated as fol-
lows.
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0.2. GGL conjecture. Let X be a projective variety of general type. Then Y D
ECL.X/ is a proper algebraic subvariety Y � X .

Equivalently, there exists Y � X such that every entire curve f W C ! X

satisfies f .C/ � Y . A weaker form of the GGL conjecture states that entire
curves are algebraically degenerate, i.e., that f .C/ � Yf � X , where Yf may
depend on f .

If X � PN
C is defined over a number field K0 (i.e., by polynomial equations

with coefficients in K0), one defines the Mordell locus, denoted Mordell.X/,
to be the smallest complex subvariety Y in X such that the set of K-points
X.K/ � Y is finite for every number field K � K0. Lang [Lang86] conjec-
tured that one should always have Mordell.X/ D ECL.X/ in this situation.
This conjectural arithmetical statement would be a vast generalization of the
Mordell–Faltings theorem, and is one of the strong motivations to study the ge-
ometric GGL conjecture as a first step. S. Kobayashi [Kob70] had earlier made
the following tantalizing conjecture.

0.3. Conjecture (Kobayashi).

(a) A (very) generic hypersurface X � PnC1 of degree d � dn large enough
is hyperbolic, especially it does not possess any entire holomorphic curve
f W C ! X .

(b) The complement Pn � H of a (very) generic hypersurface H � Pn of
degree d � d 0

n large enough is hyperbolic.

It should be noticed that the existence of a smooth hyperbolic hypersurface
X � PnC1 in 0.3 (a), or a hyperbolic complement Pn � H with H smooth
irreducible in 0.3 (b), is already a hard problem; many efforts were initially
concentrated on this problem. As Zaidenberg observed, a smooth deformation of
a union of .2nC 1/ hyperplanes in Pn is not necessarily Kobayashi hyperbolic,
and the issue is non-trivial at all. The existence problem was initially solved for
sufficiently high degree hypersurfaces through a number of examples:

� case (a) for n D 2 and degree d � 50 by Brody and Green [BrGr77];
� case (b) for n D 2 by [AzSu80] (as a consequence of [BrGr77]);
� cases (a) and (b) for n � 3 by Masuda and Noguchi [MaNo96].

Improvements in the degree estimates were later obtained in [Shi98], [Fuj01],
[ShZa02], in addition to many other papers dealing with low dimensional vari-
eties (n D 2; 3).

We now describe a number of known results concerning the question
of generic hyperbolicity, according to the Kobayashi conjectures 0.3 (a), (b).
M. Zaidenberg observed in [Zai87] that the complement of a general hyper-
surface of degree 2n in Pn is not hyperbolic; as a consequence, one must take
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d 0
n � 2n C 1 in 0.3 (b). This observation, along with Fujimoto’s classical re-

sult that the complement of .2n C 1/ hyperplanes of Pn in general position is
hyperbolic and hyperbolically embedded in Pn ([Fuj72]) led Zaidenberg to pro-
pose the bound d 0

n D 2nC 1 for n � 1. Another famous result due to Clemens
[Cle86], Ein [Ein88], [Ein91] and Voisin [Voi96] states that every subvariety Y
of a generic algebraic hypersurface X � PnC1 of degree d � 2nC 1 is of gen-
eral type for n � 2 (for surfaces X � P3, Geng Xu [Xu94] also obtained some
refined information for the genera of algebraic curves drawn in X). The bound
was subsequently improved to d � dn D 2n for n � 5 by Pacienza [Pac04].
That the same bound dn holds for Kobayashi hyperbolicity would then be a
consequence of the Green–Griffiths–Lang conjecture. By these results, one can
hope in the compact case that the optimal bound dn is d1 D 4, dn D .2nC 1/

for n D 2; 3; 4 and dn D 2n for n � 5. The case of complements Pn � H

(the so-called “logarithmic case”) is a priori somewhat easier to deal with: in
fact, on can then exploit the fact that the hyperbolicity of the hypersurface
X D fwd D P.z/g � PnC1 implies the hyperbolicity of the complement
Pn �H , whenH D fP.z/ D 0g. Pacienza and Rousseau [PaRo07] proved that
forH very general of degree d � 2nC2�k, any k-dimensional log-subvariety
.Y;D/ of .Pn;H/ is of log-general type, i.e., any log-resolution � W eY ! Y of
.Y;D/ has a big log-canonical bundle KeY .��D/.

One of the early important result in the direction of Conjecture 0.2 is
the proof of the Bloch conjecture, as proposed by Bloch [Blo26a] and Ochiai
[Och77]: this is the special case of the conjecture when the irregularity of X
satisfies q D h0.X;�1

X / > dimX . Various solutions have then been obtained
in fundamental papers of Noguchi [Nog77a], [Nog81a], [Nog81b], Kawamata
[Kaw80], Green–Griffiths [GrGr80], McQuillan [McQ96], and the book of
Noguchi–Winkelmann [NoWi13], by means of different techniques. Especially,
assuming X to be of (log-) general type, it is now known by [NWY07], [NWY13]
and [LuWi12] that if the (log-) irregularity is q � dimX , then no entire curve
f W C ! X has a Zariski dense image, and the GGL conjecture holds in
the compact (i.e., non-logarithmic) case. In the case of complex surfaces, major
progress was achieved by Lu, Miyaoka and Yau [LuYa90], [LuMi95], [LuMi96],
[Lu96]; McQuillan [McQ96] extended these results to the case of all surfaces
satisfying c2

1 > c2, in a situation where there are many symmetric differen-
tials, e.g. sections of H 0.X; SmT �

X ˝ O.�1//, m � 1 (cf. also [McQ99],
[DeEG00] for applications to hyperbolicity). A more recent result is the deep
statement due to Diverio, Merker and Rousseau [DMR10], confirming Conjec-
ture 0.2 when X � PnC1 is a generic non-singular hypersurface of sufficiently
large degree d � 2n5

(cf. Sect. 10); in the case n D 2 of surfaces in P3, we are
here in the more difficult situation where symmetric differentials do not exist
(we have c2

1 < c2 in this case). Conjecture 0.2 was also considered by S. Lang
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[Lang86], [Lang87] in view of arithmetic counterparts of the above geometric
statements.

Although these optimal conjectures are still unsolved at present, substantial
progress was achieved in the meantime, for a large part via the technique of
producing jet differentials. This is done either by direct calculations or by vari-
ous indirect methods: Riemann–Roch calculations, vanishing theorems... Vojta
[Voj87] and McQuillan [McQ98] introduced the “diophantine approximation”
method, which was soon recognized to be an important tool in the study of
holomorphic foliations, in parallel with Nevanlinna theory and the construction
of Ahlfors currents. Around 2000, Siu [Siu02], [Siu04] showed that generic
hyperbolicity results in the direction of the Kobayashi conjecture could be in-
vestigated by combining the algebraic techniques of Clemens, Ein and Voisin
with the existence of certain “vertical” meromorphic vector fields on the jet
space of the universal hypersurface of high degree; these vector fields are ac-
tually used to differentiate the global sections of the jet bundles involved, so
as to produce new sections with a better control on the base locus. Also, dur-
ing the years 2007–2010, it was realized [Dem07a], [Dem07b], [Dem11] that
holomorphic Morse inequalities could be used to prove the existence of jet
differentials; in 2010, Diverio, Merker and Rousseau [DMR10] were able in
that way to prove the Green–Griffiths conjecture for generic hypersurfaces of
high degree in projective space, e.g. for d � 2n5

—their proof makes an es-
sential use of Siu’s differentiation technique via meromorphic vector fields, as
improved by Păun [Pau08] and Merker [Mer09] in 2008. The present study will
be focused on the holomorphic Morse inequality technique; as an application,
a partial answer to the Kobayashi and Green–Griffiths–Lang conjecture can be
obtained in a very wide context: the basic general result achieved in [Dem11]
consists of showing that for every projective variety of general type X , there
exists a global algebraic differential operator P on X (in fact many such oper-
ators Pj ) such that every entire curve f W C ! X must satisfy the differential
equations Pj .f If 0; : : : ; f .k// D 0. One also recovers from there the result of
Diverio–Merker–Rousseau on the generic Green–Griffiths conjecture (with an
even better bound asymptotically as the dimension tends to infinity), as well as a
result of Diverio–Trapani [DT10] on the hyperbolicity of generic 3-dimensional
hypersurfaces in P4. Siu [Siu04], [Siu15] has introduced a more explicit but
more computationally involved approach based on the use of “slanted vector
fields” on jet spaces, extending ideas of Clemens [Cle86] and Voisin [Voi96]
(cf. Sect. 10 for details); [Siu15] explains how this strategy can be used to assert
the Kobayashi conjecture for d � dn, with a very large bound and non-effective
bound dn instead of .2nC 1/.

As we will see here, it is useful to work in a more general context and to con-
sider the category of directed varieties. When the problems under consideration
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are birationally invariant, as is the case of the Green–Griffiths–Lang conjecture,
varieties can be replaced by non-singular models; for this reason, we will mostly
restrict ourselves to the case of non-singular varieties in the rest of the introduc-
tion. A directed projective manifold is a pair .X; V /, where X is a projective
manifold equipped with an analytic linear subspace V � TX , i.e., a closed irre-
ducible complex analytic subset V of the total space of TX , such that each fiber
Vx D V \ TX;x is a complex vector space. If X is not connected, V should
rather be assumed to be irreducible merely over each connected component of
X , but we will hereafter assume that our manifolds are connected. A morphism
ˆ W .X; V / ! .Y;W / in the category of directed manifolds is an analytic map
ˆ W X ! Y such that ˆ�V � W . We refer to the case V D TX as being the
absolute case, and to the case V D TX=S D Ker d� for a fibration � W X ! S ,
as being the relative case; V may also be taken to be the tangent space to the
leaves of a singular analytic foliation on X , or maybe even a non-integrable lin-
ear subspace of TX . We are especially interested in entire curves that are tangent
to V , namely non-constant holomorphic morphisms f W .C; TC/ ! .X; V / of
directed manifolds. In the absolute case, these are just arbitrary entire curves
f W C ! X .

0.4. Generalized GGL conjecture. Let .X; V / be a projective directed mani-
fold. Define the entire curve locus of .X; V / to be the Zariski closure of the
locus of entire curves tangent to V , i.e.,

ECL.X; V / D
[

f W.C;TC/!.X;V /

f .C/
Zar
:

Then, if .X; V / is of general type in the sense that the canonical sheaf sequence
K�

V is big (cf. Proposition 2.11 below), Y D ECL.X; V / is a proper algebraic
subvariety Y � X .

[We will say that .X; V / is Brody hyperbolic if ECL.X; V / D ; ; by Brody’s
reparametrization technique, this is equivalent to Kobayashi hyperbolicity when-
ever X is compact.]

In case V has no singularities, the canonical sheaf KV is defined to be
.det.O.V ///�, where O.V / is the sheaf of holomorphic sections of V , but in
general this naive definition would not work. Take for instance a generic pencil
of elliptic curves �P.z/ C �Q.z/ D 0 of degree 3 in P2

C, and the linear space
V consisting of the tangents to the fibers of the rational map P2

C
> P1

C defined
by z 7! Q.z/=P.z/. Then V is given by

0 �! O.V / �! O.TP2
C

/
P dQ�Q dP! OP2

C

.6/˝ JS �! 0;

where S D Sing.V / consists of the 9 points fP.z/ D 0g\fQ.z/ D 0g, and JS

is the corresponding ideal sheaf of S . Since det.O.TP2// D O.3/, we see that
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.det.O.V ///� D O.3/ is ample, thus generalized GGL conjecture 0.4 would not
have a positive answer (all leaves are elliptic or singular rational curves and thus
covered by entire curves). An even more “degenerate” example is obtained with
a generic pencil of conics, in which case .det.O.V ///� D O.1/ and #S D 4.

If we want to get a positive answer to Problem 0.4, it is therefore indispens-
able to give a definition of KV that incorporates in a suitable way the singulari-
ties of V I this will be done in Definition. 2.12 (see also Proposition. 2.11). The
goal is then to give a positive answer to Problem 0.4 under some possibly more
restrictive conditions for the pair .X; V /. These conditions will be expressed in
terms of the tower of Semple jet bundles
(0.5)
.Xk; Vk/ �! .Xk�1; Vk�1/ �! � � � �! .X1; V1/ �! .X0; V0/ WD .X; V /

which we define more precisely in Sect. 1, following [Dem95]. It is constructed
inductively by setting Xk D P.Vk�1/ (projective bundle of lines of Vk�1), and
all Vk have the same rank r D rankV , so that dimXk D nC k.r � 1/, where
n D dimX . Entire curve loci have their counterparts for all stages of the Semple
tower, namely, one can define

(0.6) ECLk.X; V / D
[

f W.C;TC/!.X;V /

fŒk�.C/
Zar
;

where fŒk� W .C; TC/ ! .Xk; Vk/ is the k-jet of f . These are by definition
algebraic subvarieties of Xk , and if we denote by �k;` W Xk ! X` the natural
projection from Xk to X`, 0 � ` � k, we get immediately

(0.7) �k;`.ECLk.X; V // D ECL`.X; V /; ECL0.X; V / D ECL.X; V /:

Let OXk
.1/ be the tautological line bundle over Xk associated with the projec-

tive structure. We define the k-stage Green–Griffiths locus of .X; V / to be

(0.8) GGk.X; V / D .Xk ��k/ \
\

m2N
.base locus of OXk

.m/˝ ��
k;0
A�1/;

where A is any ample line bundle on X and �k D S
2�`�k �

�1
k;`
.D`) is the

union of “vertical divisors” (see (6.9) and (7.17); the vertical divisors play
no role and have to be removed in this context; for this, one uses the fact
that fŒk�.C/ is not contained in any component of �k , cf. [Dem95]). Clearly,
GGk.X; V / does not depend on the choice of A.

0.9. Basic vanishing theorem for entire curves. Let .X; V / be an arbitrary
directed variety with X non-singular, and let A be an ample line bundle on X .
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Then any entire curve f W .C; TC/ ! .X; V / satisfies the differential equa-
tions P.f If 0; : : : ; f .k// D 0 arising from sections � 2 H 0.Xk;OXk

.m/ ˝
��

k;0
A�1/. As a consequence, one has

ECLk.X; V / � GGk.X; V /:

The main argument goes back to [GrGr80]. We will give here a complete
proof of Theorem 0.9, based only on the arguments [Dem95], namely on the
Ahlfors–Schwarz lemma (the alternative proof given in [SiYe96b] uses Nevan-
linna theory and is analytically more involved). By (0.7) and Theorem 0.9 we
infer that

(0.10) ECL.X; V / � GG.X; V /;

where GG.X; V / is the global Green–Griffiths locus of .X; V / defined by

(0.11) GG.X; V / D
\
k2N

�k;0 .GGk.X; V // :

The main result of [Dem11] (Theorem 2.37 and Corollary 3.4) implies the fol-
lowing useful information:

0.12. Theorem. Assume that .X; V / is of “general type”, i.e., that the pluri-
canonical sheaf sequence K�

V is big on X . Then there exists an integer k0

such that GGk.X; V / is a proper algebraic subset of Xk for k � k0 [though
�k;0.GGk.X; V // might still be equal to X for all k].

In fact, if F is an invertible sheaf on X such that K�
V ˝ F is big (cf. Propo-

sition. 2.11), the probabilistic estimates of [Dem11, Corollary. 2.38 and Corol-
lary. 3.4] produce global sections of

(0.13) OXk
.m/˝ ��

k;0O
� m
kr

�
1C 1

2
C � � � C 1

k

�
F
�

for m � k � 1. The (long and elaborate) proof uses a curvature computation
and singular holomorphic Morse inequalities to show that the line bundles in-
volved in (0.11) are big on Xk for k � 1. One applies this to F D A�1 with A
ample on X to produce sections and conclude that GGk.X; V / � Xk .

Thanks to (0.10), the GGL conjecture is satisfied whenever GG.X; V / � X .
By [DMR10], this happens for instance in the absolute case whenX is a generic
hypersurface of degree d � 2n5

in PnC1 (see also [Pau08] for better bounds
in low dimensions, and [Siu02], [Siu04]). However, as already mentioned in
[Lang86], very simple examples show that one can have GG.X; V / D X even
when .X; V / is of general type, and this already occurs in the absolute case as
soon as dimX � 2. A typical example is a product of directed manifolds

(0.14) .X; V / D .X 0; V 0/ � .X 00; V 00/; V D pr0 � V 0 ˚ pr00 � V 00:
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The absolute case V D TX , V 0 D TX 0 , V 00 D TX 00 on a product of curves is
the simplest instance. It is then easy to check that GG.X; V / D X , cf. Defini-
tion 3.2. Diverio and Rousseau [DR15] have given many more such examples,
including the case of indecomposable varieties .X; TX /, e.g. Hilbert modular
surfaces, or more generally compact quotients of bounded symmetric domains
of rank � 2.

The problem here is the failure of some sort of stability condition that is
introduced in Remark 11.10. This leads us to make the assumption that the di-
rected pair .X; V / is strongly of general type: by this, we mean that the induced
directed structure .Z;W / on each non-vertical subvarietyZ � Xk that projects
onto X either has rankW D 0 or is of general type modulo X� ! X , in the
sense that K�

W`
˝ OZ`

.p/�Z`
is big for some stage of the Semple tower of

.Z;W / and some p � 0 (see Sect. 11 for details—one may have to replace Z`

by a suitable modification). Our main result can be stated as follows:

0.15. Theorem (partial solution to the generalized GGL conjecture). Let
.X; V / be a directed pair that is strongly of general type. Then the Green–
Griffiths–Lang conjecture holds true for .X; V /, namely ECL.X; V / is a proper
algebraic subvariety of X .

The proof proceeds through a complicated induction on n D dimX and
k D rankV , which is the main reason why we have to introduce directed vari-
eties, even in the absolute case. An interesting feature of this result is that the
conclusion on ECL.X; V / is reached without having to know anything about the
Green–Griffiths locus GG.X; V /, even a posteriori. Nevertheless, this is not yet
enough to confirm the GGL conjecture. Our hope is that pairs .X; V / that are
of general type without being strongly of general type—and thus exhibit some
sort of “jet-instability”—can be investigated by different methods, e.g. by the
diophantine approximation techniques of McQuillan [McQ98]. However, The-
orem 0.15 provides a sufficient criterion for Kobayashi hyperbolicity [Kob70],
thanks to the following concept of algebraic jet-hyperbolicity.

0.16. Definition. A directed variety .X; V / will be said to be algebraically
jet-hyperbolic if the induced directed variety structure .Z;W / on every non-
vertical irreducible algebraic variety Z of Xk with rankW � 1 is such that
K�

W`
˝ OZ`

.p/�Z`
is big for some stage of the Semple tower of .Z;W / and

some p � 0 Œpossibly after taking a suitable modification of Z` ; see Sects. 11
and 12 for the definition of induced directed structures and further details�. We
also say that a projective manifold X is algebraically jet-hyperbolic if .X; TX /

is.

In this context, Theorem 0.15 yields the following connection between alge-
braic jet-hyperbolicity and the analytic concept of Kobayashi hyperbolicity.
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0.17. Theorem. Let .X; V / be a directed variety structure on a projective man-
ifold X . Assume that .X; V / is algebraically jet-hyperbolic. Then .X; V / is
Kobayashi hyperbolic.

The following conjecture would then make a bridge between these theorems
and the GGL and Kobayashi conjectures.

0.18. Conjecture. Let X � PnCc be a complete intersection of hypersurfaces
of respective degrees d1; : : : ; dc , codimX D c.

(a) If X is non-singular and of general type, i.e., if
P
dj � nC c C 2, then X

is in fact strongly of general type.
(b) If X is (very) generic and

P
dj � 2n C c, then X is algebraically jet-

hyperbolic.

Since Conjecture 0.18 only deals with algebraic statements, our hope is that a
proof can be obtained through a suitable deepening of the techniques introduced
by Clemens, Ein, Voisin and Siu. Under the slightly stronger condition

P
dj �

2nCcC1, Voisin showed indeed that every subvariety Y � X is of general type,
ifX is generic. To prove the Kobayashi conjecture in its optimal incarnation, we
would need to show that such Y ’s are strongly of general type.

In the direction of getting examples of low degrees, Dinh Tuan Huynh [DTH16a]
showed that there are families of hyperbolic hypersurfaces of degree .2n C
2/ in PnC1 for 2 � n � 5, and in [DTH16b] he showed that certain small
deformations (in Euclidean topology) of a union of d.nC 3/2=4e hyperplanes in
general position in PnC1 are hyperbolic. In [Ber18], G. Bérczi stated a positivity
conjecture for Thom polynomials of Morin singularities (see also [BeSz12]),
and announced that it would imply a polynomial bound dn D 2n9 C 1 for the
generic hyperbolicity of hypersurfaces. By using the “technology” of Semple
towers and following new ideas introduced by D. Brotbek [Brot17] and Ya Deng
[Deng16], we prove here the following effective (although non-optimal) version
of the Kobayashi conjecture on generic hyperbolicity.

0.19. Theorem. Let Z be a projective .n C 1/-dimensional manifold and A a
very ample line bundle on Z. Then, for a general section � 2 H 0.Z;Ad / and
d � dn, the hypersurface X� D ��1.0/ is Kobayashi hyperbolic and, in fact,
satisfies the stronger property of being algebraically jet hyperbolic. The bound
dn for the degree can be taken to be dn WD b1

3
.en/2nC2c.

I would like to thank Damian Brotbek, Ya Deng, Simone Diverio, Gianluca
Pacienza, Erwan Rousseau, Mihai Păun and Mikhail Zaidenberg for very stim-
ulating discussions on these questions. These notes also owe a lot to their work.
I also with to thank the unknown referees for a large number of corrections and
very useful suggestions.
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1. Basic hyperbolicity concepts

1.A. Kobayashi hyperbolicity

We first recall a few basic facts concerning the concept of hyperbolicity, accord-
ing to S. Kobayashi [Kob70], [Kob76]. Let X be a complex space. Given two
points p; q 2 X , let us consider a chain of analytic disks from p to q, that is
a sequence of holomorphic maps f0; f1; : : : ; fk W � ! X from the unit disk
� D D.0; 1/ � C to X , together with pairs of points a0; b0; : : : ; ak; bk of �
such that

p D f0.a0/; q D fk.bk/; fi .bi / D fiC1.aiC1/; i D 0; : : : ; k � 1:
Denoting this chain by ˛, we define its length `.˛/ to be

(1:10) `.˛/ D dP .a1; b1/C � � � C dP .ak; bk/;

where dP is the Poincaré distance on�, and the Kobayashi pseudodistance dK
X

on X to be

(1:100) dK
X .p; q/ D inf

˛
`.˛/:

A Finsler metric (resp. pseudometric) on a vector bundle E is a homogeneous
positive (resp. non-negative) function N on the total space E, that is,

N.�	/ D j�jN.	/ for all � 2 C and 	 2 E,

but in general N is not assumed to be subadditive (i.e., convex) on the fibers
of E. A Finsler (pseudo-)metric on E is thus nothing but a Hermitian (semi-)norm
on the tautological line bundle OP.E/.�1/ of lines of E over the projectivized
bundle Y D P.E/. The Kobayashi–Royden infinitesimal pseudometric on X is
the Finsler pseudometric on the tangent bundle TX defined by

(1.2)
kX .	/ D inf f� > 0 I 9f W � ! X; f .0/ D x; �f 0.0/ D 	g;
x 2 X; 	 2 TX;x :

Here, if X is not smooth at x, we take TX;x D .mX;x=m
2
X;x/

� to be the Zariski
tangent space, i.e., the tangent space of a minimal smooth ambient vector space
containing the germ .X; x/; all tangent vectors may not be reached by analytic
disks and in those cases we put kX .	/ D C1. When X is a smooth manifold,
it follows from the work of H.L. Royden ([Roy71], [Roy74]) that kX is upper-
continuous on TX and that dK

X is the integrated pseudodistance associated with
the pseudometric, i.e.,

dK
X .p; q/ D inf

�

Z
�

kX .

0.t// dt;
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where the infimum is taken over all piecewise smooth curves joining p to q ; in
the case of complex spaces, a similar formula holds, involving jets of analytic
curves of arbitrary order, cf. S. Venturini [Ven96]. When X is a non-singular
projective variety, it has been shown in [DeLS94] that the Kobayashi pseudodis-
tance and the Kobayashi–Royden infinitesimal pseudometric can be computed
by looking only at analytic disks that are contained in algebraic curves.

1.3. Definition. A complex space X is said to be hyperbolic (in the sense of
Kobayashi) if dK

X is actually a distance, namely if dK
X .p; q/ > 0 for all pairs of

distinct points .p; q/ in X .

When X is hyperbolic, it is interesting to investigate when the Kobayashi
metric is complete: one then says that X is a complete hyperbolic space. How-
ever, we will be mostly concerned with compact spaces here, so completeness
is irrelevant in that case.

Another important property is the monotonicity of the Kobayashi pseudo-
metric with respect to holomorphic mappings. In fact, if ˆ W X ! Y is a
holomorphic map, it is easy to see from the definition that

(1.4) dK
Y .ˆ.p/;ˆ.q// � dK

X .p; q/; for all p; q 2 X .

The proof merely consists of taking the compositionˆıfi for all chains of ana-
lytic disks connecting p and q in X . Clearly the Kobayashi pseudodistance dK

C

on X D C is identically zero, as one can see by looking at arbitrarily large ana-
lytic disks � ! C, t 7! �t . Therefore, if there is an entire curve ˆ W C ! X ,
namely a non-constant holomorphic map defined on the whole complex plane C,
then by monotonicity dK

X is identically zero on the image ˆ.C/ of the curve,
and therefore X cannot be hyperbolic. When X is hyperbolic, it follows that X
cannot contain rational curves C ' P1, or elliptic curves C=ƒ, or more gener-
ally any non-trivial image ˆ W W D Cp=ƒ ! X of a p-dimensional complex
torus (quotient of Cp by a lattice). The only case where hyperbolicity is easy to
assess is the case of curves .dimCX D 1/.

1.5. Case of complex curves. Up to bihomorphism, any smooth complex curve
X belongs to one (and only one) of the following three types:

(a) (rational curve) X ' P1;
(b) (parabolic type) bX ' C, X ' C; C� or X ' C=ƒ (elliptic curve);
(c) (hyperbolic type) bX ' �. All compact curves X of genus g � 2 enter in

this category, as well asX D P1�fa; b; cg ' C�f0; 1g, orX D C=ƒ�fag
(elliptic curve minus one point).

In fact, as the disk is simply connected, every holomorphic map f W � ! X

lifts to the universal cover bf W � ! bX , so that f D � ı bf , where � W bX ! X

is the projection map, and the conclusions (a), (b), (c) follow easily from the
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Poincaré–Koebe uniformization theorem: every simply connected Riemann sur-
face is biholomorphic to C, the unit disk � or the complex projective line P1.

In some rare cases, the one-dimensional case can be used to study the case of
higher dimensions. For instance, it is easy to see by looking at projections that
the Kobayashi pseudodistance on a product X � Y of complex spaces is given
by

dK
X�Y ..x; y/; .x

0; y0// D max.dK
X .x; x0/; dK

Y .y; y
0//;(1.6)

kX�Y .	; 	
0/ D max.kX .	/;kY .	

0//;(1:60)

and from there it follows that a product of hyperbolic spaces is hyperbolic. As
a consequence .C � f0; 1g/2, which is also a complement of five lines in P2, is
hyperbolic.

1.B. Brody criterion for hyperbolicity

Throughout this subsection, we assume that X is a complex manifold. In this
context, we have the following well-known result of Brody [Bro78]. Its main
interest is to relate hyperbolicity to the non-existence of entire curves.

1.7. Brody reparametrization lemma. Let ! be a Hermitian metric on X and
let f W � ! X be a holomorphic map. For every " > 0, there exists a radius
R � .1�"/kf 0.0/k! and a homographic transformation  of the diskD.0;R/
onto .1 � "/� such that

k.f ı /0.0/k! D 1; k.f ı /0.t/k! � 1

1 � jt j2=R2
for every t 2 D.0;R/.

Proof. Select t0 2 � such that .1� jt j2/kf 0..1� "/t/k! reaches its maximum
for t D t0. The reason for this choice is that .1�jt j2/kf 0..1�"/t/k! is the norm
of the differential f 0..1 � "/t/ W T� ! TX with respect to the Poincaré metric
jdt j2=.1�jt j2/2 on T�, which is conformally invariant under Aut.�/. One then
adjusts R and  so that  .0/ D .1 � "/t0 and j 0.0/j kf 0. .0//k! D 1. As
j 0.0/j D 1�"

R
.1 � jt0j2/, the only possible choice for R is

R D .1 � "/.1 � jt0j2/kf 0. .0//k! � .1 � "/kf 0.0/k! :

The inequality for .f ı  /0 follows from the fact that the Poincaré norm is
maximum at the origin, where it is equal to 1 by the choice of R. ut

Using the Ascoli–Arzelà theorem we obtain immediately:
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1.8. Corollary (Brody). Let .X; !/ be a compact complex Hermitian manifold.
Given a sequence of holomorphic mappings f� W � ! X such that lim kf 0

�.0/k!

D C1, one can find a sequence of homographic transformations  � W D.0;R�/

! .1 � 1=�/� with limR� D C1, such that, after passing possibly to a
subsequence, .f� ı  �/ converges uniformly on every compact subset of C to-
wards a non-constant holomorphic map g W C ! X with kg0.0/k! D 1 and
supt2C kg0.t/k! � 1.

An entire curve g W C ! X such that supC kg0k! D M < C1 is called
a Brody curve; this concept does not depend on the choice of ! when X is
compact, and one can always assume M D 1 by rescaling the parameter t .

1.9. Brody criterion. Let X be a compact complex manifold. The following
properties are equivalent:

(a) X is hyperbolic;
(b) X does not possess any entire curve f W C ! X;
(c) X does not possess any Brody curve g W C ! X;
(d) The Kobayashi infinitesimal metric kX is uniformly bounded below, namely

kX .	/ � ck	k! ; c > 0;

for any Hermitian metric ! on X .

Proof. (a) ) (b). If X possesses an entire curve f W C ! X , then by looking
at arbitrary large disksD.0;R/ � C, it is easy to see that the Kobayashi distance
of any two points in f .C/ is zero, so X is not hyperbolic.
(b) ) (c). This is trivial.
(c) ) (d). If (d) does not hold, there exists a sequence of tangent vectors 	� 2
TX;x�

with k	�k! D 1 and kX .	�/ ! 0. By definition, this means that there
exists an analytic curve f� W � ! X with f .0/ D x� and kf 0

�.0/k! � .1 �
1
�
/=kX .	�/ ! C1. One can then produce a Brody curve g D C ! X by

Corollary 1.8, contradicting (c).
(d) ) (a). In fact (d) implies after integrating that dK

X .p; q/ � c d!.p; q/,
where d! is the geodesic distance associated with !, so dK

X must be non-
degenerate. ut

Notice also that if f W C ! X is an entire curve such that kf 0k! is un-
bounded, one can apply the Corollary 1.8 to f�.t/ WD f .t C a�/, where the se-
quence .a�/ is chosen such that kf 0

�.0/k! D kf .a�/k! ! C1. Brody’s result
then produces reparametrizations � W D.0;R�/ ! D.a� ; 1�1=�/ and a Brody
curve g D lim f ı  � W C ! X such that sup kg0k! D 1 and g.C/ � f .C/. It
may happen that the image g.C/ of such a limiting curve is disjoint from f .C/.
In fact Winkelmann [Win07] has given a striking example, actually a projective
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3-fold X obtained by blowing-up a 3-dimensional abelian variety Y , such that
every Brody curve g W C ! X lies in the exceptional divisor E � X ; however,
entire curves f W C ! X can be dense, as one can see by taking f to be the
lifting of a generic complex line embedded in the abelian variety Y . For further
precise information on the localization of Brody curves, we refer the reader to
the remarkable results of [Duv08].

The absence of entire holomorphic curves in a given complex manifold is
often referred to as Brody hyperbolicity. Thus, in the compact case, Brody hy-
perbolicity and Kobayashi hyperbolicity coincide (but Brody hyperbolicity is in
general a strictly weaker property when X is non-compact).

1.C. Geometric applications

We give here two immediate consequences of the Brody criterion: the openness
property of hyperbolicity and a hyperbolicity criterion for subvarieties of com-
plex tori. By definition, a holomorphic family of compact complex manifolds is
a holomorphic proper submersion X ! S between two complex manifolds.

1.10. Proposition. Let � W X ! S be a holomorphic family of compact com-
plex manifolds. Then the set of s 2 S such that the fiber Xs D ��1.s/ is
hyperbolic is open in the Euclidean topology.

Proof. Let ! be an arbitrary Hermitian metric on X , .Xs�
/s�2S a sequence of

non-hyperbolic fibers, and s D lim s� . By the Brody criterion, one obtains a se-
quence of entire maps f� W C ! Xs�

such that kf 0
�.0/k! D 1 and kf 0

�k! � 1.
Ascoli’s theorem shows that there is a subsequence of f� converging uniformly
to a limit f W C ! Xs , with kf 0.0/k! D 1. Hence Xs is not hyperbolic and the
collection of non-hyperbolic fibers is closed in S . ut

Consider now an n-dimensional complex torus W , i.e., an additive quotient
W D Cn=ƒ, where ƒ � Cn is a (cocompact) lattice. By taking a composition
of entire curves C ! Cn with the projection Cn ! W we obtain an infinite
dimensional space of entire curves in W .

1.11. Theorem. Let X � W be a compact complex submanifold of a complex
torus. Then X is hyperbolic if and only if it does not contain any translate of a
subtorus.

Proof. If X contains some translate of a subtorus, then it contains lots of entire
curves and so X is not hyperbolic.

Conversely, suppose that X is not hyperbolic. Then by the Brody criterion
there exists an entire curve f W C ! X such that kf 0k! � kf 0.0/k! D 1,
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where ! is the flat metric on W inherited from Cn. This means that any liftingef D . ef ; : : : ; ef�/ W C ! Cn is such that

nX
j D1

jf 0
j j2 � 1:

Then, by Liouville’s theorem, ef 0 is constant and therefore ef is affine linear.
But then the closure of the image of f is a translate a C H of a connected
(possibly real) subgroup H of W . We conclude that X contains the analytic
Zariski closure of a C H , namely a C HC, where HC � W is the smallest
closed complex subgroup of W containing H . ut

2. Directed manifolds

2.A. Basic definitions concerning directed manifolds

Let us consider a pair .X; V / consisting of an n-dimensional complex manifold
X equipped with a linear subspace V � TX : if we assume X to be connected,
this is by definition an irreducible closed analytic subspace of the total space of
TX such that each fiber Vx D V \TX;x is a vector subspace of TX;x . If W � �1

X
is the sheaf of 1-forms vanishing on V , then W is coherent (this follows from
the direct image theorem by looking at the proper morphism P.V / � P.TX / ! X),
and V is locally defined by

Vx D f	 2 TX;x I j̨ .x/ � 	 D 0; 1 � j � N g; j̨ 2 H 0.U;�1
X /; x 2 U;

where .˛1; : : : ; ˛N /, is a local family of generators of W on a small open set U .
We can also associate to V a coherent sheaf V WD W ? D Hom.�1

X=W ;OX / �
O.TX /, which is a saturated subsheaf of O.TX /, i.e., such that O.TX /=V has
no torsion; then V is also reflexive, i.e., V �� D V . We will refer to such a
pair as being a (complex) directed manifold, and we will in general think of
V as a linear space (rather than considering the associated saturated subsheaf
V � O.TX /). A morphism ˆ W .X; V / ! .Y;W / in the category of complex
directed manifolds is a holomorphic map such that ˆ�.V / � W .

