

Curiosités géométriques et physique de l'Univers

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble I, France

16 avril 2014 / Conférence au Lycée Champollion

Dimension de l'espace-temps

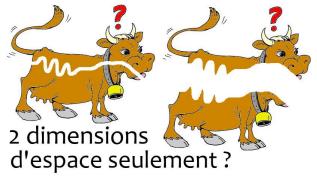
Selon Einstein, notre univers est de dimension 4 : 3 dimensions d'espace et 1 de temps Pourrait-il en avoir moins ?

Dimension de l'espace-temps

Selon Einstein, notre univers est de dimension 4 :

3 dimensions d'espace et 1 de temps

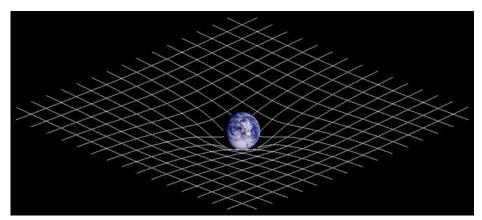
Pourrait-il en avoir moins ?



Le tube digestif de la vache la couperait en deux composantes connexes – les animaux ne pourraient pas exister!

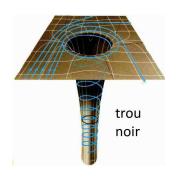
Géométrie de l'espace

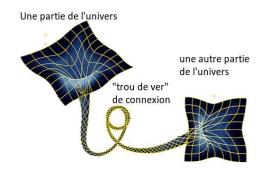
Selon Einstein et sa théorie de la relativité générale (1907–1915), l'espace est courbé en raison de la distribution de matière, qui induit un champ gravitationnel



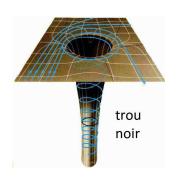
"Trous noirs" et "trous de ver"?

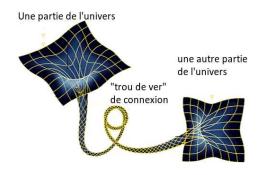
"Trous noirs" et "trous de ver"?





"Trous noirs" et "trous de ver"?

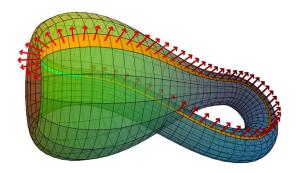




La question de savoir si l'univers est ouvert ou fermé agite beaucoup les astrophysiciens : cela dépend de la densité de matière présente dans l'univers ... seule une densité suffisante permettrait qu'il se referme sur lui-même.

Question de topologie : un espace non orienté ?

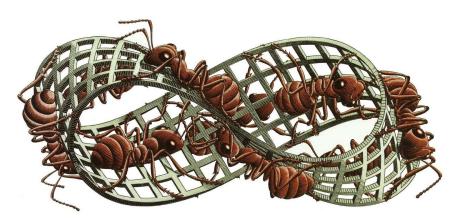
La "bouteille de Klein" (Felix Klein 1849 – 1925) : une surface compacte (=fermée sans bord) non orientable.



Après un "tour d'univers", les droitiers se retrouveraient gauchers et vice-versa...

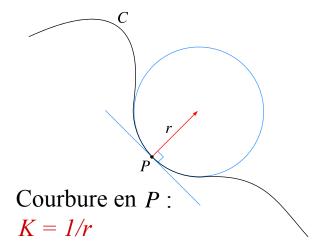
Le ruban de Möbius d'Escher

Un célèbre dessin de Maurits Cornelis Escher (1898-1972)



Comment calcule-t-on la courbure ?

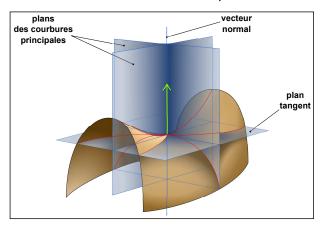
Une courbe et son cercle osculateur de rayon r



Si le rayon $r = \infty$, la courbure K est nulle.

Coefficients de courbure d'une surface

Les deux courbures d'une surface dans un espace de dimension 3



$$K_1=\frac{1}{r_1}>0,$$

$$K_2=\frac{1}{r_2}<0$$

La courbure moyenne

Courbure moyenne : $M = \frac{1}{2}(K_1 + K_2)$

Une bulle de savon "libre" est de courbure moyenne nulle en

tout point : $K_1 = -K_2$, M = 0

Catenoide.

