

Structure theorems for compact Kähler manifolds

Jean-Pierre Demailly joint work with Frédéric Campana & Thomas Peternell

Institut Fourier, Université de Grenoble I, France & Académie des Sciences de Paris

KSCV10 Conference, August 7-11, 2014

 Analyze the geometric structure of projective or compact Kähler manifolds

- Analyze the geometric structure of projective or compact Kähler manifolds
- As is well known since the beginning of the XXth century at least, the geometry depends on the sign of the curvature of the canonical line bundle

$$K_X = \Lambda^n T_X^*, \qquad n = \dim_{\mathbb{C}} X.$$

- Analyze the geometric structure of projective or compact Kähler manifolds
- As is well known since the beginning of the XXth century at least, the geometry depends on the sign of the curvature of the canonical line bundle

$$K_X = \Lambda^n T_X^*, \qquad n = \dim_{\mathbb{C}} X.$$

• $L \to X$ is pseudoeffective (psef) if $\exists h = e^{-\varphi}, \ \varphi \in L^1_{loc}$, (possibly singular) such that $\Theta_{L,h} = -dd^c \log h \ge 0$ on X, in the sense of currents [for X projective: $c_1(L) \in \overline{\mathrm{Eff}}$].

- Analyze the geometric structure of projective or compact Kähler manifolds
- As is well known since the beginning of the XXth century at least, the geometry depends on the sign of the curvature of the canonical line bundle

$$K_X = \Lambda^n T_X^*, \qquad n = \dim_{\mathbb{C}} X.$$

- $L \to X$ is pseudoeffective (psef) if $\exists h = e^{-\varphi}, \ \varphi \in L^1_{loc}$, (possibly singular) such that $\Theta_{L,h} = -dd^c \log h \ge 0$ on X, in the sense of currents [for X projective: $c_1(L) \in \overline{\mathrm{Eff}}$].
- $L \to X$ is positive (semipositive) if $\exists h = e^{-\varphi}$ smooth s.t. $\Theta_{L,h} = -dd^c \log h > 0 \ (\geq 0)$ on X.

- Analyze the geometric structure of projective or compact Kähler manifolds
- As is well known since the beginning of the XXth century at least, the geometry depends on the sign of the curvature of the canonical line bundle

$$K_X = \Lambda^n T_X^*, \qquad n = \dim_{\mathbb{C}} X.$$

- $L \to X$ is pseudoeffective (psef) if $\exists h = e^{-\varphi}, \ \varphi \in L^1_{loc}$, (possibly singular) such that $\Theta_{L,h} = -dd^c \log h \ge 0$ on X, in the sense of currents [for X projective: $c_1(L) \in \overline{\mathrm{Eff}}$].
- $L \to X$ is positive (semipositive) if $\exists h = e^{-\varphi}$ smooth s.t. $\Theta_{L,h} = -dd^c \log h > 0 \ (\geq 0)$ on X.
- L is nef if $\forall \varepsilon > 0$, $\exists h_{\varepsilon} = e^{-\varphi_{\varepsilon}}$ smooth such that $\Theta_{L,h_{\varepsilon}} = -dd^{c} \log h_{\varepsilon} \geq -\varepsilon \omega$ on X [for X projective: $L \cdot C \geq 0$, $\forall C$ alg. curve].

Complex curves (n = 1): genus and curvature

◆ □ → ◆ 豆 → ◆ 豆 → り へ ○

Recall that for a line bundle

 $> 0 \Leftrightarrow \mathsf{ample} \Rightarrow \mathsf{semiample} \Rightarrow \mathsf{semipositive} \Rightarrow \mathsf{nef} \Rightarrow \mathsf{psef}$ but none of the reverse implications in red holds true.

Recall that for a line bundle

 $> 0 \Leftrightarrow \mathsf{ample} \Rightarrow \mathsf{semiample} \Rightarrow \mathsf{semipositive} \Rightarrow \mathsf{nef} \Rightarrow \mathsf{psef}$ but none of the reverse implications in red holds true.

Example

Let X be the rational surface obtained by blowing up \mathbb{P}^2 in 9 distinct points $\{p_i\}$ on a smooth (cubic) elliptic curve $C \subset \mathbb{P}^2$, $\mu: X \to \mathbb{P}^2$ and \hat{C} the strict transform of C.