Here, the rank x 7! dimC Vx is Zariski lower semi-continuous, and it may
a priori jump. The rank r WD rank.V / 2 f0; 1; : : : ; ng of V is by definition the
dimension of Vx at a generic point. The dimension may be larger at non-generic
points; this happens e.g. on X D Cn for the rank 1 linear space V generated by
the Euler vector field: Vz D C

P
1�j�n zj

@
@zj

for z ¤ 0, and V0 D Cn. Our phi-
losophy is that directed manifolds are also useful to study the “absolute case”,
i.e., the case V D TX , because there are certain functorial constructions which
are quite natural in the category of directed manifolds (see e.g. Sects. 5, 6, 7).
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We think of directed manifolds as a kind of “relative situation”, covering e.g.
the case when V is the relative tangent space to a holomorphic map X ! S . It
is important to notice that the local sections of V need not generate the fibers
of V at singular points, as one sees already in the case of the Euler vector field
when n � 2. We also want to stress that no assumption need be made on the Lie
bracket tensor Œ�; �� W V � V ! O.TX /=V , i.e., we do not assume any kind of
integrability for V or W .

The singular set Sing.V / is by definition the set of points where V is not lo-
cally free, it can also be defined as the indeterminacy set of the (meromorphic)
classifying map ˛ W X > Gr.TX /, z 7! Vz to the Grassmannian of r dimen-
sional subspaces of TX . We thus have V�X�Sing.V / D ˛�S , where S ! Gr.TX /

is the tautological subbundle ofGr.TX /. The singular set Sing.V / is an analytic
subset of X of codim � 2, and hence V is always a holomorphic subbundle
outside of codimension 2. Thanks to this remark, one can most often treat linear
spaces as vector bundles (possibly modulo passing to the Zariski closure along
Sing.V /).

2.B. Hyperbolicity properties of directed manifolds

Most of what we have done in Sect. 1 can be extended to the category of directed
manifolds.

2.1. Definition. Let .X; V / be a complex directed manifold.

(i) The Kobayashi–Royden infinitesimal metric of .X; V / is the Finsler metric
on V defined for any x 2 X and 	 2 Vx by

k.X;V /.	/

D inf f� > 0 I 9f W � ! X; f .0/ D x; �f 0.0/ D 	; f 0.�/ � V g:
Here � � C is the unit disk and the map f is an arbitrary holomorphic
map which is tangent to V , i.e., such that f 0.t/ 2 Vf .t/ for all t 2 �. We
say that .X; V / is infinitesimally hyperbolic if k.X;V / is positive definite
on every fiber Vx and satisfies a uniform lower bound k.X;V /.	/ � "k	k!

in terms of any smooth Hermitian metric ! on X , when x describes a
compact subset of X .

(ii) More generally, the Kobayashi–Eisenman infinitesimal pseudometric of
.X; V / is the pseudometric defined on all decomposable p-vectors 	 D
	1 ^ � � � ^ 	p 2 ƒpVx , 1 � p � r D rank.V /, by

ep

.X;V /
.	/

D inff� > 0 I 9f W Bp ! X; f .0/ D x; �f�.
0/ D 	; f�.TBp
/ � V g;
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where Bp is the unit ball in Cp and 
0 D @=@t1 ^ � � � ^@=@tp is the unit p-
vector of Cp at the origin. We say that .X; V / is infinitesimally p-measure
hyperbolic if ep

.X;V /
is positive definite on every fiber ƒpVx and satisfies

a locally uniform lower bound in terms of any smooth metric.

Ifˆ W .X; V / ! .Y;W / is a morphism of directed manifolds, it is immediate
to check that we have the monotonicity property

k.Y;W /.ˆ�	/ � k.X;V /.	/; 8	 2 V;(2.2)

ep

.Y;W /
.ˆ�	/ � ep

.X;V /
.	/; 8	 D 	1 ^ � � � ^ 	p 2 ƒpV:(2:2p)

The following proposition shows that virtually all reasonable definitions of the
hyperbolicity property are equivalent if X is compact (in particular, the addi-
tional assumption that there is locally uniform lower bound for k.X;V / is not
needed). We merely say in that case that .X; V / is hyperbolic.

2.3. Proposition. For an arbitrary directed manifold .X; V /, the Kobayashi–
Royden infinitesimal metric k.X;V / is upper semi-continuous on the total space
of V . IfX is compact, .X; V / is infinitesimally hyperbolic if and only if there are
no entire curves g W C ! X tangent to V . In that case, k.X;V / is a continuous
(and positive definite) Finsler metric on V .

Proof. The proof is almost identical to the standard proof for kX , for which
we refer to Royden [Roy71], [Roy74]. One of the main ingredients is that one
can find a Stein neighborhood of the graph of any analytic disk (thanks to a
result of [Siu76], cf. also [Dem90a] for more general results). This allows to
obtain “free” small deformations of any given analytic disk, as there are many
holomorphic vector fields on a Stein manifold. ut

Another easy observation is that the concept of p-measure hyperbolicity gets
weaker and weaker as p increases (we leave it as an exercise to the reader, this
is mostly just linear algebra).

2.4. Proposition. If .X; V / is p-measure hyperbolic, then it is .pC1/-measure
hyperbolic for all p 2 f1; : : : ; rank.V / � 1g.

Again, an argument extremely similar to the proof of Proposition 1.10 shows
that relative hyperbolicity is an open property.

2.5. Proposition. Let .X ;V / ! S be a holomorphic family of compact di-
rected manifolds (by this, we mean a proper holomorphic map X ! S together
with an analytic linear subspace V � TX =S � TX of the relative tangent bun-
dle, defining a deformation .Xs; Vs/s2S of the fibers). Then the set of s 2 S such
that the fiber .Xs; Vs/ is hyperbolic is open in S with respect to the Euclidean
topology.
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Let us mention here an impressive result proved by Marco Brunella [Bru03],
[Bru05], [Bru06] concerning the behavior of the Kobayashi metric on foliated
varieties.

2.6. Theorem (Brunella). Let X be a compact Kähler manifold equipped with
a (possibly singular) rank 1 holomorphic foliation which is not a foliation by
rational curves. Then the canonical bundle KF D F � of the foliation is pseu-
doeffective (i.e., the curvature of KF is � 0 in the sense of currents).

The proof is obtained by putting on KF precisely the metric induced by the
Kobayashi metric on the leaves whenever they are generically hyperbolic (i.e.,
covered by the unit disk). The case of parabolic leaves (covered by C) has to be
treated separately.

2.C. Pluricanonical sheaves of a directed variety

Let .X; V / be a directed projective manifold, where V is possibly singular, and
let r D rankV . If � W bX ! X is a proper modification (a composition of blow-
ups with smooth centers, say), we get a directed manifold .bX; bV / by taking bV
to be the closure of ��1� .V 0/, where V 0 D V�X 0 is the restriction of V over
a Zariski open set X 0 � X � Sing.V / such that � W ��1.X 0/ ! X 0 is a
biholomorphism. We say that .bX; bV / is a modification of .X; V / and write bV D
��V .

We will be interested in taking modifications realized by iterated blow-ups of
certain non-singular subvarieties of the singular set Sing.V /, so as to eventually
“improve” the singularities of V ; outside of Sing.V / the effect of blowing-up
will be irrelevant. The canonical sheaf KV , resp. the pluricanonical sheaf se-
quenceKŒm�

V , will be defined here in several steps, using the concept of bounded
pluricanonical forms that was already introduced in [Dem11].

2.7. Definition. For a directed pair .X; V /withX non-singular, we define bKV

(resp. bK
Œm�

V ) for any integer m � 0, to be the rank 1 analytic sheaves such that
bKV .U / D sheaf of locally bounded sections of OX .ƒ

rV 0�/.U \X 0/;
bK

Œm�

V .U / D sheaf of locally bounded sections of OX ..ƒ
rV 0�/˝m/.U \X 0/;

where r D rank.V /, X 0 D X � Sing.V /, V 0 D V�X 0 , and “locally bounded”
means bounded with respect to a smooth Hermitian metric h on TX , on every
set W \X 0 such that W is relatively compact in U .

In the trivial case r D 0, we simply set bK
Œm�

V D OX for all m; clearly
ECL.X; V / D ; in that case, so there is not much to say. The above defini-

tion of bK
Œm�

V may look like an analytic one, but it can easily be turned into an
equivalent algebraic definition:
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2.8. Proposition. Consider the natural morphism O.ƒrT �
X / ! O.ƒrV �/,

where r D rankV and O.ƒrV �/ is defined as the quotient of O.ƒrT �
X / by

r-forms that have zero restrictions to O.ƒrV �/ on X � Sing.V /. The bidual
LV D OX .ƒ

rV �/�� is an invertible sheaf, and our natural morphism can be
written

(2:81) O.ƒrT �
X / �! O.ƒrV �/ D LV ˝ JV � LV ;

where JV is a certain ideal sheaf of OX whose zero set is contained in Sing.V /,
and the arrow on the left is surjective by definition. Then

(2:82) bK
Œm�

V D L ˝m
V ˝ J m

V ;

where J m
V is the integral closure of J m

V in OX . In particular, bK
Œm�

V is always
a coherent sheaf.

Proof. Let .uk/ be a set of generators of O.ƒrV �/ obtained (say) as the im-
ages of a basis .dzI /jI jDr of ƒrT �

X in some local coordinates near a point
x 2 X . Write uk D gk`, where ` is a local generator of LV at x. Then
JV D .gk/ by definition. The boundedness condition expressed in Defini-
tioni. 2.7 means that we take sections of the form f `˝m, where f is a holomor-
phic function on U \X 0 (and U a neighborhood of x), such that

(2:83) jf j � C
�X

jgkj
�m

for some constant C > 0. But then f extends holomorphically to U into a
function that lies in the integral closure J

m

V (it is well-known that the latter is
characterized analytically by condition (2:83)). This proves Proposition. 2.8.

ut
2.9. Lemma. Let .X; V / be a directed variety.

(a) For any modification � W .bX; bV / ! .X; V /, there are always well-defined
injective natural morphisms of rank 1 sheaves

bK
Œm�

V ,�! ��.bK
Œm�bV / ,�! L ˝m

V :

(b) The direct image ��.bK
Œm�bV / may only increase when we replace � by a

“higher” modification e� D �0 ı � W eX ! bX ! X and bV D ��V byeV D e��V , i.e., there are injections

��.bK
Œm�bV / ,�! e��.bK

Œm�eV / ,�! L ˝m
V :

We refer to this property as the monotonicity principle.
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Proof. (a) The existence of the first arrow is seen as follows: the differential
�� D d� W bV ! ��V is smooth, so it is bounded with respect to ambient
Hermitian metrics on X and bX . Going to the duals reverses the arrows while
preserving boundedness with respect to the metrics. We thus get an arrow

��.bV ?/ ,�! bbV ?:

By taking the top exterior power, followed by the m-th tensor product and the

integral closure of the ideals involved, we get an injective arrow ��.bKŒm�

V / ,!
bK

Œm�bV . Finally we apply the direct image functor �� and the canonical mor-
phism F ! ����F to get the first inclusion morphism. The second arrow

comes from the fact that ��.bKŒm�

V / coincides with L ˝m
V (and with det.V �/˝m)

on the complement of the codimension 2 set S D Sing.V / [ �.Exc.�//, and
the fact that for every open set U � X , sections of LV defined on U � S auto-
matically extend to U by Riemann’s extension theorem (or Hartog’s extension
theorem...), even without any boundedness assumption.
(b) Given �0 W eX ! bX , we argue as in (a) that there is a bounded morphism
d�0 W eV ! bV . ut

By the monotonicity principle and the strong Noetherian property of coher-
ent ideals, we infer that there exists a maximal direct image when � W bX ! X

runs over all non-singular modifications of X . The following definition is thus
legitimate.

2.10. Definition. We define the pluricanonical sheaves Km
V of .X; V / to be the

inductive limits

K
Œm�
V WD lim�!

�

��.bK
Œm�bV / D max

�
��.bK

Œm�bV /

taken over the family of all modifications � W .bX; bV / ! .X; V /, with the trivial
(filtering) partial order. The canonical sheaf KV itself is defined to be the same
as KŒ1�

V . By construction, we have for every m � 0 inclusions

bK
Œm�

V ,�! K
Œm�
V ,�! L ˝m

V ;

and KŒm�
V D J Œm�

V � L ˝m
V for a certain sequence of integrally closed ideals

J Œm�
V � OX .

It is clear from this construction that KŒm�
V is birationally invariant, i.e., that

K
Œm�
V D ��.KŒm�

V 0 / for every modification � W .X 0; V 0/ ! .X; V /. Moreover
the sequence is submultiplicative, i.e., there are injections

K
Œm1�
V ˝K

Œm2�
V ,�! K

Œm1Cm2�
V
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for all non-negative integers m1; m2 ; the corresponding sequence of ideals
J Œm�

V is thus also submultiplicative. By blowing up J Œm�
V and taking a desin-

gularization bX of the blow-up, one can always find a log-resolution of J Œm�
V ,

i.e., a modification �m W bXm ! X such that ��
mJ Œm�

V � O bXm
is an invertible

ideal sheaf; it follows that

��
mK

Œm�
V D ��

mJ Œm�
V � .��

mLV /
˝m

is an invertible sheaf on bXm. We do not know whether �m can be taken inde-
pendent of m, nor whether the inductive limit introduced in Definition 2.10 is
reached for a � that is independent of m. If such a “uniform” � exists, it could
be thought of as some sort of replacement for the resolution of singularities of
directed structures (which do not exist in the naive sense that V could be made
non-singular). By means of a standard Serre–Siegel argument, one can easily
show

2.11. Proposition. Let .X; V / be a directed variety .X; V / and F be an invert-
ible sheaf on X . The following properties are equivalent:

(a) there exists a constant c > 0 andm0 > 0 such that h0.X;K
Œm�
V ˝F˝m/ �

cmn for m � m0, where n D dimX;
(b) the space of sections H 0.X;K

Œm�
V ˝ F˝m/ provides a generic embedding

of X in projective space for sufficiently large m;
(c) there exists m > 0 and a log-resolution �m W bXm ! X of KŒm�

V such that

��
m.K

Œm�
V ˝ F˝m/ is a big invertible sheaf on bXm;

(d) there exists m > 0, a modification e�m W .eXm; eVm/ ! .X; V / and a log-

resolution �0
m W bXm ! eX of bK

Œm�eVm
such that �0 �

m .
bK

Œm�eVm
˝ e��

mF
˝m/ is a

big invertible sheaf on bXm.

We will express any of these equivalent properties by saying that the twisted
pluricanonical sheaf sequence K�

V ˝ F � is big.

In the special case F D OX , we introduce

2.12. Definition. We say that .X; V / is of general type if K�
V is big.

2.13. Remarks.
(a) At this point, it is important to stress the difference between “our” canoni-
cal sheaf KV , and the sheaf LV , which is considered by some experts as “the
canonical sheaf of the foliation” defined by V , in the integrable case. Notice
that LV can also be obtained as the direct image LV D i�O.det.V �// associ-
ated with the injection i W X � Sing.V / ,! X . The discrepancy already occurs
with the rank 1 linear space V � TPn

C
consisting at each point z ¤ 0 of the
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tangent to the line .0z/ (so that necessarily V0 D TPn
C

;0). As a sheaf (and not
as a linear space), i�O.V / is the invertible sheaf generated by the vector field
	 D P

zj @=@zj on the affine open set Cn � Pn
C, and therefore LV WD i�O.V �/

is generated over Cn by the unique 1-form u such that u.	/ D 1. Since 	 van-
ishes at 0, the generator u is unbounded with respect to a smooth metric h0 on
TPn

C
, and it is easily seen thatKV is the non-invertible sheafKV D LV ˝mPn

C
;0.

We can make it invertible by considering the blow-up � W eX ! X of X D Pn
C

at 0, so that ��KV is isomorphic to ��LV ˝ O eX .�E/, where E is the ex-
ceptional divisor. The integral curves C of V are of course lines through 0, and
when a standard parametrization is used, their derivatives do not vanish at 0,
while the sections of i�O.V / do—a first sign that i�O.V / and i�O.V �/ are the
wrong objects to consider.
(b) When V is of rank 1, we get a foliation by curves on X . If .X; V / is of
general type (i.e., K�

V is big), we will see in Proposition. 4.9 that almost all
leaves of V are hyperbolic, i.e., covered by the unit disk. This would not be
true if K�

V was replaced by LV . In fact, the examples of pencils of conics or
cubic curves in P2 already produce this phenomenon, as we have seen in the
introduction, right after generalized GGL conjecture 0.4. For this second reason,
we believe that K�

V is a more appropriate concept of “canonical sheaf” than
LV is.
(c) When dimX D 2, a singularity of a (rank 1) foliation V is said to be sim-
ple if the linear part of the local vector field generating O.V / has two distinct
eigenvalues � ¤ 0, � ¤ 0 such that the quotient �=� is not a positive rational
number. Seidenberg’s theorem [Sei68] says there always exists a composition
of blow-ups � W bX ! X such that bV D ��V only has simple singularities. It

is easy to check that the inductive limit canonical sheaf KŒm�
V D ��.bK

Œm�bV / is
reached whenever bV D ��V has simple singularities.

3. Algebraic hyperbolicity

In the case of projective algebraic varieties, hyperbolicity is expected to be re-
lated to other properties of a more algebraic nature. Theorem 3.1 below is a first
step in this direction.

3.1. Theorem. Let .X; V / be a compact complex directed manifold and letP
!jk dzj ˝dzk be a Hermitian metric on TX , with associated positive .1; 1/-

form ! D i
2

P
!jk dzj ^ dzk . Consider the following three properties, which

may or not be satisfied by .X; V /:
(i) .X; V / is hyperbolic.

(ii) There exists " > 0 such that every compact irreducible curve C � X

tangent to V satisfies

��.C / D 2g.C / � 2 � " deg!.C /;
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where deg!.C / D R
C !, and where g.C / is the genus of the normaliza-

tion C of C and �.C / its Euler characteristic (the degree coincides with
the usual concept of degree if X is projective, embedded in PN via a very
ample line bundle A, and ! D ‚A;hA

> 0; such an estimate is of course
independent of the choice of !, provided that " is changed accordingly).

(iii) There does not exist any non-constant holomorphic mapˆ W Z ! X from
an abelian variety Z to X such that ˆ�.TZ/ � V .

Then (i) ) (ii) ) (iii).

Proof. (i) ) (ii). If .X; V / is hyperbolic, there is a constant "0 > 0 such that
k.X;V /.	/ � "0k	k! for all 	 2 V . Now, let C � X be a compact irreducible
curve tangent to V and let � W C ! C be its normalization. As .X; V / is
hyperbolic, C cannot be a rational or elliptic curve. Hence C admits the disk as
its universal covering � W � ! C .

The Kobayashi–Royden metric k� is the Finsler metric jdzj=.1 � jzj2/ as-
sociated with the Poincaré metric jdzj2=.1 � jzj2/2 on �, and kC is such that
��kC D k�. In other words, the metric kC is induced by the unique Hermitian
metric on C of constant Gaussian curvature �4. If �� D i

2
dz^dz=.1� jzj2/2

and �C are the corresponding area measures, the Gauss–Bonnet formula (inte-
gral of the curvature D 2� �.C /) yieldsZ

C

d�C D �1
4

Z
C

curv.kC / D ��
2
�.C /:

On the other hand, if j W C ! X is the inclusion, the monotonicity property
(2.2) applied to the holomorphic map j ı � W C ! X shows that

kC .t/ � k.X;V /..j ı �/�t/ � "0k.j ı �/�tk! ; 8t 2 TC :

From this, we infer d�C � "2
0.j ı �/�!, thus

��
2
�.C / D

Z
C

d�C � "2
0

Z
C

.j ı �/�! D "2
0

Z
C

!:

Property (ii) follows with " D 2"2
0=� .

(ii) ) (iii). First observe that (ii) excludes the existence of elliptic and rational
curves tangent to V . Assume that there is a non-constant holomorphic map ˆ W
Z ! X from an abelian variety Z to X such that ˆ�.TZ/ � V . We must
have dimˆ.Z/ � 2, otherwise ˆ.Z/ would be a curve covered by images
of holomorphic maps C ! ˆ.Z/, and so ˆ.Z/ would be elliptic or rational,
contradiction. Select a sufficiently general curve � in Z (e.g. a curve obtained
as an intersection of very generic divisors in a given very ample linear system
jLj in Z). Then all isogenies um W Z ! Z, s 7! ms map � in a 1 W 1 way
to curves um.�/ � Z, except maybe for finitely many double points of um.�/



Kobayashi and Green–Griffiths–Lang conjectures 25

when dimZ D 2: we leave this as an exercise to the reader, using Bertini type
arguments). It follows that the normalization of um.�/ is isomorphic to � . If
� is general enough and 
a W Z ! Z, w 7! w C a denote translations of Z,
similar arguments show that for general a 2 Z the images

Cm;a WD ˆ.
a.um.�/// � X

are also generically 1 W 1 images of � , thus Cm;a ' � and g.Cm;a/ D g.�/.
We claim that on average Cm;a has degree � Constm2. In fact, if � is the
translation invariant probability measure on ZZ

Cm;a

! D
Z

�

u�
m.


�
aˆ

�!/; and hence
Z

a2Z

� Z
Cm;a

!
�
d�.a/ D

Z
�

u�
mˇ;

where ˇ D R
a2Z.


�
aˆ

�!/ d�.a/ is a translation invariant .1; 1/-form on Z.
Therefore ˇ is a constant coefficient .1; 1/-form, so u�

mˇ D m2ˇ and the right
hand side is cm2 with c D R

� ˇ > 0. For a suitable choice of am 2 Z, we have
deg! Cm;am

� cm2 and .2g.Cm;am
/ � 2/= deg!.Cm;am

/ ! 0, contradiction.
ut

3.2. Definition. We say that a projective directed manifold .X; V / is “alge-
braically hyperbolic” if it satisfies property 3.1 (ii), namely, if there exists " > 0
such that every algebraic curve C � X tangent to V satisfies

2g.C / � 2 � " deg!.C /:

A nice feature of algebraic hyperbolicity is that it satisfies an algebraic ana-
logue of the openness property.

3.3. Proposition. Let .X ;V / ! S be an algebraic family of projective al-
gebraic directed manifolds (given by a projective morphism X ! S). Then
the set of t 2 S such that the fiber .Xt ; Vt / is algebraically hyperbolic is open
with respect to the “countable Zariski topology” of S (by definition, this is the
topology for which closed sets are countable unions of algebraic sets).

Proof. After replacing S by a Zariski open subset, we may assume that the total
space X itself is quasi-projective. Let ! be the Kähler metric on X obtained by
pulling back the Fubini–Study metric via an embedding in a projective space.
If the integers d > 0, g � 0 are fixed, the set Ad;g of t 2 S such that Xt

contains an algebraic 1-cycle C D P
mjCj tangent to Vt with deg!.C / D d

and g.C / D P
mj g.Cj / � g is a closed algebraic subset of S (this follows

from the existence of a relative cycle space of curves of given degree, and from
the fact that the geometric genus is Zariski lower semi-continuous). Now, the
set of non-algebraically hyperbolic fibers is by definition\

k>0

[
2g�2<d=k

Ad;g :
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This concludes the proof (of course, one has to know that the countable Zariski
topology is actually a topology, namely that the class of countable unions of
algebraic sets is stable under arbitrary intersections; this can be easily checked
by an induction on dimension). ut
3.4. Remark. More explicit versions of the openness property have been dealt
with in the literature. H. Clemens ([Cle86] and [CKM88]) has shown that on
a very generic surface of degree d � 5 in P3, the curves of type .d; k/ are of
genus g > kd.d�5/=2 (recall that a very generic surfaceX � P3 of degree � 4

has Picard group generated by OX .1/ thanks to the Noether–Lefschetz theorem;
thus any curve on the surface is a complete intersection with another hypersur-
face of degree k; such a curve is said to be of type .d; k/; genericity is taken
here in the sense of the countable Zariski topology). Improving on this result
of Clemens, Geng Xu [Xu94] has shown that every curve contained in a very
generic surface of degree d � 5 satisfies the sharp bound g � d.d � 3/=2 � 2.
This actually shows that a very generic surface of degree d � 6 is algebraically
hyperbolic. Although a very generic quintic surface has no rational or elliptic
curves, it seems to be unknown whether a (very) generic quintic surface is alge-
braically hyperbolic in the sense of Definition 3.2.

Improving on this result of Clemens, Geng Xu [Xu94] proved that every
curve contained in a very generic surface of degree d � 5 satisfies the sharp
bound g � d.d � 3/=2� 2. In April 2018, I. Coskun and E. Riedl improved the
above bounds and got the more precise bound g � 1C .dk.d � 5/C k/=2; this
result actually shows that a very generic surface of degree d � 5 is algebraically
hyperbolic in the sense of Definition 3.2. In higher dimension, L. Ein ([Ein88],
[Ein91]) proved that every subvariety of a very generic hypersurfaceX � PnC1

of degree d � 2nC1 .n � 2/, is of general type. This was reproved by a simple
efficient technique by C. Voisin in [Voi96], along with other improvements.

3.5. Remark. In view of Proposition 1.10, it would be interesting to know whether
algebraic hyperbolicity is open with respect to the Euclidean topology; still
more interesting would be to know whether Kobayashi hyperbolicity is open
for the countable Zariski topology (of course, both properties would follow im-
mediately if one knew that algebraic hyperbolicity and Kobayashi hyperbolic-
ity coincide, but they seem otherwise highly non-trivial to establish). The latter
openness property has raised an important amount of work around the following
more particular question: is a (very) generic hypersurface X � PnC1 of degree
d large enough (say d � 2nC 1) Kobayashi hyperbolic? Again, “very generic”
is to be taken here in the sense of the countable Zariski topology. Brody–Green
[BrGr77] and Nadel [Nad89] produced examples of hyperbolic surfaces in P3

for all degrees d � 50, and Masuda–Noguchi [MaNo96] gave examples of such
hypersurfaces in Pn for arbitrary n � 2, of degree d � d0.n/ large enough. The
hyperbolicity of complements Pn �H of generic divisors may be inferred from
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the compact case; in fact if H D fP.z0; : : : ; zn/ D 0g is a smooth generic
divisor of degree d , one may look at the hypersurface

X D fzd
nC1 D P.z0; : : : ; zn/g � PnC1

which is a cyclic d W 1 covering of Pn. Since any holomorphic map f W C !
Pn �H can be lifted to X , it is clear that the hyperbolicity of X would imply
the hyperbolicity of Pn �H . The hyperbolicity of complements of divisors in
Pn has been investigated by many authors. In the case n D 2, Huynh, Vu and
Xie [HVX17, Theorem 1.2] have announced that P2 � C is hyperbolic for a
very general curve C of degree d � 11 (and that a very general surfaceX � P3

of degree d � 15 is hyperbolic, [HVX17, Theorem 1.5]). The reader can also
consult [CFZ17, Section 4] for more details and references in these directions.

In the “absolute case” V D TX , it seems reasonable to expect that Properties
3.1 (i), (ii) are equivalent, i.e., that Kobayashi and algebraic hyperbolicity coin-
cide. However, it was observed by Serge Cantat [Can00] that Property 3.1 (iii) is
not sufficient to imply the hyperbolicity of X , at least when X is a general com-
plex surface: a general (non-algebraic) K3 surface is known to have no elliptic
curves and does not admit either any surjective map from an abelian variety;
however such a surface is not Kobayashi hyperbolic. We are uncertain about the
sufficiency of 3.1 (iii) when X is assumed to be projective.

4. The Ahlfors–Schwarz lemma for metrics of negative curvature

One of the most basic ideas is that hyperbolicity should somehow be related
with suitable negativity properties of the curvature. For instance, it is a standard
fact already observed in Kobayashi [Kob70] that the negativity of TX (or the
ampleness of T �

X ) implies the hyperbolicity of X . There are many ways of im-
proving or generalizing this result. We present here a few simple examples of
such generalizations.

4.A. Exploiting curvature via potential theory

If .V; h/ is a holomorphic vector bundle equipped with a smooth Hermitian
metric, we denote by rh D r 0

h
C r 00

h
the associated Chern connection and by

‚V;h D i
2	

r2
h

its Chern curvature tensor.

4.1. Proposition. Let .X; V / be a compact directed manifold. Assume that V
is non-singular and that V � is ample. Then .X; V / is hyperbolic.
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Proof (from an original idea of [Kob75]). Recall that a vector bundle E is said
to be ample if SmE has enough global sections �1; : : : ; �N so as to generate
1-jets of sections at any point, when m is large. One obtains a Finsler metric N
on E� by putting

N.	/ D
� X

1�j�N

j�j .x/ � 	mj2
�1=2m

; 	 2 E�
x ;

and N is then a strictly plurisubharmonic function on the total space of E�
minus the zero section (in other words, the line bundle OP.E�/.1/ has a met-
ric of positive curvature). By the ampleness assumption on V �, we thus have a
Finsler metric N on V which is strictly plurisubharmonic outside the zero sec-
tion. By the Brody lemma, if .X; V / is not hyperbolic, there is an entire curve
g W C ! X tangent to V such that supC kg0k! � 1 for some given Hermitian
metric ! on X . Then N.g0/ is a bounded subharmonic function on C which
is strictly subharmonic on fg0 ¤ 0g. This is a contradiction, for any bounded
subharmonic function on C must be constant. ut

4.B. Ahlfors–Schwarz lemma

Proposition 4.1 can be generalized a little bit further by means of the Ahlfors–
Schwarz lemma (see e.g. [Lang87]; we refer to [Dem95] for the generalized
version presented here; the proof is merely an application of the maximum prin-
ciple plus a regularization argument).

4.2. Ahlfors–Schwarz lemma. Let 
.t/ D 
0.t/ i dt^dt be a Hermitian met-
ric on �R, where log 
0 is a subharmonic function such that i @@ log 
0.t/ �
A
.t/ in the sense of currents, for some positive constant A. Then 
 can be
compared with the Poincaré metric of �R as follows:


.t/ � 2

A

R�2jdt j2
.1 � jt j2=R2/2

:

More generally, let 
 D i
P

jk dtj ^ dtk be an almost everywhere positive

Hermitian form on the ball B.0;R/ � Cp, such that � Ricci.
/ WD i @@ log det.
/
� A
 in the sense of currents, for some constantA > 0 (this means in particular
that det.
/ D det.
jk/ is such that log det.
/ is plurisubharmonic). Then the

-volume form is controlled by the Poincaré volume form:

det.
/ �
�p C 1

AR2

�p 1

.1 � jt j2=R2/pC1
:
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4.C. Applications of the Ahlfors–Schwarz lemma to hyperbolicity

Let .X; V / be a projective directed variety. We assume throughout this subsec-
tion that X is non-singular.

4.3. Proposition. Assume that V itself is non-singular and that the dual bundle
V � is “very big” in the following sense: there exists an ample line bundleL and
a sufficiently large integer m such that the global sections in H 0.X; SmV � ˝
L�1/ generate all fibers over X �Y , for some analytic subset Y � X . Then all
entire curves f W C ! X tangent to V satisfy f .C/ � Y .

Proof. Let �1; : : : ; �N 2 H 0.X; SmV � ˝ L�1/ be a basis of sections gener-
ating SmV � ˝ L�1 over X � Y . If f W C ! X is tangent to V , we define a
semi-positive Hermitian form 
.t/ D 
0.t/ jdt j2 on C by putting


0.t/ D
X

k�j .f .t// � f 0.t/mk2=m

L�1 ;

where k kL denotes a Hermitian metric with positive curvature onL. If f .C/ 6�
Y , the form 
 is not identically 0 and we then find

i @@ log 
0 � 2�

m
f �‚L;

where ‚L is the curvature form. The positivity assumption combined with an
obvious homogeneity argument yield

2�

m
f �‚L � "kf 0.t/k2

! jdt j2 � "0
.t/

for any given Hermitian metric ! on X . Now, for any t0 with 
0.t0/ > 0, the
Ahlfors–Schwarz lemma shows that f can only exist on a disk D.t0; R/ such
that 
0.t0/ � 2

"0R
�2, contradiction. ut

There are similar results for p-measure hyperbolicity, see e.g. [Carl72] and
[Nog77b]:

4.4. Proposition. Assume that V is non-singular and that ƒpV � is ample.
Then .X; V / is infinitesimally p-measure hyperbolic. More generally, assume
that ƒpV � is very big with base locus contained in Y � X (see Proposition
3.3). Then ep is non-degenerate over X � Y .

Proof. By the ampleness assumption, there is a smooth Finsler metric N on
ƒpV which is strictly plurisubharmonic outside the zero section. We select
also a Hermitian metric ! on X . For any holomorphic map f W Bp ! X

we define a semi-positive Hermitian metric e
 on Bp by putting e
 D f �!.
Since ! need not have any good curvature estimate, we introduce the function
ı.t/ D Nf .t/.ƒ

pf 0.t/ � 
0/, where 
0 D @=@t1 ^ � � � ^ @=@tp , and select a
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metric 
 D �e
 conformal to e
 such that det.
/ D ı. Then �p is equal to the
ratio N=ƒp! on the elementƒpf 0.t/ � 
0 2 ƒpVf .t/. Since X is compact, it is
clear that the conformal factor � is bounded by an absolute constant independent
of f . From the curvature assumption we then get

i @@ log det.
/ D i @@ log ı � .f;ƒpf 0/�.i @@ logN/ � "f �! � "0 
:

By the Ahlfors–Schwarz lemma we infer that det.
.0// � C for some constant
C , i.e., Nf .0/.ƒ

pf 0.0/ � 
0/ � C 0. This means that the Kobayashi–Eisenman
pseudometric ep

.X;V /
is positive definite everywhere and uniformly bounded

from below. In the case ƒpV � is very big with base locus Y , we use essen-
tially the same arguments, but we then only have N being positive definite on
X � Y . ut
4.5. Corollary ([Gri71], [KobO71]). If X is a projective variety of general
type, the Kobayashi–Eisenmann volume form en, n D dimX , can degenerate
only along a proper algebraic set Y � X .

The converse of Corollary 4.5 is expected to be true, namely, the generic
non-degeneracy of en should imply thatX is of general type; this is only known
for surfaces (see [GrGr80] and [MoMu82]):

4.6. General Type Conjecture (Green–Griffiths [GrGr80]). A projective alge-
braic variety X is measure hyperbolic (i.e., en degenerates only along a proper
algebraic subvariety) if and only if X is of general type.

An essential step in the proof of the necessity of having general type subvari-
eties would be to show that manifolds of Kodaira dimension 0 (say, Calabi–Yau
manifolds and holomorphic symplectic manifolds, all of which have c1.X/ D
0) are not measure hyperbolic, e.g. by exhibiting enough families of curves Cs;`

covering X such that .2g.C s;`/ � 2/= deg.Cs;`/ ! 0.