 $x = a \cosh u \cos \theta$

 $y = a \cosh u \sin \theta$

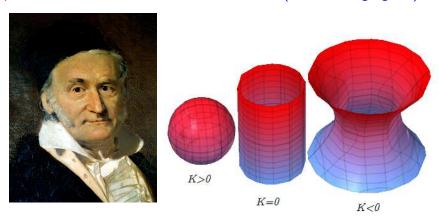
z = au

La courbure de Gauss

Carl Friedrich Gauss (1777-1855) : $K = K_1 \times K_2$ est invariant par déformation d'une surface inextensible (theorema egregium)

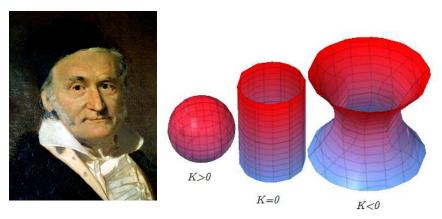
La courbure de Gauss

Carl Friedrich Gauss (1777-1855) : $K = K_1 \times K_2$ est invariant par déformation d'une surface inextensible (theorema egregium)



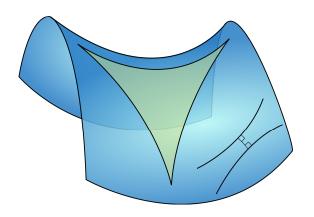
La courbure de Gauss

Carl Friedrich Gauss (1777-1855) : $K = K_1 \times K_2$ est invariant par déformation d'une surface inextensible (theorema egregium)



Le cylindre peut s'aplatir, pas la sphère ni le catenoide.

La courbure de Gauss (formule de Gauss-Bonnet)



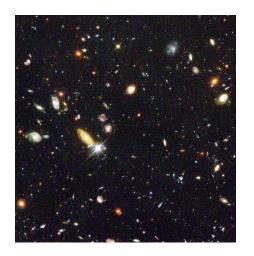
somme des angles d'un triangle géodésique $=\pi+\iint K dS$

Espace homogène / localement symétrique ?

Un espace X est dit symétrique s'il admet un tout point une "symétrie" par rapport à ce point

Dans ce cas il admet un groupe de transformations isométriques G et X est un espace homogène G/H.

Mais l'univers n'est pas homogène...



"Grumeaux" de galaxies

Métrique riemannienne : introduction

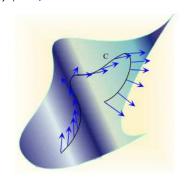
$$ds^2 = a(x, y) dx^2 + b(x, y) dy^2 + c(x, y) dx dy.$$

Métrique riemannienne / Tenseur de courbure

Bernhard Riemann (1826–1866) / espace à *n* dimensions

$$ds^2 = \sum g_{\alpha\beta}(x) dx^{\alpha} dx^{\beta}$$

Métrique riemannienne



$$R_{\alpha\beta\gamma}^{\delta}, \quad 1 \leq \alpha, \beta, \gamma, \delta \leq n.$$

Tenseur de courbure de Riemann (calcul précisé par Levi-Civita)

Tenseur de Ricci / équation d'Einstein

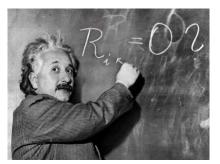
Le tenseur de Ricci est une sorte de "courbure moyenne" :

$$R_{lphaeta} = \sum_{\gamma} R_{lphaeta\gamma}^{\gamma}$$

Tenseur de Ricci / équation d'Einstein

Le tenseur de Ricci est une sorte de "courbure moyenne" :

$$R_{\alpha\beta} = \sum_{\gamma} R_{\alpha\beta\gamma}^{\gamma}$$



Équation d'Einstein (1879–1955) de la relativité générale

$$R_{\alpha\beta} - \left(\Lambda + \frac{1}{2}R\right)g_{\alpha\beta} = \frac{8\pi G}{c^4}T_{\alpha\beta}.$$

Dans \mathbb{R} , -1 n'a pas de racine carrée, car $x^2 \ge 0$ pour tout $x \in \mathbb{R}$.

Dans \mathbb{R} , -1 n'a pas de racine carrée, car $x^2 \geq 0$ pour tout $x \in \mathbb{R}$.

