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Projective vs Kahler vs non Kahler varieties

Goal. Investigate positivity for general compact manifolds/C.
Obviously, non projective varieties do not carry any ample line bundle.

In the Kahler case, a Kahler class {w} € H¥(X,R), w > 0, may
sometimes be used as a substitute for a polarization.

What for non Kahler compact complex manifolds?

Surprising facts (7)

— Every compact complex manifold X carries a “very ample” complex
Hilbert bundle, produced by means of a natural Bergman space
construction.

— The curvature of this bundle is strongly positive in the sense of
Nakano, and is given by a universal formula.

The aim of this lecture is to investigate further this construction and
explain potential applications to analytic geometry (invariance of
plurigenera, transcendental holomorphic Morse inequalities...)
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Tubular neighborhoods (thanks to Grauert)

Let X be a compact complex manifold, dim¢c X = n.

Denote by X its complex conjugate (X, —J), so that O5 = Ox.

The diagonal of X x X is totally real, and by Grauert, we know that it
possesses a fundamental system of Stein tubular neighborhoods.
Assume that X is equipped with a real analytic hermitian metric v, and
let exp: Tx = X x X, (2,€) — (z,exp,(§)), z € X, £ € Tx, be the
associated geodesic exponential map.

geodesic
curve
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Exponential map diffeomorphism and its inverse

Denote by exph the “holomorphic” part of exp, so that for z € X and
f € TX,z

P (€)= Y 2ap(2)E€, exph(€) = Y ano(2)E”
a,BEN aeN"?
Then d¢ exp,(§)e=0 = de exph,(§)e=o = IdT,, and so exph is a
diffeomorphism from a neighborhood V of the 0 section of Tx to a
neighborhood V’ of the diagonal in X x X.

Notation
With the identification X ~gig X, let logh: X x X D V' — T be the
inverse diffeomorphism of exph and

U. = {(z,w) € V' C X x X; |logh,(w)|, <&}, &>0.

Then, for e < 1, U- is Stein and pr; : U. — X is a real analytic locally
trivial bundle with fibers biholomorphic to complex balls.

|

A\
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Such tubular neighborhoods are Stein

X 1 U A
w

z X
In the special case X =C", U = {(z,w) e C"x C"; |z — w| < &}
is of course Stein since

Z—wf? = |z]* +|w|* = 2Re }_ zw;

and (z,w) — Re ) zjw; is pluriharmonic.
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Bergman sheaves

Let U. = U, C X X X be the ball bundle as above, and
p:(prl)wE - U. — X, ﬁ:(pr2)|u6 U, > X

the natural projections.

X I P U, A
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Bergman sheaves (continued)

Definition of the Bergman sheaf B,
The Bergman sheaf B, = 5, . is by definition the L? direct image
B: = pL (p*O(Kx)).

I.e. the space of sections over an open subset V C X defined by
B.(V) = holomorphic sections f of p*O(Kx) on p~(V),

f(z,w)=f(z,w)dwm A...ANdw,, z€V,
that are in [2(p~1(K)) for all compact subsets K € V :

/ i”zf(z, w) A f(z,w) Ay(z)" < 400, VK e V.
p~1(K)

(This L? condition is the reason we speak of “L? direct image”).

Clearly, B. is an Ox-module over X, but since it is a space of functions
in w, it is of infinite rank.
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Associated Bergman bundle and holom structure

Definition of the associated Bergman bundle B.

We consider the vector bundle B. — X whose fiber B, ,, consists of all
holomorphic functions f on p~!(z) C U. such that

I = [ ™ (. w) A o, w) < +ox.
P (20

v

Then B; is a real analytic locally trivial Hilbert bundle whose fiber B;
is isomorphic to the Hardy-Bergman space H?(B(0, <)) of L?
holomorphic n-forms on p~1(z) ~ B(0,¢) c C".

The Ohsawa-Takegoshi extension theorem implies that every f € B, ,
can be extended as a germ f in the sheaf B, .

Moreover, for ¢’ > ¢, there is a restriction map B,/ ,, — B , such that
B. ., is the L2 completion of B./ ,, /mzBer .

Is there a “complex structure” on B; such that “B. = O(B.)" ?
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Bergman Dolbeault complex

For this, consider the “Bergman Dolbeault” complex 0:F3 > 5q+1

over X, with (V) = smooth (n, g)-forms

flz,w)= > fi(z,w)dwi A ... A dw, AdZy, (z,w) € U N(V x X),
[J|=q
such that f;(z, w) is holomorphic in w, and for all K € V one has

f(z,w) € L*(p~}(K)) and 9,f(z,w) € L*(p~1(K)).

An immediate consequence of this definition is:

Proposition

0 :_52 yields a complex of sheaves (F°,0), and the kernel
Kerd : F2 — F! coincides with B..

