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Abstract
We provide detailed holomorphic Morse estimates for the cohomology of sheaves of jet
differentials and their dual sheaves. These estimates apply on arbitrary directed varieties, and
a special attention has been given to the analysis of the singular situation. As a consequence,
we obtain existence results for global jet differentials and global differential operators under
positivity conditions for the canonical or anticanonical sheaf of the directed structure.
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Introduction

Recent developments in the theory of Kobayashi hyperbolicity have shown that a very con-
venient framework is the category of directed varieties. By definition, a directed variety is
a pair (X , V ) where X is a complex manifold or variety, and V ⊂ TX a complex analytic
linear subspace that may itself possess singularities. Such a structure is defined alternatively
as a saturated coherent subsheaf V of O(TX ). One can then introduce a natural concept of
canonical sheaf sequence K [•]

V that generalizes the usual canonical sheaf det(V ∗) in the case
where V is nonsingular; one says that (X , V ) is of general type if K [•]

V is big (see Sect. 1 for
details).

Following classical ideas of Bloch [1,2], Green–Griffiths [11] greatly advanced the study
of Kobayashi hyperbolicity through a powerful use of jet bundles; as an application, they
obtained a new geometric proof of the Bloch conjecture. In this vein, to any directed variety
(X , V ) one can associate a bundle J kV of k-jets of holomorphic curves f : (C, 0) → X
tangent to V . This gives rise to tautological rank 1 sheaves OXGG

k
(m) on the weighted pro-

jectivized bundles

πk : XGG
k → X , XGG

k := (J kV � {0})/C∗. (0.1)

By taking direct images (cf. [11] and [6], see also Sect. 2), one gets sheaves of jet differentials

O(Ek,mV
∗) = (πk)∗OXGG

k
(m). (0.2)

The goal of this work is to obtain precise estimates for the dimensions of the cohomology
groups

Hq(X ,O(Ek,mV
∗)

)
and Hq(X ,O((Ek,mV

∗)∗)
)
, (0.3)

along the lines of [7]. The crucial technical argument is an application of holomorphic Morse
inequalities to the rank one sheaf OXGG

k
(m), suitably twisted. The main contribution of the

present exposition is to analyze the role of singularities in a more systematic way than in
our previous papers [7,9,10,13]. The method to cope with singularities is to introduce ad hoc
sheaves of holomorphic sections that are bounded near singular points. In a quite general
setting, these sheaves interact very well with holomorphic Morse inequalities, and allow
us to extend the estimates of the nonsingular case in a simple manner. Another new idea
is to introduce the dual sheaf O((Ek,mV ∗)∗), which can be seen as a sheaf of differential
operators acting on functions of J kV . In this direction, we prove an existence theorem for
twisted differential operators. It somehow extends the existence theorem of slanted vector
fields on jet spaces, as established by Siu [15], Păun [14] and Merker [13]. The positivity
conditions needed to get the existence of twisted differential operators are much weaker
than those needed for the existence of twisted vector fields, but the draw-back of the present
approach is that we get a priori no information on the degeneration loci.

Paolo de Bartolomeis was one of the great world experts of deformation theory. In the
present context, it would be interesting to investigate the deformation theory of directed vari-
eties, in the smooth and singular contexts aswell. For instance, for a deformation (X ,V) → S
of directed structures over a base S, a natural question is the invariance of “directed pluri-
genera” h0(Xt ,

bKm
Vt

) (where bKm
Vt

refers to the sheaf of bounded sections, see Sect. 2), or
at least the invariance of the volume of KVt along the fibers Xt of X → S.

The first author wishes to thank Mihai Păun for raising several important issues that play
a very significant role in this work.
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Morse cohomology estimates…

1 Category of directed varieties

We first recall the main definitions concerning the category of directed varieties. We start
with the nonsingular case and then explain in detail the additional concepts and requirements
that we introduce in the presence of singularities.

Definition 1.1 A (complex, nonsingular) directed variety is a pair (X , V ) consisting of a
n-dimensional complex manifold X equipped with a holomorphic subbundle V ⊂ TX . A
morphism � : (X , V ) → (Y ,W ) in the category of directed varieties is a holomorphic map
such that d�x (Vx ) ⊂ W�(x) for every point x ∈ X .

The absolute situation is the case V = TX and the relative situation is the case when
V = TX/S is the relative tangent space to a smooth holomorphic map X → S. In general,
we can associate to V a sheaf V = O(V ) ⊂ O(TX ) of holomorphic sections. No assumption
need be made on the Lie bracket tensor [•, •] : V × V → O(TX )/V , i.e. we do not assume
any sort of integrability for V ; if this happens, then V defines a holomorphic foliation on X .