Recall that for a line bundle

 $> 0 \Leftrightarrow \mathsf{ample} \Rightarrow \mathsf{semiample} \Rightarrow \mathsf{semipositive} \Rightarrow \mathsf{nef} \Rightarrow \mathsf{psef}$ but none of the reverse implications in red holds true.

Example

Let X be the rational surface obtained by blowing up \mathbb{P}^2 in 9 distinct points $\{p_i\}$ on a smooth (cubic) elliptic curve $C \subset \mathbb{P}^2$, $\mu: X \to \mathbb{P}^2$ and \hat{C} the strict transform of C. Then

 $\mathcal{K}_X = \mu^* \mathcal{K}_{\mathbb{P}^2} \otimes \mathcal{O}(\sum E_i) \Rightarrow -\mathcal{K}_X = \mu^* \mathcal{O}_{\mathbb{P}^2}(3) \otimes \mathcal{O}(-\sum E_i),$ thus

$$-K_X = \mu^* \mathcal{O}_{\mathbb{P}^2}(C) \otimes \mathcal{O}(-\sum E_i) = \mathcal{O}_X(\hat{C}).$$

Recall that for a line bundle

 $> 0 \Leftrightarrow \mathsf{ample} \Rightarrow \mathsf{semiample} \Rightarrow \mathsf{semipositive} \Rightarrow \mathsf{nef} \Rightarrow \mathsf{psef}$ but none of the reverse implications in red holds true.

Example

Let X be the rational surface obtained by blowing up \mathbb{P}^2 in 9 distinct points $\{p_i\}$ on a smooth (cubic) elliptic curve $C \subset \mathbb{P}^2$, $\mu: X \to \mathbb{P}^2$ and \hat{C} the strict transform of C. Then

$$K_X = \mu^* K_{\mathbb{P}^2} \otimes \mathcal{O}(\sum E_i) \Rightarrow -K_X = \mu^* \mathcal{O}_{\mathbb{P}^2}(3) \otimes \mathcal{O}(-\sum E_i),$$
thus

$$-K_X = \mu^* \mathcal{O}_{\mathbb{P}^2}(C) \otimes \mathcal{O}(-\sum E_i) = \mathcal{O}_X(\hat{C}).$$

One has

$$-K_X \cdot \Gamma = \hat{C} \cdot \Gamma \ge 0$$
 if $\Gamma \ne \hat{C}$,

$$-K_X \cdot \hat{C} = (-K_X)^2 = (\hat{C})^2 = C^2 - 9 = 0 \Rightarrow -K_X \text{ nef.}$$

1) Q (

In fact

$$\text{$G:=(-K_X)_{|\hat{C}}\simeq\mathcal{O}_{\mathbb{P}^2|C}(3)\otimes\mathcal{O}_C(-\sum p_i)\in \operatorname{Pic}^0(C)$}$$

In fact

$$G := (-K_X)_{|\hat{C}} \simeq \mathcal{O}_{\mathbb{P}^2|C}(3) \otimes \mathcal{O}_C(-\sum p_i) \in \operatorname{Pic}^0(C)$$

If G is a torsion point in $\operatorname{Pic}^0(C)$, then one can show that $-K_X$ is semi-ample, but otherwise it is not semi-ample.

In fact

$$G := (-K_X)_{|\hat{C}} \simeq \mathcal{O}_{\mathbb{P}^2|C}(3) \otimes \mathcal{O}_C(-\sum p_i) \in \operatorname{Pic}^0(C)$$

If G is a torsion point in $\operatorname{Pic}^0(C)$, then one can show that $-K_X$ is semi-ample, but otherwise it is not semi-ample.

Brunella has shown that $-K_X$ is C^{∞} semipositive if $c_1(G)$ satisfies a diophantine condition found by T. Ueda, but that otherwise it may not be semipositive (although nef).

In fact

$$G := (-K_X)_{|\hat{C}} \simeq \mathcal{O}_{\mathbb{P}^2|C}(3) \otimes \mathcal{O}_C(-\sum p_i) \in \operatorname{Pic}^0(C)$$

If G is a torsion point in $\operatorname{Pic}^0(C)$, then one can show that $-K_X$ is semi-ample, but otherwise it is not semi-ample.