4.7. Conjectural corollary (Lang). A projective algebraic variety X is hyper-
bolic if and only if all its algebraic subvarieties (including X itself) are of gen-
eral type.

4.8. Remark. The GGL conjecture implies the “if” part of 4.7, and the General
Type Conjecture 4.6 implies the “only if” part of 4.7. In fact if the GGL conjec-
ture holds and every subvariety Y of X is of general type, then it is easy to infer
that every entire curve f W C ! X has to be constant by induction on dimX ,
because in fact f maps C to a certain subvariety Y � X . Therefore X is hy-
perbolic. Conversely, if Conjecture 4.6 holds and X has a certain subvariety Y
which is not of general type, then Y is not measure hyperbolic. However Propo-
sition 2.4 shows that hyperbolicity implies measure hyperbolicity. Therefore Y
is not hyperbolic and so X itself is not hyperbolic either.
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We end this section by another easy application of the Ahlfors–Schwarz
lemma for the case of rank 1 (possibly singular) foliations.

4.9. Proposition. Let .X; V / be a projective directed manifold. Assume that V
is of rank 1 and thatK�

V is big. Then S be the union of the singular set Sing.V /
and of the base locus of K�

V (namely the intersection of the images �m.Bm/ of

the base loci Bm of the invertible sheaves ��
mK

Œm�
V , m > 0, obtained by tak-

ing log-resolutions). Then ECL.X; V / � S , in other words, all non-hyperbolic
leaves of V are contained in S .

Proof. By Proposition 2.11 (d), we can take a blow-up e�m W eXm ! X and

a log-resolution �0
m W bXm ! eXm such that Fm D �0 �

m .
bK

Œm�eVm
/ is a big in-

vertible sheaf. This means that (after possibly increasing m) we can find sec-
tions �1; : : : ; �N 2 H 0.bXm; Fm/ that define a (singular) Hermitian metric with
strictly positive curvature on Fm, cf. Definition. 8.1 below. Now, for every en-
tire curve f W .C; TC/ ! .X; V / not contained in S , we can choose m and
a lifting ef W .C; TC/ ! .eX; eV / such that ef .C/ is not contained in the base
locus of our sections. Again, we can define a semi-positive Hermitian form

.t/ D 
0.t/ jdt j2 on C by putting


0.t/ D
X

k�j .f .t// � f 0.t/mk2=m

L�1 :

Then 
 is not identically zero and we have i@@ log 
0 � "
 by the strict posi-
tivity of the curvature. One should also notice that 
0 is locally bounded from
above by the assumption that the �j ’s come from locally bounded sections oneXm. This contradicts the Ahlfors–Schwarz lemma, and thus it cannot happen
that f .C/ 6� S . ut

5. Projectivization of a directed manifold

5.A. The 1-jet functor

The basic idea is to introduce a functorial process which produces a new com-
plex directed manifold .eX; eV / from a given one .X; V /. The new structure
.eX; eV / plays the role of a space of 1-jets over X . Fisrt assume that V is non-
singular. We let eX D P.V /; eV � T eX
be the projectivized bundle of lines of V , together with a subbundle eV of T eX
defined as follows: for every point .x; Œv�/ 2 eX associated with a vector v 2
Vx � f0g,

(5.1) eV .x;Œv�/ D f	 2 T eX; .x;Œv�/ I ��	 2 Cvg; Cv � Vx � TX;x;
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where � W eX D P.V / ! X is the natural projection and �� W T eX ! ��TX is
its differential. On eX D P.V / we have a tautological line bundle O eX .�1/ �
��V such that O eX .�1/.x;Œv�/ D Cv. The bundle eV is characterized by the two
exact sequences

0 �! T eX=X �! eV 	��! O eX .�1/ �! 0;(5.2)

0 �! O eX �! ��V ˝ O eX .1/ �! T eX=X �! 0;(5:20)

where T eX=X denotes the relative tangent bundle of the fibration � W eX ! X .
The first sequence is a direct consequence of the definition of eV , whereas the
second is a relative version of the Euler exact sequence describing the tangent
bundle of the fibers P.Vx/. From these exact sequences we infer

(5.3) dim eX D nC r � 1; rank eV D rankV D r;

and by taking determinants we find det.T eX=X / D �� det.V /˝ O eX .r/. Thus

(5.4) det.eV / D �� det.V /˝ O eX .r � 1/:
By definition, � W .eX; eV / ! .X; V / is a morphism of complex directed mani-
folds. Clearly, our construction is functorial, i.e., for every morphism of directed
manifolds ˆ W .X; V / ! .Y;W /, there is a commutative diagram

(5.5)

.X; V /

eˆ

.X; V /

ˆ

.Y ; W / .Y; W /;

where the left vertical arrow is the meromorphic map P.V / > P.W / induced by
the differential ˆ� W V ! ˆ�W (ê is actually holomorphic if ˆ� W V ! ˆ�W
is injective).

5.B. Lifting of curves to the 1-jet bundle

Suppose that we are given a holomorphic curve f W �R ! X parametrized
by the disk �R of centre 0 and radius R in the complex plane, and that f is a
tangent curve of the directed manifold, i.e., f 0.t/ 2 Vf .t/ for every t 2 �R.
If f is non-constant, there is a well-defined and unique tangent line Œf 0.t/� 2
P.Vf .t// for every t , even at stationary points, and the map

(5.6) ef W �R �! eX; t 7�! ef .t/ WD .f .t/; Œf 0.t/�/

is holomorphic; in fact, at a stationary point t0, we can write f 0.t/ D .t �
t0/

su.t/ with s 2 N� and u.t0/ ¤ 0, and we define the tangent line at t0
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to be Œu.t0/�, so that ef .t/ D .f .t/; Œu.t/�/ near t0; even for t D t0, we still
denote Œf 0.t0/� D Œu.t0/� for simplicity of notation. By definition f 0.t/ 2
O eX .�1/ ef .t/ D Cu.t/, so the derivative f 0 defines a section

(5.7) f 0 W T�R
�! ef �O eX .�1/:

Moreover � ı ef D f , and thus

�� ef 0.t/ D f 0.t/ 2 Cu.t/ H) ef 0.t/ 2 eV .f .t/;u.t// D eV ef .t/

and we see that ef is a tangent trajectory of .eX; eV /. We say that ef is the canon-
ical lifting of f to eX . Conversely, if g W �R ! eX is a tangent trajectory of
.eX; eV /, then by definition of eV we see that f D � ı g is a tangent trajectory
of .X; V / and that g D ef (unless g is contained in a vertical fiber P.Vx/, in
which case f is constant).

For any point x0 2 X , there are local coordinates .z1; : : : ; zn/ on a neigh-
borhood� of x0 such that the fibers .Vz/z2
 can be defined by linear equations

(5.8) Vz D
n
	 D

X
1�j�n

	j
@

@zj
I 	j D

X
1�k�r

ajk.z/	k for j D r C 1; : : : ; n
o
;

where .ajk/ is a holomorphic .n� r/� r matrix. It follows that a vector 	 2 Vz

is completely determined by its first r components .	1; : : : ; 	r/, and the affine
chart 	j ¤ 0 of P.V /�
 can be described by the coordinate system

(5.9)
�
z1; : : : ; znI 	1

	j
; : : : ;

	j �1

	j
;
	j C1

	j
; : : : ;

	r

	j

�
:

Let f ' .f1; : : : ; fn/ be the components of f in the coordinates .z1; : : : ; zn/

(we suppose here R so small that f .�R/ � �). It should be observed that
f is uniquely determined by its initial value x and by the first r components
.f1; : : : ; fr/. Indeed, as f 0.t/ 2 Vf .t/ , we can recover the other components
by integrating the system of ordinary differential equations

(5.10) f 0
j .t/ D

X
1�k�r

ajk.f .t//f
0

k.t/; j > r;

on a neighborhood of 0, with initial data f .0/ D x. We denote bym D m.f; t0/

the multiplicity of f at any point t0 2 �R, that is,m.f; t0/ is the smallest integer
m 2 N� such that f .m/

j .t0/ ¤ 0 for some j . By (5.10), we can always suppose

j 2 f1; : : : ; rg, for example f .m/
r .t0/ ¤ 0. Then f 0.t/ D .t � t0/m�1u.t/ with

ur.t0/ ¤ 0, and the lifting ef is described in the coordinates of the affine chart
	r ¤ 0 of P.V /�
 by

(5.11) ef '
�
f1; : : : ; fnI f

0
1

f 0
r

; : : : ;
f 0

r�1

f 0
r

�
:
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5.C. Curvature properties of the 1-jet bundle

We end this section with a few curvature computations. Assume that V is non-
singular and equipped with a smooth Hermitian metric h. Denote by rh D r 0

h
C r 00

h

the associated Chern connection and by ‚V;h D i
2	

r2
h

its Chern curvature
tensor. For every point x0 2 X , there exists a “normalized” holomorphic frame
.e�/1���r on a neighborhood of x0, such that

(5.12) he�; e�ih D ı�� �
X

1�j;k�n

cjk��zj zk CO.jzj3/;

with respect to any holomorphic coordinate system .z1; : : : ; zn/ centered at x0.
A computation of d 0he�; e�ih D hr 0

h
e�; e�ih and r2

h
e� D d 00r 0

h
e� then gives

r 0
he� D �

X
j;k;�

cjk��zk dzj ˝ e� CO.jzj2/;

‚V;h.x0/ D i

2�

X
j;k;�;�

cjk�� dzj ^ dzk ˝ e�
� ˝ e�:(5.13)

The above curvature tensor can also be viewed as a Hermitian form on TX ˝V .
In fact, one associates with‚V;h the Hermitian form h‚V;hi on TX ˝V defined
for all .�; v/ 2 TX �X V by

(5.14) h‚V;hi.� ˝ v/ D
X

1�j;k�n; 1��;��r

cjk���j �kv�v�:

Let h1 be the Hermitian metric on the tautological line bundle OP.V /.�1/ �
��V induced by the metric h of V . We compute the curvature .1; 1/-form
‚h1

.OP.V /.�1// at an arbitrary point .x0; Œv0�/ 2 P.V /, in terms of ‚V;h.
For simplicity, we suppose that the frame .e�/1���r has been chosen in such
a way that Œer.x0/� D Œv0� 2 P.V / and jv0jh D 1. We get holomorphic local
coordinates .z1; : : : ; zn I 	1; : : : ; 	r�1/ on a neighborhood of .x0; Œv0�/ in P.V /
by assigning

.z1; : : : ; zn I 	1; : : : ; 	r�1/ 7�! .z; Œ	1e1.z/C � � � C 	r�1er�1.z/C er.z/�/ 2 P.V /:
Then the function

�.z; 	/ D 	1e1.z/C � � � C 	r�1er�1.z/C er.z/

defines a holomorphic section of OP.V /.�1/ in a neighborhood of .x0; Œv0�/.
By using the expansion (5.12) for h, we find
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j�j2h1
D j�j2h D 1C j	j2 �

X
1�j;k�n

cjkrrzj zk CO..jzj C j	j/3/;

‚h1
.OP.V /.�1//.x0;Œv0�/

D � i

2�
@@ log j�j2h1

D i

2�

� X
1�j;k�n

cjkrr dzj ^ dzk �
X

1���r�1

d	� ^ d	�

�
:(5.15)

6. Jets of curves and Semple jet bundles

6.A. Semple tower of non-singular directed varieties

Let X be a complex n-dimensional manifold. Following ideas of Green–Griffiths
[GrGr80], we let JkX ! X be the bundle of k-jets of germs of parametrized
curves in X , that is, the set of equivalence classes of holomorphic maps f W
.C; 0/ ! .X; x/, with the equivalence relation f 	 g if and only if all deriva-
tives f .j /.0/ D g.j /.0/ coincide for 0 � j � k, when computed in some
local coordinate system of X near x. The projection map JkX ! X is simply
f 7! f .0/. If .z1; : : : ; zn/ are local holomorphic coordinates on an open set
� � X , the elements f of any fiber JkXx , x 2 �, can be seen as Cn-valued
maps

f D .f1; : : : ; fn/ W .C; 0/ ! � � Cn;

and they are completely determined by their Taylor expansion of order k at t D 0

f .t/ D x C tf 0.0/C t2

2Š
f 00.0/C � � � C tk

kŠ
f .k/.0/CO.tkC1/:

In these coordinates, the fiber JkXx can thus be identified with the set of k-
tuples of vectors .	1; : : : ; 	k/ D .f 0.0/; : : : ; f .k/.0// 2 .Cn/k . It follows that
JkX is a holomorphic fiber bundle with typical fiber .Cn/k over X (however,
JkX is not a vector bundle for k � 2, because of the non-linearity of coordinate
changes; see formula (7.2) in Sect. 7).

According to the philosophy developed throughout this paper, we describe
the concept of jet bundle in the general situation of complex directed manifolds.
If X is equipped with a holomorphic subbundle V � TX , we associate to V
a k-jet bundle JkV as follows, assuming V non-singular throughout Subsect.
6.A.

6.1. Definition. Let .X; V / be a complex directed manifold. We define JkV ! X

to be the bundle of k-jets of curves f W .C; 0/ ! X which are tangent to V ,
i.e., such that f 0.t/ 2 Vf .t/ for all t in a neighborhood of 0, together with the
projection map f 7! f .0/ onto X .
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It is easy to check that JkV is actually a subbundle of JkX . In fact, by using
(5.8) and (5.10), we see that the fibers JkVx are parametrized by

..f 0
1.0/; : : : ; f

0
r .0//I .f 00

1 .0/; : : : ; f
00

r .0//I : : : I .f .k/
1 .0/; : : : ; f .k/

r .0/// 2 .Cr/k

for all x 2 �, and hence JkV is a locally trivial .Cr/k-subbundle of JkX .
Alternatively, we can pick a local holomorphic connection r on V such that for
any germs w D P

1�j�nwj
@

@zj
2 O.TX;x/ and v D P

1���r v�e� 2 O.V /x
in a local trivializing frame .e1; : : : ; er/ of V�
 we have

rwv.x/ D
X

1�j�n; 1���r

wj
@v�

@zj
e�.x/C

X
1�j�n; 1��;��r

�
�

j�
.x/wj v� e�.x/:

We can of course take the frame obtained from (5.8) by lifting the vector fields
@=@z1; : : : ; @=@zr , and the “trivial connection” given by the zero Christoffel
symbols � D 0. One then obtains a trivialization J kV�
 ' V ˚k

�
 by consid-
ering

JkVx 3 f 7�! .	1; 	2; : : : ; 	k/ D .rf .0/;r2f .0/; : : : ;rkf .0// 2 V ˚k
x

and computing inductively the successive derivatives rf .t/ D f 0.t/ and rsf .t/

via

rsf D .f �r/d=dt .rs�1f /

D
X

1���r

d

dt
.rs�1f /�e�.f /C

X
1�j�n; 1��;��r

�
�

j�
.f /f 0

j .rs�1f /�e�.f /:

This identification depends of course on the choice of r and cannot be defined
globally in general (unless we are in the rare situation where V has a global
holomorphic connection). ut

We now describe a convenient process for constructing “projectivized jet
bundles”, which will later appear as natural quotients of our jet bundles JkV

(or rather, as suitable desingularized compactifications of the quotients). Such
spaces have already been considered since a long time, at least in the special
case X D P2, V D TP2 (see Gherardelli [Ghe41], Semple [Sem54]), and they
have been mostly used as a tool for establishing enumerative formulas dealing
with the order of contact of plane curves (see [Coll88], [CoKe94]); the article
[ASS97] is also concerned with such generalizations of jet bundles, as well as
[LaTh96] by Laksov and Thorup.

We define inductively the projectivized k-jet bundle Xk (or Semple k-jet
bundle) and the associated subbundle Vk � TXk

by

(6.2) .X0; V0/ D .X; V /; .Xk; Vk/ D .eXk�1; eV k�1/:
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In other words, .Xk; Vk/ is obtained from .X; V / by iterating k-times the lifting
construction .X; V / 7! .eX; eV / described in Sect. 5. By (5.2)–(5.7), we find

(6.3) dimXk D nC k.r � 1/; rankVk D r;

together with exact sequences

0 �! TXk=Xk�1
�! Vk

.	k/�����! OXk
.�1/ �! 0;(6.4)

0 �! OXk
�! ��

kVk�1 ˝ OXk
.1/ �! TXk=Xk�1

�! 0;(6:40)

where �k is the natural projection �k W Xk ! Xk�1 and .�k/� its differential.
Formula (5.4) yields

(6.5) det.Vk/ D ��
k det.Vk�1/˝ OXk

.r � 1/:
Every non-constant tangent trajectory f W �R ! X of .X; V / lifts to a well-
defined and unique tangent trajectory fŒk� W �R ! Xk of .Xk; Vk/. Moreover,
the derivative f 0

Œk�1�
gives rise to a section

(6.6) f 0
Œk�1� W T�R

�! f �
Œk�OXk

.�1/:
In coordinates, one can compute fŒk� in terms of its components in the various
affine charts (5.9) occurring at each step: we get inductively

(6.7) fŒk� D .F1; : : : ; FN /; fŒkC1� D
�
F1; : : : ; FN ;

F 0
s1

F 0
sr

; : : : ;
F 0

sr�1

F 0
sr

�
;

where N D nC k.r � 1/ and fs1; : : : ; srg � f1; : : : ; N g. If k � 1, fs1; : : : ; srg
contains the last .r � 1/ indices of f1; : : : ; N g corresponding to the “vertical”
components of the projection Xk ! Xk�1, and in general, sr is an index such
thatm.Fsr

; 0/ D m.fŒk�; 0/, that is, Fsr
has the smallest vanishing order among

all components Fs (sr may be vertical or not, and the choice of fs1; : : : ; srg need
not be unique).

By definition, there is a canonical injection OXk
.�1/ ,! ��

k
Vk�1, and a

composition with the projection .�k�1/� (analogue for order .k � 1/ of the
arrow .�k/� in sequence (6.4)) yields for any k � 2 a natural line bundle mor-
phism

(6.8) OXk
.�1/ ,�! ��

kVk�1

.	k/�.	k�1/��������! ��
k OXk�1

.�1/;

which admits preciselyDk D P.TXk�1=Xk�2
/ � P.Vk�1/ D Xk as its zero di-

visor (clearly, Dk is a hyperplane subbundle of Xk). Hence we find

(6.9) OXk
.1/ D ��

k OXk�1
.1/˝ O.Dk/:
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Now, we consider the composition of projections

(6.10) �j;k D �j C1 ı � � � ı �k�1 ı �k W Xk �! Xj :

Then �0;k W Xk ! X0 D X is a locally trivial holomorphic fiber bundle
over X , and the fibers Xk;x D ��1

0;k
.x/ are k-stage towers of Pr�1-bundles.

Since we have (in both directions) morphisms .Cr ; TCr / $ .X; V / of directed
manifolds which are bijective on the level of bundle morphisms, the fibers are
all isomorphic to a “universal” non-singular projective algebraic variety of di-
mension k.r � 1/ which we will denote by Rr;k ; it is not hard to see that Rr;k

is rational (as will indeed follow from the proof of Theorem 7.11 below).

6.B. Semple tower of singular directed varieties

Let .X; V / be a directed variety. We assume X non-singular, but here V is al-
lowed to have singularities. We are going to give a natural definition of the
Semple tower .Xk; Vk/ in that case.

Let us take X 0 D X � Sing.V / and V 0 D V�X 0 . By Subsect. 6.A, we have a
well-defined Semple tower .X 0

k
; V 0

k
/ over the Zariski open set X 0. We also have

an “absolute” Semple tower .Xa
k
; V a

k
/ obtained from .Xa

0 ; V
a

0 / D .X; TX /,
which is non-singular. The injection V 0 � TX induces by functoriality (cf. (5.5))
an injection

(6.11) .X 0
k; V

0
k/ � .Xa

k ; V
a

k /:

6.12. Definition. Let .X; V / be a directed variety, with X non-singular. When
Sing.V / ¤ ;, we define Xk and Vk to be the respective closures of X 0

k
, V 0

k
associated with X 0 D X � Sing.V / and V 0 D V�X 0 , where the closure is taken
in the non-singular absolute Semple tower .Xa

k
; V a

k
/ obtained from .Xa

0 ; V
a

0 / D
.X; TX /.

We leave the reader check that the following functoriality property still holds.

6.13. Fonctoriality. If ˆ W .X; V / ! .Y;W / is a morphism of directed vari-
eties such that ˆ� W TX ! ˆ�TY is injective (i.e., ˆ is an immersion), then
there is a corresponding natural morphism ˆŒk� W .Xk; Vk/ ! .Yk;Wk/ at the
level of Semple bundles. If one merely assumes that the differential ˆ� W V !
ˆ�W is non-zero, there is still a natural meromorphic mapˆŒk� W .Xk; Vk/ >

.Yk;Wk/ for all k � 0.

In case V is singular, the k-th stage Xk of the Semple tower will also be
singular, but we can replace .Xk; Vk/ by a suitable modification .bXk; bVk/ if we
want to work with a non-singular model bXk of Xk . The exceptional set of bXk
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over Xk can be chosen to lie above Sing.V / � X , and proceeding inductively
with respect to k, we can also arrange the modifications in such a way that we
get a tower structure .bXkC1; bVkC1/ ! .bXk; bVk/; however, in general, it will
not be possible to achieve that bVk is a subbundle of T bXk

.

7. Jet differentials

7.A. Green–Griffiths jet differentials

We first introduce the concept of jet differentials in the sense of Green–Griffiths
[GrGr80]. The goal is to provide an intrinsic geometric description of holomor-
phic differential equations that a germ of curve f W .C; 0/ ! X may satisfy.
In the sequel, we fix a directed manifold .X; V / and suppose implicitly that all
germs of curves f are tangent to V .

Let Gk be the group of germs of k-jets of biholomorphisms of .C; 0/, that
is, the group of germs of biholomorphic maps

t 7�! '.t/ D a1t C a2t
2 C � � � C akt

k; a1 2 C�; aj 2 C; j � 2;

in which the composition law is taken modulo terms tj of degree j > k. Then
Gk is a k-dimensional nilpotent complex Lie group, which admits a natural
fiberwise right action on JkV . The action consists of reparametrizing k-jets of
maps f W .C; 0/ ! X by a biholomorphic change of parameter ' W .C; 0/ !
.C; 0/, that is, .f; '/ 7! f ı '. There is an exact sequence of groups

1 �! G0
k �! Gk �! C� �! 1;

where Gk ! C� is the obvious morphism ' 7! '0.0/, and G0
k

D ŒGk;Gk�

is the group of k-jets of biholomorphisms tangent to the identity. Moreover, the
subgroup H ' C� of homotheties '.t/ D �t is a (non-normal) subgroup of Gk ,
and we have a semi-direct decomposition Gk D G0

k
� H. The corresponding

action on k-jets is described in coordinates by

� � .f 0; f 00; : : : ; f .k// D .�f 0; �2f 00; : : : ; �kf .k//:

Following [GrGr80], we introduce the vector bundle EGG
k;m
V � ! X whose

fibers are complex valued polynomials Q.f 0; f 00; : : : ; f .k// on the fibers of
JkV , of weighted degree m with respect to the C� action defined by H, that is,
such that

(7.1) Q.�f 0; �2f 00; : : : ; �kf .k// D �mQ.f 0; f 00; : : : ; f .k//

for all � 2 C� and .f 0; f 00; : : : ; f .k// 2 JkV . Here we view .f 0; f 00; : : : ; f .k//

as indeterminates with components

..f 0
1; : : : ; f

0
r /I .f 00

1 ; : : : ; f
00

r /I � � � I .f .k/
1 ; : : : ; f .k/

r // 2 .Cr/k :
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Notice that the concept of polynomial on the fibers of JkV makes sense, for
all coordinate changes z 7! w D ‰.z/ on X induce polynomial transition
automorphisms on the fibers of JkV , given by a formula
(7.2)
.‰ ı f /.j / D ‰0.f / � f .j /

C
sDjX
sD2

X
j1Cj2C���CjsDj

cj1���js
‰.s/.f / � .f .j1/; : : : ; f .js//

with suitable integer constants cj1���js
(this is easily checked by induction on s).

In the “absolute case” V D TX , we simply write EGG
k;m
T �

X D EGG
k;m

. If V � V 0
� V a WD TX are holomorphic subbundles, there are natural inclusions

JkV � JkV
0 � JkV

a; Xk � X 0
k � Xa

k :

The restriction morphisms induce surjective arrows

EGG
k;mT

�
X �! EGG

k;mV
0� �! EGG

k;mV
�;

and in particular EGG
k;m
V � can be seen as a quotient of EGG

k;m
T �

X . (The notation
V � is used here to make the contravariance property implicit from the notation).
Another useful consequence of these inclusions is that one can extend the def-
inition of JkV and Xk to the case where V is an arbitrary linear space, simply
by taking the closure of JkVX�Sing.V / and XkjX�Sing.V / in the smooth bundles
JkX and Xa

k
, respectively.

IfQ 2 EGG
k;m
V � is decomposed into multihomogeneous components of mul-

tidegree .`1; `2; : : : ; `k/ in f 0; f 00; : : : ; f .k/ (the decomposition is of course
coordinate dependent), these multidegrees must satisfy the relation

`1 C 2`2 C � � � C k`k D m:

The bundle EGG
k;m
V � will be called the bundle of jet differentials of order k and

weighted degree m. It is clear from (7.2) that a coordinate change f 7! ‰ ı
f transforms every monomial .f .�//` D .f 0/`1.f 00/`2 � � � .f .k//`k of partial
weighted degree j`js WD `1 C 2`2 C � � � C s`s , 1 � s � k, into a polynomial
..‰ ı f /.�//` in .f 0; f 00; : : : ; f .k// whose non-zero monomials have the same
partial weighted degree of order s if `sC1 D � � � D `k D 0, and a larger or
equal partial degree of order s otherwise. Hence, for each s D 1; : : : ; k, we get
a well-defined (i.e., coordinate invariant) decreasing filtration F �

s on EGG
k;m
V �

as follows:
(7.3)

F p
s .E

GG
k;mV

�/ D
(
Q.f 0; f 00; : : : ; f .k// 2 EGG

k;m
V � involving

only monomials .f .�//` with j`js � p

)
; 8p 2 N:
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The graded terms Grp

k�1
.EGG

k;m
V �/ associated with the filtration F p

k�1
.EGG

k;m
V �/

are precisely the homogeneous polynomials Q.f 0; : : : ; f .k// whose monomi-
als .f �/` all have partial weighted degree j`jk�1 D p (hence their degree `k

in f .k/ is such that m � p D k`k , and Grp

k�1
.EGG

k;m
V �/ D 0 unless kjm � p).

The transition automorphisms of the graded bundle are induced by coordinate
changes f 7! ‰ ı f , and they are described by substituting the arguments
of Q.f 0; : : : ; f .k// according to formula (7.2), namely f .j / 7! .‰ ı f /.j / for
j < k, and f .k/ 7! ‰0.f / ı f .k/ for j D k (when j D k, the other terms fall
in the next stage F pC1

k�1
of the filtration). Therefore f .k/ behaves as an element

of V � TX under coordinate changes. We thus find

(7.4) G
m�k`k

k�1
.EGG

k;mV
�/ D EGG

k�1;m�k`k
V � ˝ S`kV �:

Combining all filtrations F �
s together, we find inductively a filtration F � on

EGG
k;m
V � such that the graded terms are

(7.5)
Gr`.EGG

k;mV
�/ D S`1V � ˝ S`2V � ˝ � � � ˝ S`kV �; ` 2 Nk; j`jk D m:

The bundles EGG
k;m
V � have other interesting properties. In fact,

EGG
k;�V

� WD
M
m�0

EGG
k;mV

�

is in a natural way a bundle of graded algebras (the product is obtained simply
by taking the product of polynomials). There are natural inclusions EGG

k;�V
� �

EGG
kC1;�V

� of algebras, and henceEGG1;�V � D S
k�0E

GG
k;�V

� is also an algebra.
Moreover, the sheaf of holomorphic sections O.EGG1;�V �/ admits a canonical
derivation DGG given by a collection of C-linear maps

DGG W O.EGG
k;mV

�/ �! O.EGG
kC1;mC1V

�/;

constructed in the following way. A holomorphic section of EGG
k;m
V � on a co-

ordinate open set � � X can be seen as a differential operator on the space of
germs f W .C; 0/ ! � of the form

(7.6) Q.f / D
X

j˛1jC2j˛2jC���Ckj˛k jDm

a˛1���˛k
.f / .f 0/˛1.f 00/˛2 � � � .f .k//˛k

in which the coefficients a˛1���˛k
are holomorphic functions on �. Then DGGQ

is given by the formal derivative .DGGQ/.f /.t/ D d.Q.f //=dt with respect
to the 1-dimensional parameter t in f .t/. For example, in dimension 2, if Q 2
H 0.�;O.EGG

2;4// is the section of weighted degree 4

Q.f / D a.f1; f2/ f
03

1 f
0

2 C b.f1; f2/ f
002

1 ;
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we find that DGGQ 2 H 0.�;O.EGG
3;5// is given by

.DGGQ/.f / D @a

@z1
.f1; f2/ f

04
1 f

0
2 C @a

@z2
.f1; f2/ f

03
1 f

02
2

C @b

@z1
.f1; f2/ f

0
1f

002
1 C @b

@z2
.f1; f2/ f

0
2f

002
1

C a.f1; f2/ .3f
02

1 f
00

1 f
0

2 C f 03
1 f

00
2 /C b.f1; f2/ 2f

00
1 f

000
1 :

Associated with the graded algebra bundle EGG
k;�V

�, we have an analytic fiber
bundle

(7.7) XGG
k WD Proj.EGG

k;�V
�/ D .JkV � f0g/=C�

over X , which has weighted projective spaces P.1Œr�; 2Œr�; : : : ; kŒr�/ as fibers
(these weighted projective spaces are singular for k > 1, but they only have
quotient singularities, see [Dol81]; here JkV �f0g is the set of non-constant jets
of order k; we refer e.g. to Hartshorne’s book [Har77] for a definition of the Proj
functor). As such, it possesses a canonical sheaf OXGG

k
.1/ such that OXGG

k
.m/ is

invertible whenm is a multiple of lcm.1; 2; : : : ; k/. Under the natural projection
�k W XGG

k
! X , the direct image .�k/�OXGG

k
.m/ coincides with polynomials

(7.8) P.z I 	1; : : : ; 	k/ D
X

˛`2Nr ; 1�`�k

a˛1���˛k
.z/ 	

˛1

1 � � � 	˛k

k

of weighted degree j˛1j C 2j˛2j C � � � C kj˛kj D m on J kV with holomorphic
coefficients; in other words, we obtain precisely the sheaf of sections of the
bundle EGG

k;m
V � of jet differentials of order k and degree m.

7.9. Proposition. By construction, if �k W XGG
k

! X is the natural projection,
we have the direct image formula

.�k/�OXGG
k
.m/ D O.EGG

k;mV
�/

for all k and m.

7.B. Invariant jet differentials

In the geometric context, we are not really interested in the bundles .JkV � f0g/=C�
themselves, but rather in their quotients .JkV �f0g/=Gk (would such nice com-
plex space quotients exist!). We will see that the Semple bundle Xk constructed
in Sect. 6 plays the role of such a quotient. First we introduce a canonical sub-
algebra of the bundle algebra EGG

k;�V
�.
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7.10. Definition. We introduce a subbundle Ek;mV
� � EGG

k;m
V �, called the

bundle of invariant jet differentials of order k and degreem, defined as follows:
Ek;mV

� is the set of polynomial differential operators Q.f 0; f 00; : : : ; f .k//

which are invariant under arbitrary changes of parametrization, i.e., for every
' 2 Gk

Q..f ı '/0; .f ı '/00; : : : ; .f ı '/.k// D '0.0/mQ.f 0; f 00; : : : ; f .k//:

Alternatively, Ek;mV
� D .EGG

k;m
V �/G0

k is the set of invariants of EGG
k;m
V �

under the action of G0
k

. Clearly, E1;�V � D S
k�0

L
m�0Ek;mV

� is a subal-
gebra of EGG

k;m
V � (observe however that this algebra is not invariant under the

derivation DGG, since e.g. f 00
j D DGGfj is not an invariant polynomial). In ad-

dition to this, there are natural induced filtrations F p
s .Ek;mV

�/ D Ek;mV
� \

F
p
s .E

GG
k;m
V �/ (all locally trivial over X). These induced filtrations will play an

important role later on.

7.11. Theorem. Suppose that V has rank r � 2. Let �0;k W Xk ! X be
the Semple jet bundles constructed in Sect. 6, and let JkV

reg be the bundle of
regular k-jets of maps f W .C; 0/ ! X , that is, jets f such that f 0.0/ ¤ 0.

(i) The quotient JkV
reg=Gk has the structure of a locally trivial bundle over X ,

and there is a holomorphic embedding JkV
reg=Gk ,! Xk over X , which

identifies JkV
reg=Gk with X reg

k
(thus Xk is a relative compactification

of JkV
reg=Gk over X).

(ii) The direct image sheaf

.�0;k/�OXk
.m/ ' O.Ek;mV

�/

can be identified with the sheaf of holomorphic sections of Ek;mV
�.

(iii) For every m > 0, the relative base locus of the linear system jOXk
.m/j

is equal to the set X sing
k

of singular k-jets. Moreover, OXk
.1/ is relatively

big over X .