If we define O2(B:) to be the sheaf of L2 . sections f of B. such that
Of = 0 in the sense of distributions, then we exactly have O,2(B.) = B.

as a sheaf.
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Bergman sheaves are “very ample”

Theorem

Assume that £ > 0 is taken so small that )(z, w) := |logh_(w)|? is
strictly plurisubharmonic up to the boundary on the compact set

U. C X x X. Then the complex of sheaves (F2,0) is a resolution of B.
by soft sheaves over X (actually, by C§°-modules ), and for every
holomorphic vector bundle E — X we have

HI(X,B. @ O(E)) = HI(I'(X,F2 ® O(E)),0) =0, Vq>1.

Moreover the fibers B, ; ® E, are always generated by global sections of
HO(X,B. ® O(E)).

v

In that sense, B; is a “very ample holomorphic vector bundle”
(as a Hilbert bundle of infinite dimension).
The proof is a direct consequence of Hormander's L? estimates.

B is NOT a locally trivial holomorphic bundle. l
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Embedding into a Hilbert Grassmannian

Corollary of the very ampleness of Bergman sheaves

Let X be an arbitrary compact complex manifold, E — X a holomorphic
vector bundle (e.g. the trivial bundle). Consider the Hilbert space

H = HY(X,B. ® O(E)). Then one gets a “holomorphic embedding”
into a Hilbert Grassmannian,

V: X — Gr(H), z+— S,

mapping every point z € X to the infinite codimensional closed
subspace S, consisting of sections f € H such that f(z) =0 in B, , i.e.

fip-1(z) = 0.

The main problem with this “holomorphic embedding” is that the
holomorphicity is to be understood in a weak sense, for instance the
map W is not even continuous with respect to the strong metric
topology of Gr(H), given by

d(S,S’) = Hausdorff distance of the unit balls of S, S’
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Chern connection of Bergman bundles

Since we have a natural V%! = 0 connection on B., and a natural
hermitian metric as well, it follows from the usual formalism that B. can
be equipped with a unique Chern connection.

Model case: X = C", v = standard hermitian metric.
Then one sees that a orthonormal frame of B. is given by

|
en(z, w) = w2 lal=n (ol +mt (w—-2)* «aeN"
atl. .. ap!

It is non holomorphic! The (0, 1)-connection V%! = 9 is given by

VOle, = Brea(z.w) =74 > \Jaj(la] +n) dzj @ eaq

1<<n

where ¢; = (0, ..., 1,...,0) € N".
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Curvature of Bergman bundles

Let ©p_h = V2 be the curvature tensor of B. with its natural Hilbertian
metric h. Remember that

Op. p = VHOVO 4 vOIvE0 ¢ c°(X, AV T @ Hom(B., B.)),

and that one gets an associated quadratic Hermitian form on Tx ® B.
such that

O.(v@ &) = (0. po(v, JV)E, €y
forve Txand € =3 Enen € B..

Definition

One says that the curvature tensor is Griffiths positive if
O.(v®E) >0, YO#£veTx, V0#£EE€EB.,

and Nakano positive if

~

O (1) >0, VO#TE€ Tx® B-.
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Calculation of the curvature tensor for X = C”

A simple calculation of V2 in the orthonormal frame (e,) leads to:

Formula

In the model case X = C", the curvature tensor of the Bergman bundle
(B, h) is given by

és(v®§) - 6_22 (

aeNn

2
>V bagyi| + ) _(lal +n) |€a2|\/j2>-
j j

v

Consequence

In C", the curvature tensor ©.(v ® &) is Nakano positive.

On should observe that ©.(v ® £) is an unbounded quadratic form on
B. with respect to the standard metric ||| =Y |€al°.

However there is convergence for all £ =) {neq € Bor, €' > ¢, since
then 3" (g'/e)?l|€,]? < +oo.
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Curvature of Bergman bundles (general case)

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C*¥ hermitian
metric 7, and B. = B, . the associated Bergman bundle.
Then its curvature is given by an asymptotic expansion

~

+o00
O (z,v® &) = 25_2+pr(z, vRRE), veTx, £€ B
p=0

where Qo(z,v ® &) = Qo(v ® &) is given by the model case C":

2

Q(veg =c2) ( DV Eagyi| + D _(lal +n) €a|2|‘/j|2>-
aeN" J J

The other terms Qp(z, v ® £) are real analytic; @ and Q» depend

respectively on the torsion and curvature tensor of ~.
In particular Q; = 0 is v is Kahler.

A consequence of the above formula is that B; is strongly Nakano
positive for € > 0 small enough.
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|ldea of proof of the asymptotic expansion

The formula is in principle a special case of a more general result proved
by Wang Xu, expressing the curvature of weighted Bergman bundles H;
attached to a smooth family {D;} of strongly pseudoconvex domains.