Brunella has shown that $-K_X$ is C^{∞} semipositive if $c_1(G)$ satisfies a diophantine condition found by T. Ueda, but that otherwise it may not be semipositive (although nef).

 $\mathbb{P}^2 \# 9$ points is an example of rationally connected manifold:

In fact

$$G := (-K_X)_{|\hat{C}} \simeq \mathcal{O}_{\mathbb{P}^2|C}(3) \otimes \mathcal{O}_C(-\sum p_i) \in \operatorname{Pic}^0(C)$$

If G is a torsion point in $\operatorname{Pic}^0(C)$, then one can show that $-K_X$ is semi-ample, but otherwise it is not semi-ample.

Brunella has shown that $-K_X$ is C^{∞} semipositive if $c_1(G)$ satisfies a diophantine condition found by T. Ueda, but that otherwise it may not be semipositive (although nef).

 $\mathbb{P}^2 \# 9$ points is an example of rationally connected manifold:

Definition

Recall that a compact complex manifold is said to be rationally connected (or RC for short) if any 2 points can be joined by a chain of rational curves

In fact

$$G := (-K_X)_{|\hat{C}} \simeq \mathcal{O}_{\mathbb{P}^2|C}(3) \otimes \mathcal{O}_C(-\sum p_i) \in \operatorname{Pic}^0(C)$$

If G is a torsion point in $\operatorname{Pic}^0(C)$, then one can show that $-K_X$ is semi-ample, but otherwise it is not semi-ample.

Brunella has shown that $-K_X$ is C^{∞} semipositive if $c_1(G)$ satisfies a diophantine condition found by T. Ueda, but that otherwise it may not be semipositive (although nef).

 $\mathbb{P}^2 \# 9$ points is an example of rationally connected manifold:

Definition

Recall that a compact complex manifold is said to be rationally connected (or RC for short) if any 2 points can be joined by a chain of rational curves

Remark. $X = \mathbb{P}^2$ blown-up in ≥ 10 points is RC but $-K_X$ not nef.

- Ricci flat manifolds
 - Complex tori $T = \mathbb{C}^q/\Lambda$

- Ricci flat manifolds
 - Complex tori $T = \mathbb{C}^q/\Lambda$
 - Holomorphic symplectic manifolds S (also called hyperkähler): $\exists \sigma \in H^0(S, \Omega_S^2)$ symplectic

- Ricci flat manifolds
 - Complex tori $T = \mathbb{C}^q/\Lambda$
 - Holomorphic symplectic manifolds S (also called hyperkähler): $\exists \sigma \in H^0(S, \Omega_S^2)$ symplectic
 - Calabi-Yau manifolds Y: $\pi_1(Y)$ finite and some multiple of K_Y is trivial (may assume $\pi_1(Y) = 1$ and K_Y trivial by passing to some finite étale cover

- Ricci flat manifolds
 - Complex tori $T = \mathbb{C}^q/\Lambda$
 - Holomorphic symplectic manifolds S (also called hyperkähler): $\exists \sigma \in H^0(S, \Omega_S^2)$ symplectic
 - Calabi-Yau manifolds Y: $\pi_1(Y)$ finite and some multiple of K_Y is trivial (may assume $\pi_1(Y) = 1$ and K_Y trivial by passing to some finite étale cover)
- the rather large class of rationally connected manifolds Z with $-K_Z \ge 0$

(Recall: By Yau, $-K_X \ge 0 \Leftrightarrow \exists \omega$ Kähler with Ricci(ω) ≥ 0 .)

- Ricci flat manifolds
 - Complex tori $T = \mathbb{C}^q/\Lambda$
 - Holomorphic symplectic manifolds S (also called hyperkähler): $\exists \sigma \in H^0(S, \Omega_S^2)$ symplectic
 - Calabi-Yau manifolds Y: $\pi_1(Y)$ finite and some multiple of K_Y is trivial (may assume $\pi_1(Y) = 1$ and K_Y trivial by passing to some finite étale cover)
- the rather large class of rationally connected manifolds Z with $-K_Z \ge 0$
- all products $T \times \prod S_j \times \prod Y_k \times \prod Z_\ell$.