Alors les mathématiciens du 16ème siècle en ont inventé une !! On définit $i = \sqrt{-1}$ $(i \notin \mathbb{R})$, et on a donc $i \times i = -1$.

Dans \mathbb{R} , -1 n'a pas de racine carrée, car $x^2 \geq 0$ pour tout $x \in \mathbb{R}$.

Alors les mathématiciens du 16ème siècle en ont inventé une !! On définit $i = \sqrt{-1}$ $(i \notin \mathbb{R})$, et on a donc $i \times i = -1$.

On calcule facilement avec les complexes :

Addition/soustraction

$$(-2,5+3i)-(4+5i)=-6,5-2i$$

Dans \mathbb{R} , -1 n'a pas de racine carrée, car $x^2 \geq 0$ pour tout $x \in \mathbb{R}$.

Alors les mathématiciens du 16ème siècle en ont inventé une !! On définit $i = \sqrt{-1}$ $(i \notin \mathbb{R})$, et on a donc $i \times i = -1$.

On calcule facilement avec les complexes :

Addition/soustraction

$$(-2,5+3i)-(4+5i)=-6,5-2i$$

Multiplication

$$(2+3i)(5+7i) = 2 \times 5 + 3i \times 5 + 2 \times 7i + 3i \times 7i$$

= $10 + 15i + 14i + 21i^2 = 10 + 29i - 21$
= $-11 + 29i$

Dans \mathbb{R} , -1 n'a pas de racine carrée, car $x^2 \geq 0$ pour tout $x \in \mathbb{R}$.

Alors les mathématiciens du 16ème siècle en ont inventé une !! On définit $i = \sqrt{-1}$ $(i \notin \mathbb{R})$, et on a donc $i \times i = -1$.

On calcule facilement avec les complexes :

Addition/soustraction

$$(-2,5+3i)-(4+5i)=-6,5-2i$$

Multiplication

$$(2+3i)(5+7i) = 2 \times 5 + 3i \times 5 + 2 \times 7i + 3i \times 7i$$

= $10 + 15i + 14i + 21i^2 = 10 + 29i - 21$
= $-11 + 29i$

On note C l'ensemble des nombres complexes.

Équation d'Einstein en mathématiques

Equation d'Einstein "simplifiée" (univers vide !!)

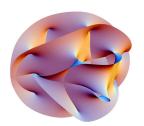
$$R_{\alpha\beta} = \lambda g_{\alpha\beta}, \qquad \lambda = \text{constante}.$$

Équation d'Einstein en mathématiques

Equation d'Einstein "simplifiée" (univers vide !!)

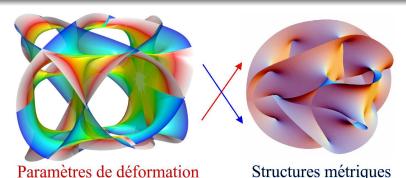
$$R_{\alpha\beta} = \lambda g_{\alpha\beta}, \qquad \lambda = \text{constante}.$$

Vérifiée (avec $\lambda=0$, $R_{\alpha\beta}\equiv 0$) par la variété de Calabi-Yau 6-dimensionnelle définie dans \mathbb{CP}^4 par



$$z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 - 5a z_0 z_1 z_2 z_3 z_4 = 0$$
, $z_0, z_1, z_2, z_3, z_4 \in \mathbb{C}$, (avec 1 paramètre a de déformation). Yau: on a bien Ricci $\equiv 0$.

Variétés de Calabi-Yau, sièges des champs de forces?



Notre univers aurait 6 dimensions supplémentaires ultra-miscroscopiques ($\simeq 10^{-35}\,\text{m})$ qui seraient le siège des champs de force (théorie des cordes)... sous forme d'une variété de Calabi-Yau de dimension complexe 3. Celle-ci étant de dimension réelle 6, ceci amène à un univers de 4+6=10 dimensions au total.

