

Équations d'Einstein, interactions fondamentales de la physique, courbure et variétés de Calabi-Yau

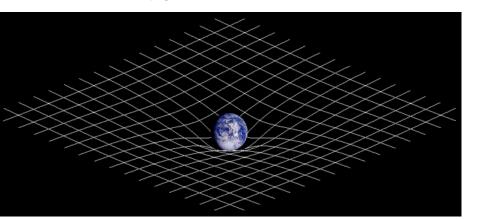
Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes, France

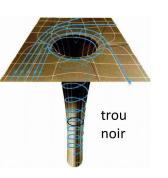
16 février 2017 / Colloquium de l'Université de Pau

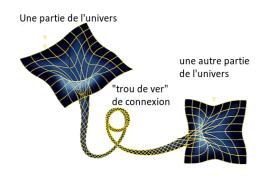
Espace-temps einsteinien

Selon Einstein et sa théorie de la relativité générale (1907–1915), nous vivons dans un espace-temps de dimension 4, courbé sous l'influence du champ gravitationnel :



"Trous noirs" et "trous de ver"?

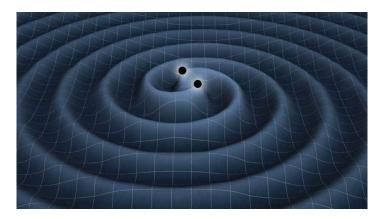




La question de savoir si l'univers est ouvert ou fermé agite beaucoup les astrophysiciens : cela dépend de la densité de matière présente dans l'univers ... seule une densité suffisante permettrait qu'il se referme sur lui-même.

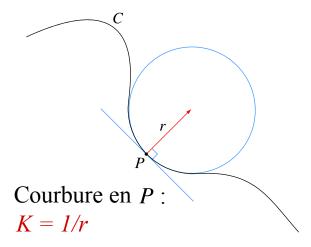
Ondes gravitationnelles

La relativité générale a reçu récemment une confirmation très importante, grâce à la détection des ondes gravitationnelles par l'instrument LIGO en septembre 2015.



Comment calcule-t-on la courbure ?

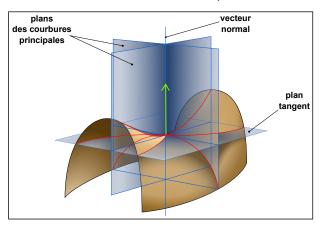
Une courbe et son cercle osculateur de rayon r



Si le rayon $r = \infty$, la courbure K est nulle.

Coefficients de courbure d'une surface

Les deux courbures d'une surface dans un espace de dimension 3



$$K_1=\frac{1}{r_1}>0,$$

$$K_2=\frac{1}{r_2}<0$$

La courbure moyenne

Courbure moyenne : $M = \frac{1}{2}(K_1 + K_2)$

Une bulle de savon "libre" est de courbure moyenne nulle en tout

point : $K_1 = -K_2$, M = 0

Caténoïde:

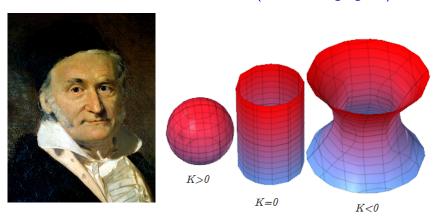
 $x = a \cosh u \cos \theta$

 $y = a \cosh u \sin \theta$

z = au

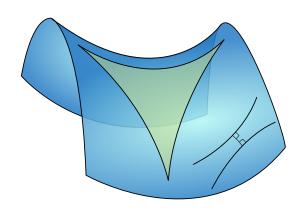
La courbure de Gauss

Carl Friedrich Gauss (1777-1855) : $K = K_1 \times K_2$ est invariant par déformation d'une surface inextensible (theorema egregium)



Le cylindre peut s'aplatir, pas la sphère ni le caténoïde.