Main result. Essentially, this is a complete list!

Structure theorem for manifolds with $-K_X \ge 0$

Theorem

[Campana, D, Peternell, 2012] Let X be a compact Kähler manifold with $-K_X \ge 0$. Then

(a) \exists holomorphic and isometric splitting

$$\widetilde{X} \simeq \mathbb{C}^q \times \prod Y_j \times \prod S_k \times \prod Z_\ell$$

where $Y_j = \text{Calabi-Yau (holonomy } SU(n_j))$,

 S_k = holomorphic symplectic (holonomy $Sp(n'_k/2)$), and

 $Z_{\ell} = \mathsf{RC} \; \mathsf{with} \; - \mathcal{K}_{Z_{\ell}} \geq 0 \; (\mathsf{holonomy} \; \mathrm{U}(n_{\ell}'')).$

Structure theorem for manifolds with $-K_X \ge 0$

Theorem

[Campana, D, Peternell, 2012] Let X be a compact Kähler manifold with $-K_X \geq 0$. Then

(a) \exists holomorphic and isometric splitting

$$\widetilde{X} \simeq \mathbb{C}^q \times \prod Y_j \times \prod S_k \times \prod Z_\ell$$

where $Y_j = \text{Calabi-Yau}$ (holonomy $\mathrm{SU}(n_j)$), $S_k = \text{holomorphic symplectic (holonomy } \mathrm{Sp}(n'_k/2)$), and $Z_\ell = \mathrm{RC}$ with $-K_{Z_\ell} \geq 0$ (holonomy $\mathrm{U}(n''_\ell)$).

(b) There exists a finite étale Galois cover $\widehat{X} \to X$ such that the Albanese map $\alpha : \widehat{X} \to \mathrm{Alb}(\widehat{X})$ is an (isometrically) locally trivial holomorphic fiber bundle whose fibers are products $\prod Y_j \times \prod S_k \times \prod Z_\ell$, as described in (a).

Structure theorem for manifolds with $-K_X \ge 0$

Theorem

[Campana, D, Peternell, 2012] Let X be a compact Kähler manifold with $-K_X \geq 0$. Then

(a) ∃ holomorphic and isometric splitting

$$\widetilde{X} \simeq \mathbb{C}^q \times \prod Y_j \times \prod S_k \times \prod Z_\ell$$

where $Y_j = \text{Calabi-Yau}$ (holonomy $\mathrm{SU}(n_j)$), $S_k = \text{holomorphic symplectic (holonomy } \mathrm{Sp}(n'_k/2)$), and $Z_\ell = \text{RC with } -K_{Z_\ell} \geq 0$ (holonomy $\mathrm{U}(n''_\ell)$).

- (b) There exists a finite étale Galois cover $\widehat{X} \to X$ such that the Albanese map $\alpha : \widehat{X} \to \mathrm{Alb}(\widehat{X})$ is an (isometrically) locally trivial holomorphic fiber bundle whose fibers are products $\prod Y_i \times \prod S_k \times \prod Z_\ell$, as described in (a).
- (c) $\pi_1(\widehat{X}) \simeq \mathbb{Z}^{2q} \rtimes \Gamma$, Γ finite ("almost abelian" group).

Criterion

Let X be a projective algebraic n-dimensional manifold. The following properties are equivalent.

(a) X is rationally connected.

Criterion

Let X be a projective algebraic n-dimensional manifold. The following properties are equivalent.

- (a) X is rationally connected.
- (b) For every invertible subsheaf $\mathcal{F} \subset \Omega_X^p := \mathcal{O}(\Lambda^p T_X^*)$, $1 \leq p \leq n$, \mathcal{F} is not psef.

Criterion

Let X be a projective algebraic n-dimensional manifold. The following properties are equivalent.

- (a) X is rationally connected.
- (b) For every invertible subsheaf $\mathcal{F} \subset \Omega_X^p := \mathcal{O}(\Lambda^p T_X^*)$, $1 \leq p \leq n$, \mathcal{F} is not psef.
- (c) For every invertible subsheaf $\mathcal{F} \subset \mathcal{O}((T_X^*)^{\otimes p})$, $p \geq 1$, \mathcal{F} is not psef.