Complement to the definition (singular case) 1.2 Usually we are interested in questions that
are birationally invariant; in such cases one can always blow-up X and reduce the situation
to the case when X is nonsingular. Even then, the tangent bundle TX need not have many
holomorphic subbundles, but it always possesses many analytic subsheaves, thus it is impor-
tant to allow singularities for V . When defining a directed structure V on X , we assume that
there exists a dense Zariski open set X ′ = X �Y ⊂ X such that V|X ′ is a subbundle of TX |X ′
and the closure V|X ′ in the total space of TX is an analytic subset. The rank r ∈ {0, 1, . . . , n}
of V is by definition the dimension of Vx at points x ∈ X ′ ; the dimension may be larger
at points x ∈ Y . This happens e.g. on X = Cn for the rank 1 linear space V generated by
the Euler vector field ε(z) = C

∑
1� j�n z j

∂
∂z j

: then Vz = Cε(z) for z �= 0, and V0 = Cn .
The singular set Sing(V ) is by definition the complement of the largest open subset on
which V is a subbundle of TX ; it is equal to the indeterminacy set of the meromorphic map
X > Gr(TX , r) into the Grassmannian bundle of r -dimensional subspaces of TX , hence
codim(Sing(V )) � 2. The category of directed varieties (X , V ) is obtained by allowing X to
be an arbitrary reduced complex space; if X ↪→ Z is a local embedding in a smooth ambient
variety Z , we assume that there exists a Zariski open set X ′′ ⊂ X ′ = Xreg on which V|X ′′ is
a subbundle of TX ′ , and that V|X ′′ is a closed analytic subset of TZ (similarly TX is defined
to be the closure of TX ′ in TZ ).

2 Pluricanonical sheaves of a directed variety

Let (X , V ) be a directed projectivemanifold where V is possibly singular, and let r = rankV .
If μ : X̂ → X is a proper modification (a composition of blow-ups with smooth centers,
say), we get a directed manifold (X̂ , V̂ ) by taking V̂ to be the closure of μ−1∗ (V ′), where
V ′ = V|X ′ is the restriction of V over a Zariski open set X ′ ⊂ X � Sing(V ) such that
μ : μ−1(X ′) → X ′ is a biholomorphism. We say that (X̂ , V̂ ) is a modification of (X , V )

and write V̂ = μ∗V .
We will be interested in taking modifications realized by iterated blow-ups of certain

nonsingular subvarieties of the singular set Sing(V ), so as to eventually “improve” the sin-
gularities of V ; outside of Sing(V ) the effect of blowing-up is irrelevant. The canonical
sheaf KV , resp. the pluricanonical sheaf sequence K [m]

V , is defined by using the concept of
bounded pluricanonical forms that was already introduced in [7].
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J.-P. Demailly, M. R. Rahmati

Definition 2.1 For a directed pair (X , V ) with X nonsingular, we define bK V , resp. bK
[m]
V ,

for any integer m � 0, to be the rank 1 analytic sheaves such that

bK V (U ) = sheaf of locally bounded sections of OX
(
�r V ′∗)(U ∩ X ′)

bK
[m]
V (U ) = sheaf of locally bounded sections of OX

(
(�r V ′∗)⊗m)

(U ∩ X ′),

where r = rank(V ), X ′ = X � Sing(V ), V ′ = V|X ′ , and “locally bounded” means bounded
with respect to a smooth hermitian metric hX on TX , on every set Uc ∩ X ′ such that Uc is
relatively compact in U .

The above definition of bK
[m]
V may look like an analytic one, but it can easily be turned

into an equivalent algebraic definition (cf. [10]). Let us recall that, given a coherent ideal
sheaf J = (g1, . . . , gN ) and a positive rational (or even real) number p, one defines the p-th
integral closure, denoted formallyJ p , to be the sheaf of holomorphic functions f that satisfy
locally an inequality | f | � C

( ∑ |g j |)p; this is a coherent sheaf that can be identified with
the sheaf of functions satisfying an integral equation f d + a1 f d−1 + · · · + ad = 0 where
as ∈ J 
ps� for some d � 1 (see e.g. [agbook]).