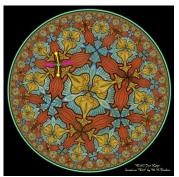
La courbure de Gauss (formule de Gauss-Bonnet)



somme des angles d'un triangle géodésique $=\pi+\iint_{\mathcal{T}} K \, dS$

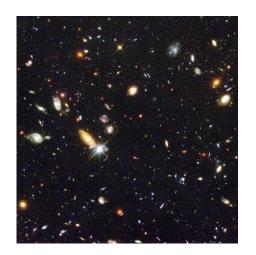
Espace homogène / localement symétrique ?

Un espace X est dit symétrique s'il admet un tout point une "symétrie" par rapport à ce point



Dans ce cas il admet un groupe de transformations isométriques G et X est un espace homogène G/H.

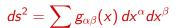
Mais l'univers n'est pas homogène...



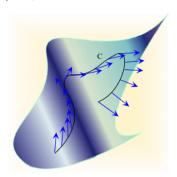
"Grumeaux" de galaxies

Métrique riemannienne / Tenseur de courbure

Bernhard Riemann (1826–1866) / espace à *n* dimensions



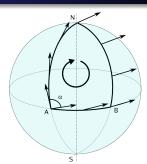
Métrique riemannienne

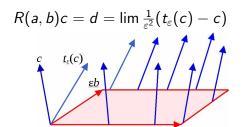


$$R_{\alpha\beta\gamma}^{\delta}, \quad 1 \leq \alpha, \beta, \gamma, \delta \leq n.$$

Tenseur de courbure de Riemann (calcul précisé par Levi-Civita)

Courbure et transport parallèle

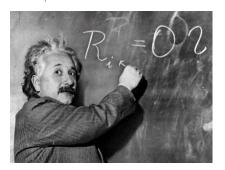




Tenseur de Ricci / équation d'Einstein

Le tenseur de Ricci est une sorte de "courbure moyenne" :

$$R_{lphaeta} = \sum_{\gamma} R_{lphaeta\gamma}^{\gamma} = {\sf trace\ du\ tenseur\ de\ courbure}$$



Équation d'Einstein (1879–1955) de la relativité générale

$$R_{lphaeta}-\Big(rac{1}{2}R-\Lambda\Big)g_{lphaeta}=rac{8\pi G}{c^4}T_{lphaeta}.$$

Équation d'Einstein en mathématiques

Equation "simplifiée" (univers vide avec constante cosmologique λ)

$$R_{\alpha\beta} = \lambda g_{\alpha\beta}, \qquad \lambda = \text{constante}.$$

Il est intéressant de regarder la même situation en géométrie kählérienne. Une métrique kählérienne sur une variété complexe X avec des coord. holomorphes (z_1, \ldots, z_n) est une forme hermitienne

$$\omega(z) = i \sum\nolimits_{1 \le \alpha, \beta \le n} \omega_{\alpha\beta}(z) dz^{\alpha} \wedge d\overline{z^{\beta}}$$

telle que $d\omega=0$ en tant que 2-forme. C'est donc un cas particulier de la géométrie symplectique. La norme d'un vecteur tangent $\xi=\sum \xi^{\alpha} \frac{\partial}{\partial z^{\alpha}} \in \mathcal{T}_{X}$ est donnée par

$$\|\xi\|_{\omega}^2 = \sum_{\alpha,\beta} \omega_{\alpha\beta}(z) \xi^{\alpha} \, \overline{\xi^{\beta}}.$$

On vérifie qu'il existe en tout point des coordonnées holomorphes t.q.

$$\omega_{lphaeta}(z) = \langle rac{\partial}{\partial z^lpha}, rac{\partial}{\partial z^eta}
angle = \delta_{lphaeta} - \sum
olimits_{j,k} c_{lphaeta jk} z^j \, \overline{z^k} + O(|z|^3).$$