Criterion

Let X be a projective algebraic n-dimensional manifold. The following properties are equivalent.

- (a) X is rationally connected.
- (b) For every invertible subsheaf $\mathcal{F} \subset \Omega_X^p := \mathcal{O}(\Lambda^p T_X^*)$, $1 \leq p \leq n$, \mathcal{F} is not psef.
- (c) For every invertible subsheaf $\mathcal{F}\subset\mathcal{O}((T_X^*)^{\otimes p})$, $p\geq 1$, \mathcal{F} is not psef.
- (d) For some (resp. for any) ample line bundle A on X, there exists a constant $C_A > 0$ such that

$$H^0(X, (T_X^*)^{\otimes m} \otimes A^{\otimes k}) = 0 \quad \forall m, k \in \mathbb{N}^* \text{ with } m \geq C_A k.$$

Proof (essentially from Peternell 2006)

(a) \Rightarrow (d) is easy (RC implies there are many rational curves on which T_X , so $T_X^* < 0$), (d) \Rightarrow (c) and (c) \Rightarrow (b) are trivial.

Proof (essentially from Peternell 2006)

(a) \Rightarrow (d) is easy (RC implies there are many rational curves on which T_X , so $T_X^* < 0$), (d) \Rightarrow (c) and (c) \Rightarrow (b) are trivial.

Thus the only thing left to complete the proof is $(b) \Rightarrow (a)$.

Proof (essentially from Peternell 2006)

(a) \Rightarrow (d) is easy (RC implies there are many rational curves on which T_X , so $T_X^* < 0$), (d) \Rightarrow (c) and (c) \Rightarrow (b) are trivial.

Thus the only thing left to complete the proof is $(b) \Rightarrow (a)$.

Consider the MRC quotient $\pi: X \to Y$, given by the "equivalence relation $x \sim y$ if x and y can be joined by a chain of rational curves.

Proof (essentially from Peternell 2006)

(a) \Rightarrow (d) is easy (RC implies there are many rational curves on which T_X , so $T_X^* < 0$), (d) \Rightarrow (c) and (c) \Rightarrow (b) are trivial.

Thus the only thing left to complete the proof is $(b) \Rightarrow (a)$.

Consider the MRC quotient $\pi: X \to Y$, given by the "equivalence relation $x \sim y$ if x and y can be joined by a chain of rational curves.

Then (by definition) the fibers are RC, maximal, and a result of Graber-Harris-Starr (2002) implies that Y is not uniruled.

Proof (essentially from Peternell 2006)

(a) \Rightarrow (d) is easy (RC implies there are many rational curves on which T_X , so $T_X^* < 0$), (d) \Rightarrow (c) and (c) \Rightarrow (b) are trivial.

Thus the only thing left to complete the proof is $(b) \Rightarrow (a)$.

Consider the MRC quotient $\pi: X \to Y$, given by the "equivalence relation $x \sim y$ if x and y can be joined by a chain of rational curves.

Then (by definition) the fibers are RC, maximal, and a result of Graber-Harris-Starr (2002) implies that Y is not uniruled.

By BDPP (2004), Y not uniruled $\Rightarrow K_Y$ psef. Then $\pi^*K_Y \hookrightarrow \Omega_X^p$ where $p = \dim Y$, which is a contradiction unless p = 0, and therefore X is RC.

Generalized holonomy principle

Generalized holonomy principle

Let $(E, h) \to X$ be a hermitian holomorphic vector bundle of rank r over X compact/ \mathbb{C} . Assume that

$$\Theta_{E,h} \wedge \frac{\omega^{n-1}}{(n-1)!} = B \frac{\omega^n}{n!}, \quad B \in \mathrm{Herm}(E,E), \quad B \geq 0 \text{ on } X.$$

Generalized holonomy principle

Generalized holonomy principle

Let $(E, h) \to X$ be a hermitian holomorphic vector bundle of rank r over X compact/ \mathbb{C} . Assume that

$$\Theta_{E,h} \wedge \frac{\omega^{n-1}}{(n-1)!} = B \frac{\omega^n}{n!}, \quad B \in \mathrm{Herm}(E,E), \quad B \geq 0 \quad \text{on } X.$$

Let H the restricted holonomy group of (E, h). Then

(a) If there exists a psef invertible sheaf $\mathcal{L} \subset \mathcal{O}((E^*)^{\otimes m})$, then \mathcal{L} is flat and invariant under parallel transport by the connection of $(E^*)^{\otimes m}$ induced by the Chern connection ∇ of (E, h); moreover, H acts trivially on \mathcal{L} .