Proposition 2.2 Consider the natural morphism O(�r T ∗
X ) → O(�r V ∗) where r = rankV

and O(�r V ∗) is defined as the quotient of O(�r T ∗
X ) by r-forms that have zero restrictions

to O(�r V ∗) on X � Sing(V ). The bidual LV = O(�r V ∗)∗∗ is an invertible sheaf, and our
natural morphism can be written

O(�r T ∗
X ) → O(�r V ∗) = LV ⊗ JV ⊂ LV , (2.2a)

where JV is a certain ideal sheaf of OX whose zero set is contained in Sing(V ) and the
arrow on the left is surjective by definition. Then

bK
[m]
V = L⊗m

V ⊗ J m
V , (2.2b)

where J m
V is the integral closure of J m

V in OX . In particular, bK
[m]
V is always a coherent

sheaf.

A typical example of what may happen is the Euler vector field linear space V ⊂ TCn :
then the sheaf of holomorphic sectionsO(V ) is trivial and generated by ε, i.e.O(V ) = OCnε,
hence its sheaf theoretic dual is O(V )∗ = OCnε∗ where ε∗ is the (unbounded) 1-form such
that ε∗ · ε = 1. With the notation of Proposition 2.2, we have

O(V ∗) = O(�1V ∗) = bK V = m0OCnε∗ = bK V ,

LV = O(V ∗)∗∗ = OCnε∗ = O(V )∗,
JV = m0, J m

V = J m
V = mm

0 .

It is equally important to understand the effect of modifications on the sheaves bK
[m]
V .

Proposition 2.3 For any modification μ : (X̂ , V̂ ) → (X , V ), there are always well defined
injective natural morphisms of rank 1 sheaves

bK
[m]
V ↪→ μ∗

(bK
[m]
V̂

)
↪→ L⊗m

V , (2.3a)

and the direct image μ∗
(
bK

[m]
V̂

)
may only increase when μ is replaced by a “higher” modi-

fication μ̃ = μ′ ◦ μ : X̃ → X̂ → X and V̂ = μ∗V by Ṽ = μ̃∗V , i.e. there are injections

μ∗
(bK

[m]
V̂

)
↪→ μ̃∗

(bK
[m]
Ṽ

)
↪→ L⊗m

V . (2.3b)
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Morse cohomology estimates…

We refer to this property as the monotonicity principle.

Proof (a) The existence of the first arrow is seen as follows: the differential μ∗ = dμ :
V̂ → μ∗V is smooth, hence bounded with respect to ambient hermitian metrics on X and
X̂ , and going to the duals reverses the arrows while preserving boundedness with respect to
the metrics. We thus get an arrow

μ∗(bV �) ↪→ bV̂ �.

By taking the top exterior power, followed by them-th tensor product and the integral closure

of the ideals involved, we get an injective arrow μ∗(bK [m]
V

)
↪→ bK

[m]
V̂ . Finally we apply the

direct image functor μ∗ and the canonical morphism F → μ∗μ∗F to get the first inclusion

morphism. The second arrow comes from the fact that bK
[m]
V coincides with L⊗m

V (and with
det(V ∗)⊗m) on the complement of the codimension 2 set S = Sing(V )∪μ(Exc(μ)), and the
fact that for every open set U ⊂ X , sections of LV defined on U � S automatically extend
to U by the Riemann extension theorem, even without any boundedness assumption.

(b) Givenμ′ : X̃ → X̂ , we argue as in (a) that there is a boundedmorphism dμ′ : Ṽ → V̂ .
��

By the monotonicity principle and the strong Noetherian property of coherent sheaves,
we infer that there exists a maximal direct image when μ : X̂ → X runs over all nonsingular
modifications of X . The following definition is thus legitimate.

Definition 2.4 We define the pluricanonical sheaf K [m]
V of (X , V ) to be the inductive limit

K [m]
V := lim−→

μ

μ∗
(bK

[m]
V̂

) = max
μ

μ∗
(bK

[m]
V̂

)
,

taken over the family of all modifications μ : (X̂ , V̂ ) → (X , V ), with the trivial (filtering)
partial order. The canonical sheaf KV itself is defined to be the same as K [1]

V . By construction,
we have for every m � 0 inclusions

bK
[m]
V ↪→ K [m]

V ↪→ L⊗m
V ,

and K [m]
V = J [m]

V · L⊗m
V for a certain sequence of integrally closed ideals J [m]

V ⊂ OX .