Proof. (i) For f 2 JkV
reg, the lifting ef is obtained by taking the derivative

.f; Œf 0�/ without any cancellation of zeroes in f 0, and hence we get a uniquely
defined .k�1/-jet ef W .C; 0/ ! eX . Inductively, we get a well-defined .k�j /-jet
fŒj � in Xj , and the value fŒk�.0/ is independent of the choice of the represen-
tative f for the k-jet. As the lifting process commutes with reparametrization,
i.e., .f ı '/� D ef ı ' and more generally .f ı '/Œk� D fŒk� ı ', we conclude
that there is a well-defined set-theoretic map

JkV
reg=Gk �! X

reg
k
; f mod Gk 7�! fŒk�.0/:

This map is better understood in coordinates as follows. Fix coordinates .z1; : : : ; zn/

near a point x0 2 X , such that Vx0
D Vect.@=@z1; : : : ; @=@zr /. Let f D .f1; : : : ; fn/
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be a regular k-jet tangent to V . Then there exists i 2 f1; 2; : : : ; rg such that
f 0

i .0/ ¤ 0, and there is a unique reparametrization t D '.
/ such that f ı ' D
g D .g1; g2; : : : ; gn/ with gi .
/ D 
 (we just express the curve as a graph over
the zi -axis, by means of a change of parameter 
 D fi .t/, i.e., t D '.
/ D
f �1

i .
/). Suppose i D r for the simplicity of notation. The space Xk is a k-
stage tower of Pr�1-bundles. In the corresponding inhomogeneous coordinates
on these Pr�1’s, the point fŒk�.0/ is given by the collection of derivatives

..g0
1.0/; : : : ; g

0
r�1.0//I .g00

1.0/; : : : ; g
00
r�1.0//I : : : I .g.k/

1 .0/; : : : ; g
.k/
r�1.0///:

[Recall that the other components .grC1; : : : ; gn/ can be recovered from
.g1; : : : ; gr/ by integrating the differential system (5.10).] Thus the map JkV

reg=Gk

! Xk is a bijection onto X reg
k

, and the fibers of these isomorphic bundles can
be seen as unions of r affine charts ' .Cr�1/k , associated with each choice
of the axis zi used to describe the curve as a graph. The change of parameter
formula d

d�
D 1

f 0
r .t/

d
dt

expresses all derivatives g.j /
i .
/ D d jgi=d


j in terms

of the derivatives f .j /
i .t/ D d jfi=dt

j

(7.12)

.g0
1; : : : ; g

0
r�1/ D

�f 0
1

f 0
r

; : : : ;
f 0

r�1

f 0
r

�
I

.g00
1 ; : : : ; g

00
r�1/ D

�f 00
1 f

0
r � f 00

r f
0

1

f 03
r

; : : : ;
f 00

r�1f
0

r � f 00
r f

0
r�1

f 03
r

�
I : : : I

.g
.k/
1 ; : : : ; g

.k/
r�1/ D

�f .k/
1 f 0

r � f .k/
r f 0

1

f 0kC1
r

; : : : ;
f

.k/
r�1f

0
r � f .k/

r f 0
r�1

f 0kC1
r

�
C .order < k/:

Also, it is easy to check that f 02k�1
r g

.k/
i is an invariant polynomial in f 0,

f 00; : : : ; f .k/ of total degree .2k � 1/, i.e., a section of Ek;2k�1.
(ii) Since the bundles Xk and Ek;mV

� are both locally trivial over X , it is
sufficient to identify sections � of OXk

.m/ over a fiber Xk;x D ��1
0;k
.x/ with

the fiber Ek;mV
�

x , at any point x 2 X . Let f 2 JkV
reg

x be a regular k-jet at x.
By (6.6), the derivative f 0

Œk�1�
.0/ defines an element of the fiber of OXk

.�1/ at
fŒk�.0/ 2 Xk . Hence we get a well-defined complex valued operator

(7.13) Q.f 0; f 00; : : : ; f .k// D �.fŒk�.0// � .f 0
Œk�1�.0//

m:

Clearly,Q is holomorphic on JkV
reg

x (by the holomorphicity of �), and the Gk-
invariance condition of Definition 7.10 is satisfied since fŒk�.0/ does not depend
on reparametrization and

.f ı '/0Œk�1�.0/ D f 0
Œk�1�.0/'

0.0/:
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Now, JkV
reg

x is the complement of a linear subspace of codimension r in JkVx ,
and hence Q extends holomorphically to all of JkVx ' .Cr/k by Riemann’s
extension theorem (here we use the hypothesis r � 2 ; if r D 1, the situation is
anyway not interesting since Xk D X for all k). Thus Q admits an everywhere
convergent power series

Q.f 0; f 00; : : : ; f .k// D
X

˛1;˛2;:::;˛k2Nr

a˛1���˛k
.f 0/˛1.f 00/˛2 � � � .f .k//˛k :

The Gk-invariance asserted in Definition 7.10 implies in particular that Q must
be multihomogeneous in the sense of (7.1), and thus Q must be a polynomial.
We conclude that Q 2 Ek;mV

�
x , as desired.

Conversely, for all w in a neighborhood of any given point w0 2 Xk;x , we
can find a holomorphic family of germs fw W .C; 0/ ! X such that .fw/Œk�.0/

D w and .fw/
0
Œk�1�

.0/ ¤ 0 (just take the projections to X of integral curves of
.Xk; Vk/ integrating a non-vanishing local holomorphic section of Vk near w0).
Then every Q 2 Ek;mV

�
x yields a holomorphic section � of OXk

.m/ over the
fiber Xk;x by putting

(7.14) �.w/ D Q.f 0
w ; f

00
w ; : : : ; f

.k/
w /.0/ ..fw/

0
Œk�1�.0//

�m:

(iii) By what we saw in (i)–(ii), every section � of OXk
.m/ over the fiber Xk;x

is given by a polynomial Q 2 Ek;mV
�

x , and this polynomial can be expressed
on the Zariski open chart f 0

r ¤ 0 of X reg
k;x

as

(7.15) Q.f 0; f 00; : : : ; f .k// D f 0m
r
bQ.g0; g00; : : : ; g.k//;

where bQ is a polynomial and g is the reparametrization of f such that gr.
/ D 
 .
In fact bQ is obtained from Q by substituting f 0

r D 1 and f .j /
r D 0 for j � 2,

and conversely Q can be recovered easily from bQ by using the substitutions
(7.12).

In this context, the jet differentials f 7! f 0
1; : : : ; f 7! f 0

r can be viewed
as sections of OXk

.1/ on a neighborhood of the fiber Xk;x . Since these sections
vanish exactly on X sing

k
, the relative base locus of OXk

.m/ is contained in X sing
k

for every m > 0. We see that OXk
.1/ is big by considering the sections of

OXk
.2k � 1/ associated with the polynomials Q.f 0; : : : ; f .k// D f 02k�1

r g
.j /
i ,

1 � i � r � 1, 1 � j � k; indeed, these sections separate all points in the open
chart f 0

r ¤ 0 of X reg
k;x

.
Now, we check that every section � of OXk

.m/ over Xk;x must vanish on
X

sing
k;x

. Pick an arbitrary element w 2 X sing
k

and a germ of curve f W .C; 0/ ! X

such that fŒk�.0/ D w, f 0
Œk�1�

.0/ ¤ 0 and s D m.f; 0/ � 0 (such an f ex-
ists by [Dem95, Corollary 5.14]). There are local coordinates .z1; : : : ; zn/ on X
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such that f .t/ D .f1.t/; : : : ; fn.t//, where fr.t/ D ts . Let Q, bQ be the poly-
nomials associated with � in these coordinates and let .f 0/˛1.f 00/˛2 � � � .f .k//˛k

be a monomial occurring in Q, with j̨ 2 Nr , j j̨ j D j̀ , `1 C 2`2 C � � � C
k`k D m. Putting 
 D ts , the curve t 7! f .t/ becomes a Puiseux expansion

 7! g.
/ D .g1.
/; : : : ; gr�1.
/; 
/ in which gi is a power series in 
1=s ,
starting with exponents of 
 at least equal to 1. The derivative g.j /.
/ may in-
volve negative powers of 
 , but the exponent is always � 1C 1

s
� j . Hence the

Puiseux expansion of bQ.g0; g00; : : : ; g.k// can only involve powers of 
 of expo-
nent � � max`..1 � 1

s
/`2 C � � � C .k � 1 � 1

s
/`k/. Finally f 0

r .t/ D sts�1 D
s
1�1=s , and so the lowest exponent of 
 inQ.f 0; : : : ; f .k// is at least equal to�

1 � 1

s

�
m � max

`

��
1 � 1

s

�
`2 C � � � C

�
k � 1 � 1

s

�
`k

�
� min

`

�
1 � 1

s

�
`1 C

�
1 � 1

s

�
`2 C � � � C

�
1 � k � 1

s

�
`k;

where the minimum is taken over all monomials .f 0/˛1.f 00/˛2 � � � .f .k//˛k ,
j j̨ j D j̀ , occurring in Q. Choosing s � k, we already find that the minimal
exponent is positive, and hence Q.f 0; : : : ; f .k//.0/ D 0, so that �.w/ D 0 by
(7.14). ut

Theorem 7.11 (iii) shows that OXk
.1/ is never relatively ample over X for

k � 2. In order to overcome this difficulty, we define for every a� D .a1; : : : ; ak/

2 Zk a line bundle OXk
.a�/ on Xk such that

(7.16) OXk
.a�/ D ��

1;kOX1
.a1/˝ ��

2;kOX2
.a2/˝ � � � ˝ OXk

.ak/:

By (6.9), we have ��
j;k

OXj
.1/ D OXk

.1/ ˝ OXk
.���

j C1;k
Dj C1 � � � � � Dk/.

Therefore by putting D�
j D ��

j C1;k
Dj C1 for 1 � j � k � 1 and D�

k
D 0, we

find an identity

OXk
.a�/ D OXk

.bk/˝ OXk
.�b� �D�/;(7.17)

where b� D .b1; : : : ; bk/ 2 Zk; bj D a1 C � � � C aj ;

b� �D� D
X

1�j�k�1

bj �
�
j C1;kDj C1:

In particular, if b� 2 Nk , i.e., a1 C � � � C aj � 0, we get a morphism

(7.18) OXk
.a�/ D OXk

.bk/˝ OXk
.�b� �D�/ �! OXk

.bk/:

The following result gives a sufficient condition for the relative nefness or am-
pleness of weighted jet bundles. Let us recall that a line bundle L ! X on a
projective variety X is said to be nef if L � C � 0 for all irreducible algebraic
curves C � X , and that a vector bundle E ! X is said to be nef if OP.E/.1/ is
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nef on P.E/ WD P.E�/; any vector bundle generated by global sections is nef
(cf. [DePS94] for more details).

7.19. Proposition. Take a very ample line bundle A on X , and consider on Xk

the line bundle

Lk D OXk
.3k�1; 3k�2; : : : ; 3; 1/˝ ��

k;0A
˝3k

defined inductively by L0 D A and Lk D OXk
.1/˝ ��

k;k�1
L˝3

k�1
. Then V �

k
˝

L˝2
k

is a nef vector bundle on Xk , which is in fact generated by its global
sections, for all k � 0. Equivalently, for all k � 1,

L0
k D OXk

.1/˝ ��
k;k�1L

˝2
k�1

D OXk
.2 � 3k�2; 2 � 3k�3; : : : ; 6; 2; 1/˝ ��

k;0A
˝2�3k�1

is nef over Xk and generated by sections.

The statement concerning L0
k

is obtained by projectivizing the vector bun-
dle E D V �

k�1
˝ L˝2

k�1
on Xk�1, whose associated tautological line bundle is

OP.E/.1/ D L0
k

on P.E/ D P.Vk�1/ D Xk . Also one gets inductively that

(7.20) Lk D O
P.Vk�1˝L

˝2

k�1
/
.1/˝ ��

k;k�1Lk�1 is very ample on Xk :

Proof. Let X � PN be the embedding provided by A, so that A D OPN .1/�X .
As is well-known, if Q is the tautological quotient vector bundle on PN , the
twisted cotangent bundle

T �
PN ˝ OPN .2/ D ƒN �1Q

is nef; hence its quotients T �
X ˝ A˝2 and V �

0 ˝ L˝2
0 D V � ˝ A˝2 are nef

(any tensor power of nef vector bundles is nef, and so is any quotient). We now
proceed by induction, assuming V �

k�1
˝ L˝2

k�1
to be nef, k � 1. By taking the

second wedge power of the central term in (6:40), we get an injection

0 �! TXk=Xk�1
�! ƒ2.�?

kVk�1 ˝ OXk
.1//:

By dualizing and twisting with OXk�1
.2/˝ �?

k
L˝2

k�1
, we find a surjection

�?
kƒ

2.V ?
k�1 ˝ Lk�1/ �! T ?

Xk=Xk�1
˝ OXk

.2/˝ �?
kL

˝2
k�1

�! 0:

By the induction hypothesis, we see that T ?
Xk=Xk�1

˝ OXk
.2/˝�?

k
L˝2

k�1
is nef.

Next, the dual of (6.4) yields an exact sequence

0 �! OXk
.1/ �! V ?

k �! T ?
Xk=Xk�1

�! 0:
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As an extension of nef vector bundles is nef, the nefness of V �
k

˝ L˝2
k

will
follow if we check that OXk

.1/ ˝ L˝2
k

and T ?
Xk=Xk�1

˝ L˝2
k

are both nef.
However, this follows again from the induction hypothesis if we observe that
the latter implies

Lk � ��
k;k�1Lk�1 and Lk � OXk

.1/˝ ��
k;k�1Lk�1;

in the sense that L00 � L0 if the “difference” L00 ˝ .L0/�1 is nef. All statements
remain valid if we replace “nef” with “generated by sections” in the above ar-
guments. ut
7.21. Corollary. A Q-line bundle OXk

.a�/˝ ��
k;0
A˝p with a� 2 Qk , p 2 Q,

is nef, resp. ample, on Xk as soon as

aj � 3aj C1 for j D 1; 2; : : : ; k � 2 and ak�1 � 2ak � 0, p � 2
P
aj ;

resp.

aj � 3aj C1 for j D 1; 2; : : : ; k � 2 and ak�1 > 2ak > 0, p > 2
P
aj :

Proof. This follows easily by taking convex combinations of the Lj and L0
j

and applying Proposition 7.19 and our observation (7.20). ut
7.22. Remark. As in Green–Griffiths [GrGr80], Riemann’s extension theorem
shows that for every meromorphic map ˆ W X > Y there are well-defined
pull-back morphisms

ˆ� W H 0.Y;EGG
k;mT

�
Y / �! H 0.X;EGG

k;mT
�

X /;

ˆ� W H 0.Y;Ek;mT
�
Y / �! H 0.X;Ek;mT

�
X /:

In particular the dimensions h0.X;EGG
k;m
T �

X / and h0.X;Ek;mT
�

X / are bimero-
morphic invariants of X .

7.23. Remark. As Gk is a non-reductive group, it is not a priori clear that the
graded ring An;k;r D L

m2ZEk;mV
? (even pointwise over X) is finitely gen-

erated. This can be checked by hand ([Dem07a], [Dem07b]) for n D 2 and
k � 4. Rousseau [Rou06] also checked the case n D 3, k D 3, and then Merker
[Mer08], [Mer10] proved the finiteness for n D 2; 3; 4, k � 4 and n D 2,
k D 5. Recently, Bérczi and Kirwan [BeKi12] made an attempt to prove the
finiteness in full generality, but it appears that the general case is still unsettled.
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7.C. Semple tower of a directed variety of general type

Even if .X; V / is of general type, it is not true that .Xk; Vk/ is of general type:
the fibers of Xk ! X are towers of Pr�1 bundles, and the canonical bundles of
projective spaces are always negative! However, a twisted version holds true.

7.24. Lemma. If .X; V / is of general type, there is a modification .bX; bV / such
that all pairs .bXk; bVk/ of the associated Semple tower have a twisted canonical
bundleKbVk

˝O bXk
.p/ that is big when one multipliesKbVk

by a suitable Q-line
bundle O bXk

.p/, p 2 QC.

Proof. First assume that V has no singularities. The exact sequences (6.4) and
(6:40) provide

KVk
WD detV �

k D det.T �
Xk=Xk�1

/˝OXk
.1/ D ��

k;k�1KVk�1
˝OXk

.�.r�1//;
where r D rank.V /. Inductively we get

(7.25) KVk
D ��

k;0KV ˝ OXk
.�.r � 1/1�/; 1� D .1; : : : ; 1/ 2 Nk :

We know by [Dem95] that OXk
.c�/ is relatively ample over X when we take

the special weight c� D .2 3k�2; : : : ; 2 3k�j �1; : : : ; 6; 2; 1/; hence

KVk
˝ OXk

..r � 1/1� C "c�/ D ��
k;0KV ˝ OXk

."c�/

is big over Xk for any sufficiently small positive rational number " 2 Q�C.
Thanks to Formula (1.9), we can in fact replace the weight .r�1/1� C"c� by its
total degree p D .r � 1/k C "jc�j 2 QC. The general case of a singular linear
space follows by considering suitable “sufficiently high” modifications bX of X ,
the related directed structure bV on bX , and embedding .bXk; bVk/ in the absolute
Semple tower .bXa

k
; bV a

k
/ of bX . We still have a well-defined morphism of rank 1

sheaves

(7.26) ��
k;0KbV ˝ O bXk

.�.r � 1/1�/ �! KbVk

because the multiplier ideal sheaves involved at each stage behave according to
the monotonicity principle applied to the projections �a

k;k�1
W bXa

k
! bXa

k�1
and

their differentials .�a
k;k�1

/�, which yield well-defined transposed morphisms
from the .k � 1/-st stage to the k-th stage at the level of exterior differential
forms. Our contention follows. ut
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7.D. Induced directed structure on a subvariety of a jet bundle

We discuss here the concept of induced directed structure for subvarieties of
the Semple tower of a directed variety .X; V /. This will be very important to
proceed inductively with the base loci of jet differentials. LetZ be an irreducible
algebraic subset of some k-jet bundle Xk over X , k � 0. We define the linear
subspace W � TZ � TXk jZ to be the closure

(7.27) W WD TZ0 \ Vk

taken on a suitable Zariski open set Z0 � Zreg where the intersection TZ0 \ Vk

has a constant rank and is a subbundle of TZ0 . Alternatively, we could also take
W to be the closure of TZ0 \Vk in the k-th stage .Xa

k
; V a

k
/ of the absolute Sem-

ple tower, which has the advantage of being non-singular. We say that .Z;W /
is the induced directed variety structure; this concept of induced structure al-
ready applies of course in the case k D 0. If f W .C; TC/ ! .X; V / satisfies
fŒk�.C/ � Z, then

(7.28) either fŒk�.C/ � Z˛ or f 0
Œk�.C/ � W;

where Z˛ is one of the connected components of Z � Z0 and Z0 is chosen as
in (7.27); especially, if W D 0, we conclude that fŒk�.C/ must be contained
in one of the Z˛’s. In the sequel, we always consider such a subvariety Z of
Xk as a directed pair .Z;W / by taking the induced structure described above.
By (7.28), if we proceed by induction on dimZ, the study of curves tangent to
V that have an order k lifting fŒk�.C/ � Z is reduced to the study of curves
tangent to .Z;W /. Let us first quote the following easy observation.

7.29. Observation. For k � 1, let Z � Xk be an irreducible algebraic subset
that projects onto Xk�1, i.e., �k;k�1.Z/ D Xk�1. Then the induced directed
variety .Z;W / � .Xk; Vk/, satisfies

1 � rankW < r WD rank.Vk/:

Proof. Take a Zariski open subset Z0 � Zreg such that W 0 D TZ0 \ Vk is a
vector bundle overZ0. SinceXk ! Xk�1 is a Pr�1-bundle,Z has codimension
at most .r � 1/ in Xk . Therefore rankW � rankVk � .r � 1/ � 1. On the other
hand, if we had rankW D rankVk generically, then TZ0 would contain VkjZ0 ,
in particular it would contain all vertical directions TXk=Xk�1

� Vk that are
tangent to the fibers of Xk ! Xk�1. By taking the flow along vertical vector
fields, we would conclude that Z0 is a union of fibers of Xk ! Xk�1 up to an
algebraic set of smaller dimension, but this is excluded since Z projects onto
Xk�1 and Z � Xk . ut

We introduce the following definition that slightly differs from the one given
in [Dem14]—it is actually more flexible and more general.
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7.30. Definition. For k � 1, let Z � Xk be an irreducible algebraic subset
of Xk and .Z;W / the induced directed structure. We assume moreover that
Z 6� Dk D P.TXk�1=Xk�2

/ (and put D1 D ; in what follows to avoid to have
to single out the case k D 1). In this situation we say that .Z;W / is of general
type modulo the Semple tower X� ! X if either W D 0, or rankW � 1 and
there exists ` � 0 and p 2 Q�0 such that

(7.31) K�cW`

˝ ObZ`
.p/ D K�cW`

˝ O bXkC`
.p/�bZ`

is big over bZ`;

possibly after replacing .Z`;W`/ by a suitable (non-singular) modification
.bZ`; bW`/ obtained via an embedded resolution of singularities

�` W .bZ` � bXkC`/ �! .Z` � XkC`/:

Notice that by (7.26), Condition (7.31) is satisfied if we assume the existence
of p � 0 such that

(7.32) ��
kC`K

�cW ˝ O bXkC`
.p/�bZ`

is big over bZ` � bXkC`:

In fact we infer (7.31) with ObZ`
.p/ replaced by

ObZ`
..0; : : : ; 0; p/C .rW � 1/1�/ � ObZ`

.p C .rW � 1/`/:
As a consequence, (7.31) is satisfied if K�cW is big (i.e., .Z;W / is of general

type), or if ObZ`
.1/ is big on some bZ`, ` � 1, but (7.32) is weaker than these

two bigness conditions, since we only require that some combination is big.
Also, we have the following easy observation.

7.33. Proposition. Let .X; V / be a projective directed variety. Assume that
there exist ` � 1 and a weight a� 2 Q`

>0 such that OX`
.a�/ is ample over

X`. Then every induced directed variety .Z;W / � .Xk; Vk/ is if general type
modulo X� ! X for every k � 1.

Proof. Corollary 7.21 shows that for `0 > ` and a suitable weight b� 2 Q`0

>0,
the line bundle OX`0 .b�/ is relatively ample with respect to the projectionX`0 ! X`.
From this, one deduces that the assumption also holds for arbitrary `0 > ` and
a suitable weight a0

�
2 Q`0

>0. Now, we use (7.32), in combination with Lemma
2.9 (b); in fact, O bXkC`

.1/�bZ`
is big over bZ` � bXkC` for ` � 1, since we get

many sections by pulling back the sections of O bX`0
.ma0

�
/, `0 D k C `, and by

restricting them to bZ`. ut
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7.E. Relation between invariant and non-invariant jet differentials

We show here that the existence of Gk-invariant global jet differentials is essen-
tially equivalent to the existence of non-invariant ones. We have seen that the
direct image sheaf

�k;0OXk
.m/ WD Ek;mV

� � EGG
k;mV

�

has a stalk at point x 2 X that consists of algebraic differential operators
P.fŒk�/ acting on germs of k-jets f W .C; 0/ ! .X; x/ tangent to V , satisfying
the invariance property

(7.34) P..f ı '/Œk�/ D .'0/mP.fŒk�/ ı '
whenever ' 2 Gk is in the group of k-jets of biholomorphisms ' W .C; 0/ !
.C; 0/. The right action JkV � Gk ! JkV , .f; '/ 7! f ı ' induces a dual left
action of Gk on

L
m0�mE

GG
k;m0V

� by

(7.35)
Gk �

M
m0�m

EGG
k;m0V

�
x �!

M
m0�m

EGG
k;m0V

�
x ;

.'; P / 7�! '�P; .'�P /.fŒk�/ D P..f ı '/Œk�/;

so that  �.'�P / D . ı '/�P . Notice that for a global curve f W .C; TC/ !
.X; V / and a global operator P 2 H 0.X;EGG

k;m
V � ˝ F / we have to modify a

little bit the definition to consider germs of curves at points t0 2 C other than 0.
This leads to putting

'�P.fŒk�/.t0/ D P..f ı't0
/Œk�/.0/; where 't0

.t/ D t0 C '.t/, t 2 D.0; "/:
The C�-action on a homogeneous polynomial of degree m is simply h�

�
P D

�mP for a dilation h�.t/ D �t , � 2 C�, but since ' ı h� ¤ h� ı ' in gen-
eral, '�P is no longer homogeneous when P is. However, by expanding the
derivatives of t 7! f .'.t// at t D 0, we find an expression

(7.36) .'�P /.fŒk�/ D
X

˛2Nk ; j˛jwDm

'.˛/.0/ P˛.fŒk�/;

where ˛ D .˛1; : : : ; ˛k/ 2 Nk , '.˛/ D .'0/˛1.'00/˛2 � � � .'.k//˛k , j˛jw D ˛1 C
2˛2 C � � � C k˛k is the weighted degree and P˛ is a homogeneous polynomial.
Since any additional derivative taken on '0 means one less derivative left for f ,
it is easy to see that for P homogeneous of degree m we have

m˛ WD deg.P˛/ D m� .˛2 C 2˛3 C � � � C .k � 1/˛k/ D ˛1 C ˛2 C � � � C ˛k;

in particular deg.P˛/ < m unless ˛ D .m; 0; : : : ; 0/, in which case P˛ D P .
Let us fix a non-zero global section P 2 H 0.X;EGG

k;m
V � ˝ F / for some line
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bundle F over X , and pick a non-zero component P˛0
of minimum degreem˛0

in the decomposition of P (of course m˛0
D m if and only if P is already

invariant). We have by construction

P˛0
2 H 0.X;EGG

k;m˛0
V � ˝ F /:

We claim that P˛0
is Gk-invariant. Otherwise, there is for each ˛ a decomposi-

tion

(7.37) . �P˛/.fŒk�/ D
X

ˇ2Nk ; jˇ jwDm˛

 .ˇ/.0/ P˛;ˇ .fŒk�/;

and the non-invariance of P˛0
would yield some non-zero term P˛0;ˇ0

of degree

deg.P˛0;ˇ0
/ < deg.P˛0

/ � deg.P / D m:

By replacing f with f ı  in (7.36) and plugging (7.37) into it, we would get
an identity of the form

. ı '/�P.fŒk�/ D
X

˛2Nk

. ı '/.˛/.0/ P˛.fŒk�/

D
X

˛;ˇ2Nk

'.˛/.0/ .ˇ/.0/ P˛;ˇ .fŒk�/;

but the term in the middle would have all components of degree � m˛0
, while

the term on the right possesses a component of degree < m˛0
for a sufficiently

generic choice of ' and  , contradiction. Therefore, we have shown the exis-
tence of a non-zero invariant section

P˛0
2 H 0.X;Ek;m˛0

V � ˝ F /; m˛0
� m: ut

8. k-jet metrics with negative curvature

The goal of this section is to show that hyperbolicity is closely related to the
existence of k-jet metrics with suitable negativity properties of the curvature.
The connection between these properties is in fact a simple consequence of the
Ahlfors–Schwarz lemma. Such ideas have been already developed long ago by
Grauert–Reckziegel [GRe65], Kobayashi [Kob75] for 1-jet metrics (i.e., Finsler
metrics on TX ) and by Cowen–Griffiths [CoGr76], Green–Griffiths [GrGr80]
and Grauert [Gra89] for higher order jet metrics.
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8.A. Definition of k-jet metrics

Even in the standard case V D TX , the definition given below differs from that
of [GrGr80], in which the k-jet metrics are not supposed to be G0

k
-invariant. We

prefer to deal here with G0
k

-invariant objects, because they reflect better the in-
trinsic geometry. Grauert [Gra89] actually deals with G0

k
-invariant metrics, but

he apparently does not take care of the way the quotient space J reg
k
V=Gk can be

compactified; also, his metrics are always induced by the Poincaré metric, and
it is not at all clear whether these metrics have the expected curvature properties
(see Problem 8.14 below). In the present situation, it is important to allow also
Hermitian metrics possessing some singularities (“singular Hermitian metrics”
in the sense of [Dem90b]).

8.1. Definition. Let L ! X be a holomorphic line bundle over a complex
manifold X . We say that h is a singular metric on L if for any trivialization
L�U ' U � C of L, the metric is given by j	j2

h
D j	j2e�' for some real valued

weight function ' 2 L1
loc.U /. The curvature current of L is then defined to be

the closed .1; 1/-current‚L;h D i
2	
@@', computed in the sense of distributions.

We say that h admits a closed subset† � X as its degeneration set if ' is locally
bounded on X �† and is unbounded on a neighborhood of any point of †.

An especially useful situation is the case when the curvature of h is positive
definite. By this, we mean that there exists a smooth positive definite Hermitian
metric ! and a continuous positive function " on X such that ‚L;h � "! in the
sense of currents, and we write in this case ‚L;h � 0. We need the following
basic fact (quite standard when X is projective algebraic); however we want to
avoid any algebraicity assumption here, so as to cover potential applications to
non-algebraic complex tori.

8.2. Proposition. Let L be a holomorphic line bundle on a compact complex
manifold X .

(i) L admits a singular Hermitian metric h with positive definite curvature
current ‚L;h � 0 if and only if L is big. Now, define Bm to be the base
locus of the linear system jH 0.X;L˝m/j and let

ˆm W X � Bm �! PN

be the corresponding meromorphic map. Let †m be the closed analytic
set equal to the union of Bm and of the set of points x 2 X � Bm such
that the fiber ˆ�1

m .ˆm.x// is positive dimensional.
(ii) If †m ¤ X and G is any line bundle, the base locus of L˝k ˝ G�1 is

contained in †m for k large. As a consequence, L admits a singular Her-
mitian metric h with degeneration set †m and with ‚L;h positive definite
on X .
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(iii) Conversely, if L admits a Hermitian metric h with degeneration set† and
positive definite curvature current ‚L;h, there exists an integer m > 0

such that the base locus Bm is contained in † and ˆm W X �† ! Pm is
an embedding.

Proof. (i) is proved e.g. in [Dem90b], [Dem92], and (ii) and (iii) are well-
known results in the basic theory of linear systems. ut

We now come to the main definitions. By (6.6), every regular k-jet f 2 JkV

gives rise to an element f 0
Œk�1�

.0/ 2 OXk
.�1/. Thus, measuring the “norm of

k-jets” is the same as taking a Hermitian metric on OXk
.�1/.

8.3. Definition. A smooth, (resp. continuous, resp. singular) k-jet metric on a
complex directed manifold .X; V / is a Hermitian metric hk on the line bundle
OXk

.�1/ over Xk (i.e., a Finsler metric on the vector bundle Vk�1 over Xk�1),
such that the weight functions ' representing the metric are smooth (resp. conti-
nuous, L1

loc). We let †hk
� Xk be the singularity set of the metric, i.e., the

closed subset of points in a neighborhood of which the weight ' is not locally
bounded.

We will always assume here that the weight function ' is quasi-plurisubhar-
monic. Recall that a function ' is said to be quasi-plurisubharmonic if ' is
locally the sum of a plurisubharmonic function and of a smooth function (so
that in particular ' 2 L1

loc). Then the curvature current

‚h�1
k
.OXk

.1// D i

2�
@@':

is well-defined as a current and is locally bounded from below by a negative
.1; 1/-form with constant coefficients.

8.4. Definition. Let hk be a k-jet metric on .X; V /. We say that hk has negative
jet curvature (resp. negative total jet curvature) if ‚hk

.OXk
.�1// is negative

definite along the subbundle Vk � TXk
(resp. on all of TXk

), i.e., if there is
" > 0 and a smooth Hermitian metric !k on TXk

such that

h‚h�1
k
.OXk

.1//i.	/ � "j	j2!k
; 8	 2 Vk � TXk

.resp. 8	 2 TXk
/:

(If the metric hk is not smooth, we suppose that its weights ' are quasi-plurisub-
harmonic, and the curvature inequality is taken in the sense of distributions.)

It is important to observe that for k � 2 there cannot exist any smooth
Hermitian metric hk on OXk

.1/ with positive definite curvature along TXk=X ,
since OXk

.1/ is not relatively ample over X . However, it is relatively big, and
Proposition 8.2 (i) shows that OXk

.�1/ admits a singular Hermitian metric with
negative total jet curvature (whatever the singularities of the metric are) if and
only if OXk

.1/ is big over Xk . It is therefore crucial to allow singularities in the
metrics in Definition. 8.4.
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8.B. Special case of 1-jet metrics

A 1-jet metric h1 on OX1
.�1/ is the same as a Finsler metricN D p

h1 on V � TX .
Assume until the end of this paragraph that h1 is smooth. By the well-known
Kodaira embedding theorem, the existence of a smooth metric h1 such that
‚h�1

1
.OX1

.1// is positive on all of TX1
is equivalent to OX1

.1/ being ample,
that is, V � ample.

8.5. Remark. In the absolute case V D TX , there are only few examples of
varieties X such that T �

X is ample, mainly quotients of the ball Bn � Cn by a
discrete cocompact group of automorphisms.

The 1-jet negativity condition considered in Definition 8.4 is much weaker.
For example, if the Hermitian metric h1 comes from a (smooth) Hermitian met-
ric h on V , then formula (5.15) implies that h1 has negative total jet curva-
ture (i.e., ‚h�1

1
.OX1

.1// is positive) if and only if h‚V;hi.� ˝ v/ < 0 for
all � 2 TX � f0g, v 2 V � f0g, that is, if .V; h/ is negative in the sense of
Griffiths. On the other hand, V1 � TX1

consists by definition of tangent vec-
tors 
 2 TX1;.x;Œv�/ whose horizontal projection H
 is proportional to v. Thus
‚h1

.OX1
.�1// is negative definite on V1 if and only if ‚V;h satisfies the much

weaker condition that the holomorphic sectional curvature h‚V;hi.v ˝ v/ is
negative on every complex line. ut

8.C. Vanishing theorem for invariant jet differentials

We now come back to the general situation of jets of arbitrary order k. Our first
observation is the fact that the k-jet negativity property of the curvature becomes
actually weaker and weaker as k increases.

8.6. Lemma. Let .X; V / be a compact complex directed manifold. If .X; V /
has a .k � 1/-jet metric hk�1 with negative jet curvature, then there is a k-jet
metric hk with negative jet curvature such that†hk

� ��1
k
.†hk�1

/[Dk . (The
same holds true for negative total jet curvature).

Proof. Let !k�1, !k be given smooth Hermitian metrics on TXk�1
and TXk

.
The hypothesis implies

h‚h�1
k�1
.OXk�1

.1//i.	/ � "j	j2!k�1
; 8	 2 Vk�1

for some constant " > 0. On the other hand, as OXk
.Dk/ is relatively ample

over Xk�1 (Dk is a hyperplane section bundle), there exists a smooth metric eh
on OXk

.Dk/ such that

h‚eh.OXk
.Dk//i.	/ � ıj	j2!k

� C j.�k/�	j2!k�1
; 8	 2 TXk
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for some constants ı; C > 0. Combining both inequalities (the second one being
applied to 	 2 Vk and the first one to .�k/�	 2 Vk�1), we get

h‚.	�
k

hk�1/�peh .��
k OXk�1

.p/˝ OXk
.Dk//i.	/

� ıj	j2!k
C .p" � C/j.�k/�	j2!k�1

; 8	 2 Vk :

Hence, for p large enough, .��
k
hk�1/

�peh has positive definite curvature along Vk .
Now, by (6.9), there is a sheaf injection

OXk
.�p/ D ��

k OXk�1
.�p/˝OXk

.�pDk/ ,�! .��
k OXk�1

.p/˝OXk
.Dk//

�1

obtained by twisting with OXk
..p � 1/Dk/. Therefore

hk WD ..��
khk�1/

�peh/�1=p D .��
khk�1/eh�1=p

induces a singular metric on OXk
.1/ in which an additional degeneration divisor

p�1.p � 1/Dk appears. Hence we get †hk
D ��1

k
†hk�1

[Dk and

‚h�1
k
.OXk

.1// D 1

p
‚.	�

k
hk�1/�peh C p � 1

p
ŒDk�

is positive definite along Vk . The same proof works in the case of negative total
jet curvature. ut

One of the main motivations for the introduction of k-jets metrics is the
following list of algebraic sufficient conditions.