Generalized holonomy principle

Generalized holonomy principle

Let $(E, h) \to X$ be a hermitian holomorphic vector bundle of rank r over X compact/ \mathbb{C} . Assume that

$$\Theta_{E,h} \wedge \frac{\omega^{n-1}}{(n-1)!} = B \frac{\omega^n}{n!}, \quad B \in \mathrm{Herm}(E,E), \quad B \geq 0 \quad \text{on } X.$$

Let H the restricted holonomy group of (E, h). Then

- (a) If there exists a psef invertible sheaf $\mathcal{L} \subset \mathcal{O}((E^*)^{\otimes m})$, then \mathcal{L} is flat and invariant under parallel transport by the connection of $(E^*)^{\otimes m}$ induced by the Chern connection ∇ of (E,h); moreover, H acts trivially on \mathcal{L} .
- (b) If H satisfies $H = \mathrm{U}(r)$, then none of the invertible sheaves $\mathcal{L} \subset \mathcal{O}((E^*)^{\otimes m})$ can be psef for $m \geq 1$.

Generalized holonomy principle

Generalized holonomy principle

Let $(E, h) \to X$ be a hermitian holomorphic vector bundle of rank r over X compact/ \mathbb{C} . Assume that

$$\Theta_{E,h} \wedge \frac{\omega^{n-1}}{(n-1)!} = B \frac{\omega^n}{n!}, \quad B \in \mathrm{Herm}(E,E), \quad B \geq 0 \quad \text{on } X.$$

Let H the restricted holonomy group of (E, h). Then

- (a) If there exists a psef invertible sheaf $\mathcal{L} \subset \mathcal{O}((E^*)^{\otimes m})$, then \mathcal{L} is flat and invariant under parallel transport by the connection of $(E^*)^{\otimes m}$ induced by the Chern connection ∇ of (E,h); moreover, H acts trivially on \mathcal{L} .
- (b) If H satisfies $H = \mathrm{U}(r)$, then none of the invertible sheaves $\mathcal{L} \subset \mathcal{O}((E^*)^{\otimes m})$ can be psef for $m \geq 1$.

Proof. $\mathcal{L} \subset \mathcal{O}((E^*)^{\otimes m})$ which has trace of curvature ≤ 0 while $\Theta_{\mathcal{L}} \geq 0$, use Bochner formula.

Generically nef vector bundles

Definition

Let X compact Kähler manifold, $\mathcal{E} \to X$ torsion free sheaf.

(a) ${\cal E}$ is generically nef with respect to the Kähler class ω if

$$\mu_{\omega}(\mathcal{S}) \geq 0$$

for all torsion free quotients $\mathcal{E} \to \mathcal{S} \to 0$.

If \mathcal{E} is ω -generically nef for all ω , we simply say that \mathcal{E} is generically nef.

Generically nef vector bundles

Definition

Let X compact Kähler manifold, $\mathcal{E} \to X$ torsion free sheaf.

(a) ${\mathcal E}$ is generically nef with respect to the Kähler class ω if

$$\mu_{\omega}(\mathcal{S}) \geq 0$$

for all torsion free quotients $\mathcal{E} \to \mathcal{S} \to 0$. If \mathcal{E} is ω -generically nef for all ω , we simply say that \mathcal{E} is generically nef.

(b) Let $0=\mathcal{E}_0\subset\mathcal{E}_1\subset\ldots\subset\mathcal{E}_s=\mathcal{E}$

be a filtration of \mathcal{E} by torsion free coherent subsheaves such that the quotients $\mathcal{E}_{i+1}/\mathcal{E}_i$ are ω -stable subsheaves of $\mathcal{E}/\mathcal{E}_i$ of maximal rank. We call such a sequence a refined Harder-Narasimhan (HN) filtration w.r.t. ω .