Itération d'un polynôme du second degré dans C

Dans le plan complexe \mathbb{C} , on regarde la fonction polynôme

$$P_c:\mathbb{C}\to\mathbb{C}, \qquad P_c(z)=z^2+c \;\;$$
 où c est un paramètre, par exemple $c=0.3+0.4i.$

On prend un point $z_0 \in \mathbb{C}$ quelconque, et on calcule les "itérés"

$$z_1 = z_0^2 + c$$

$$z_2 = z_1^2 + c$$

. . .

$$z_{n+1}=z_n^2+c$$

Itération d'un polynôme du second degré dans C

Dans le plan complexe \mathbb{C} , on regarde la fonction polynôme

$$P_c:\mathbb{C}\to\mathbb{C}, \qquad P_c(z)=z^2+c \ \ \ {
m où}\ c \ \ {
m est}\ \ {
m un}\ \ {
m paramètre},$$
 par exemple $c=0.3+0.4i.$

On prend un point $z_0 \in \mathbb{C}$ quelconque, et on calcule les "itérés"

$$z_1 = z_0^2 + c$$

$$z_2 = z_1^2 + c$$

. . .

$$z_{n+1}=z_n^2+c$$

Par exemple, si c = 0, on a

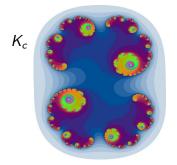
$$z_1 = z_0^2$$
, $z_2 = z_1^2 = z_0^4$, $z_3 = z_2^2 = z_0^8$, ..., $z_n = z_0^{2^n}$.

Si z_0 est petit, $z_0^{2^n}$ devient de plus en plus petit, tandis que si z_0 est grand, $z_0^{2^n}$ devient de plus en plus grand.

Ensemble de Julia

Pour toute valeur complexe $c \neq 0$ on regarde les z_0 pour lesquels la suite (z_n) reste bornée. Ceci donne un ensemble fractal !

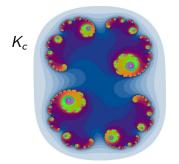
Voici par exemple une image de J_c et K_c pour la valeur c=0,328075517+0,022051744 i du paramètre :



Ensemble de Julia

Pour toute valeur complexe $c \neq 0$ on regarde les z_0 pour lesquels la suite (z_n) reste bornée. Ceci donne un ensemble fractal!

Voici par exemple une image de J_c et K_c pour la valeur c=0,328075517+0,022051744 i du paramètre :



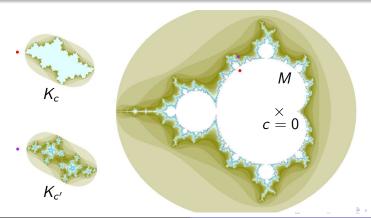
Gaston Julia (1893-1978)

Ensemble de Mandelbrot

Mathématicien franco-américain Benoît Mandelbrot (1924-2010).

Ensemble de Mandelbrot

C'est l'ensemble M des valeurs complexes c du paramètre telles que l'ensemble de Julia K_c associé à P_c soit "connexe".



Dynamiciens célèbres ...

Adrien Douady (1935-2006)

Un ensemble fractal de dimension 3 : le Mandelbulbe de degré p=8

L'équation du Mandelbulbe de degré p

White et Nylander ont donné la formule suivante en coordonnées sphériques dans \mathbb{R}^3

$$\langle x, y, z \rangle^p = r^p \langle \cos(p\theta) \cos(p\phi), \sin(p\theta) \cos(p\phi), \sin(p\phi) \rangle$$
 où
$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \arctan(y/x) \\ \text{et } \phi = \arctan(z/\sqrt{x^2 + y^2}) = \arcsin(z/r). \end{cases}$$

pour la p-ième puissance du nombre hypercomplexe 3D.

L'équation du Mandelbulbe de degré p

White et Nylander ont donné la formule suivante en coordonnées sphériques dans \mathbb{R}^3

$$\langle x, y, z \rangle^p = r^p \langle \cos(p\theta) \cos(p\phi), \sin(p\theta) \cos(p\phi), \sin(p\phi) \rangle$$
où
$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \arctan(y/x) \\ et \ \phi = \arctan(z/\sqrt{x^2 + y^2}) = \arcsin(z/r). \end{cases}$$

pour la p-ième puissance du nombre hypercomplexe 3D.

Comme pour l'ensemble de Mandelbrot plan, on regarde les domaines de convergences des suites obtenues par itération de $w\mapsto w^p+c$ où w et c sont des nombres "hypercomplexes" $w=\langle x,y,z\rangle$ dans \mathbb{R}^3 et $w\mapsto w^p$ l'application définie ci-dessus http://www.skytopia.com/project/fractal/2mandelbulb.html