8.7. Algebraic sufficient conditions. We suppose here that X is projective alge-
braic, and we make one of the additional assumptions (i), (ii) or (iii) below.
(i) Assume that there exist integers k;m > 0 and b� 2 Nk such that the line
bundle L WD OXk

.m/ ˝ OXk
.�b� � D�/ is ample over Xk . Then there is a

smooth Hermitian metric hL on L with positive definite curvature on Xk . By
means of the morphism � W OXk

.�m/ ! L�1, we get an induced metric hk D
.��h�1

L /1=m on OXk
.�1/ which is degenerate on the support of the zero divisor

div.�/ D b� �D�. Hence †hk
D Supp.b� �D�/ � X

sing
k

and

‚h�1
k
.OXk

.1// D 1

m
‚hL

.L/C 1

m
Œb� �D�� � 1

m
‚hL

.L/ > 0:

In particular hk has negative total jet curvature.
(ii) Assume more generally that there exist integers k;m > 0 and an ample
line bundle A on X such that H 0.Xk;OXk

.m/ ˝ ��
0;k
A�1/ has non-zero sec-

tions �1; : : : ; �N . Let Z � Xk be the base locus of these sections; necessarily
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Z � X
sing
k

by Theorem 7.11 (iii). By taking a smooth metric hA with positive
curvature on A, we get a singular metric h0

k
on OXk

.�1/ such that

h0
k.	/ D

� X
1�j�N

j�j .w/ � 	mj2
h�1

A

�1=m
; w 2 Xk; 	 2 OXk

.�1/w :

Then †h0
k

D Z, and by computing i
2	
@@ log h0

k
.	/ we obtain

‚h0 �1
k
.OXk

.1// � 1

m
��

0;k‚A:

By (7.17) and an induction on k, there exists b� 2 QkC such that OXk
.1/ ˝

OXk
.�b� � D�/ is relatively ample over X . Hence L D OXk

.1/ ˝ OXk
.�b� �

D�/˝��
0;k
A˝p is ample on X for p � 0. The arguments used in (i) show that

there is a k-jet metric h00
k

on OXk
.�1/ with †h00

k
D Supp.b� �D�/ D X

sing
k

and

‚h00 �1
k

.OXk
.1// D ‚L C Œb� �D�� � p ��

0;k‚A;

where ‚L is positive definite on Xk . The metric hk D .h
0 mp

k
h00

k
/1=.mpC1/ then

satisfies †hk
D †h0

k
D Z and

‚h�1
k
.OXk

.1// � 1

mp C 1
‚L > 0:

(iii) If Ek;mV
� is ample, there is an ample line bundle A and a sufficiently high

symmetric power such that Sp.Ek;mV
�/˝A�1 is generated by sections. These

sections can be viewed as sections of OXk
.mp/˝ ��

0;k
A�1 over Xk , and their

base locus is exactly Z D X
sing
k

by Theorem 7.11 (iii). Hence the k-jet metric
hk constructed in (ii) has negative total jet curvature and satisfies †hk

D X
sing
k

.

An important fact, first observed by [GRe65] for 1-jet metrics and by [GrGr80]
in the higher order case, is that k-jet negativity implies hyperbolicity. In partic-
ular, the existence of enough global jet differentials implies hyperbolicity.

8.8. Theorem. Let .X; V / be a compact complex directed manifold. If .X; V /
has a k-jet metric hk with negative jet curvature, then every entire curve f W
C ! X tangent to V is such that fŒk�.C/ � †hk

. In particular, if†hk
� X

sing
k

,
then .X; V / is hyperbolic.

Proof. The main idea is to use the Ahlfors–Schwarz lemma, following the ap-
proach of [GrGr80]. However we will give here all necessary details because
our setting is slightly different. Assume that there is a k-jet metric hk as in the
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hypotheses of Theorem 8.8. Let !k be a smooth Hermitian metric on TXk
. By

hypothesis, there exists " > 0 such that

h‚h�1
k
.OXk

.1//i.	/ � "j	j2!k
; 8	 2 Vk :

Moreover, by (6.4), .�k/� maps Vk continuously to OXk
.�1/ and the weight e'

of hk is locally bounded from above. Hence there is a constant C > 0 such that

j.�k/�	j2hk
� C j	j2!k

; 8	 2 Vk :

Combining these inequalities, we find

h‚h�1
k
.OXk

.1//i.	/ � "

C
j.�k/�	j2hk

; 8	 2 Vk :

Now, let f W �R ! X be a non-constant holomorphic map tangent to V on the
disk �R. We use the line bundle morphism (6.6)

F D f 0
Œk�1� W T�R

�! f �
Œk�OXk

.�1/
to obtain a pull-back metric


 D 
0.t/ dt ˝ dt D F �hk on T�R
:

If fŒk�.�R/ � †hk
then 
 
 0. Otherwise, F.t/ has isolated zeroes at all sin-

gular points of fŒk�1� and so 
.t/ vanishes only at these points and at points of
the degeneration set .fŒk�/

�1.†hk
/ which is a polar set in �R. At other points,

the Gaussian curvature of 
 satisfies

i @@ log 
0.t/


.t/
D �2� .fŒk�/

�‚hk
.OXk

.�1//
F �hk

D
h‚h�1

k
.OXk

.1//i.f 0
Œk�
.t//

jf 0
Œk�1�

.t/j2
hk

� "

C
;

since f 0
Œk�1�

.t/ D .�k/�f 0
Œk�
.t/. The Ahlfors–Schwarz lemma 4.2 implies that


 can be compared with the Poincaré metric as follows:


.t/ � 2C

"

R�2 jdt j2
.1 � jt j2=R2/2

H) jf 0
Œk�1�.t/j2hk

� 2C

"

R�2

.1 � jt j2=R2/2
:

If f W C ! X is an entire curve tangent to V such that fŒk�.C/ 6� †hk
, the

above estimate implies as R ! C1 that fŒk�1� must be a constant, and hence
also f . Now, if †hk

� X
sing
k

, the inclusion fŒk�.C/ � †hk
implies f 0.t/ D 0

at every point. Therefore f is a constant and .X; V / is hyperbolic. ut
Combining Theorem 8.8 with 8.7 (ii) and (iii), we get the following conse-

quences.
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8.9. Vanishing theorem. Assume that there exist integers k;m > 0 and an am-
ple line bundleL on X such that H 0.Xk;OXk

.m/˝ ��
0;k
L�1/ ' H 0.X;Ek;mV

�
˝L�1/ has non-zero sections �1; : : : ; �N . Let Z � Xk be the base locus of
these sections. Then every entire curve f W C ! X tangent to V is such that
fŒk�.C/ � Z. In other words, for every global Gk-invariant polynomial dif-
ferential operator P with values in L�1, every entire curve f must satisfy the
algebraic differential equation P.fŒk�/ D 0.

8.10. Corollary. Let .X; V / be a compact complex directed manifold. If Ek;mV
�

is ample for some positive integers k;m, then .X; V / is hyperbolic.

8.11. Remark. Green and Griffiths [GrGr80] stated that Theorem 8.9 is even
true for sections �j 2 H 0.X;EGG

k;m
.V �/ ˝ L�1/, in the special case V D TX

they consider. This is proved below in Subsect. 8.D; the reader is also referred
to Siu and Yeung [SiYe97] for a proof based on a use of Nevanlinna theory
and the logarithmic derivative lemma (the original proof given in [GrGr80]
does not seem to be complete, as it relies on an unsettled pointwise version
of the Ahlfors–Schwarz lemma for general jet differentials); other proofs seem
to have been circulating in the literature in the last years. Let us first give a
very short proof in the case where f is supposed to have a bounded deriva-
tive (thanks to the Brody criterion, this is enough if one is merely interested
in proving hyperbolicity; thus Corollary 8.10 will be valid with EGG

k;m
V � in

place of Ek;mV
�). In fact, if f 0 is bounded, one can apply the Cauchy inequal-

ities to all components fj of f with respect to a finite collection of coordinate
patches covering X . As f 0 is bounded, we can do this on sufficiently small
discs D.t; ı/ � C of constant radius ı > 0. Therefore all derivatives f 0, f 00,
: : : ; f .k/ are bounded. From this we conclude that �j .f / is a bounded section
of f �L�1. Its norm j�j .f /jL�1 (with respect to any positively curved metric
j jL on L) is a bounded subharmonic function, which is moreover strictly sub-
harmonic at all points where f 0 ¤ 0 and �j .f / ¤ 0. This is a contradiction
unless f is constant or �j .f / 
 0.

The above results justify the following definition and problems.

8.12. Definition. We say that X , resp. .X; V /, has non-degenerate negative k-
jet curvature if there exists a k-jet metric hk on OXk

.�1/ with negative jet
curvature such that †hk

� X
sing
k

.

8.13. Conjecture. Let .X; V / be a compact directed manifold. Then .X; V / is
hyperbolic if and only if .X; V / has non-degenerate negative k-jet curvature for
k large enough.

This is probably a hard problem. In fact, it is shown in [Dem97, Section 8],
that the smallest admissible integer k must depend on the geometry of X and
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need not be uniformly bounded as soon as dimX � 2 (even in the absolute
case V D TX ). On the other hand, if .X; V / is hyperbolic, we get for each
integer k � 1 a generalized Kobayashi–Royden metric k.Xk�1;Vk�1/ on Vk�1

(see Definition 2.1), which can be also viewed as a k-jet metric hk on OXk
.�1/ ;

we will call it the Grauert k-jet metric of .X; V /, although it formally differs
from the jet metric considered in [Gra89] (see also [DGr91]). By looking at
the projection �k W .Xk; Vk/ ! .Xk�1; Vk�1/, we see that the sequence hk

is monotonic, namely ��
k
hk � hkC1 for every k. If .X; V / is hyperbolic, then

h1 is non-degenerate and therefore by monotonicity †hk
� X

sing
k

for k � 1.
Conversely, if the Grauert metric satisfies †hk

� X
sing
k

, it is easy to see that
.X; V / is hyperbolic. The following problem is thus especially meaningful.

8.14. Problem. Estimate the k-jet curvature‚h�1
k
.OXk

.1// of the Grauert met-
ric hk on .Xk; Vk/ as k tends to C1.

8.D. Vanishing theorem for non-invariant jet differentials

As an application of the arguments developed in Subsect. 7.E, we indicate here
a proof of the basic vanishing theorem for non-invariant jet differentials. This
version has been first proved in full generality by Siu [Siu97] (cf. also [Dem97]),
with a different and more involved technique based on Nevanlinna theory and
the logarithmic derivative lemma.

8.15. Theorem. Let .X; V / be a projective directed and A an ample divisor
on X . Then one has P.f I f 0; f 00; : : : ; f .k// D 0 for every entire curve f W
.C; TC/ ! .X; V / and every global section P 2 H 0.X;EGG

k;m
V � ˝ O.�A//.

Sketch of proof. In general, we know by Theorem 8.9 that the result is true
when P is invariant, i.e., for P 2 H 0.X;Ek;mV

� ˝ O.�A//. Now, we prove
Theorem 8.15 by induction on k and m (simultaneously for all directed vari-
eties). LetZ � Xk be the base locus of all polynomialsQ 2 H 0.X;EGG

k;m0V
�˝

O.�A// with m0 < m. A priori, this defines merely an algebraic set in the
Green–Griffiths bundle XGG

k
D .JkV � f0g/=C�, but since the global polyno-

mials '�Q also enter the game, we know that the base locus is Gk-invariant,
and thus descends to Xk . Let f W .C; TC/ ! .X; V /. By the induction hypoth-
esis, we know that fŒk�.C/ � Z. Therefore f can also be viewed as a entire
curve drawn in the directed variety .Z;W / induced by .Xk; Vk/. By (7.36), we
have a decomposition

.'�P /.gŒk�/ D
X

˛2Nk ; j˛jwDm

'.˛/.0/ P˛.gŒk�/;

with deg.P˛/ < deg.P / for ˛ ¤ .m; 0; : : : ; 0/;
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and since P˛.gŒk�/ D 0 for all germs of curves g of .Z;W / when ˛ ¤ .m; 0; : : : ;

0/, we conclude that P defines an invariant jet differential when it is restricted
to .Z;W /, in other words it still defines a section of

H 0.Z; .OXk
.m/˝ ��

k;0OX .�A//�Z/:
We can then apply the Ahlfors–Schwarz lemma in the way we did it in Subsect.
8.C to conclude that P.fŒk�/ D 0. ut

9. Morse inequalities and the Green–Griffiths–Lang conjecture

The goal of this section is to study the existence and properties of entire curves
f W C ! X drawn in a complex irreducible n-dimensional variety X , and more
specifically to show that they must satisfy certain global algebraic or differential
equations as soon as X is projective of general type. By means of holomorphic
Morse inequalities and a probabilistic analysis of the cohomology of jet spaces,
it is possible to prove a significant step of the generalized Green–Griffiths–Lang
conjecture. The use of holomorphic Morse inequalities was first suggested in
[Dem07a], and then carried out in an algebraic context by S. Diverio in his PhD
work ([Div08], [Div09]). The general more analytic and more powerful results
presented here first appeared in [Dem11], [Dem12].

9.A. Introduction

Let .X; V / be a directed variety. By definition, proving the algebraic degeneracy
of an entire curve f I .C; TC/ ! .X; V /means finding a non-zero polynomialP
onX such thatP.f / D 0. As already explained in Sect. 8, all known methods of
proof are based on establishing first the existence of certain algebraic differen-
tial equations P.f I f 0; f 00; : : : ; f .k// D 0 of some order k, and then trying to
find enough such equations so that they cut out a proper algebraic locus Y � X .
We use for this global sections of H 0.X;EGG

k;m
V � ˝ O.�A//, where A is am-

ple, and apply the fundamental vanishing theorem 8.15. It is expected that the
global sections of H 0.X;EGG

k;m
V � ˝ O.�A// are precisely those which ulti-

mately define the algebraic locus Y � X where the curve f should lie. The
problem is then reduced to (i) showing that there are many non-zero sections of
H 0.X;EGG

k;m
V � ˝O.�A// and (ii) understanding what is their joint base locus.

The first part of this program is the main result of this section.

9.1. Theorem. Let .X; V / be a directed projective variety such that KV is big
and let A be an ample divisor. Then for k � 1 and ı 2 QC small enough, ı �
c.log k/=k, the number of sections h0.X;EGG

k;m
V � ˝ O.�mıA// has maximal

growth, i.e., is larger that ckm
nCkr�1 for some m � mk , where c; ck > 0,
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n D dimX and r D rankV . In particular, entire curves f W .C; TC/ ! .X; V /

satisfy (many) algebraic differential equations.

The statement is very elementary to check when r D rankV D 1, and there-
fore when n D dimX D 1. In higher dimensions n � 2, only very partial
results were known before Theorem 9.1 was obtained in [Dem11], [and they
dealt merely with the absolute case V D TX ]. In dimension 2, Theorem 9.1 is
a consequence of the Riemann–Roch calculation of Green–Griffiths [GrGr80],
combined with a vanishing theorem due to Bogomolov [Bog79]—the latter ac-
tually only applies to the top cohomology group Hn, and things become much
more delicate when extimates of intermediate cohomology groups are needed.
In higher dimensions, Diverio [Div08], [Div09] proved the existence of sec-
tions of H 0.X;EGG

k;m
V � ˝ O.�1// whenever X is a hypersurface of PnC1

C of
high degree d � dn, assuming k � n and m � mn. More recently, Merker
[Mer15] was able to treat the case of arbitrary hypersurfaces of general type,
i.e., d � n C 3, assuming this time k to be very large. The latter result is ob-
tained through explicit algebraic calculations of the spaces of sections, and the
proof is computationally very intensive. Bérczi [Ber15], [Ber18] also obtained
related results with a different approach based on residue formulas, assuming
e.g. d � n9n.

All these approaches are algebraic in nature. Here, however, our techniques
are based on more elaborate curvature estimates in the spirit of Cowen–Griffiths
[CoGr76]. They require holomorphic Morse inequalities (see 9.10 below)—and
we do not know how to translate our method in an algebraic setting. Notice
that holomorphic Morse inequalities are essentially insensitive to singularities,
as we can pass to non-singular models and blow-up X as much as we want: if
� W eX ! X is a modification then ��O eX D OX and for q � 1, Rq��O eX is
supported on a codimension 1 analytic subset (even a codimension 2 subset if
X is smooth). It follows from the Leray spectral sequence that the cohomology
estimates for L on X or for eL D ��L on eX differ by negligible terms, i.e.,

(9.2) hq.eX;eL˝m/ � hq.X;L˝m/ D O.mn�1/:

Finally, singular holomorphic Morse inequalities (in the form obtained by
L. Bonavero [Bon93]) allow us to work with singular Hermitian metrics h; this
is the reason why we will only require to have big line bundles rather than am-
ple line bundles. In the case of linear subspaces V � TX , we introduce singular
Hermitian metrics as follows.

9.3. Definition. A singular Hermitian metric on a linear subspace V � TX is a
metric h on the fibers of V such that the function log h W 	 7! log j	j2

h
is locally

integrable on the total space of V .

Such a metric can also be viewed as a singular Hermitian metric on the
tautological line bundle OP.V /.�1/ on the projectivized bundle P.V / D
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V � f0g=C�, and therefore its dual metric h� defines a curvature current ‚OP.V /.1/;h�

of type .1; 1/ on P.V / � P.TX /, such that

(9.4) p�‚OP.V /.1/;h� D i

2�
@@ log h; where p W V � f0g �! P.V /:

If log h is quasi-plurisubharmonic (or quasi-psh, which means plurisubharmonic
modulo addition of a smooth function) on V , then log h is indeed locally inte-
grable, and we have moreover

(9.5) ‚OP.V /.1/;h� � �C!
for some smooth positive .1; 1/-form on P.V / and some constant C > 0; con-
versely, if (9.5) holds, then logh is quasi-plurisubharmonic.

9.6. Definition. We will say that a singular Hermitian metric h on V is ad-
missible if h can be written as h D e'h0jV , where h0 is a smooth positive
definite Hermitian on TX and ' is a quasi-plurisubharmonic weight with ana-
lytic singularities on X , as in Definition 9.3. Then h can be seen as a singu-
lar Hermitian metric on OP.V /.1/, with the property that it induces a smooth
positive definite metric on a Zariski open set X 0 � X � Sing.V /; we will de-
note by Sing.h/ the complement of the largest such Zariski open set X 0 (so that
Sing.h/ � Sing.V /).

If h is an admissible metric on V , we define Oh.V
�/ to be the sheaf of germs

of holomorphic sections of V �
�X�Sing.h/

which are h�-bounded near Sing.h/; by
the assumption on the analytic singularities, this is a coherent sheaf (as the direct
image of some coherent sheaf on P.V /), and actually, since h� D e�'h�

0 , it is
a subsheaf of the sheaf O.V �/ WD Oh0

.V �/ associated with a smooth positive
definite metric h0 on TX . If r is the generic rank of V and m a positive integer,
we define similarly

(9.7)

bK
Œm�

V;h D sheaf of germs of holomorphic sections of .detV �
�X 0/

˝m

D .ƒrV �
�X 0/

˝m

which are det h�-bounded;

so that bK
Œm�

V WD bK
Œm�

V;h0
according to Definition. 2.7. For a given admissi-

ble Hermitian structure .V; h/, we define similarly the sheaf EGG
k;m
V �

h
to be the

sheaf of polynomials defined over X � Sing.h/ which are “h-bounded”. This
means that when they are viewed as polynomials P.z I 	1; : : : ; 	k/ in terms of
	j D .r1;0

h0
/jf .0/, where r1;0

h0
is the .1; 0/-component of the induced Chern

connection on .V; h0/, there is a uniform bound

(9.8) jP.z I 	1; : : : ; 	k/j � C
�X

k	j k1=j

h

�m
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near points of X � X 0 (see Sect. 2 for more details on this). Again, by a direct
image argument, one sees that EGG

k;m
V �

h
is always a coherent sheaf. The sheaf

EGG
k;m
V � is defined to be EGG

k;m
V �

h
when h D h0 (it is actually independent of

the choice of h0, as follows from arguments similar to those given in Sect. 2).
Notice that this is exactly what is needed to extend the proof of the vanishing
theorem 8.15 to the case of a singular linear space V ; the value distribution
theory argument can only work when the functions P.f I f 0; : : : ; f .k//.t/ do
not exhibit poles, and this is guaranteed here by the boundedness assumption.

Our strategy can be described as follows. We consider the Green–Griffiths
bundle of k-jets XGG

k
D J kV � f0g=C�, which by (7.7) consists of a fibration

in weighted projective spaces, and its associated tautological sheaf

L D OXGG
k
.1/;

viewed rather as a virtual Q-line bundle OXGG
k
.m0/

1=m0 with m0 D lcm.1; 2; : : : ; k/.

Then, if �k W XGG
k

! X is the natural projection, we have

EGG
k;m D .�k/�OXGG

k
.m/ and Rq.�k/�OXGG

k
.m/ D 0 for q � 1:

Hence, by the Leray spectral sequence we get for every invertible sheaf F on X
the isomorphism

(9.9) H q.X;EGG
k;mV

� ˝ F / ' H q.XGG
k ;OXGG

k
.m/˝ ��

kF /:

The latter group can be evaluated thanks to holomorphic Morse inequalities. Let
us recall the main statement.

9.10. Holomorphic Morse inequalities ([Dem85]). Let X be a compact com-
plex manifolds, E ! X a holomorphic vector bundle of rank r , and .L; h/ a
Hermitian line bundle. The dimensions hq.X;E ˝ Lm/ of cohomology groups
of the tensor powers E ˝ Lm satisfy the following asymptotic estimates as
m ! C1:
(WM) Weak Morse inequalities:

hq.X;E ˝ Lm/ � r
mn

nŠ

Z
X.L;h;q/

.�1/q‚n
L;h C o.mn/;

where X.L; h; q/ denotes the open set of points x 2 X at which the curvature
form ‚L;h.x/ has signature .q; n � q/;
(SM) Strong Morse inequalities:X

0�j�q

.�1/q�jhj .X;E ˝ Lm/ � r
mn

nŠ

Z
X.L;h;�q/

.�1/q‚n
L;h C o.mn/;

where X.L; h;� q/ D S
j�q X.L; h; j /;
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(RR) Asymptotic Riemann–Roch formula:

�.X;E ˝ Lm/ WD
X

0�j�n

.�1/jhj .X;E ˝ Lm/ D r
mn

nŠ

Z
X

‚n
L;h C o.mn/:

Moreover (cf. Bonavero’s PhD thesis [Bon93]), if h D e�' is a singular Hermi-
tian metric with analytic singularities of pole set P D '�1.�1/, the estimates
still hold provided all cohomology groups are replaced by cohomology groups
H q.X;E ˝ Lm ˝ I .hm// twisted with the corresponding L2 multiplier ideal
sheaves

I .hm/ D I .k'/

D
n
f 2 OX;x; 9V 3 x;

Z
V

jf .z/j2e�m'.z/ d�.z/ < C1
o
;

and provided the Morse integrals are computed on the regular locus of h, namely
restricted to X.L; h; q/�†:Z

X.L;h;q/�†

.�1/q‚n
L;h:

The special case of 9.10 (SM) when q D 1 yields a very useful criterion for the
existence of sections of large multiples of L.

9.11. Corollary. Let L ! X be a holomorphic line bundle equipped with a
singular Hermitian metric h D e�' with analytic singularities of pole set † D
'�1.�1/. Then we have the following lower bounds

(a) at the h0 level:

h0.X;E ˝ Lm/ � h0.X;E ˝ Lm ˝ I .hm//

� h0.X;E ˝ Lm ˝ I .hm//

� h1.X;E ˝ Lm ˝ I .hm//

� r
kn

nŠ

Z
X.L;h;�1/�†

‚n
L;h � o.kn/:

Especially L is big as soon as
R
X.L;h;�1/�†‚

n
L;h

> 0 for some singular
Hermitian metric h on L.

(b) at the hq level:

hq.X;E ˝ Lm ˝ I .hm//

� r
kn

nŠ

X
j Dq�1;q;qC1

.�1/q
Z

X.L;h;j /�†

‚n
L;h � o.kn/:
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Now, given a directed manifold .X; V /, we can associate with any admis-
sible metric h on V a metric (or rather a natural family) of metrics on L D
OXGG

k
.1/. The space XGG

k
always possesses quotient singularities if k � 2 (and

even some more if V is singular), but we do not really care since Morse in-
equalities still work in this setting thanks to Bonavero’s generalization. As we
will see, it is then possible to get nice asymptotic formulas as m ! C1. They
appear to be of a probabilistic nature if we take the components of the k-jet
(i.e., the successive derivatives 	j D f .j /.0/, 1 � j � k) as random variables.
This probabilistic behaviour was somehow already visible in the Riemann–Roch
calculation of [GrGr80]. In this way, assuming KV big, we produce a lot of
sections �j D H 0.XGG

k
;OXGG

k
.m/ ˝ ��

k
F /, corresponding to certain divisors

Zj � XGG
k

. The hard problem which is left in order to complete a proof of
the generalized Green–Griffiths–Lang conjecture is to compute the base locus
Z D T

Zj and to show that Y D �k.Z/ � X must be a proper algebraic
variety.

9.B. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kähler metrics on weighted pro-
jective spaces, and to evaluate the corresponding volume forms. Here we put
d c D i

4	
.@ � @/ so that dd c D i

2	
@@. The normalization of the d c operator

is chosen such that we have precisely .dd c log jzj2/n D ı0 (the Dirac mass
at 0) for the Monge–Ampère operator in Cn. Given a k-tuple of “weights” a D
.a1; : : : ; ak/, i.e., of integers as > 0 with gcd.a1; : : : ; ak/ D 1, we introduce
the weighted projective space P.a1; : : : ; ak/ to be the quotient of Ck � f0g by
the corresponding weighted C� action:
(9.12)
P.a1; : : : ; ak/ D Ck � f0g=C�; � � z D .�a1z1; : : : ; �

akzk/; � 2 C�:

As is well-known, this defines a toric .k � 1/-dimensional algebraic variety
with quotient singularities. On this variety, we introduce the possibly singular
(but almost everywhere smooth and non-degenerate) Kähler form !a;p defined
by

(9.13) ��
a!a;p D dd c'a;p; 'a;p.z/ D 1

p
log

X
1�s�k

jzsj2p=as ;

where �a W Ck � f0g ! P.a1; : : : ; ak/ is the canonical projection and p > 0

is a positive constant. It is clear that 'p;a is real analytic on Ck � f0g if p
is an integer and a common multiple of all weights as , and we will implicitly
pick such a p later on to avoid any difficulty. Elementary calculations give the
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following well-known formula for the volume

(9.14)
Z

P.a1;:::;ak/

!k�1
a;p D 1

a1 � � � ak

(notice that this is independent of p, as it is obvious by Stokes theorem, since
the cohomology class of !a;p does not depend on p).

Our later calculations will require a slightly more general setting. Instead of
looking at Ck , we consider the weighted C� action defined by

(9.15) Cjrj D Cr1 � � � � � Crk ; � � z D .�a1z1; : : : ; �
akzk/; � 2 C�:

Here zs 2 Crs for some k-tuple r D .r1; : : : ; rk/ and jr j D r1 C � � � C rk . This
gives rise to a weighted projective space

P.a
Œr1�
1 ; : : : ; a

Œrk�

k
/ D P.a1; : : : ; a1; : : : ; ak; : : : ; ak/;

�a;r W Cr1 � � � � � Crk � f0g �! P.a
Œr1�
1 ; : : : ; a

Œrk�

k
/;(9.16)

obtained by repeating rs times each weight as . On this space, we introduce the
degenerate Kähler metric !a;r;p such that

(9.17) ��
a;r!a;r;p D dd c'a;r;p; 'a;r;p.z/ D 1

p
log

X
1�s�k

jzsj2p=as ;

where jzsj stands now for the standard Hermitian norm .
P

1�j�rs
jzs;j j2/1=2

on Crs . This metric is cohomologous to the corresponding “polydisc-like” met-
ric !a;p already defined, and therefore Stokes theorem implies

(9.18)
Z

P.a
Œr1�

1 ;:::;a
Œrk�

k
/

!jrj�1
a;r;p D 1

a
r1

1 � � � ark

k

:

Using standard results of integration theory (Fubini, change of variable for-
mula...), one obtains:

9.19. Proposition. Let f .z/ be a bounded function on P.aŒr1�
1 ; : : : ; a

Œrk�

k
/ which

is continuous outside of the hyperplane sections zs D 0. We also view f as a
C�-invariant continuous function on

Q
.Crs � f0g/. ThenZ

P.a
Œr1�

1 ;:::;a
Œrk�

k
/

f .z/ !jrj�1
a;r;p

D .jr j � 1/ŠQ
s a

rs
s

Z
.x;u/2�k�1�QS2rs�1

f .x
a1=2p
1 u1; : : : ; x

ak=2p

k
uk/

Y
1�s�k

x
rs�1
s

.rs � 1/Š dx d�.u/;

where �k�1 is the .k � 1/-simplex fxs � 0,
P
xs D 1g, dx D dx1 ^ � � � ^

dxk�1 its standard measure, and where d�.u/ D d�1.u1/ � � � d�k.uk/ is the
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rotation invariant probability measure on the product
Q

s S
2rs�1 of unit spheres

in Cr1 � � � � � Crk . As a consequence

lim
p!C1

Z
P.a

Œr1�

1 ;:::;a
Œrk�

k
/

f .z/ !jrj�1
a;r;p D 1Q

s a
rs
s

Z
Q

S2rs�1

f .u/ d�.u/:

Also, by elementary integrations by parts and induction on k; r1; : : : ; rk , it
can be checked that

(9.20)
Z

x2�k�1

Y
1�s�k

xrs�1
s dx1 � � � dxk�1 D 1

.jr j � 1/Š
Y

1�s�k

.rs � 1/Š

This implies that .jr j�1/ŠQ1�s�k
x

rs�1
s

.rs�1/Š
dx is a probability measure on�k�1.

9.C. Probabilistic estimate of the curvature of k-jet bundles

Let .X; V / be a compact complex directed non-singular variety. To avoid any
technical difficulty at this point, we first assume that V is a holomorphic vector
subbundle of TX , equipped with a smooth Hermitian metric h.

According to the notation already specified in Sect. 7, we denote by J kV

the bundle of k-jets of holomorphic curves f W .C; 0/ ! X tangent to V at
each point. Let us set n D dimCX and r D rankC V . Then J kV ! X is an
algebraic fiber bundle with typical fiber Crk , and we get a projectivized k-jet
bundle

(9.21) XGG
k WD .J kV � f0g/=C�; �k W XGG

k �! X;

which is a P.1Œr�; 2Œr�; : : : ; kŒr�/ weighted projective bundle over X , and we
have the direct image formula .�k/�OXGG

k
.m/ D O.EGG

k;m
V �/ (cf. Proposi-

tion 7.9). In the sequel, we do not make a direct use of coordinates, because
they need not be related in any way to the Hermitian metric h of V . Instead, we
choose a local holomorphic coordinate frame .e˛.z//1�˛�r of V on a neighbor-
hood U of x0, such that

(9.22) he˛.z/; eˇ .z/i D ı˛ˇ C
X

1�i;j�n; 1�˛;ˇ�r

cij˛ˇzizj CO.jzj3/

for suitable complex coefficients .cij˛ˇ /. It is a standard fact that such a nor-
malized coordinate system always exists, and that the Chern curvature tensor

i
2	
D2

V;h
of .V; h/ at x0 is then given by

(9.23) ‚V;h.x0/ D � i

2�

X
i;j;˛;ˇ

cij˛ˇ dzi ^ dzj ˝ e�̨ ˝ eˇ :
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Consider a local holomorphic connection r on V�U (e.g. the one which turns
.e˛/ into a parallel frame), and take 	k D rkf .0/ 2 Vx defined inductively by
r1f D f 0 and rsf D rf 0.rs�1f /. This gives a local identification

JkV�U �! V ˚k
�U ; f 7�! .	1; : : : ; 	k/ D .rf .0/; : : : ;rf k.0//;

and the weighted C� action on JkV is expressed in this setting by

� � .	1; 	2; : : : ; 	k/ D .�	1; �
2	2; : : : ; �

k	k/:

Now, we fix a finite open covering .U˛/˛2I ofX by open coordinate charts such
that V�U˛

is trivial, along with holomorphic connections r˛ on V�U˛
. Let �˛ be

a partition of unity of X subordinate to the covering .U˛/. Let us fix p > 0 and
small parameters 1 D "1 � "2 � � � � � "k > 0. Then we define a global
weighted Finsler metric on J kV by putting for any k-jet f 2 J k

x V

(9.24) ‰h;p;".f / WD
�X

˛2I

�˛.x/
X

1�s�k

"2p
s krs

˛f .0/k2p=s

h.x/

�1=p
;

where k kh.x/ is the Hermitian metric h of V evaluated on the fiber Vx , x D
f .0/. The function ‰h;p;" satisfies the fundamental homogeneity property

(9.25) ‰h;p;".� � f / D ‰h;p;".f / j�j2

with respect to the C� action on J kV , in other words, it induces a Hermitian
metric on the dual L� of the tautological Q-line bundle Lk D OXGG

k
.1/ over

XGG
k

. The curvature of Lk is given by

(9.26) ��
k‚Lk ;‰�

h;p;"
D dd c log‰h;p;":

Our next goal is to compute precisely the curvature and to apply holomorphic
Morse inequalities to L ! XGG

k
with the above metric. It might look a priori

like an untractable problem, since the definition of ‰h;p;" is a rather unnatu-
ral one. However, the “miracle” is that the asymptotic behavior of ‰h;p;" as
"s="s�1 ! 0 is in some sense uniquely defined and very natural. It will lead to
a computable asymptotic formula, which is moreover simple enough to produce
useful results.

9.27. Lemma. On each coordinate chart U equipped with a holomorphic con-
nection r of V�U , let us define the components of a k-jet f 2 J kV by 	s D
rsf .0/, and consider the rescaling transformation

�r;".	1; 	2; : : : ; 	k/ D ."1
1	1; "

2
2	2; : : : ; "

k
k	k/ on J k

x V , x 2 U ;
(it commutes with the C�-action but is otherwise unrelated and not canonically
defined over X as it depends on the choice of r). Then, if p is a multiple of
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lcm.1; 2; : : : ; k/ and "s="s�1 ! 0 for all s D 2; : : : ; k, the rescaled function
‰h;p;" ı ��1r;".	1; : : : ; 	k/ converges towards

� X
1�s�k

k	sk2p=s

h

�1=p

on every compact subset of J kV�U � f0g, uniformly in C1 topology.

Proof. Let U � X be an open set on which V�U is trivial and equipped with
some holomorphic connection r. Let us pick another holomorphic connectioner D r C � , where � 2 H 0.U;�1

X ˝ Hom.V; V //. Then er2f D r2f C
�.f /.f 0/ � f 0, and inductively we getersf D rsf C Ps.f I r1f; : : : ;rs�1f /;

where P.x I 	1; : : : ; 	s�1/ is a polynomial of weighted degree s in .	1; : : : ; 	s�1/

with holomorphic coefficients in x 2 U . In other words, the corresponding
change in the parametrization of J kV�U is given by a C�-homogeneous trans-
formation e	s D 	s C Ps.x I 	1; : : : ; 	s�1/:

Let us introduce the corresponding rescaled components

.	1;"; : : : ; 	k;"/ D ."1
1	1; : : : ; "

k
k	k/; .e	1;"; : : : ;e	k;"/ D ."1

1
e	1; : : : ; "k

k
e	k/:

Then e	s;" D 	s;" C "s
s Ps.x I "�1

1 	1;"; : : : ; "
�.s�1/
s�1 	s�1;"/

D 	s;" CO."s="s�1/
s O.k	1;"k C � � � C k	s�1;"k1=.s�1//s

and the error terms are thus polynomials of fixed degree with arbitrarily small
coefficients as "s="s�1 ! 0. Now, the definition of ‰h;p;" consists of glueing
the sums X

1�s�k

"2p
s k	kk2p=s

h
D

X
1�s�k

k	k;"k2p=s

h

corresponding to 	k D rs
˛f .0/ by means of the partition of unity

P
�˛.x/ D 1.