Characterization of generically nef vector bundles

It is a standard fact that refined HN-filtrations always exist, moreover

$$\mu_{\omega}(\mathcal{E}_i/\mathcal{E}_{i-1}) \ge \nu_{\omega}(\mathcal{E}_{i+1}/\mathcal{E}_i)$$

for all i.

Proposition

Let (X, ω) be a compact Kähler manifold and $\mathcal E$ a torsion free sehaf on X. Then $\mathcal E$ is ω -generically nef if and only if

$$\mu_{\omega}(\mathcal{E}_{i+1}/\mathcal{E}_i) \geq 0$$

for some refined HN-filtration.

Proof. Easy arguments on filtrations.

A result of J. Cao about manifolds with $-K_X$ nef

Theorem

(Junyan Cao, 2013) Let X be a compact Kähler manifold with $-K_X$ nef. Then the tangent bundle T_X is ω -generically nef for all Kähler classes ω .

Proof. use the fact that $\forall \varepsilon > 0$, \exists Kähler metric with $\mathrm{Ricci}(\omega_{\varepsilon}) \geq -\varepsilon \, \omega_{\varepsilon}$ (Yau, DPS 1995).

A result of J. Cao about manifolds with $-K_X$ nef

Theorem

(Junyan Cao, 2013) Let X be a compact Kähler manifold with $-K_X$ nef. Then the tangent bundle T_X is ω -generically nef for all Kähler classes ω .

Proof. use the fact that $\forall \varepsilon > 0$, \exists Kähler metric with $\mathrm{Ricci}(\omega_{\varepsilon}) \geq -\varepsilon \, \omega_{\varepsilon}$ (Yau, DPS 1995).

From this, one can deduce

$\mathsf{Theorem}$

Let X be a compact Kähler manifold with nef anticanonical bundle. Then the bundles $T_X^{\otimes m}$ are ω -generically nef for all Kähler classes ω and all positive integers m. In particular, the bundles $S^k T_X$ and $\bigwedge^p T_X$ are ω -generically nef.

A lemma on sections of contravariant tensors

Lemma

Let (X, ω) be a compact Kähler manifold with $-K_X$ nef and $\eta \in H^0(X, (\Omega^1_X)^{\otimes m} \otimes \mathcal{L})$

where \mathcal{L} is a numerically trivial line bundle on X.

A lemma on sections of contravariant tensors

Lemma

Let (X, ω) be a compact Kähler manifold with $-K_X$ nef and $\eta \in H^0(X, (\Omega_X^1)^{\otimes m} \otimes \mathcal{L})$

where \mathcal{L} is a numerically trivial line bundle on X.

Then the filtered parts of η w.r.t. the refined HN filtration are parallel w.r.t. the Bando-Siu metric in the 0 slope parts, and the < 0 slope parts vanish.

A lemma on sections of contravariant tensors

Lemma

Let (X, ω) be a compact Kähler manifold with $-K_X$ nef and

$$\eta \in H^0(X,(\Omega^1_X)^{\otimes m}\otimes \mathcal{L})$$

where \mathcal{L} is a numerically trivial line bundle on X.

Then the filtered parts of η w.r.t. the refined HN filtration are parallel w.r.t. the Bando-Siu metric in the 0 slope parts, and the < 0 slope parts vanish.

Proof. By Cao's theorem there exists a refined HN-filtration

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \ldots \subset \mathcal{E}_s = \mathcal{T}_X^{\otimes m}$$

with ω -stable quotients $\mathcal{E}_{i+1}/\mathcal{E}_i$ such that $\mu_{\omega}(\mathcal{E}_{i+1}/\mathcal{E}_i) \geq 0$ for all i. Then we use the fact that any section in a (semi-)negative slope reflexive sheaf $\mathcal{E}_{i+1}/\mathcal{E}_i \otimes \mathcal{L}$ is parallel w.r.t. its Bando-Siu metric (resp. vanishes).

Smoothness of the Albanese morphism (after Cao)

Theorem (J.Cao 2013, D-Peternell, 2014)

Non-zero holomorphic p-forms on a compact Kähler manifold X with $-K_X$ nef vanish only on the singular locus of the refined HN filtration of T^*X .