Tenseur de courbure kählérien et forme de Ricci

Le tenseur à 4 indices $(c_{\alpha\beta jk})$ est en fait le tenseur de courbure du fibré tangent T_X pour la métrique ω . Si $d\lambda(z)$ est la mesure de lebesgue (euclidienne) sur \mathbb{C}^n , la forme volume associée à ω est

$$dV_{\omega} = \det(\omega_{lphaeta})\,d\lambda(z) = \Big(1 - \sum_{lpha,j,k} c_{lphalpha jk} z^j\,\overline{z^k} + O(|z|^3)\Big)d\lambda(z)$$

et on trouve

$$\log \det(\omega_{\alpha\beta}) = -\sum_{\alpha,j,k} c_{\alpha\alpha jk} z^j \, \overline{z^k} + \mathit{O}(|z|^3).$$

On introduit par définition

$$\operatorname{Ricci}(\omega)_{|z=0} = \sum_{\alpha,i,k} c_{\alpha\alpha jk} dz^j \wedge \overline{dz^k}.$$

Ceci donne la formule fondamentale

$$\operatorname{Ricci}(\omega) = -i\partial\overline{\partial}\log\det(\omega_{\alpha\beta})$$

qui s'interprète par le fait que le tenseur de Ricci mesure la «déviation» du volume par rapport à celui d'une métrique plate.

Équation de Kähler-Einstein

Cette équation demande la proportionnalité de la courbure de Ricci à la métrique kählérienne considérée :

$$Ricci(\omega) = \lambda \omega$$
.

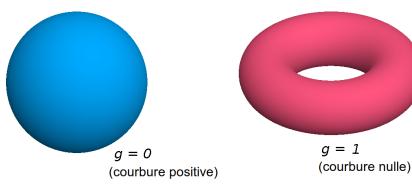
Si on fixe la classe de cohomologie de De Rham de la 2-forme ω dans $H^2(X,\mathbb{R})$ alors $\omega=\omega^0+i\partial\overline{\partial}\varphi$, $\omega_{\alpha\beta}=\omega^0_{\alpha\beta}+\partial_\alpha\overline{\partial}_\beta\varphi$ et l'équation devient

$$\operatorname{Ricci}(\omega) = -i\partial\overline{\partial}\log\det(\omega_{\alpha\beta}^0 + \partial_\alpha\overline{\partial}_\beta\varphi) = \lambda\omega = \lambda(\omega^0 + i\partial\overline{\partial}\varphi),$$

ce qui équivaut à $\partial \overline{\partial} \log \det(\omega_{\alpha\beta}^0 + \partial_{\alpha} \overline{\partial}_{\beta} \varphi) = \partial \overline{\partial} (f_0 - \lambda \varphi)$, ou encore (quitte à ajuster f_0 par une constante) à l'équation de Monge-Ampère complexe

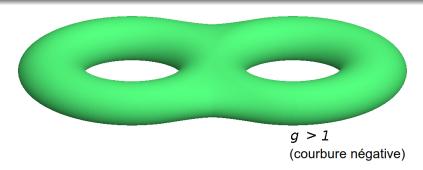
$$\left(*\right) \qquad \det\left(\omega^0_{\alpha\beta}(z) + \frac{\partial^2 \varphi}{\partial z^\alpha \partial \overline{z}^\beta}\right) = e^{f(z) - \lambda \varphi(z)}.$$

Dimension complexe 1 (surfaces de Riemann)



- $g = 0 : X = \mathbb{P}^1$ courbure $T_X > 0$ Ricci > 0
- $g=1: X=\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau)$ courbure $T_X=0$ $Ricci \equiv 0$

Courbes de genre $g \ge 2$

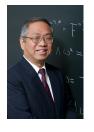


 $\deg T_X = 2 - 2g = \chi(X) < 0$ par Gauss-Bonnet

Si $g \geq 2$, $X \simeq \mathbb{D}/\Gamma$, le revêtement universel de X s'identifie au disque \mathbb{D} (théorème d'uniformisation de Poincaré).