We see that by using the rescaled variables 	s;" the changes occurring when
replacing a connection r˛ by an alternative one rˇ are arbitrary small in
C1 topology, with error terms uniformly controlled in terms of the ratios
"s="s�1 on all compact subsets of V k � f0g. This shows that in C1 topology,
‰h;p;" ı��1r;".	1; : : : ; 	k/ converges uniformly towards .

P
1�s�k k	kk2p=s

h
/1=p,

whatever the trivializing open set U and the holomorphic connection r used to
evaluate the components and to perform the rescaling are. ut



72 J.-P. Demailly

Now, we fix a point x0 2 X and a local holomorphic frame .e˛.z//1�˛�r

satisfying (9.22) on a neighborhood U of x0. We introduce the rescaled compo-
nents 	s D "s

srsf .0/ on J kV�U and compute the curvature of

‰h;p;" ı ��1r;".z I 	1; : : : ; 	k/ '
� X

1�s�k

k	sk2p=s

h

�1=p
;

(by Lemma 9.27, the errors can be taken arbitrary small in C1 topology). We
write 	s D P

1�˛�r 	s˛e˛. By (9.22) we have

k	sk2
h D

X
˛

j	s˛j2 C
X

i;j;˛;ˇ

cij˛ˇzizj 	s˛	sˇ CO.jzj3j	j2/:

The question is to evaluate the curvature of the weighted metric defined by

‰.z I 	1; : : : ; 	k/
D
� X

1�s�k

k	sk2p=s

h

�1=p

D
� X

1�s�k

�X
˛

j	s˛j2 C
X

i;j;˛;ˇ

cij˛ˇzizj 	s˛	sˇ

�p=s�1=pCO.jzj3/:

We set j	sj2 D P
˛ j	s˛j2. A straightforward calculation yields

log‰.z I 	1; : : : ; 	k/
D 1

p
log

X
1�s�k

j	sj2p=s

C
X

1�s�k

1

s

j	sj2p=sP
t j	t j2p=t

X
i;j;˛;ˇ

cij˛ˇzizj

	s˛	sˇ

j	sj2 CO.jzj3/:

By (9.26), the curvature form of Lk D OXGG
k
.1/ is given at the central point x0

by the following formula.

9.28. Proposition. With the above choice of coordinates and with respect to
the rescaled components 	s D "s

srsf .0/ at x0 2 X , we have the approximate
expression

‚Lk ;‰�
h;p;"

.x0; Œ	�/ ' !a;r;p.	/

C i

2�

X
1�s�k

1

s

j	sj2p=sP
t j	t j2p=t

X
i;j;˛;ˇ

cij˛ˇ

	s˛	sˇ

j	sj2 dzi ^ dzj ;

where the error terms are O.max2�s�k."s="s�1/
s/ uniformly on the compact

variety XGG
k

. Here !a;r;p is the (degenerate) Kähler metric associated with the
weight a D .1Œr�; 2Œr�; : : : ; kŒr�/ of the canonical C� action on J kV .
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Thanks to the uniform approximation, we can (and will) neglect the error
terms in the calculations below. Since !a;r;p is positive definite on the fibers of
XGG

k
! X (at least outside of the axes 	s D 0), the index of the .1; 1/ curvature

form ‚Lk ;‰�
h;p;"

.z; Œ	�/ is equal to the index of the .1; 1/-form

(9.29) 
k.z; 	/ WD i

2�

X
1�s�k

1

s

j	sj2p=sP
t j	t j2p=t

X
i;j;˛;ˇ

cij˛ˇ .z/
	s˛	sˇ

j	sj2 dzi ^ dzj

depending only on the differentials .dzj /1�j�n on X . The q-index integral of
.Lk; ‰

�
h;p;"

/ on XGG
k

is therefore equal toZ
XGG

k
.Lk ;q/

‚nCkr�1
Lk ;‰�

h;p;"

D .nC kr � 1/Š
nŠ.kr � 1/Š

Z
z2X

Z

2P.1Œr�;:::;kŒr�/

!kr�1
a;r;p .	/1�k ;q.z; 	/
k.z; 	/

n;

where 1�k ;q.z; 	/ is the characteristic function of the open set of points where

k.z; 	/ has signature .n�q; q/ in terms of the dzj ’s. Notice that since 
k.z; 	/

n

is a determinant, the product 1�k ;q.z; 	/
k.z; 	/
n gives rise to a continuous

function on XGG
k

. Formula (9.20) with r1 D � � � D rk D r and as D s yields
the slightly more explicit integralZ

XGG
k

.Lk ;q/

‚nCkr�1
Lk ;‰�

h;p;"

D .nC kr � 1/Š
nŠ.kŠ/r

�
Z

z2X

Z
.x;u/2�k�1�.S2r�1/k

1gk ;q.z; x; u/gk.z; x; u/
n .x1 � � � xk/

r�1

.r � 1/Šk dx d�.u/;

where gk.z; x; u/ D 
k.z; x
1=2p
1 u1; : : : ; x

k=2p

k
uk/ is given by

(9.30) gk.z; x; u/ D i

2�

X
1�s�k

1

s
xs

X
i;j;˛;ˇ

cij˛ˇ .z/ us˛usˇ dzi ^ dzj

and 1gk ;q.z; x; u/ is the characteristic function of its q-index set. Here

(9.31) d�k;r.x/ D .kr � 1/Š .x1 � � � xk/
r�1

.r � 1/Šk dx

is a probability measure on �k�1, and we can rewrite
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(9.32)Z
XGG

k
.Lk ;q/

‚nCkr�1
Lk ;‰�

h;p;"

D .nC kr � 1/Š
nŠ.kŠ/r.kr � 1/Š
�
Z

z2X

Z
.x;u/2�k�1�.S2r�1/k

1gk ;q.z; x; u/gk.z; x; u/
n d�k;r.x/ d�.u/:

Now, formula (9.30) shows that gk.z; x; u/ is a “Monte Carlo” evaluation of
the curvature tensor, obtained by averaging the curvature at random points us 2
S2r�1 with certain positive weights xs=s; we should then think of the k-jet
f as some sort of random variable such that the derivatives rkf .0/ are uni-
formly distributed in all directions. Let us compute the expected value of .x; u/
7! gk.z; x; u/ with respect to the probability measure d�k;r.x/ d�.u/. SinceR

S2r�1 us˛usˇ d�.us/ D 1
r
ı˛ˇ and

R
�k�1

xs d�k;r.x/ D 1
k

, we find

E.gk.z; �; �// D 1

kr

X
1�s�k

1

s
� i

2�

X
i;j;˛

cij˛˛.z/ dzi ^ dzj :

In other words, we get the normalized trace of the curvature, i.e.,

(9.33) E.gk.z; �; �// D 1

kr

�
1C 1

2
C � � � C 1

k

�
‚det.V �/;det h� ;

where ‚det.V �/;det h� is the .1; 1/-curvature form of det.V �/ with the metric
induced by h. It is natural to guess that gk.z; x; u/ behaves asymptotically as its
expected value E.gk.z; �; �// when k tends to infinity. If we replace brutally gk

by its expected value in (9.32), we get the integral

.nC kr � 1/Š
nŠ.kŠ/r.kr � 1/Š

1

.kr/n

�
1C 1

2
C � � � C 1

k

�n
Z

X

1�;q�
n;

where � WD ‚det.V �/;det h� and 1�;q is the characteristic function of its q-index
set in X . The leading constant is equivalent to .log k/n=nŠ.kŠ/r modulo a mul-
tiplicative factor .1C O.1= log k//. By working out a more precise analysis of
the deviation, the following result has been proved in [Dem11] and [Dem12].

9.34. Probabilistic-estimate. Fix smooth Hermitian metrics h on V and ! D
i

2	

P
!ij dzi ^dzj onX . Denote by‚V;h D � i

2	

P
cij˛ˇ dzi ^dzj ˝e�̨˝eˇ

the curvature tensor of V with respect to an h-orthonormal frame .e˛/, and put

�.z/ D ‚det.V �/;det h� D i

2�

X
1�i;j�n

�ij dzi ^ dzj ; �ij D
X

1�˛�r

cij˛˛:
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Finally consider the k-jet line bundleLk D OXGG
k
.1/ ! XGG

k
equipped with the

induced metric ‰�
h;p;"

(as defined above, with 1 D "1 � "2 � � � � � "k > 0).
When k tends to infinity, the integral of the top power of the curvature of Lk on
its q-index set XGG

k
.Lk; q/ is given byZ

XGG
k

.Lk ;q/

‚nCkr�1
Lk ;‰�

h;p;"

D .log k/n

nŠ .kŠ/r

� Z
X

1�;q�
n CO..log k/�1/

�
for all q D 0; 1; : : : ; n, and the error termO..log k/�1/ can be bounded explic-
itly in terms of ‚V , � and !. Moreover, the left hand side is identically zero for
q > n.

The final statement follows from the observation that the curvature of Lk is
positive along the fibers ofXGG

k
! X , by the plurisubharmonicity of the weight

(this is true even when the partition of unity terms are taken into account, since
they depend only on the base); therefore the q-index sets are empty for q > n.
It will be useful to extend the above estimates to the case of sections of

(9.35) Lk D OXGG
k
.1/˝ ��

k O
� 1
kr

�
1C 1

2
C � � � C 1

k

�
F
�
;

where F 2 PicQ.X/ is an arbitrary Q-line bundle on X and �k W XGG
k

! X

is the natural projection. We assume here that F is also equipped with a smooth
Hermitian metric hF . In formulas (9.32), (9.33) and estimate 9.34, the renor-
malized curvature �k.z; x; u/ of Lk takes the form

(9.36) �k.z; x; u/ D 1
1

kr
.1C 1

2
C � � � C 1

k
/
gk.z; x; u/C‚F;hF

.z/;

and by the same calculations its expected value is

(9.37) �.z/ WD E.�k.z; �; �// D ‚det V �;det h�.z/C‚F;hF
.z/:

Then the variance estimate for �k�� is unchanged, and theLp bounds for �k are
still valid, since our forms are just shifted by adding the constant smooth term
‚F;hF

.z/. The probabilistic estimate 9.34 is therefore still true exactly in the
same form, provided we use (9.35)–(9.37) instead of the previously defined Lk ,
�k and �. An application of holomorphic Morse inequalities gives the desired
cohomology estimates for

hq
�
X;EGG

k;mV
� ˝ O

� m
kr

�
1C 1

2
C � � � C 1

k

�
F
��

D hq
�
XGG

k ;OXGG
k
.m/˝ ��

k O
� m
kr

�
1C 1

2
C � � � C 1

k

�
F
��
;

provided m is sufficiently divisible to give a multiple of F which is a Z-line
bundle.
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9.38. Theorem. Let .X; V / be a directed manifold, F ! X a Q-line bundle,
.V; h/ and .F; hF / smooth Hermitian structures on V and F respectively. We
define

Lk D OXGG
k
.1/˝ ��

k O
� 1
kr

�
1C 1

2
C � � � C 1

k

�
F
�
;

� D ‚det V �;det h� C‚F;hF
;

and let X.�; q/ be the open set of points x 2 X , where �.x/ has signature
.q; n � q/. We also set X.�;� q/ D S

j�q X.�; j /. Then for all q � 0 and all
m � k � 1 such that m is sufficiently divisible, we have

hq.XGG
k ;O.L˝m

k
//� mnCkr�1

.nC kr � 1/Š
.log k/n

nŠ .kŠ/r

� Z
X.�;q/

.�1/q�n CO..log k/�1/
�
;

(a)

h0.XGG
k ;O.L˝m

k
//� mnCkr�1

.nC kr � 1/Š
.log k/n

nŠ .kŠ/r

� Z
X.�;�1/

�n �O..log k/�1/
�
;

(b)

�.XGG
k ;O.L˝m

k
//D mnCkr�1

.nC kr � 1/Š
.log k/n

nŠ .kŠ/r
.c1.V

� ˝ F /n CO..log k/�1//:

(c)

Green and Griffiths [GrGr80] already checked the Riemann–Roch calcula-
tion (9.38c) in the special case V D T �

X and F D OX . Their proof is much
simpler since it relies only on Chern class calculations, but it cannot provide
any information on the individual cohomology groups, except in very special
cases where vanishing theorems can be applied; in fact in dimension 2, the Eu-
ler characteristic satisfies � D h0�h1Ch2 � h0Ch2, and hence it is enough to
get the vanishing of the top cohomology group H 2 to infer h0 � �; this works
for surfaces by means of a well-known vanishing theorem of Bogomolov which
implies in general

Hn
�
X;EGG

k;mT
�

X ˝ O
� m
kr

�
1C 1

2
C � � � C 1

k

�
F
��

D 0

as soon as KX ˝ F is big and m � 1.
In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [Bon93],

everything works almost unchanged in the case where V � TX has singularities
and h is an admissible metric on V (see Definition 9.6). We only have to find
a blow-up � W eXk ! Xk so that the resulting pull-backs ��Lk and ��V are
locally free, and �� det h�, ��‰h;p;" only have divisorial singularities. Then
� is a .1; 1/-current with logarithmic poles, and we have to deal with smooth
metrics on ��L˝m

k
˝ O.�mEk/, where Ek is a certain effective divisor on
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Xk (which, by our assumption in Definition 9.6, does not project onto X). The
cohomology groups involved are then the twisted cohomology groups

H q.XGG
k ;O.L˝m

k
/˝ Jk;m/;

where Jk;m D ��.O.�mEk// is the corresponding multiplier ideal sheaf, and
the Morse integrals need only be evaluated in the complement of the poles, i.e.,
on X.�; q/� S with S D Sing.V / [ Sing.h/. Since

.�k/�.O.L˝m
k
/˝ Jk;m/ � EGG

k;mV
� ˝ O

� m
kr

�
1C 1

2
C � � � C 1

k

�
F
�

we still get a lower bound for the h0 of the latter sheaf (or for the h0 of the
un-twisted line bundle O.L˝m

k
/ on XGG

k
). If we assume that KV ˝ F is big,

these considerations also allow us to obtain a strong estimate in terms of the
volume, by using an approximate Zariski decomposition on a suitable blow-up
of .X; V /. The following corollary implies Theorem 9.1 as a consequence.

9.39. Corollary. If F is an arbitrary Q-line bundle over X , one has

h0
�
XGG

k ;OXGG
k
.m/˝ ��

k O
� m
kr

�
1C 1

2
C � � � C 1

k

�
F
��

� mnCkr�1

.nC kr � 1/Š
.log k/n

nŠ .kŠ/r
.Vol.KV ˝ F / �O..log k/�1// � o.mnCkr�1/;

when m � k � 1, in particular there are many sections of the k-jet differen-
tials of degree m twisted by the appropriate power of F if KV ˝ F is big.

Proof. The volume is computed here as usual, i.e., after performing a suit-
able log-resolution � W eX ! X which converts KV into an invertible sheaf.
There is of course nothing to prove if KV ˝ F is not big, so we can assume
Vol.KV ˝ F / > 0. Let us fix smooth Hermitian metrics h0 on TX and hF on
F . They induce a metric ��.det.h�1

0 / ˝ hF / on ��.KV ˝ F / which, by our
definition ofKV , is a smooth metric (the divisor produced by the log-resolution
gets simplified with the degeneration divisor of the pull-back of the quotient
metric on det.V �/ induced by O.ƒrT �

X / ! O.ƒrV �/). By the result of Fujita
[Fuji94] on approximate Zariski decomposition, for every ı > 0, one can find a
modification �ı W eXı ! X dominating � such that

��
ı .KV ˝ F / D O eXı

.ACE/;

where A and E are Q-divisors, A ample and E effective, with

Vol.A/ D An � Vol.KV ˝ F / � ı:
If we take a smooth metric hA with positive definite curvature form‚A;hA

, then
we get a singular Hermitian metric hAhE on ��

ı
.KV ˝ F / with poles along
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E, i.e., the quotient hAhE=�
�
ı
.det.h�1

0 / ˝ hF / is of the form e�' , where '
is quasi-plurisubharmonic with log poles log j�E j2 (mod C1.eXı// precisely
given by the divisor E. We then only need to take the singular metric h on TX

defined by
h D h0e

1
r

.�ı/�'

(the choice of the factor 1
r

is there to correct adequately the metric on detV ).
By construction h induces an admissible metric on V and the resulting curvature
current � D ‚KV ;det h� C‚F;hF

is such that

��
ı� D ‚A;hA

C ŒE�; ŒE� D current of integration on E.

Then the 0-index Morse integral in the complement of the poles is given byZ
X.�;0/�S

�n D
Z
eXı

‚n
A;hA

D An � Vol.KV ˝ F / � ı

and Corollary 9.39 follows from the fact that ı can be taken arbitrary small. ut
The following corollary implies Theorem 0.12.

9.40. Corollary. Let .X; V / be a projective directed manifold such that K�
V

is big, and A an ample Q-divisor on X such that K�
V ˝ O.�A/ is still big.

Then, if we put r D rankV and ık D 1
kr
.1C 1

2
C � � � C 1

k
/, the space of global

invariant jet differentials

H 0.X;Ek;mV
� ˝ O.�mıkA//

has (many) non-zero sections for m � k � 1 and m sufficiently divisible.

Proof. Corollary 9.39 produces a non-zero section P 2 H 0.EGG
k;m
V � ˝ OX .�mıkA//

for m � k � 1, and the arguments given in Subsect. 7.E (cf. (7.36)) yield a
non-zero section

Q 2 H 0.Ek;m0V � ˝ OX .�mıkA//; m0 � m:

By raising Q to some power p and using a section � 2 H 0.X;OX .dA//, we
obtain a section

Qp�mq 2 H 0.X;Ek;pm0V � ˝ O.�m.pık � qd/A//:
One can adjust p and q so that m.pık � qd/ D pm0ık and pm0ıkA is an
integral divisor. ut
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9.41. Example. In some simple cases, the above estimates can lead to very ex-
plicit results. Take for instance X to be a smooth complete intersection of mul-
tidegree .d1; d2; : : : ; ds/ in PnCs

C and consider the absolute case V D TX . Then
KX D OX .d1C� � �Cds �n�s�1/ and one can check via explicit bounds of the
error terms (cf. [Dem11], [Dem12]) that a sufficient condition for the existence
of sections is

k � exp
�
7:38 nnC 1

2

� P
dj C 1P

dj � n � s � a � 1
�n�

:

This is good in view of the fact that we can cover arbitrary smooth complete
intersections of general type. On the other hand, even when the degrees dj tend
to C1, we still get a large lower bound k 	 exp.7:38 nnC 1

2 / on the order of
jets, and this is far from being optimal: Diverio [Div08], [Div09] has shown
e.g. that one can take k D n for smooth hypersurfaces of high degree, using
the algebraic Morse inequalities of Trapani [Tra95]. The next paragraph uses
essentially the same idea, in our more analytic setting.

9.D. Non-probabilistic estimate of the Morse integrals

We assume here that the curvature tensor .cij˛ˇ / satisfies a lower bound

(9.42)
X

i;j;˛;ˇ

cij˛ˇ 	i	ju˛uˇ � �
X


ij 	i	j juj2; 8	 2 TX ; u 2 V;

for some semi-positive .1; 1/-form 
 D i
2	

P

ij .z/ dzi ^ dzj on X . This is

the same as assuming that the curvature tensor of .V �; h�/ satisfies the semi-
positivity condition

(9:420) ‚V �;h� C 
 ˝ IdV � � 0

in the sense of Griffiths, or equivalently ‚V;h � 
 ˝ IdV � 0. Thanks to the
compactness ofX , such a form 
 always exists if h is an admissible metric on V .
Now, instead of replacing‚V with its trace free part e‚V and exploiting a Monte
Carlo convergence process, we replace‚V with‚�

V D ‚V �
˝ IdV � 0, i.e.,
cij˛ˇ by c�

ij˛ˇ
D cij˛ˇ C 
ij ı˛ˇ . Also, we take a line bundle F D A�1 with

‚A;hA
� 0, i.e., F semi-negative. Then our earlier formulas Proposition 9.28,

(9.35), (9.36) become instead
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g
�

k
.z; x; u/ D i

2�

X
1�s�k

1

s
xs

X
i;j;˛;ˇ

c
�

ij˛ˇ
.z/ us˛usˇ dzi ^ dzj � 0;(9.43)

Lk D OXGG
k
.1/˝ ��

k O
�

� 1

kr

�
1C 1

2
C � � � C 1

k

�
A
�
;(9.44)

‚Lk
D �k.z; x; u/(9.45)

D 1
1

kr
.1C 1

2
C � � � C 1

k
/
g

�

k
.z; x; u/ � .‚A;hA

.z/C r
.z//:

In fact, replacing ‚V by ‚V � 
 ˝ IdV has the effect of replacing ‚det V � D
Tr‚V � by ‚det V � C r
 . The major gain that we have is that �k D ‚Lk

is now
expressed as a difference of semi-positive .1; 1/-forms, and we can exploit the
following simple lemma, which is the key to derive algebraic Morse inequalities
from their analytic form (cf. [Dem94], Theorem 12.3).

9.46. Lemma. Let � D ˛ � ˇ be a difference of semi-positive .1; 1/-forms
on an n-dimensional complex manifold X , and let 1�;�q be the characteristic
function of the open set, where � is non-degenerate with a number of negative
eigenvalues at most equal to q. Then

.�1/q1�;�q �
n �

X
0�j�q

.�1/q�j˛n�jˇj ;

in particular
1�;�1 �

n � ˛n � n˛n�1 ^ ˇ for q D 1.

Proof. Without loss of generality, we can assume ˛ > 0 positive definite, so
that ˛ can be taken as the base Hermitian metric on X . Let us denote by

�1 � �2 � � � � � �n � 0

the eigenvalues of ˇ with respect to ˛. The eigenvalues of � D ˛ � ˇ are then
given by

1 � �1 � � � � � 1 � �q � 1 � �qC1 � � � � � 1 � �nI
hence the open set f�qC1 < 1g coincides with the support of 1�;�q , except that
it may also contain a part of the degeneration set �n D 0. On the other hand we
have  

n

j

!
˛n�j ^ ˇj D �j

n .�/ ˛
n;

where �j
n .�/ is the j -th elementary symmetric function in the �j ’s. Thus, to

prove the lemma, we only have to check thatX
0�j�q

.�1/q�j�j
n .�/ � 1f�qC1<1g.�1/q

Y
1�j�n

.1 � �j / � 0:
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This is easily done by induction on n (just split apart the parameter �n and write
�

j
n .�/ D �

j
n�1.�/C �

j �1
n�1 .�/ �n). ut

We apply here Lemma 9.46 with

˛ D g
�

k
.z; x; u/; ˇ D ˇk D 1

kr

�
1C 1

2
C � � � C 1

k

�
.‚A;hA

C r
/;

which are both semi-positive by our assumption. The analogue of (9.32) leads
toZ

XGG
k

.Lk ;�1/

‚nCkr�1
Lk ;‰�

h;p;"

D .nC kr � 1/Š
nŠ.kŠ/r.kr � 1/Š
�
Z

z2X

Z
.x;u/2�k�1�.S2r�1/k

1g
�

k
�ˇk ;�1 .g

�

k
� ˇk/

n d�k;r.x/ d�.u/

� .nC kr � 1/Š
nŠ.kŠ/r.kr � 1/Š
�
Z

z2X

Z
.x;u/2�k�1�.S2r�1/k

..g
�

k
/n � n.g�

k
/n�1 ^ ˇk/ d�k;r.x/ d�.u/:

The resulting integral now produces a “closed formula” which can be expressed
solely in terms of Chern classes (at least if we assume that 
 is the Chern form
of some semi-positive line bundle). It is just a matter of routine to find a suffi-
cient condition for the positivity of the integral. One can first observe that g�

k
is

bounded from above by taking the trace of .cij˛ˇ /, in this way we get

0 � g
�

k
�
� X

1�s�k

xs

s

�
.‚det V � C r
/;

where the right hand side no longer depends on u 2 .S2r�1/k . Also, g�

k
can be

written as a sum of semi-positive .1; 1/-forms

g
�

k
D

X
1�s�k

xs

s
�� .us/; �� .u/ D

X
i;j;˛;ˇ

c
�

ij˛ˇ
u˛uˇ dzi ^ dzj ;

and hence for k � n we have

.g
�

k
/n � nŠ

X
1�s1<���<sn�k

xs1
� � � xsn

s1 � � � sn �� .us1
/ ^ �� .us2

/ ^ � � � ^ �� .usn
/:
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Since
R

S2r�1 �
� .u/ d�.u/ D 1

r
Tr.‚V � C 
/ D 1

r
‚det V � C 
 , we infer from

thisZ
.x;u/2�k�1�.S2r�1/k

.g
�

k
/n d�k;r.x/ d�.u/

� nŠ
X

1�s1<���<sn�k

1

s1 � � � sn
� Z

�k�1

x1 � � � xn d�k;r.x/
��1
r
‚det V � C 


�n
:

By putting everything together, we conclude:

9.47. Theorem. Assume that ‚V � � �
 ˝ IdV � with a semi-positive .1; 1/-
form 
 on X . Then the Morse integral of the line bundle

Lk D OXGG
k
.1/˝ ��

k O
�

� 1

kr

�
1C 1

2
C � � � C 1

k

�
A
�
; A � 0

satisfies for k � n the inequality
(�)

1

.nC kr � 1/Š
Z

XGG
k

.Lk ;�1/

‚nCkr�1
Lk ;‰�

h;p;"

� 1

nŠ.kŠ/r.kr � 1/Š
�
Z

X

cn;r;k.‚det V � C r
/n � c0
n;r;k.‚det V � C r
/n�1 ^ .‚A;hA

C r
/;

where

cn;r;k D nŠ

rn

� X
1�s1<���<sn�k

1

s1 � � � sn
� Z

�k�1

x1 � � � xn d�k;r.x/;

c0
n;r;k D n

kr

�
1C 1

2
C � � � C 1

k

� Z
�k�1

� X
1�s�k

xs

s

�n�1
d�k;r.x/:

Especially we have a lot of sections in H 0.XGG
k
; mLk/, m � 1, as soon as the

difference occurring in .�/ is positive.

The statement is also true for k < n, but then cn;r;k D 0 and the lower
bound .�/ cannot be positive. By Corollary 9.11, it still provides a non-trivial
lower bound for h0.XGG

k
; mLk/ � h1.XGG

k
; mLk/, though. For k � n we have

cn;r;k > 0 and .�/ will be positive if‚det V � is large enough. By formula (9.20)
we have

(9.48) cn;r;k D nŠ .kr � 1/Š
.nC kr � 1/Š

X
1�s1<���<sn�k

1

s1 � � � sn � .kr � 1/Š
.nC kr � 1/Š ;
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(with equality for k D n). On the other hand, for any multi-index .ˇ1; : : : ; ˇk/

2 Nk with
P
ˇs D p, the Hölder inequality impliesZ

�k�1

x
ˇ1

1 � � � xˇk

k
d�k;r.x/ �

Y
sD1

� Z
�k�1

xp
s d�k;r.x/

�ˇs=p

D
Z

�k�1

x
p
1 d�k;r.x/:

An expansion of .
P

1�s�k
xs

s
/n�1 by means of the multinomial formula then

yieldsZ
�k�1

� X
1�s�k

xs

s

�n�1
d�k;r.x/ �

Z
�k�1

� X
1�s�k

1

s

�n�1
xn�1

1 d�k;r.x/:

On the other hand, it is obvious that
R

�k�1
.
P

1�s�k
xs

s
/n�1 d�k;r.x/ �R

�k�1
xn�1

1 d�k;r.x/, thus the error in the above upper bound is at most by a
factor .1C 1

2
C � � � C 1

k
/n � .1C log k/n. From this, we infer again by formula

(9.20) that

c0
n;r;k � n

kr

�
1C 1

2
C � � � C 1

k

�n
Z

�k�1

xn�1
1 d�k;r.x/;

D n

kr

�
1C 1

2
C � � � C 1

k

�n .nC r � 2/Š
.r � 1/Š

.kr � 1/Š
.nC kr � 2/Š :(9.49)

Since nCkr�1
k

D r C n�1
k

� nC r � 1, our bounds (9.48) and (9.49) imply

c0
n;r;k

cn;r;k

� n

k

�
1C 1

2
C � � � C 1

k

�n .nC r � 2/Š
rŠ

.nC kr � 1/;(9.50)

c0
n;r;k

cn;r;k

� n
�
1C 1

2
C � � � C 1

k

�n .nC r � 1/Š
rŠ

:(9.51)

The right hand side of (9.51) increases with r . For r � n, the Stirling formula
yields

(9:52n)

c0
n;r;k

cn;r;k

< .1C log k/n
.2n/Š

2 nŠ

< .1C log k/n
p
2n .2n

e
/2n

2
p
n .n

e
/n

D 1p
2
.4e�1 n.1C log k//n:

Up to the constant 4e�1, this is essentially the same bound as the one obtained
in [Dem12], which, however, included a numerical mistake, making unclear
whether the constant 4e�1 > 1 could be dropped there, as would follow from
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the claimed estimate. We will later need the following particular values (cf. For-
mula (9.20) and [Dem11, Lemma 2.20]):

c2;2;2 D 1

20
; c0

2;2;2 D 9

16
;

c0
2;2;2

c2;2;2
D 45

4
;(9:522)

c3;3;3 D 1

990
; c0

3;3;3 D 451

4860
;

c0
3;3;3

c3;3;3
D 4961

54
:(9:523)

10. Hyperbolicity properties of hypersurfaces of high degree

10.A. Global generation of the twisted tangent space of the universal family

In [Siu02], [Siu04], Y.-T. Siu developed a new strategy to produce jet differ-
entials, involving meromorphic vector fields on the total space of jet bundles—
these vector fields are used to differentiate the sections of EGG

k;m
so as to produce

new ones with less zeroes. The approach works especially well on universal
families of hypersurfaces in projective space, thanks to the good positivity prop-
erties of the relative tangent bundle, as shown by L. Ein [Ein88], [Ein91] and
C. Voisin [Voi96]. This allows at least to prove the hyperbolicity of generic sur-
faces and generic 3-dimensional hypersurfaces of sufficiently high degree. We
reproduce here the improved approach given by [Pau08] for the twisted global
generation of the tangent space of the space of vertical two jets. The situation
of k-jets in arbitrary dimension n is substantially more involved, details can be
found in [Mer09].

Consider the universal hypersurface X � PnC1 � PNd of degree d given
by the equation X

j˛jDd

A˛ Z
˛ D 0;

where ŒZ� 2 PnC1, ŒA� 2 PNd , ˛ D .˛0; : : : ; ˛nC1/ 2 NnC2 and

Nd D
 
nC d C 1

d

!
� 1:

Finally, we denote by V � X the vertical tangent space, i.e., the kernel of the
projection

� W X �! U � PNd ;

where U is the Zariski open set parametrizing smooth hypersurfaces, and by
JkV the bundle of k-jets of curves tangent to V , i.e., curves contained in the
fibers Xs D ��1.s/. The goal is to describe certain meromorphic vector fields
on the total space of JkV . By an explicit calculation of vector fields in coordi-
nates, according to Siu’s strategy, Păun [Pau08] was able to prove:
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10.1. Theorem. The twisted tangent space TJ2V ˝OP3.7/˝OPNd .1/ is gener-
ated over by its global sections over the complement J2V �W of the Wronskian
locus W . Moreover, one can choose generating global sections that are invari-
ant with respect to the action of G2 on J2V .

By similar, but more computationally intensive arguments [Mer09], one can
investigate the higher dimensional case. The following result strengthens the
initial announcement of [Siu04].

10.2. Theorem. Let J vert
k
.X / be the space of vertical k-jets of the universal

hypersurface
X � PnC1 � PNd

parametrizing all projective hypersurfaces X � PnC1 of degree d . Then for
k D n, there exist constants cn and c0

n such that the twisted tangent bundle

TJ vert
k

.X / ˝ OPnC1.cn/˝ OPNd .c
0
n/

is generated by its global Gk-invariant sections outside a certain exceptional
algebraic subset † � J vert

k
.X /. One can take either cn D 1

2
.n2 C 5n/, c0

n D 1

and † defined by the vanishing of certain Wronskians, or cn D n2 C 2n and a
smaller set e† � † defined by the vanishing of the 1-jet part.

10.B. General strategy of proof

Let again X � PnC1 �PNd be the universal hypersurface of degree d in PnC1.

10.3. Assume that we can prove the existence of a non-zero polynomial differ-
ential operator

P 2 H 0.X ; EGG
k;mT

�
X ˝ O.�A//;

where A is an ample divisor on X , at least over some Zariski open set U in the
base of the projection � W X ! U � PNd .

Observe that we now have a lot of techniques to do this; the existence of
P over the family follows from lower semi-continuity in the Zariski topology,
once we know that such a section P exists on a generic fiber Xs D ��1.s/. Let
Y � X be the set of points x 2 X where P.x/ D 0, as an element in the
fiber of the vector bundleEGG

k;m
T �

X ˝O.�A/ at x. Then Y is a proper algebraic
subset of X , and after shrinking U we may assume that Ys D Y \ Xs is a
proper algebraic subset of Xs for every s 2 U .

10.4. Assume also, according to Theorems 10.1 and 10.2, that we have enough
global holomorphic Gk-invariant vector fields �i on JkV with values in the
pull-back of some ample divisor B on X , in such a way that they generate
TJkV ˝p�

k
B over the dense open set .JkV /reg of regular k-jets, i.e., k-jets with

non-zero first derivative (here pk W JkV ! X is the natural projection).
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Considering jet differentials P as functions on JkV , the idea is to produce
new ones by taking differentiations

Qj WD �j1
� � � �j`

P; 0 � ` � m; j D .j1; : : : ; j`/:

Since the �j ’s are Gk-invariant, they are in particular C�-invariant; thus

Qj 2 H 0.X ; EGG
k;mT

�
X ˝ O.�AC `B//

(and Q is in fact G0
k

invariant as soon as P is). In order to be able to apply
the vanishing theorems of Sect. 8, we need .A � mB/ to be ample, so A has
to be large compared to B . If f W C ! Xs is an entire curve contained in
some fiber Xs � X , its lifting jk.f / W C ! JkV has to lie in the zero
divisors of all sections Qj . However, every non-zero polynomial of degree m
has at any point some non-zero derivative of order ` � m. Therefore, at any
point where the �i generate the tangent space to JkV , we can find some non-
vanishing section Qj . By the assumptions on the �i , the base locus of the Qj ’s
is contained in the union of p�1

k
.Y / [ .JkV /sing; there is of course no way

of getting a non-zero polynomial at points of Y where P vanishes. Finally,
we observe that jk.f /.C/ 6� .JkV /sing (otherwise f is constant). Therefore
jk.f /.C/ � p�1

k
.Y / and thus f .C/ � Y , i.e., f .C/ � Ys D Y \Xs .

10.5. Corollary. Let X � PnC1�PNd be the universal hypersurface of degree
d in PnC1. If d � dn is taken so large that conditions .10:3/ and .10:4/ are met
with .A�mB/ ample, then the generic fiberXs of the universal family X ! U

satisfies the Green–Griffiths conjecture, namely all entire curves f W C ! Xs

are contained in a proper algebraic subvariety Ys � Xs , and the Ys can be
taken to form an algebraic subset Y � X .