Smoothness of the Albanese morphism (after Cao)

Theorem (J.Cao 2013, D-Peternell, 2014)

Non-zero holomorphic p-forms on a compact Kähler manifold X with $-K_X$ nef vanish only on the singular locus of the refined HN filtration of T^*X .

This implies the following result essentially due to J.Cao.

Corollary

Let X be a compact Kähler manifold with nef anticanonical bundle. Then the Albanese map $\alpha: X \to \mathrm{Alb}(X)$ is a submersion on the complement of the HN filtration singular locus in $X \ [\Rightarrow \alpha \ \text{surjects onto} \ \mathrm{Alb}(X) \ (\text{Paun 2012})].$

Proof. The differential $d\alpha$ is given by $(d\eta_1, \ldots, d\eta_q)$ where (η_1, \ldots, η_q) is a basis of 1-forms, $q = \dim H^0(X, \Omega_X^1)$.

Smoothness of the Albanese morphism (after Cao)

Theorem (J.Cao 2013, D-Peternell, 2014)

Non-zero holomorphic p-forms on a compact Kähler manifold X with $-K_X$ nef vanish only on the singular locus of the refined HN filtration of T^*X .

This implies the following result essentially due to J.Cao.

Corollary

Let X be a compact Kähler manifold with nef anticanonical bundle. Then the Albanese map $\alpha: X \to \mathrm{Alb}(X)$ is a submersion on the complement of the HN filtration singular locus in $X \ [\Rightarrow \alpha \ \text{surjects onto} \ \mathrm{Alb}(X) \ (\text{Paun 2012})].$

Proof. The differential $d\alpha$ is given by $(d\eta_1, \ldots, d\eta_q)$ where (η_1, \ldots, η_q) is a basis of 1-forms, $q = \dim H^0(X, \Omega_X^1)$.

Cao's thm \Rightarrow rank of $(d\eta_1, \dots, d\eta_a)$ is = q generically.

Conjecture (known for X projective!)

Let X be compact Kähler, and let $X \to Y$ be the MRC fibration (after taking suitable blow-ups to make it a genuine morphism). Then K_Y is psef.

Conjecture (known for X projective!)

Let X be compact Kähler, and let $X \to Y$ be the MRC fibration (after taking suitable blow-ups to make it a genuine morphism). Then K_Y is psef.

Proof ? Take the part of slope > 0 in the HN filtration of T_X w.r.t. to classes in the dual of the psef cone, and apply duality.

Conjecture (known for X projective!)

Let X be compact Kähler, and let $X \to Y$ be the MRC fibration (after taking suitable blow-ups to make it a genuine morphism). Then K_Y is psef.

Proof ? Take the part of slope > 0 in the HN filtration of T_X w.r.t. to classes in the dual of the psef cone, and apply duality.

Remaining problems

 Develop the theory of singular Calabi-Yau and singular holomorphic symplectic manifolds.

Conjecture (known for *X* projective!)

Let X be compact Kähler, and let $X \to Y$ be the MRC fibration (after taking suitable blow-ups to make it a genuine morphism). Then K_Y is psef.

Proof ? Take the part of slope > 0 in the HN filtration of T_X w.r.t. to classes in the dual of the psef cone, and apply duality.

Remaining problems

- Develop the theory of singular Calabi-Yau and singular holomorphic symplectic manifolds.
- Show that the "slope 0" part corresponds to blown-up tori, singular Calabi-Yau and singular holomorphic symplectic manifolds (as fibers and targets).

Conjecture (known for *X* projective!)

Let X be compact Kähler, and let $X \to Y$ be the MRC fibration (after taking suitable blow-ups to make it a genuine morphism). Then K_Y is psef.

Proof ? Take the part of slope > 0 in the HN filtration of T_X w.r.t. to classes in the dual of the psef cone, and apply duality.

Remaining problems

- Develop the theory of singular Calabi-Yau and singular holomorphic symplectic manifolds.
- Show that the "slope 0" part corresponds to blown-up tori, singular Calabi-Yau and singular holomorphic symplectic manifolds (as fibers and targets).
- The rest of T_X (slope < 0) yields a general type quotient.

Thank you for your attention!