It is clear from this construction that K [m]
V is birationally invariant in the sense that we

have K [m]
V = μ∗

(
K [m]
V ′

)
for every modification μ : (X ′, V ′) → (X , V ). One of the most

central conjectures in the theory is the

Generalized Green–Griffiths–Lang conjecture 2.5 Let (X , V ) be a projective directed vari-
ety. Assume that (X , V ) is of “general type” in the sense that there exists m � 1 such that
the invertible sheaf μ∗

m(K [m]
V ) is a big line bundle when one takes a log-resolution μm of

the ideal J [m]
V . Then there should exist a proper algebraic subvariety Y � X containing the

images f (C) of all entire curves f : C → X tangent to V .

The main reason for incorporating the ideals J [m]
V in the definition of K [m]

V is that the
above conjecture would otherwise be trivially false: for instance, it is easy to see that a pencil
of conics passing through 4 points in general position in P2

C
are tangent to a rank 1 subspace

V ⊂ TP2 such that LV = O(V )∗ � OP2(1) is ample; however, all leaves are rational curves.
Here, we are in fact more interested here in the dual situation where a positivity assumption
is made for the line bundle

(
μ∗
m(K [m]

V )
)∗.
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3 Jet bundles and jet differentials

3.1 Nonsingular case

Following Green–Griffiths [11], we consider the bundle Jk X → X of k-jets of germs of para-
metrized curves in X , i.e., the set of equivalence classes of holomorphic maps f : (C, 0) →
(X , x), with the equivalence relation f ∼ g if and only if all derivatives f ( j)(0) = g( j)(0)
coincide for 0 � j � k, when computed in some local coordinate system of X near x .
The projection map Jk X → X is simply f �→ f (0). If (z1, . . . , zn) are local holomorphic
coordinates on an open set 	 ⊂ X , the elements f of any fiber Jk Xx , x ∈ 	, can be seen as
Cn-valued maps

f = ( f1, . . . , fn) : (C, 0) → 	 ⊂ Cn,

and they are completely determined by their Taylor expansion of order k at t = 0

f (t) = x + t f ′(0) + t2

2! f
′′(0) + · · · + tk

k! f
(k)(0) + O(tk+1).

In these coordinates, the fiber Jk Xx can thus be identified with the set of k-tuples of vectors
(ξ1, . . . , ξk) = ( f ′(0), . . . , f (k)(0)) ∈ (Cn)k . It follows that Jk X is a holomorphic fiber
bundle with typical fiber (Cn)k over X . However, Jk X is not a vector bundle for k � 2,
because of the nonlinearity of coordinate changes: a coordinate change z �→ w = �(z) on
X induces a polynomial transition automorphism on the fibers of Jk X , given by a formula

(� ◦ f )( j) = � ′( f ) · f ( j) +
s= j∑

s=2

∑

j1+ j2+···+ js= j

c j1... js�
(s)( f ) · ( f ( j1), . . . , f ( js )), (3.1)

with suitable integer constants c j1... js (this is easily checked by induction on s). According
to the above philosophy, we introduce the concept of jet bundle in the general situation of
complex directed manifolds, assuming V nonsingular to start with.

Definition 3.2 Let (X , V ) be a complex directed manifold. We define JkV → X to be the
bundle of k-jets of curves f : (C, 0) → X that are tangent to V , i.e., such that f ′(t) ∈ V f (t)

for all t in a neighborhood of 0, together with the projection map f �→ f (0) onto X .

For any point x0 ∈ X , there are local coordinates (z1, . . . , zn) on a neighborhood 	 of x0
such that the fibers (Vz)z∈	 can be defined by linear equations

Vz =
{
v =

∑

1� j�n

v j
∂

∂z j
; v j =

∑

1�k�r

a jk(z)vk for j = r + 1, . . . , n
}
, (3.3)

where (a jk) is a holomorphic (n−r)×r matrix. Let f : D(0, R) → X be a curve tangent to
V such that f (D(0, R)) ∈ 	, and let ( f1, . . . , fn) be the components of f in the coordinates
The curve f is uniquely determined by its initial value x = f (0) and by the first r components
( f1, . . . , fr ). Indeed, as f ′(t) ∈ V f (t) , we can recover the other components by integrating
the system of ordinary differential equations

f ′
j (t) =

∑

1�k�r

a jk( f (t)) f
′
k(t), r + 1 � j � n, (3.4)
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on a neighborhood of 0, with initial data f (0) = x . As a consequence, JkV is actually a
subbundle of Jk X . In fact, by using (3.4), we see that the fibers JkVx are parametrized by

(
( f ′

1(0), . . . , f ′
r (0)); ( f ′′

1 (0), . . . , f ′′
r (0)); . . . ; ( f (k)