This is unfortunately not enough to get the hyperbolicity of Xs , because
we would have to know that Ys itself is hyperbolic. However, one can use the
following simple observation due to Diverio and Trapani [DT10]. The starting
point is the following general, straightforward remark. Let E ! X be a holo-
morphic vector bundle let � 2 H 0.X ;E / ¤ 0; then, up to factorizing by an
effective divisor D contained in the common zeroes of the components of � ,
one can view � as a section

� 2 H 0.X ;E ˝ OX .�D//;
and this section now has a zero locus without divisorial components. Here, when
n � 2, a very generic fiberXs has Picard number one by the Noether–Lefschetz
theorem, and so, after shrinking U if necessary, we can assume that OX .�D/
is the restriction of OPnC1.�p/, p � 0 by the effectivity of D. Hence D can be
assumed to be nef. After performing this simplification, .A�mB/ is replaced by
.A �mB CD/, which is still ample if .A �mB/ is ample. As a consequence,
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we may assume codim Y � 2, and after shrinking U again, that all Ys have
codimYs � 2.

10.6. Additional statement. In Corollary 10.5, under the same hypotheses .10:3/
and .10:4/, one can take all fibers Ys to have codimYs � 2.

This is enough to conclude that Xs is hyperbolic if n D dimXs � 3. In fact,
this is clear if n D 2 since the Ys are then reduced to points. If n D 3, the Ys are
at most curves, but we know by Ein and Voisin that a very generic hypersurface
Xs � P4 of degree d � 7 does not possess any rational or elliptic curve. Hence
Ys is hyperbolic and so is Xs , for s generic.

10.7. Corollary. Assume that n D 2 or n D 3, and that X � PnC1 � PNd is
the universal hypersurface of degree d � dn � 2nC 1 so large that conditions
10.3 and 10.4 are met with .A�mB/ ample. Then the very generic hypersurface
Xs � PnC1 of degree d is hyperbolic.

10.C. Proof of the Green–Griffiths conjecture for generic hypersurfaces in
PnC1

One of the first significant steps towards the Green–Griffiths conjecture is the
result of Diverio, Merker and Rousseau [DMR10], confirming the statement
when X � PnC1

C is a generic hypersurface of large degree d . Their proof yields
a non-optimal lower bound d � 2n5

for the degree; it is based on an essential
way on Siu’s strategy as detailed in Subsect. 10.B, combined with the earlier
techniques of [Dem95]. Using our improved bounds from Subsect. 9.D, we ob-
tain here a better estimate (actually, an estimate O.exp.n1C"// of exponential
order 1 rather than 5). For the algebraic degeneracy of entire curves in open
complements X D Pn � H , a better bound d � 5n2nn has been obtained by
Darondeau [Dar14], [Dar16b].

10.8. Theorem. A generic hypersurface X � PnC1 of degree d � dn with

d2 D 286; d3 D 7316; dn D
j n4

p
2
.4e�1 n.1C logn//n

k
for n � 4;

satisfies the Green–Griffiths conjecture.

Proof. Let us apply Theorem 9.47 with V D TX , r D n and k D n. The main
starting point is the well-known fact that T �

PnC1 ˝ OPnC1.2/ is semi-positive (in
fact, generated by its sections). Hence the exact sequence

0 �! OPnC1.�d/ �! T �
PnC1jX �! T �

X �! 0
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implies that T �
X ˝ OX .2/ � 0. We can therefore take 
 D ‚O.2/ D 2!, where

! is the Fubini–Study metric. Moreover det.V �/ D KX D OX .d � n � 2/ has
curvature .d � n � 2/!, and thus ‚det.V �/ C r
 D .d C n � 2/!. The Morse
integral to be computed when A D OX .p/ isZ

X

.cn;n;n.d C n � 2/n � c0
n;n;n.d C n � 2/n�1.p C 2n//!n;

so the critical condition we need is

d C n � 2 > c0
n;n;n

cn;n;n
.p C 2n/:

On the other hand, Siu’s differentiation technique requires m
n2 .1 C 1

2
C � � � C

1
n
/A�mB to be ample, where B D OX .n

2 C2n/ by Merker’s result (Theorem
10.2). This ampleness condition yields

1

n2

�
1C 1

2
C � � � C 1

n

�
p � .n2 C 2n/ > 0;

so one easily sees that it is enough to take p D n4 �2n for n � 3. Our estimates
(9:52n) give the expected bound dn. ut

Thanks to 10.6, one also obtains the generic hyperbolicity of 2 and 3-dimensional
hypersurfaces of large degree.

10.9. Theorem. For n D 2 or n D 3, a generic hypersurface X � PnC1 of
degree d � dn is Kobayashi hyperbolic.

By using more explicit calculations of Chern classes (and invariant jets rather
than Green–Griffiths jets) Diverio–Trapani [DT10] obtained the better lower
bound d � d3 D 593 in dimension 3. In the case of surfaces, Păun [Pau08]
obtained d � d2 D 18, using deep results of McQuillan [McQ98].

One may wonder whether it is possible to use jets of order k < n in the
proofs of Theorems 10.8 and 10.9. Diverio [Div08] showed that the answer is
negative (his proof is based on elementary facts of representation theory and a
vanishing theorem of Brückmann–Rackwitz [BR90]):

10.10. Proposition ([Div08]). Let X � PnC1 be a smooth hypersurface. Then

H 0.X;EGG
k;mT

�
X / D 0

for m � 1 and 1 � k < n. More generally, if X � PnCs is a smooth complete
intersection of codimension s, there are no global jet differentials for m � 1

and k < n=s.
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11. Strong general type condition and the GGL conjecture

11.A. A partial result towards the Green–Griffiths–Lang conjecture

The main result of this section is a proof of the partial solution to the Green–
Griffiths–Lang conjecture asserted in Theorem 0.15. The following important
“induction step” can be derived by Corollary 9.39. Here Dk denotes again the
sequence of “vertical divsors” defined in (6.9).

11.1. Proposition. Let .X; V / be a directed pair, where X is projective alge-
braic. Take an irreducible algebraic subset Z 6� Dk of the associated k-jet
Semple bundle Xk that projects onto Xk�1, k � 1, and assume that the in-
duced directed space .Z;W / � .Xk; Vk/ is of general type modulo X� ! X ,
rankW � 1. Then there exists a divisor † � Z` in a sufficiently high stage
of the Semple tower .Z`;W`/ associated with .Z;W /, such that every non-
constant holomorphic map f W C ! X whose k-jet defines a morphism fŒk� W
.C; TC/ ! .Z;W / also satisfies fŒkC`�.C/ � †.

Proof. Our hypothesis is that we can find an embedded resolution of singular-
ities

�`0
W .bZ`0

� bXkC`0
/ �! .Z`0

� XkC`0
/; `0 � 0

and p 2 Q�0 such that

K�cW`0

˝ ObZ`0

.p/�bZ`0

is big over bZ`0
:

Since Corollary 9.39 and the related lower bound of h0 are universal in the
category of directed varieties, we can apply them by replacing .X; V / with
.bZ`0

; bW`0
/, r with r0 D rankW , and F by

F`0
D ObZ`0

.p/˝ ��
`0
��

kC`0;0OX .�"A/;

where A is an ample divisor on X and " 2 Q>0. The assumptions show that
KcW`0

˝ F`0
is still big on bZ`0

for " small enough, therefore, by applying our
theorem and taking m � ` � `0, we get a large number of (metric bounded)
sections of

ObZ`
.m/˝b��

kC`;kC`0
O
� m
`r0

�
1C 1

2
C � � � C 1

`

�
F`0

�
D ObZ`

.ma�/˝ ��
`�

�
kC`;0O

�
� m"

`r0

�
1C 1

2
C � � � C 1

`

�
A
�
�bZ`

� ObZ`
..1C �/m/˝ ��

`�
�
kC`;0O

�
� m"

`r0

�
1C 1

2
C � � � C 1

`

�
A
�
�bZ`

;(11.2)
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where�` W .bZ` � bXkC`/ ! .Z` � XkC`/ is an embedded resolution dominat-
ing bXkC`0

, and a� 2 Q`0

C a positive weight of the form .0; : : : ; �; : : : ; 0; 1/ with
some non-zero component � 2 QC at index `0. Let b† � bZ` be the divisor of
such a section. We apply the fundamental vanishing theorem 8.9 to lifted curvesbfŒkC`� W C ! bZ` and sections of (11.2), and conclude that bfŒkC`�.C/ � b†.
Therefore fŒkC`�.C/ � † WD �`.b†/ and Proposition 11.1 is proved. ut

We now introduce the ad hoc condition that will enable us to check the GGL
conjecture.

11.3. Definition. Let .X; V / be a directed pair, whereX is projective algebraic.
We say that .X; V / is “strongly of general type” if it is of general type and
for every irreducible algebraic set Z � Xk , Z 6� Dk , that projects onto X ,
the induced directed structure .Z;W / � .Xk; Vk/ is of general type modulo
X� ! X .

11.4. Example. The situation of a product .X; V / D .X 0; V 0/ � .X 00; V 00/ de-
scribed in (0.14) shows that .X; V / can be of general type without being strongly
of general type. In fact, if .X 0; V 0/ and .X 00; V 00/ are of general type, then
KV D pr0 �KV 0 ˝pr00 �KV 00 is big, so .X; V / is again of general type. However

Z D P.pr0 � V 0/ D X 0
1 �X 00 � X1

has a directed structure W D pr0 � V 0
1 which does not possess a big canonical

bundle over Z, since the restriction of KW to any fiber fx0g � X 00 is trivial.
The higher stages .Zk;Wk/ of the Semple tower of .Z;W / are given by Zk D
X 0

kC1
� X 00 and Wk D pr0 � V 0

kC1
, so it is easy to see that GGk.X; V / contains

Zk�1. Since Zk projects onto X , we have here GG.X; V / D X (see [DR15]
for more sophisticated indecomposable examples).

11.5. Hypersurface case. Assume that Z ¤ Dk is an irreducible hypersurface
of Xk that projects onto Xk�1. To simplify things further, also assume that V is
non-singular. Since the Semple jet-bundles Xk form a tower of Pr�1-bundles,
their Picard groups satisfy Pic.Xk/ ' Pic.X/ ˚ Zk and we have OXk

.Z/ '
OXk

.a�/˝��
k;0
B for some a� 2 Zk and B 2 Pic.X/, where ak D d > 0 is the

relative degree of the hypersurface overXk�1. Let � 2 H 0.Xk;OXk
.Z// be the

section defining Z in Xk . The induced directed variety .Z;W / has rankW D
r � 1 D rank.V / � 1 and formula (7.25) yields KVk

D OXk
.�.r � 1/1�/ ˝

��
k;0
.KV /. We claim that

(11:5:1)
KW � .KVk

˝ OXk
.Z//�Z ˝ JS

D .OXk
.a� � .r � 1/1�/˝ ��

k;0.B ˝KV //�Z ˝ JS ;

where S � Z is the set (containing Zsing) where � and d��Vk
both vanish,

and JS is the ideal locally generated by the coefficients of d��Vk
along Z D
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��1.0/. In fact, the intersection W D TZ \ Vk is transverse on Z � S ; then
(11:5:1) can be seen by looking at the morphism

VkjZ
d��Vk! OXk

.Z/�Z ;

and observing that the contraction by KVk
D ƒrV �

k
provides a metric bounded

section of the canonical sheaf KW . In order to investigate the positivity prop-
erties of KW , one has to show that B cannot be too negative, and in addition
to control the singularity set S . The second point is a priori very challenging,
but we get useful information for the first point by observing that � provides a
morphism ��

k;0
OX .�B/ ! OXk

.a�/, whence a non-trivial morphism

OX .�B/ �! Ea�
WD .�k;0/�OXk

.a�/:

By [Dem95, Sect. 12], there exists a filtration onEa�
such that the graded pieces

are irreducible representations of GL.V / contained in .V �/˝`, ` � ja�j. There-
fore we get a non-trivial morphism

(11:5:2) OX .�B/ ! .V �/˝`; ` � ja�j:
If we know about certain (semi-)stability properties of V , this can be used to
control the negativity of B . ut
We further need the following useful concept that slightly generalizes entire
curve loci.

11.6. Definition. If Z is an algebraic set contained in some stage Xk of the
Semple tower of .X; V /, we define its “induced entire curve locus” IELX;V .Z/

� Z to be the Zariski closure of the union
S
fŒk�.C/ of all jets of entire curves

f W .C; TC/ ! .X; V / such that fŒk�.C/ � Z.

We have of course IELX;V .IELX;V .Z// D IELX;V .Z/ by definition. It is
not hard to check that modulo certain “vertical divisors” of Xk , the IELX;V .Z/

locus is essentially the same as the entire curve locus ECL.Z;W / of the induced
directed variety, but we will not use this fact here. Notice that if Z D S

Z˛ is a
decomposition of Z into irreducible components, then

IELX;V .Z/ D
[
˛

IELX;V .Z˛/:

Since IELX;V .Xk/ D ECLk.X; V /, proving the Green–Griffiths–Lang property
amounts to showing that IELX;V .X/ � X in the stage k D 0 of the tower. The
basic step of our approach is expressed in the following statement.
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11.7. Proposition. Let .X; V / be a directed variety and p0 � n D dimX ,
p0 � 1. Assume that there is an integer k0 � 0 such that for every k � k0 and
every irreducible algebraic set Z � Xk , Z 6� Dk , such that dim�k;k0

.Z/ �
p0, the induced directed structure .Z;W / � .Xk; Vk/ is of general type modulo
X� ! X . Then dim ECLk0

.X; V / < p0.

Proof. We argue here by contradiction, assuming that dim ECLk0
.X; V / � p0.

If
p0

0 WD dim ECLk0
.X; V / > p0

and if we can prove the result for p0
0, we will already get a contradiction. Hence

we can assume without loss of generality that dim ECLk0
.X; V / D p0. The

main argument consists of producing inductively an increasing sequence of in-
tegers

k0 < k1 < � � � < kj < � � �
and directed varieties .Zj ;W j / � .Xkj

; Vkj
/ satisfying the following proper-

ties:

(11.7.1) Z0 is one of the irreducible components of ECLk0
.X; V / and dimZ0

D p0;
(11.7.2) Zj is one of the irreducible components of ECLkj

.X; V / and �kj ;k0
.Zj /

D Z0;
(11.7.3) for all j � 0, IELX;V .Z

j / D Zj and rankWj � 1;
(11.7.4) for all j � 0, the directed variety .Zj C1;W j C1/ is contained in some

stage (of order j̀ D kj C1 � kj ) of the Semple tower of .Zj ;W j /,
namely

.Zj C1;W j C1/ � .Z
j

j̀
;W

j

j̀
/ � .Xkj C1

; Vkj C1
/

and

W j C1 D TZj C1 0 \W j

j̀
D TZj C1 0 \ Vkj

is the induced directed structure; moreover �kj C1;kj
.Zj C1/ D Zj ,

(11.7.5) for all j � 0, we have Zj C1 � Z
j

j̀
but �kj C1;kj C1�1.Z

j C1/ D
Z

j

j̀ �1
.

For j D 0, we simply take Z0 to be one of the irreducible components S˛

of ECLk0
.X; V / such that dimS˛ D p0, which exists by our hypothesis that

dim ECLk0
.X; V / D p0. Clearly, ECLk0

.X; V / is the union of the IELX;V .S˛/

and we have IELX;V .S˛/ D S˛ for all those components. Thus IELX;V .Z
0/ D

Z0 and dimZ0 D p0. Assume that .Zj ;W j / has been constructed. The subva-
riety Zj cannot be contained in the vertical divisor Dkj

. In fact no irreducible
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algebraic set Z such that IELX;V .Z/ D Z can be contained in a vertical di-
visor Dk , because �k;k�2.Dk/ corresponds to stationary jets in Xk�2; as ev-
ery non-constant curve f has non-stationary points, its k-jet fŒk� cannot be
entirely contained in Dk; also the induced directed structure .Z;W / must sat-
isfy rankW � 1, otherwise IELX;V .Z/ � Z. Condition (11.7.2) implies that
dim�kj ;k0

.Zj / � p0. Therefore .Zj ;W j / is of general type moduloX� ! X

by the assumptions of the proposition. Thanks to Proposition 2.5, we get an al-
gebraic subset † � Z

j

`
in some stage of the Semple tower .Zj

`
/ of Zj such

that every entire curve f W .C; TC/ ! .X; V / satisfying fŒkj �.C/ � Zj also
satisfies fŒkj C`�.C/ � †. By definition, this implies the first inclusion in the
sequence

Zj D IELX;V .Z
j / � �kj C`;kj

.IELX;V .†// � �kj C`;kj
.†/ � Zj

(the other ones being obvious), so we have in fact an equality throughout. Let
.S 0̨ / be the irreducible components of IELX;V .†/. We have IELX;V .S

0̨ / D S 0̨
and one of the components S 0̨ must satisfy

�kj C`;kj
.S 0̨ / D Zj D Z

j
0 :

We take j̀ 2 Œ1; `� to be the smallest order such that Zj C1 WD �kj C`;kj C j̀
.S 0̨ / � Z

j

j̀
,

and set kj C1 D kj C j̀ > kj . By definition of j̀ , we have �kj C1;kj C1�1.Z
j C1/

D Z
j

j̀ �1
, otherwise j̀ would not be minimal. We then get �kj C1;kj

.Zj C1/ D
Zj and thus �kj C1;k0

.Zj C1/ D Z0 by induction, and all properties (11.7.1)–
(11.7.5) follow easily. Now, by Observation 7.29, we have

rankW j < rankW j �1 < � � � < rankW 1 < rankW 0 D rankV:

This is a contradiction because we cannot have such an infinite sequence. Propo-
sition 11.7 is proved. ut
The special case k0 D 0, p0 D n of Proposition 11.7 yields the following
consequence.

11.8. Partial solution to the generalized GGL conjecture. Let .X; V / be a di-
rected pair that is strongly of general type. Then the Green–Griffiths–Lang con-
jecture holds true for .X; V /, namely ECL.X; V / � X ; in other words there
exists a proper algebraic variety Y � X such that every non-constant holomor-
phic curve f W C ! X tangent to V satisfies f .C/ � Y .

11.9. Remark. The proof is not very constructive, but it is however theoretically
effective. By this we mean that if .X; V / is strongly of general type and is taken
in a bounded family of directed varieties, i.e., X is embedded in some projec-
tive space PN with some bound ı on the degree, and P.V / also has bounded
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degree � ı0 when viewed as a subvariety of P.TPN /, then one could theoreti-
cally derive bounds dY .n; ı; ı

0/ for the degree of the locus Y . Also, there would
exist bounds k0.n; ı; ı

0/ for the orders k and bounds dk.n; ı; ı
0/ for the degrees

of subvarieties Z � Xk that have to be checked in the definition of a pair of
strong general type. In fact, [Dem11] produces more or less explicit bounds for
the order k such that Corollary 9.39 holds true. The degree of the divisor † is
given by a section of a certain twisted line bundle OXk

.m/˝ ��
k;0

OX .�A/ that
we know to be big by an application of holomorphic Morse inequalities—and
the bounds for the degrees of .Xk; Vk/ then provide bounds for m.

11.10. Remark. The condition that .X; V / is strongly of general type seems to
be related to some sort of stability condition. We are unsure what is the most
appropriate definition, but here is one that makes sense. Fix an ample divisor
A on X . For every irreducible subvariety Z � Xk that projects onto Xk�1 for
k � 1, and Z D X D X0 for k D 0, we define the slope �A.Z;W / of the
corresponding directed variety .Z;W / to be

�A.Z;W / D inf�
rankW

;

where � runs over all rational numbers such that there exists ` � 0, a modifica-
tion bZ` ! Z` and p 2 QC for which

KcW`
˝ .ObZ`

.p/˝ ��
kC`;0O.�A//�bZ`

is big on bZ`

(again, we assume here that Z 6� Dk for k � 2). Notice that by definition
.Z;W / is of general type modulo X� ! X if and only if �A.Z;W / < 0,
and that �A.Z;W / D �1 if ObZ`

.1/ is big for some `. Also, the proof of
Lemma 7.24 shows that for any .Z;W / we have �A.Z`;W`/ D �A.Z;W /

for all ` � 0. We say that .X; V / is A-jet-stable (resp. A-jet-semi-stable) if
�A.Z;W / < �A.X; V / (resp. �A.Z;W / � �A.X; V /) for all Z � Xk as
above. It is then clear that if .X; V / is of general type and A-jet-semi-stable,
then it is strongly of general type in the sense of Definition 11.3. It would be
useful to have a better understanding of this condition of stability (or any other
one that would have better properties).

11.B. Algebraic jet-hyperbolicity implies Kobayashi hyperbolicity

Let .X; V / be a directed variety, where X is an irreducible projective variety;
the concept still makes sense when X is singular, by embedding .X; V / in a
projective space .PN ; TPN / and taking the linear space V to be an irreducible
algebraic subset of TPn that is contained in TX at regular points of X .
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11.11. Definition. Let .X; V / be a directed variety. We say that .X; V / is alge-
braically jet-hyperbolic if for every k � 0 and every irreducible algebraic sub-
variety Z � Xk that is not contained in the union �k of vertical divisors, the
induced directed structure .Z;W / either satisfies W D 0, or is of general type
moduloX� ! X , i.e., there exists ` � 0 and p 2 Q�0 such thatK�cW`

˝ObZ`
.p/

is big over bZ`, for some modification .bZ`; bW`/ of the `-stage of the Semple
tower of .Z;W /.

Proposition 7.33 can be restated:

11.12. Proposition. If a projective directed variety .X; V / is such that OX`
.a�/

is ample for some ` � 1 and some weight a� 2 Q`
>0, then .X; V / is alge-

braically jet-hyperbolic.

In a similar vein, one would prove that if OX`
.a�/ is big and the “augmented

base locus”B D Bs.OX`
.a�/˝ ��

l;0
A�1/ projects onto a proper subvariety B 0

D �`;0.B/ � X , then .X; V / is strongly of general type. In general, Proposi-
tion 11.7 gives the following:

11.13. Theorem. Let .X; V / be an irreducible projective directed variety that
is algebraically jet-hyperbolic in the sense of the above definition. Then .X; V /
is Brody (or Kobayashi) hyperbolic, i.e., ECL.X; V / D ;.

Proof. Here we apply Proposition 11.7 with k0 D 0 and p0 D 1. It is enough
to deal with subvarieties Z � Xk such that dim�k;0.Z/ � 1; otherwise W D 0

and can reduce Z to a smaller subvariety by (2.2). Then we conclude that
dim ECL.X; V / < 1. All entire curves tangent to V have to be constant, and
we conclude in fact that ECL.X; V / D ;. ut

12. Proof of the Kobayashi conjecture on generic hyperbolicity

We give here a simple proof of the Kobayashi conjecture, combining ideas of
Green–Griffiths [GrGr80], Nadel [Nad89], Masuda–Noguchi [MaNo96], De-
mailly [Dem95], Siu–Yeung [SiYe96a], Shiffman–Zaidenberg [ShZa02], Brot-
bek [Brot17], Ya Deng [Deng16], in chronological order. Related ideas had been
used earlier in [Xie15], and then in [BrDa17], to establish Debarre’s conjecture
on the ampleness of the cotangent bundle of generic complete intersections of
codimension at least equal to dimension.

12.A. General Wronskian operators

This section follows closely the work of D. Brotbek [Brot17]. Let U be an open
set of a complex manifold X , dimX D n, and s0; : : : ; sk 2 OX .U / be holo-
morphic functions. To these functions, we can associate a Wronskian operator
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of order k defined by
(12.1)

Wk.s0; : : : ; sk/.f / D

ˇ̌̌̌
ˇ̌̌̌

s0.f / s1.f / � � � sk.f /

D.s0.f // D.s1.f // � � � D.sk.f //

:::
:::

:::

Dk.s0.f // Dk.s1.f // � � � Dk.sk.f //

ˇ̌̌̌
ˇ̌̌̌ ;

where f W .C; 0/ 3 t 7! f .t/ 2 U � X is a germ of holomorphic curve (or
a k-jet of curve), and D D d

dt
. For a biholomorphic change of variable ' W

.C; 0/ ! .C; 0/, we find by induction on ` a polynomial differential operator
p`;i of order � ` acting on ' satisfying

D`.sj .f ı '// D '0`D`.sj .f // ı ' C
X
i<`

p`;i .'/D
i .sj .f // ı ':

It follows easily from this that

Wk.s0; : : : ; sk/.f ı '/ D .'0/1C2C���CkWk.s0; : : : ; sk/.f / ı ';
and henceWk.s0; : : : ; sk/.f / is an invariant differential operator of degree k0 D
1
2
k.k C 1/. Especially, we get in this way a section that we denote somewhat

sloppily
(12.2)

Wk.s0; : : : ; sk/ D

ˇ̌̌̌
ˇ̌̌̌

s0 s1 � � � sk
D.s0/ D.s1/ � � � D.sk/

:::
:::

:::

Dk.s0/ Dk.s1/ � � � Dk.sk/

ˇ̌̌̌
ˇ̌̌̌ 2 H 0.U;Ek;k0T �

X /:

12.3. Proposition. These Wronskian operators satisfy the following properties.

(a) Wk.s0; : : : ; sk/ is C-multilinear and alternate in .s0; : : : ; sk/.
(b) For any g 2 OX .U /, we have

Wk.gs0; : : : ; gsk/ D gkC1Wk.s0; : : : ; sk/:

Property 12.3 (b) is an easy consequence of the Leibniz formula

D`.g.f /sj .f // D
X̀
kD0

 
`

k

!
Dk.g.f //D`�k.sj .f //;

by performing linear combinations of rows in the determinants. This property
implies in its turn that for any .k C 1/-tuple of sections s0; : : : ; sk 2 H 0.U;L/

of a holomorphic line bundleL ! X , one can define more generally an operator

(12.4) Wk.s0; : : : ; sk/ 2 H 0.U;Ek;k0T �
X ˝ LkC1/:
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In fact, when we compute the Wronskian in a local trivialization of L�U , Prop-
erty 12.3 (b) shows that the determinant is independent of the trivialization.
Moreover, if g 2 H 0.U;G/ for some line bundle G ! X , we have
(12.5)
Wk.gs0; : : : ; gsk/ D gkC1Wk.s0; : : : ; sk/ 2 H 0.U;Ek;k0T �

X ˝ LkC1 ˝GkC1/:

We consider here a line bundle L ! X possessing a linear system † �
H 0.X;L/ of global sections such thatWk.s0; : : : ; sk/ 6
 0 for generic elements
s0; : : : ; sk 2 †. We can then view Wk.s0; : : : ; sk/ as a section of H 0.Xk;OXk

.k0/
˝��

k;0
LkC1/ on the k-stage Xk of the Semple tower. Very roughly, the idea

for the proof of the Kobayashi conjecture is to produce many such Wronskians,
and to apply the fundamental vanishing theorem 8.15 to exclude the existence
of entire curves. However, the vanishing theorem only holds for jet differen-
tials in H 0.Xk;OXk

.k0/ ˝ ��
k;0
A�1/ with A > 0, while the existence of suf-

ficiently many sections sj 2 H 0.X;L/ can be achieved only when L is am-
ple, so the strategy seems a priori unapplicable. It turns out that one can some-
times arrange the Wronkian operator coefficients to be divisible by a section
�� 2 H 0.X;OX .�// possessing a large zero divisor �, so that

��1
� Wk.s0; : : : ; sk/ 2 H 0.Xk;OXk

.k0/˝ ��
k;0.L

kC1 ˝ OX .��///;

and we can then hope that LkC1 ˝ OX .��/ < 0. Our goal is thus to find a
variety X and linear systems † � H 0.X;L/ for which the associated Wron-
skians Wk.s0; : : : ; sk/ have a very high divisibility. The study of the base locus
of line bundles OXk

.k0/˝ ��
k;0
.LkC1 ˝ OX .��// and their related positivity

properties will be taken care of by using suitable blow-ups.

12.B. Using a blow-up of the Wronskian ideal sheaf

We consider again a linear system † � H 0.X;L/ producing some non-zero
Wronskian sections Wk.s0; : : : ; sk/, so that dim† � k C 1. As the Wronskian
is alternate and multilinear in the arguments sj , we get a meromorphic map
Xk > P.ƒkC1†�/ by sending a k-jet 
 D fŒk�.0/ 2 Xk to the point of
projective coordinates ŒWk.ui0

; : : : ; uik
/.f /.0/�i0;:::;ik

, where .uj /j 2J is a ba-
sis of † and i0; : : : ; ik 2 J are in increasing order. This assignment factorizes
through the Plücker embedding into a meromorphic map

ˆ W Xk > GrkC1.†/

into the Grassmannian of dimension .k C 1/ subspaces of †� (or codimension
.kC1/ subspaces of†, alternatively). In fact, ifL�U ' U �C is a trivialization
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of L in a neighborhood of a point x0 D f .0/ 2 X , we can consider the map
‰U W Xk ! Hom.†;CkC1/ given by

��1
k;0.U / 3 fŒk� 7�! .s 7�! .D`.s.f //0�`�k//;

and associate either the kernel „ � † of ‰U .fŒk�/, seen as a point „ 2
GrkC1.†/, or ƒkC1„? � ƒkC1†�, seen as a point of P.ƒkC1†�/ (assum-
ing that we are at a point where the rank is equal to .k C 1/). Let OGr.1/ be
the tautological very ample line bundle on GrkC1.†/ (equal to the restriction of
OP.ƒkC1†�/.1//. By construction,ˆ is induced by the linear system of sections

Wk.ui0
; : : : ; uik

/ 2 H 0.Xk;OXk
.k0/˝ ��

k;0L
kC1/;

and we thus get a natural isomorphism

(12.6) OXk
.k0/˝ ��

k;0L
kC1 ' ˆ�OGr.1/ on Xk � Bk;

where Bk � Xk is the base locus of our linear system of Wronskians. The pres-
ence of the indeterminacy set Bk may create trouble in analyzing the positivity
of our line bundles, so we are going to use an appropriate blow-up to resolve the
indeterminacies. For this purpose, we introduce the ideal sheaf Jk;† � OXk

generated by the linear system †, and take a modification �k;† W bXk;† ! Xk

in such a way that ��
k;†

Jk;† D O bXk;†
.�Fk;†/ for some divisor Fk;† inbXk;†. Then ˆ is resolved into a morphism ˆ ı �k;† W bXk;† ! GrkC1.†/, and

on bXk;†, (12.6) becomes an everywhere defined isomorphism

(12.7) ��
k;†.OXk

.k0/˝��
k;0L

kC1/˝ O bXk;†
.�Fk;†/ ' .ˆ ı�k;†/

�OGr.1/:

In fact, we can simply take bXk to be the normalized blow-up of Jk;†, i.e.,
the normalization of the closure � � Xk � GrkC1.†/ of the graph of ˆ and
�k;† W bXk ! Xk to be the composition of the normalization map bXk ! � with
the first projection � ! Xk . ŒThe Hironaka desingularization theorem would
possibly allow us to replace bXk by a non-singular modification, and Fk;† by
a simple normal crossing divisor on the desingularization; we will avoid doing
so here, as we would otherwise need to show the existence of universal desin-
gularizations when .Xt ; †t / is a family of linear systems of k-jets of sections
associated with a family of algebraic varieties�. The following basic lemma was
observed by Ya Deng [Deng16].

12.8. Lemma. Locally over coordinate open sets U � X on which L�U is
trivial, there is a maximal “Wronskian ideal sheaf” J X

k
� Jk;† in OXk

achieved by linear systems † � H 0.U;L/. It is attained globally on X when-
ever the linear system † � H 0.X;L/ generates k-jets of sections of L at every
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point. Finally, it is “universal” in the sense that is does not depend on L and
behaves functorially under immersions: if  W X ! Y is an immersion and
J X

k
, J Y

k
are the corresponding Wronskian ideal sheaves in OXk

, OYk
, then

 �
k
J Y

k
D J X

k
with respect to the induced immersion  k W Xk ! Yk .

Proof. The (local) existence of such a maximal ideal sheaf is merely a con-
sequence of the strong Noetherian property of coherent ideals. As observed
at the end of Subsect. 6.A, the bundle Xk ! X is a locally trivial tower of
Pn�1-bundles, with a fiber Rn;k that is a rational k.n � 1/-dimensional va-
riety; over any coordinate open set U � X equipped with local coordinates
.z1; : : : ; zn/2B.0; r/�Cn, it is isomorphic to the product U � Rn;k , the fiber
over a point x0 2 U being identified with the central fiber through a translation
.t 7! f .t// 7! .t 7! x0 C f .t// of germs of curves. In this setting, J X

k
is

generated by the functions in OXk
associated with Wronskians

Xk �U 3 	 D fŒk� 7! Wk.s0; : : : ; sk/.f / 2 OXk
.k0/�Rn;k

; sj 2 H 0.U;OX /;

by taking local trivializations OXk
.k0/
0

' OXk ;
0
at points 	0 2 Xk . In fact, it

is enough to take Wronskians associated with polynomials sj 2 CŒz1; : : : ; zn�.
To see this, one can e.g. invoke Krull’s lemma for local rings, which implies
J X

k;
0
D T

`�0.J
X
k;
0

C m`C1

0

/, and to observe that `-jets of Wronskians

Wk.s0; : : : ; sk/ (mod m`C1

0

) depend only on the .k C `/-jets of the sections sj
in OX;x0

=mkC`C1
x0

, where x0 D �k;0.	0/. Therefore, polynomial sections sj
or arbitrary holomorphic functions sj define the same `-jets of Wronskians for
any `. Now, in the case of polynomials, it is clear that translations

.t 7�! f .t// 7�! .t 7�! x0 C f .t//

leave J X
k

invariant, hence J X
k

is the pull-back by the second projection
Xk �U ' U � Rn;k ! Rn;k of its restriction to any of the fibers ��1

k;0
.x0/ ' Rn;k .

As the k-jets of the sj ’s at x0 are sufficient to determine the restriction of our
Wronskians to ��1

k;0
.x0/, the first two claims of Lemma 12.8 follow. The uni-

versality property comes from the fact that L�U is trivial (cf. Property 12.3 (b))
and that germs of sections of OX extend to germs of sections of OY via the
immersion  . (Notice that in this discussion, one may have to pick Taylor ex-
pansions of order > k for f to reach all points of the fiber ��1

k;0
.x0/, the order

.2k � 1/ being sufficient by [Dem95, Proposition 5.11], but this fact does not
play any role here). A consequence of universality is that J X

k
does not depend

on coordinates nor on the geometry of X . ut
The above discussion combined with Lemma 12.8 leads to the following state-
ment.

naka01
Highlight

naka01
Highlight

naka01
Highlight
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12.9. Proposition. Assume that L generates all k-jets of sections (e.g. take
L D Ap with A very ample and p � k), and let † � H 0.X;L/ be a linear
system that also generates k-jets of sections at any point of X . Then we have a
universal isomorphism

��
k.OXk

.k0/˝ ��
k;0L

kC1/˝ O bXk;†
.�Fk/ ' .ˆ ı �k/

�OGrkC1.†/.1/;

where �k W bXk ! Xk is the normalized blow-up of the (maximal) ideal sheaf
J X

k
� OXk

associated with order k Wronskians, and Fk the universal divisor
of bXk resolving J X

k
.