La métrique de Poincaré du disque $(1-|z|^2)^{-2}|dz|^2$ fournit une métrique à courbure constante sur $X=\mathbb{D}/\Gamma$: c'est la métrique de Kähler-Einstein.

Conj. de Calabi / théorème de Aubin-Calabi-Yau



E. Calabi

Th. Aubin

S.T. Yau

S. Donaldson

- (Aubin, 1976) si $\lambda < 0$ (cas d'une variété à classe de Ricci < 0) l'équation (*) a une solution unique.
- (Yau 1977) si $\lambda=0$ (cas d'une variété à classe de Ricci nulle) l'équation (*) a encore une solution unique, telle que $\mathrm{Ricci}(\omega)\equiv 0$.
- si $\lambda > 0$ (classe de Ricci > 0, il n'y a en général ni existence ni unicité (cf. travaux récents de Tian, Chen-Donaldson-Sun).

L'espace projectif complexe

On se place dans $\mathbb{P}^N := (\mathbb{C}^{N+1} \setminus \{0\})/\mathbb{C}^*$, c'est-à-dire les classes d'équivalence $[z_0 : z_1 : \ldots : z_N]$ de vecteurs non nuls (z_0, z_1, \ldots, z_n) modulo \mathbb{C}^* .

On a des coordonnées affines

$$\zeta_1 = \frac{z_1}{z_0}, \dots, \zeta_N = \frac{z_N}{z_0}$$

dans la carte $\{z_N \neq 0\}$, et une métrique kählérienne invariante par U(N+1), appelée métrique de Fubini-Study, telle que

$$\omega_{\mathrm{FS}}([\mathrm{z}]) = \mathrm{i} \partial \overline{\partial} \log \|\mathrm{z}\|^2 = \mathrm{i} \partial \overline{\partial} \log \frac{\|\mathrm{z}\|^2}{|\mathrm{z}_0|^2} = \mathrm{i} \partial \overline{\partial} \log (1 + \|\mathrm{z}\|^2).$$

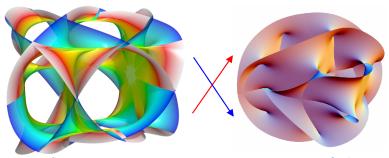
Un calcul donne la forme volume

$$dV_{\omega} = \frac{d\lambda(\zeta)}{(1 + ||\zeta||)^{N+1}}$$

d'où

$$Ricci(\omega_{PQ}) = -(N+1)\omega_{PQ} + 0$$

Variétés de Calabi-Yau, sièges des champs de forces?



Paramètres de déformation

Structures métriques

Notre univers aurait 6 dimensions supplémentaires ultra-miscroscopiques ($\simeq 10^{-35}\,\text{m})$ qui seraient le siège des champs de force (théorie des cordes)... sous forme d'une variété de Calabi-Yau de dimension complexe 3.

Celle-ci étant de dimension réelle 6, ceci amène à un univers de 4+6=10 dimensions au total.

Symétrie miroir et paramètres des familles de CY

La symétrie miroir est une dualité encore quelque peu mystérieuse entre les paramètres de déformation d'une famille de variétés de Calabi-Yau X_a (c'est-à-dire les coefficients a_* des polynômes qui les définissent), et les paramètres associés aux différentes métriques portées par les membres de la "famille duale" Y_b .

lci ces métriques sont des "métriques de Kähler" $\omega = \sqrt{-1} \sum \omega_{\alpha\overline{\beta}} dz^{\alpha} \wedge d\overline{z}^{\beta} \text{ (métriques hermitiennes vérifiant la propriété symplectique } d\omega = 0) et la nullité de la courbure <math display="block">\operatorname{Ricci}(\omega) \equiv 0.$

Elles dépendent uniquement de la classe de cohomologie $\{\omega\} \in H^{1,1}(Y_b, \mathbb{C})$ (= paramètres de la structure métrique des variétés Y_b).