Wang's formula is however in integral form and not completely explicit.

Here, one simply uses the real analytic Taylor expansion of
logh : X x X — Tx (inverse diffeomorphism of exph)

logh,(w) =w —Z+ szaj(w —Z)+ ija}(w —Z)
+ szzkbjk(W —Z)+ ijfkbjl-k(w —Z)

+ ) zZkeu(w —2) + 0(|z]),

which is used to compute the difference with the model case C", for
which logh,(w) =w — Z,
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Potential application: invariance of plurigenera for
polarized families of compact Kahler manifolds ?

Conjecture

Let m: X — S be a proper holomorphic map defining a family of
smooth compact Kahler manifolds over an irreducible base S. Assume
that the family admits a polarization, i.e. a closed smooth (1, 1)-form w
such that wyx, is positive definite on each fiber X; := 7~!(t). Then the
plurigenera

pm(X:) = hO(X:, mKx,) are independent of t for all m > 0.

The conjecture is known to be true for a projective family X — S:
e Siu and Kawamata (1998) in the case of varieties of general type
e Siu (2000) and P3un (2004) in the arbitrary projective case

No algebraic proof is known in the latter case; one deeply uses the L2
estimates of the Ohsawa-Takegoshi extension theorem.
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Invariance of plurigenera: strategy of proof (1)

It is enough to consider the case of a family X — A over the disc, such
that there exists a relatively ample line bundle A over X.

Given s € H%(Xo, mKy,), the point is to show that it extends into

5 € H%(X, mKy), and for this, one only needs to produce a hermitian
metric h = e~ ¥ on Ky such that:

e O = i00¢p > 0 in the sense of currents

o [s|2 =]s?e7¥ <1, ie p>logls| on Xo.

The Ohsawa-Takegoshi theorem then implies the existence of s.

To produce h = e~ %, one produces inductively (also by O-T !) sections
of o, of L, : = A+ pKy such that:

o (0pj) generates L, for 0 < p < m

o 0p extends (0p_m,s)x, to X for p>m

Zj |Up,j|2

[ J
X Zj 0p—1

5 < Cforp>1.
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Invariance of plurigenera: strategy of proof (2)

By Hlder, the L2 estimates imply [, (32, |0,,]?)"/? < C for all p, and
using the fact that lim %@A = 0, one can take

P =limsup, oo p,  @p =z log > |opl*

Idea. In the polarized Kahler case, use the Bergman bundle B, -+ X
instead of an ample line bundle A — X. This amounts to applying the
Ohsawa-Takegoshi L2 extension on Stein tubular neighborhoods

U. C X x X, with projections pry : U. — X and 7 : X — A.

Proposition

In the polarized Kahler case (X, w), shrinking from U. to U, with
p < 1, the B; curvature estimate gives

1
on = 21083 o,
J

This implies that ¢ = limsup ¢, satisfies ¢ := —log(C" — ¢)
quasi-psh, but yields invariance of plurigenera only for ¢ — +oc.

P C
%jps = laacppz—W(C’—gpp)w.
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Transcendental holomorphic Morse inequalities

Conjecture

Let X be a compact n-dimensional complex manifold and
a € H,lg’é(X,R) a Bott-Chern class, represented by closed real
(1,1)-forms modulo 90 exact forms. Set

Vol(a) = sup / T, T >0 current.
T=a+i00p>0/X
Then
Vol(a) > sup / u"
ue{a}, ueC*> JX(u,0)
where

X(u,0) = 0-index set of u = {x € X; u(x) positive definite}.

Conjectural corollary (fundamental volume estimate)

Let X be compact Kahler, dim X = n, and o, 3 € HY1(X,R) be nef
classes. Then

Vol(a — ) > a" — na" 1. 6.
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Transcendental Morse: known facts & beyond

The conjecture on Morse inequalities is known to be true when

a = cy(L) is the class of a line bundle ([D-1985]), and the corollary can
be derived from this when «, 5 are integral classes (by [D-1993] and
independently by [Trapani, 1993]).

Recently, the volume estimate for a,, 8 transcendental has been
established by D. Witt-Nystrom when X is projective, and Xiao-Popovici
even proved in general that Vol(a — 3) > 0 if a” — na"~ 1 - 3 > 0.

Idea. In the general case, one can find a sequence of non holomorphic

hermitian line bundles (L, hy,) such that

mo = 9Lm,hm — 7,2,;0 — 79,:,2, Ym — 0.

As U. is Stein, 797;2 = OV, Vyy — 0, and prj L, becomes a holomorphic
line bundle with curvature form epri‘ L, ~ Mpri o.

Then apply L? direct image (prl)i2 and use Bergman estimates instead
of dimension counts in Morse inequalities.
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Thank you for your attention
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