12.C. Specialization to suitable hypersurfaces

Let Z be a non-singular .nC 1/-dimensional projective variety, and let A be a
very ample divisor on Z; the fundamental example is of course Z D PnC1 and
A D OPnC1.1/. Our goal is to show that a sufficiently general (n-dimensional)
hypersurface X D fx 2 Z I �.x/ D 0g defined by a section � 2 H 0.Z;Ad /,
d � 1, is Kobayashi hyperbolic. A basic idea, inspired by some of the main
past contributions, such as Brody–Green [BrGr77], Nadel [Nad89], Masuda–
Noguchi [MaNo96], Shiffman–Zaidenberg [ShZa02] and [Xie15], is to con-
sider hypersurfaces defined by special equations, e.g. deformations of unions of
hyperplane sections 
1 � � � 
d D 0 or of Fermat–Waring hypersurfaces

P
0�j�N 
d

j

D 0, for suitable sections 
j 2 H 0.Z;A/. Brotbek’s main idea developed in
[Brot17] is that a carefully selected hypersurface may have enough Wronskian
sections to imply the ampleness of some tautological jet line bundle—a Zariski
open property. Here, we take � 2 H 0.X;Ad / equal to a sum of terms

(12.10)
� D

X
0�j�N

ajm
ı
j ;

aj 2 H 0.Z;A�/; mj 2 H 0.Z;Ab/; n < N � k; d D ıb C �;

where ı � 1 and the mj are “monomials” of the same degree b, i.e., products
of b “linear” sections 
I 2 H 0.Z;A/, and the factors aj are general enough.
The integer � is taken in the range Œk; kC b� 1�, first to ensure thatH 0.Z;A�/

generates k-jets of sections, and second, to allow d to be an arbitrary large
integer (once ı � ı0 has been chosen large enough).

The monomials mj will be chosen in such a way that for suitable c 2 N,
1 � c � N , any subfamily of c termsmj shares one common factor 
I 2 H 0.X;A/.
To this end, we consider all subsets I � f0; 1; : : : ; N g with card I D c; there
are B WD �

N C1
c

�
subsets of this type. For all such I , we select sections 
I 2 H 0.Z;A/

such that
Q

I 
I D 0 is a simple normal crossing divisor in Z (with all of
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its components of multiplicity 1). For j D 0; 1; : : : ; N given, the number of
subsets I containing j is b WD �

N
c�1

�
. We put

(12.11) mj D
Y
I3j


I 2 H 0.Z;Ab/:

By construction, every family mi1
; : : : ; mic

of sections shares the common fac-
tor 
I 2 H 0.X;A/, where I D fi1; : : : ; icg. The first step consists in checking
that we can achieve X to be smooth with these constraints.

12.12. Lemma. Assume N � c.nC 1/. Then, for a generic choice of the sec-
tions aj 2 H 0.Z;A�/ and 
I 2 H 0.Z;A/, the hypersurface X D ��1.0/ � Z

defined by (12.10), (12.11) is non-singular. Moreover, under the same condition
for N , the intersection of

Q

I D 0 with X can be taken to be a simple normal

crossing divisor in X .

Proof. As the properties considered in the Lemma are Zariski open properties
in terms of the .N CB C 1/-tuple .aj ; 
I /, it is sufficient to prove the result for
a specific choice of the aj ’s: we fix here aj D Q
j 
��1

I.j /
, where Q
j 2 H 0.X;A/,

0 � j � N are new sections such that
Q Q
j Q 
I D 0 is a simple normal

crossing divisor, and I.j / is any subset of cardinal c containing j . Let H be
the hypersurface of degree d of PN CB defined in homogeneous coordinates
.zj ; zI / 2 CN CBC1 by h.z/ D 0, where

h.z/ D
X

0�j�N

zj z
��1

I.j /

Y
I3j

zı
I ;

and consider the morphism ˆ W Z ! PN CB such that ˆ.x/ D . Q
j .x/; 
I .x//.
With our choice of the aj ’s, we have � D h ı ˆ. Now, when the Q
j and 
I are
general enough, the mapˆ defines an embedding ofZ into PN CB (for this, one
needs N C B � 2.dimZ/ C 1 D 2n C 3, which is the case by our assump-
tions). Then, by definition,X is isomorphic to the intersection ofH withˆ.Z/.
Changing generically the Q
j and 
I ’s can be achieved by composing ˆ with a
generic automorphism g 2 Aut.PN CB/ D PGLN CBC1.C/ (as GLN CBC1.C/

acts transitively on .N C B C 1/-tuples of linearly independent linear forms).
As dimg ıˆ.Z/ D dimZ D nC 1, Lemma 12.12 will follow from a standard
Bertini argument if we can check that Sing.H/ has codimension at least .nC2/

in PN CB . In fact, this condition implies Sing.H/ \ .g ı ˆ.Z// D ; for g
generic, while g ıˆ.Z/ can be chosen transverse to Reg.H/. Now, a sufficient
condition for smoothness is that one of the differentials dzj , 0 � j � N , ap-
pears with a non-zero factor in dh.z/ (just neglect the other differentials �dzI in
this argument). We infer from this and the fact that ı � 2 that Sing.H/ consists
of the locus defined by

Q
I3j zI D 0 for all j D 0; 1; : : : ; N . It is the union of

the linear subspaces zI0
D � � � D zIN

D 0 for all possible choices of subsets Ij
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such that Ij 3 j . Since card Ij D c, the equality
S
Ij D f0; 1; : : : ; N g implies

that there are at least d.N C 1/=ce distinct subsets Ij involved in each of these
linear subspaces, and the equality can be reached. Therefore codim Sing.H/ D
d.N C 1/=ce � n C 2 as soon as N � c.n C 1/. By the same argument, we
can assume that the intersection of Z with at least .nC 2/ distinct hyperplanes
zI D 0 is empty. In order that

Q

I D 0 defines a normal crossing divisor at

a point x 2 X , it is sufficient to ensure that for any family G of coordinate
hyperplanes zI D 0, I 2 G , with card G � n C 1, we have a “free” index
j … S

I2G I such that xI ¤ 0 for all I 3 j , so that dh involves a non-zero
term � dzj independent of the dzI , I 2 G . If this fails, there must be at least
.nC 2/ hyperplanes zI D 0 containing x, associated either with I 2 G , or with
other I ’s covering �.

S
I2G I /. The corresponding bad locus is of codimension

at least .nC 2/ in PN CB and can be avoided by g.ˆ.Z// for a generic choice
of g 2 Aut.PN CB/. Then X \ T

I2G 

�1
I .0/ is smooth of codimension equal

to card G . ut

12.D. Construction of highly divisible Wronskians

To any families s; O
 of sections s1; : : : ; sr 2 H 0.Z;Ak/, O
1; : : : ; O
r 2 H 0.Z;A/,
and to each subset J � f0; 1; : : : ; N g with cardJ D c, we associate a Wron-
skian operator of order k (i.e., a .k C 1/ � .k C 1/-determinant)

(12.13)
Wk;s; O�;a;J D Wk.s1 O
d�k

1 ; : : : ; sr O
d�k
r ; .ajm

ı
j /j 2�J /;

r D k C c �N; j�J j D N � c:
We assume here again that the O
j are chosen so that

Q O
j Q 
I D 0 defines a
simple normal crossing divisor in Z and X . Since sj O
d�k

j ; ajm
ı
j 2 H 0.Z;Ad /,

formula (12.4) applied with L D Ad implies that

(12.14) Wk;s; O�;a;J 2 H 0.Z;Ek;k0T �
Z ˝ A.kC1/d /:

However, we are going to see that Wk;s; O�;a;J and its restriction Wk;s; O�;a;J �X
are divisible by monomials O
˛
ˇ of very large degree, where O
 , resp. 
 , de-
notes the collection of sections O
j , resp. 
I in H 0.Z;A/. In this way, we will
see that we can even obtain a negative exponent of A after simplifying O
˛
ˇ

inWk;s; O�;a;J �X . This simplification process is a generalization of techniques al-
ready considered by [Siu87] and [Nad89] (and later [DeEG97]) in relation with
the use of meromorphic connections of low pole order.

12.15. Lemma. Assume that ı � k. Then the Wronskian operator Wk;s; O�;a;J ,
resp. Wk;s; O�;a;J �X , is divisible by a monomial O
˛
ˇ , resp. O
˛
ˇ 
ı�k

J (with a

multiindex notation O
˛
ˇ D Q O
 j̨

j

Q



ˇI

I ), and

˛; ˇ � 0; j˛j D r.d � 2k/; jˇj D .N C 1 � c/.ı � k/b:
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Proof. Wk;s; O�;a;J is obtained as a determinant whose r first columns are the
derivatives D`.sj O
d�k

j / and the last .N C 1 � c/ columns are the D`.ajm
ı
j /,

divisible respectively by O
d�2k
j and mı�k

j . As mj is of the form 
� , j
 j D b,
this implies the divisibility of Wk;s; O�;a;J by a monomial of the form O
˛
ˇ , as
asserted. Now, we explain why one can gain the additional factor 
ı�k

J divid-
ing the restriction Wk;s; O�;a;J �X . First notice that 
J does not appear as a fac-
tor in O
˛
ˇ , precisely because the Wronskian involves only terms ajm

ı
j with

j … J , and thus these mj ’s do not contain 
J . Let us pick j0 D min.�J / 2
f0; 1; : : : ; N g. Since X is defined by

P
0�j�N ajm

ı
j D 0, we have identically

aj0
mı

j0
D �

X
i2J

aim
ı
i �

X
i2�J�fj0g

aim
ı
i

in restriction to X , whence (by the alternate property of Wk.�/)

Wk;s; O�;a;J �X D �
X
i2J

Wk.s1 O
d�k
1 ; : : : ; sr O
d�k

r ; aim
ı
i ; .ajm

ı
j /j 2�J�fj0g/�X :

However, all termsmi , i 2 J , contain by definition the factor 
J , and the deriva-
tives D`.�/ leave us a factor mı�k

i at least. Therefore, the above restricted
Wronskian is also divisible by 
ı�k

J , thanks to the fact that
Q O
j Q 
I D 0

forms a simple normal crossing divisor in X . ut
12.16. Corollary. For ı � k, there exists a monomial O
˛J 
ˇJ dividing Wk;s; O�;a;J �X
such that

j˛J j C jˇJ j D .k C c �N/.d � 2k/C .N C 1 � c/.ı � k/b C .ı � k/;
and we haveeWk;s; O�;a;J �X WD . O
˛J 
ˇJ /�1Wk;s; O�;a;J �X 2 H 0.X;Ek;k0T �

X ˝ A�p/;

where
(12.17)
p D j˛J jCjˇJ j� .kC1/d D .ı�k/� .kCc�N/2k� .N C1Cc/.kbC�/:

In particular, we have p > 0 for ı large enough (all other parameters being
fixed or bounded), and under this assumption, the fundamental vanishing the-
orem 8.15 implies that all entire curves f W C ! X are annihilated by these
Wronskian operators.

Proof. In fact,

.kC1/d D .kCc�N/dC.NC1�c/d D .kCc�N/dC.NC1�c/.ıbC�/;
and we get (12.17) by subtraction. ut
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12.E. Control of the base locus for sufficiently general coefficients aj in �

The next step is to control more precisely the base locus of these Wronskians
and to find conditions on N , k, c, d D bı C � ensuring that the base locus is
empty for a generic choice of the sections aj in � D P

ajmj . Although we
will not formally use it, the next lemma is useful to realize that the base locus is
related to a natural rank condition.

12.18. Lemma. Set uj WD ajm
ı
j . The base locus in X reg

k
of the above Wron-

skians Wk;s; O�;a;J �X , when s; O
 vary, consists of jets fŒk�.0/ 2 X
reg
k

such that
the matrix .D`.uj ı f /.0//0�`�k; j 2�J is not of maximal rank (i.e., of rank <
card �J D NC1�c); if ı > k, the base locus includes all jets fŒk�.0/ such that
f .0/ 2 S

I¤J 

�1
I .0/. When J also varies, the base locus of all Wk;s; O�;a;J �X

in the Zariski open set X 0
k

WD X
reg
k

�
S

jI jDc 

�1
I .0/ consists of all k-jets such

that rank.D`.uj ı f /.0//0�`�k; 0�j�N � N � c.

Proof. If ı > k and mj ı f .0/ D 0 for some j 2 J , we have in fact D`.uj ı
f /.0/ D 0 for all derivatives ` � k, because the exponents involved in all
factors of the differentiated monomial ajm

ı
j are at least equal to ı � k > 0.

Hence the rank of the matrix cannot be maximal. Now, assume thatmj ıf .0/ ¤
0 for all j 2 �J , i.e.,

(12.19) x0 WD f .0/ 2 X �
[

j 2�J

m�1
j .0/ D X �

[
I¤J


�1
I .0/:

We take sections O
j so that O
j .x0/ ¤ 0, and then adjust the k-jet of the sections
s1; : : : ; sr in order to generate any matrix of derivatives .D`.sj .f / O
j .f /d�k/

.0//0�`�k; j 2�J (the fact that f 0.0/ ¤ 0 is used for this!). Therefore, by ex-
panding the determinant according to the last .N C 1� c/ columns, we see that
the base locus is defined by the equations
(12.20)
det.D`.uj .f //.0//`2L; j 2�J D 0; 8L � f0; 1; : : : ; kg; jLj D N C 1 � c;

equivalent to the non-maximality of the rank. The last assertion follows by a
simple linear algebra argument. ut

For a finer control of the base locus, we adjust the family of coefficients

(12.21) a D .aj /0�j�N 2 S WD H 0.Z;A�/˚.N C1/

in our section � D P
ajm

ı
j 2 H 0.Z;Ad /, and denote by Xa D ��1.0/ � Z

the corresponding hypersurface. By Lemma 12.12, we know that there is a
Zariski open set U � S such that Xa is smooth and

Q

I D 0 is a sim-

ple normal crossing divisor in Xa for all a 2 U . We consider the Semple
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tower Xa;k WD .Xa/k of Xa, the “universal blow-up” �a;k W bXa;k ! Xa;k

of the Wronskian ideal sheaf Ja;k such that ��
a;k

Ja;k D O bXa;k
.�Fa;k/ for

some “Wronskian divisor” Fa;k in bXa;k . By the universality of this construction
(cf. Lemma 12.8), we can also embed Xa;k in the Semple tower Zk of Z, blow
up the Wronskian ideal sheaf J Z

k
of Zk to get a Wronskian divisor FZ

k
in bZk ,

where �k W bZk ! Zk is the blow-up map. Then Fa;k is the restriction of FZ
k

to bXa;k � bZk . Our section eWk;s; O�;a;J �Xa
is the restriction of a meromorphic

section defined on Z, namely
(12.22)
. O
˛J 
ˇJ /�1Wk;s; O�;a;J D . O
˛J 
ˇJ /�1Wk.s1 O
d�k

1 ; ::: ; sr O
d�k
r ; .ajm

ı
j /j 2�J /:

It induces over the Zariski open setZ0 D Z�
S

I 

�1
I .0/ a holomorphic section

(12.23) �k;s; O�;a;J 2 H 0.bZ0
k; �

�
k.OZk

.k0/˝ ��
k;0A

�p/˝ ObZk
.�FZ

k //

(notice that the relevant factors O
j remain divisible on the whole variety Z).
By construction, thanks to the divisibility property explained in Lemma 12.15,
the restriction of this section to bX 0

a;k
D bXa;k \ bZ0

k
extends holomorphically

to bXa;k , i.e.,
(12.24)
�

k;s; O�;a;J � bXa;k
2 H 0.bXa;k; �

�
a;k.OXa;k

.k0/˝ ��
k;0A

�p/˝ O bXa;k
.�Fa;k//:

(Here the fact that we took bXk;a to be normal implies that the divided section
is indeed holomorphic on bXk;a, as bXk;a \ ��1

k
.��1

k;0

T
I2G 


�1
I .0// has the ex-

pected codimension D card G for any family G ).

12.25. Lemma. Let V be a finite dimensional vector space over C,‰ W V p ! C

a non-zero alternating multilinear form, and let m; c 2 N, c < m � p,
r D p C c � m � 0. Then the subset T � V m of vectors .v1; : : : ; vm/ 2 V m

such that

(��)
‰.h1; : : : ; hr ; .vj /j 2�J / D 0

for all J � f1; : : : ; mg, jJ j D c, and all h1; : : : ; hr 2 V ;
is a closed algebraic subset of codimension � .c C 1/.r C 1/.

Proof. A typical example is ‰ D det on a p-dimensional vector space V ,
then T consists of m-tuples of vectors of rank < p � r , and the assertion con-
cerning the codimension is well-known (we will reprove it anyway). In gen-
eral, the algebraicity of T is obvious. We argue by induction on p, the result
being trivial for p D 1 (the kernel of a non-zero linear form is indeed of
codimension � 1). If K is the kernel of ‰, i.e., the subspace of vectors v 2 V

such that ‰.h1; : : : ; hp�1; v/ D 0 for all hj 2 V , then ‰ induces an alternating
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multilinear form ‰ on V=K, whose kernel is equal to f0g. The proof is thus
reduced to the case when Ker‰ D f0g. Notice that we must have dimV � p,
otherwise ‰ would vanish. If card �J D m � c D 1, condition (��) implies
that vj 2 Ker‰ D f0g for all j , and hence codimT D dimV m � mp D
.c C 1/.r C 1/, as desired. Now, assume m � c � 2, fix vm 2 V � f0g and
consider the non-zero alternating multilinear form on V p�1 such that

‰0
vm
.w1; : : : ; wp�1/ WD ‰.w1; : : : ; wp�1; vm/:

If .v1; : : : ; vm/ 2 T , then .v1; : : : ; vm�1/ belongs to the set T 0
vm

associated with
the new data .‰0

vm
; p � 1;m � 1; c; r/. The induction hypothesis implies that

codimT 0
vm

� .cC 1/.r C 1/, and since the projection T ! V to the first factor
admits the T 0

vm
as its fibers, we conclude that

codimT \ ..V � f0g/ � V m�1/ � .c C 1/.r C 1/:

By permuting the arguments vj , we also conclude that

codimT \ .V k�1 � .V � f0g/ � V m�k/ � .c C 1/.r C 1/

for all k D 1; : : : ; m. The union
S

k.V
k�1 � .V � f0g/� V m�k/ � V m leaves

out only f0g � V m whose codimension is at least mp � .c C 1/.r C 1/, so
Lemma 12.25 follows. ut
12.26. Proposition. Consider in U � bZ0

k
the set � of pairs .a; 	/ such that

�k;s; O�;a;J .	/ D 0 for all choices of s, O
 and J � f0; 1; : : : ; N g with cardJ D c.
Then � is an algebraic set of dimension

dim� � dimS � .c C 1/.k C c �N C 1/C nC 1C kn:

As a consequence, if .c C 1/.k C c � N C 1/ > n C 1 C kn, there exists
a 2 U � S such that the base locus of the family of sections �k;s; O�;a;J in bXa;k

lies over
S

I Xa \ 
�1
I .0/.

Proof. The idea is similar to [Brot17, Lemma 3.8], but somewhat simpler in the
present context. Let us consider a point 	 2 bZ0

k
and the k-jet fŒk� D �k.	/ 2 Z0

k
,

so that x D f .0/ 2 Z0 D Z �
S

I 

�1
I .0/. Let us take the O
j such that O
j .x/ ¤ 0.

Then, we do not have to pay attention to the non-vanishing factors O
˛J 
ˇJ , and
the k-jets of sections mj and O
d�k

j are invertible near x. Let eA be a local
generator of A near x and eL a local generator of the invertible sheaf

L D ��
kOZk

.k0/˝ ObZk
.�FZ

k /

near 	 2 bZ0
k

. Let J kOZ;x D OZ;x=m
kC1
Z;x be the vector space of k-jets of

functions on Z at x. By definition of the Wronskian ideal and of the associated
divisor FZ

k
, we have a non-zero alternating multilinear form

‰ W .J kOZ;x/
kC1 �! C; .g0; : : : ; gk/ 7�! ��

kWk.g0; : : : ; gk/.	/=eL .	/:
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The simultaneous vanishing of our sections at 	 is equivalent to the vanishing of

(12.27) ‰.s1 O
d�k
1 e�d

A ; : : : ; sr O
d�k
r e�d

A ; .ajm
ı
j e

�d
A /j 2�J /

for all .s1; : : : ; sr /. Since A is very ample and � � k, the power A� generates
k-jets at every point x 2 Z, and thus the morphisms

H 0.Z;A�/ �! J kOZ;x; a 7�! amı
j e

�d
A and

H 0.Z;Ak/ �! J kOZ;x; s 7�! s O
d�k
j e�d

A

are surjective. Lemma 12.25 applied with r D k C c � N and .p;m/ replaced
by .kC1;N C1/ implies that the codimension of families a D .a0; : : : ; aN / 2
S D H 0.Z;A�/˚.N C1/ for which �k;s; O�;a;J .	/ D 0 for all choices of s, O
 and
J is at least .c C 1/.k C c � N C 1/, i.e., the dimension is at most dimS �
.c C 1/.k C c � N C 1/. When we let 	 vary over bZ0

k
which has dimension

.n C 1/ C kn and take into account the fibration .a; 	/ 7! 	 , the dimension
estimate of Proposition 12.26 follows. Under the assumption

(12.28) .c C 1/.k C c �N C 1/ > nC 1C kn;

we have dim� < dimS , and so the image of the projection � ! S , .a; 	/ 7! a,
is a constructible algebraic subset distinct from S . This concludes the proof. ut

Our final goal is to completely eliminate the base locus. Proposition 12.26
indicates that we have to pay attention to the intersections Xa \ 
�1

I .0/. For
x 2 Z, we let G be the family of hyperplane sections 
I D 0 that contain x. We
introduce the set P D f0; 1; : : : ; N g �S

I2G I and the smooth intersection

ZG D Z \
\
I2G


�1
I .0/;

so that N 0 C 1 WD cardP � N C 1 � c card G and dimZG D nC 1 � card G .
If a 2 U is such that x 2 Xa, we also look at the intersection

XG ;a D Xa \
\
I2G


�1
I .0/;

which is a smooth hypersurface of ZG . In that situation, we consider Wron-
skians Wk;s; O�;a;J as defined above, but we now take J � P , cardJ D c,
�J D P � J , r 0 D k C c �N 0.

12.29. Lemma. In the above setting, if we assume ı > k, the restriction
Wk;s; O�;a;J �XG ;a

is still divisible by a monomial O
˛J 
ˇJ such that

j˛J j C jˇJ j D .k C c �N 0/.d � 2k/C .N 0 C 1 � c/.ı � k/b C .ı � k/:
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Therefore, if

p0 D j˛J jCjˇJ j�.kC1/d D .ı�k/�.kCc�N 0/2k�.N 0 C1Cc/.kbC�/
as in (12.17), we obtain again holomorphic sectionseWk;s; O�;a;J �XG ;a

WD . O
˛J 
ˇJ /�1Wk;s; O�;a;J �XG ;a
2 H 0.XG ;a; Ek;k0T �

X ˝ A�p0

/;

�k;s; O�;a;J �	�1
k;0

.XG ;a/

2 H 0.��1
k;0.XG ;a/; �

�
a;k.OXa;k

.k0/˝ ��
k;0A

�p0

/˝ O bXa;k
.�Fa;k//:

Proof. The arguments are similar to those employed in the proof of Lemma 12.15.
Let fŒk� 2 Xa;k be a k-jet such that f .0/ 2 XG ;a (the k-jet need not be entirely
contained in XG ;a). Putting j0 D min.�J /, we observe that we have on XG ;a

an identity

aj0
mı

j0
D �

X
i2P�fj0g

aim
ı
i D �

X
i2J

aim
ı
i �

X
P�.J [fj0g/

aim
ı
i ;

because mi D Q
I3i 
I D 0 on XG ;a for i 2 �P D S

I2G I (one of the factors

I is such that I 2 G , so 
I D 0). If we compose with a germ t 7! f .t/ such
that f .0/ 2 XG ;a (even though f does not necessarily lie entirely in XG ;a), we
get

aj0
mı

j0
.f .t// D �

X
i2J

aim
ı
i .f .t// �

X
P�.J [fj0g/

aim
ı
i .f .t//CO.tkC1/

as soon as ı > k. Hence we have an equality for all derivatives D`.�/, ` � k at
t D 0, and

Wk;s; O�;a;J �XG ;a
.fŒk�/

D �
X
i2J

Wk.s1 O
d�k
1 ; : : : ; sr 0 O
d�k

r 0 ; aim
ı
i ; .ajm

ı
j /j 2P�.J [fj0g//�XG ;a

.fŒk�/:

Then, again, 
ı�k
J is a new additional common factor of all terms in the sum,

and we conclude as in Lemma 12.15 and Corollary 12.16. ut
Now, we analyze the base locus of these new sections on[

a2U

��1
a;k�

�1
k;0.XG ;a/ � ��1

k ��1
k;0.ZG / � bZk :

As x runs inZG andN 0 < N , Lemma 12.25 shows that (12.28) can be replaced
by the less demanding condition

(12:280) .cC1/.kCc�N 0 C1/ > nC1�card G Ckn D dim��1
k ��1

k;0.ZG /:
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A proof entirely similar to that of Proposition 12.26 shows that for a generic
choice of a 2 U , the base locus of these sections on bXG ;a;k projects ontoS

I2�G XG ;a \ 
�1
I .0/. Arguing inductively on card G , the base locus can be

shrinked step by step down to empty set (but it is in fact sufficient to stop when
XG ;a \ 
�1

I .0/ reaches dimension 0).

12.F. Nefness and ampleness of appropriate tautological line bundles

At this point, we have produced a smooth family XS ! U � S of particular
hypersurfaces in Z, namely Xa D f�a.z/ D 0g, a 2 U , for which a certain
“tautological” line bundle has an empty base locus for sufficiently general coef-
ficients:

12.30. Corollary. Under condition (12.28) and the hypothesis p > 0 in (12.17),
the following properties hold.

(a) The line bundle

La WD ��
a;k.OXa;k

.k0/˝ ��
k;0A

�1/˝ O bXa;k
.�Fa;k/

is nef on bXa;k for general a 2 U , i.e., for a 2 U 0 � U , where U 0 is a dense
Zariski open subset.

(b) Let �a D P
2�`�k �`Da;` be a positive rational combination of vertical

divisors of the Semple tower and q 2 N, q � 1, an integer such that

L 0
a WD OXa;k

.1/˝ Oa;k.��a/˝ ��
k;0A

q

is ample on Xa;k . Then the Q-line bundle

L 0
a;";� WD ��

a;k.OXa;k
.k0/˝ OXa;k

.�"�a/˝ ��
k;0A

�1Cq"/

˝ O bXa;k
.�.1C "�/Fa;k/

is ample on bXa;k for a 2 U 0, for some q 2 N and "; � 2 Q>0 arbitrarily
small.

Proof. (a) This would be obvious if we had global sections generating La on
the whole of bXa;k , but our sections are only defined on a stratification of bXa;k .
In any case, if C � bXa;k is an irreducible curve, we take a maximal family G
such that C � XG ;a;k . Then, by what we have seen, for a 2 U general enough,
we can find global sections of La on bXG ;a;k such that C is not contained in
their base locus. Hence La � C � 0 and La is nef for a in a dense Zariski open
set U 0 � U .
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(b) The existence of�a and q follows from Proposition 7.19 and Corollary 7.21,
which even provide universal values for �` and q. After taking the blow up
�a;k W bXa;k ! Xa;k (cf. (12.7)), we infer that

L 0
a;� WD ��

a;kL 0 ˝ O bXa;k
.��Fa;k/

D ��
a;k.OXa;k

.1/˝ OXa;k
.��a/˝ ��

k;0A
q/˝ O bXa;k

.��Fa;k/

is ample for � > 0 small. The result now follows by taking a combination

La;";� D L 1�"=k0

a ˝ .L 0
a;�/

": �
12.31. Corollary. Let X ! � be the universal family of hypersurfaces X� D
f�.z/ D 0g, � 2 �, where � � P.H 0.Z;Ad // is the dense Zariski open set
over which the family is smooth. On the “Wronskian blow-up” bX�;k of X�;k , let
us consider the line bundle

L�;";� WD ��
�;k.OX�;k

.k0/˝ OX�;k
.�"�� /˝ ��

k;0A
�1Cq"/

˝ O bX�;k
.�.1C "�/F�;k/

associated with the same choice of constants as in Corollary 12.30. Then L 0
�;";�

is ample on bX�;k for � in a dense Zariski open set �0 � �.

Proof. By Corollary 12.30 (b), we can find �0 2 H 0.Z;Ad / such that X�0
D

��1
0 .0/ is smooth and L m

�0;";� is an ample line bundle on bX�0;k (m 2 N�). As
ampleness is a Zariski open condition, we conclude that L m

�;";� remains ample
for a general section � 2 H 0.Z;Ad /, i.e., for Œ�� in some Zariski open set�0 �
�. Since ��;k.F�;k/ is contained in the vertical divisor of X�;k , we conclude
by Theorem 8.8 that X� is Kobayashi hyperbolic for Œ�� 2 �. ut

12.G. Final conclusion and computation of degree bounds

At this point, we fix our integer parameters to meet all conditions that have been
found. We must have N � c.n C 1/ by Lemma 12.12, and for such a large
value of N , condition (12.28) can hold only when c � n, so we take c D n and
N D n.nC1/. Inequality (12.28) then requires k large enough, k D n3Cn2C1
being the smallest possible value. We find

b D
 
N

c � 1

!
D
 
n2 C n

n � 1

!
D n

.n2 C n/ � � � .n2 C 2/

nŠ
:

We have n2 C k D n2.1 C k=n2/ < n2 exp.k=n2/ and by Stirling’s formula,
nŠ >

p
2�n .n=e/n. Therefore

b <
n2n�1 exp..2C � � � C n/=n2/p

2�n .n=e/n
<
enC 1

2
C 1

2np
2�

nn� 3
2 :
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Finally, we divide d � k by b, get in this way d � k D bıC �, 0 � � < b, and
put � D �C k � k. Then ı C 1 � .d � k C 1/=b and formula (12.17) yields

p D .ı � k/ � .n3 C 1/2k � .n2 C 2nC 1/.kb C �/

� .d � k C 1/=b � 1 � .2n3 C 3/k � .n2 C 2nC 1/.kb C k C b � 1/:
Therefore p > 0 is achieved as soon as

d � dn D k C b.1C .2n3 C 3/k C .n2 C 2nC 1/.kb C k C b � 1//;
where

k D n3 C n2 C 1; b D
 
n2 C n

n � 1

!
:

The dominant term in dn is k.n2C2nC1/b2 	 e2nC1n2nC2=2� . By more pre-
cise numerical calculations and Stirling’s asymptotic expansion, one can show
in fact that dn � b.n C 4/ .en/2nC1=2�c for n � 4 (which is also an equiv-
alent and a close approximation as n ! C1), while d1 D 61, d2 D 6685,
d3 D 2825761. We can now state the main result of this section.

12.32. Theorem. Let Z be a projective .nC 1/-dimensional manifold and A a
very ample line bundle on Z. Then, for a general section � 2 H 0.Z;Ad / and
d � dn, the hypersurface X� D ��1.0/ is Kobayashi hyperbolic, and in fact,
algebraically jet hyperbolic in the sense of Definition 11.11. The bound dn for
the degree can be taken to be

dn D b.nC 4/ .en/2nC1=2�c for n � 4;

and for n � 3, one can take d1 D 4, d2 D 6685, d3 D 2825761.

A simpler (and less refined) choice is Qdn D b1
3
.en/2nC2c, which is valid for

all n. These bounds are only slightly weaker than the ones found by Ya Deng in
[Deng16], [Deng17], namely Qdn D O.n2nC6/.

Proof. The bound d1 D 4 (instead the insane value d1 D 61) can be obtained
in an elementary way by adjunction: sections of A can be used to embed any
polarized surface .Z;A/ in PN (one can always take N D 5), and we have
KX�

D KZ�X�
˝ Ad , along with a surjective morphism �2

PN ! KZ . As
�2

PN ˝ O.3/ D ƒN �2.TPN ˝ O.�1// is generated by sections, this implies
thatKZ ˝A3 is also generated by sections, and henceKX�

is ample for d � 4.
ut
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12.H. Further comments

12.33. Our bound dn is rather large, but just as in Ya Deng’s effective approach
of Brotbek’s theorem [Deng17], the bound holds for a property that looks sub-
stantially stronger than hyperbolicity, namely the ampleness of the pull-back
of some (twisted) jet bundle ��

k
O bXk

.a�/˝ O bXk
.�F 0

k
/. Subsect. 11.B provides

much weaker conditions for hyperbolicity, but checking them is probably more
involved.

12.34. After these notes were written, Riedl and Yang [RiYa18] proved the im-
portant and somewhat surprising result that the lower bound estimates dGG.n/

and dKob.n/, respectively for the Green–Griffiths–Lang and Kobayashi conjec-
tures for general hypersurfaces in PnC1, can be related by dKob.n/ WD dGG.2n � 2/.
This should be understood in the sense that a solution of the generic .2n � 2/-
dimensional Green–Griffiths conjecture for d � dGG.2n � 2/ implies a so-
lution of the n-dimensional Kobayashi conjecture for the same lower bound.
We refer to [RiYa18] for the precise statement, which requires an ad hoc as-
sumption on the algebraic dependence of the Green–Griffiths locus with respect
to a variation of coefficients in the defining polynomials. In combination with
[DMR10], this gives a completely new proof of the Kobayashi conjecture, and
the order 1 bound dGG.n/ D O.exp.n1C"// of [Dem12] implies a similar bound
dKob.n/ D O.exp.n1C"// for the Kobayashi conjecture—just a little bit weaker
than what our direct proof gave (Theorem 12.32). In [MeTa19], Merker and Ta
were able to improve the Green–Griffiths bound to dGG.n/ D o..

p
n logn/n/,

using a strengthening of Darondeau’s estimates [Dar16a], [Dar16b], along with
very delicate calculations. The Riedl–Yang result then implies dKob.n/ D
O..n logn/nC1/, which is the best bound known at this time.

12.35. In [Ber18], G. Bérczi stated a positivity conjecture for Thom polynomi-
als of Morin singularities (see also [BeSz12]), and showed that it would imply a
polynomial bound dn D 2n9 C1 for the generic hyperbolicity of hypersurfaces.

12.36. In the unpublished preprint [Dem15], we introduced an alternative strat-
egy for the proof of the Kobayashi conjecture which appears to be still incom-
plete at this point. We nevertheless hope that a refined version could one day
lead to linear bounds such as dKob.n/ D 2nC 1. The rough idea was to estab-
lish a k-jet analogue of Claire Voisin’s proof [Voi96] of the Clemens conjecture.
Unfortunately, Lemma 5.1.18 as stated in [Dem15] is incorrect—the assertion
concerning the � divisor introduced there simply does not hold. It is however
conceivable that a weaker statement holds, in the form of a control of the de-
gree of the divisor�, and in a way that would still be sufficient to imply similar
consequences for the generic positivity of tautological jet bundles, as demanded
e.g. in Subsect.11.B.
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