1 (0), . . . , f (k)
r (0))

) ∈ (Cr )k,

for all x ∈ 	, hence JkV is a locally trivial (Cr )k-subbundle of Jk X . Alternatively, we can
pick a local holomorphic connection∇ on V such that for any germsw = ∑

1� j�n w j
∂

∂z j
∈

O(TX ,x ) and v = ∑
1���r v�e� ∈ O(V )x in a local trivializing frame (e1, . . . , er ) of V�	

we have

∇wv(x) =
∑

1� j�n, 1���r

w j
∂v�

∂z j
e�(x) +

∑

1� j�n, 1��,μ�r



μ
j�(x)w jv� eμ(x). (3.5)

We can of course take the (unique) frame (e�)1���r inV such that ∂/∂z� is the projection of e�

on the first r coordinates, and the trivial connection∇0 given by the zero Christoffel symbols

 = 0 with respect to this frame, but any other holomorphic connection ∇ is acceptable.
One then obtains a trivialization J kV�	 � V⊕k

�	 by considering

JkVx � f �→ (ξ1, ξ2, . . . , ξk) = (∇ f (0),∇2 f (0), . . . ,∇k f (0)) ∈ V⊕k
x , (3.6)

and computing inductively the successive derivatives ∇ f (t) = f ′(t) and ∇s f (t) via

∇s f = ( f ∗∇)d/dt (∇s−1 f ) =
∑

1���r

d

dt

(
∇s−1 f

)

�
e�( f )

+
∑

1� j�n, 1��,μ�r



μ
j�( f ) f

′
j

(
∇s−1 f

)

�
eμ( f ).

This identification depends of course on the choice of ∇ and cannot be defined globally in
general (unless we are in the rare situation where V has a global holomorphic connection).
Now, we consider the natural C∗-action on J kV that maps a k-jet t �→ f (t) to λ · f (t) :=
f (λt), λ ∈ C∗. Since ∇s(λ · f )(t) = λs∇s f (t), the C∗ action is described in coordinates
by

λ · (ξ1, ξ2, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk), ξs = ∇s f (0). (3.7)

Following [11], we introduce the bundle EGG
k,mV

∗ → X of polynomials P(x ; ξ1, . . . , ξk) that
are homogeneous on the fibers of JkV of weighted degree m with respect to the C∗ action,
i.e.

P(x ; λξ1, . . . , λ
kξk) = λm P(x ; ξ1, . . . ξk), (3.8)

in other words they are polynomials of the form

P(x ; ξ1, . . . ξk) =
∑

|α1|+2|α2|+···+k|αk |=m

aα1...αk (x) ξ
α1
1 ξ

α2
2 · · · ξαk

k , (3.9)

where ξs = (ξs,1, . . . , ξs,r ) ∈ Cr � Vx and ξ
αs
s = ξ

αs,1
s,1 . . . ξ

αs,r
s,r , |αs | = ∑

1� j�r αs, j .

Sections of the sheaf O(EGG
k,mV

∗) can also be viewed as algebraic differential operators
acting on germs of curves f : (C, 0) → X tangent to V , by putting

P( f )(t) =
∑

|α1|+2|α2|+···+k|αk |=m

aα1...αk ( f (t)) (∇ f (t))α1(∇2 f (t))α2 · · · (∇k f (t))αk ,

(3.9′)
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where the aα1...αk (x) are holomorphic in x . With the graded algebra bundle EGG
k,• V ∗ =

⊕
m EGG

k,mV
∗ we associate an analytic fiber bundle

XGG
k := Proj(EGG

k,• V ∗) = (JkV � {0})/C∗, (3.10)

over X , which has weighted projective spaces P(1[r ], 2[r ], . . . , k[r ]) as fibers; here JkV � {0}
is the set of nonconstant jets of order k. As such, it possesses a tautological sheaf OXGG

k
(1)

[the reader should observe however that OXGG
k

(m) is invertible only when m is a multiple of
lcm(1, 2, . . . , k)].

Proposition 3.11 By construction, if πk : XGG
k → X is the natural projection, we have the

direct image formula

(πk)∗OXGG
k

(m) = O(EGG
k,mV

∗),

for all k and m.

3.2 Singular case

When V has singularities and X is nonsingular, we simply consider the inclusion morphism
(X , V ) → (X , TX ) into the absolute directed structure. This yields a morphism JkV|X ′ →
JkTX |X ′ in restriction to the Zariski open set X ′ = X�Sing(V ), andwe define JkV = JkV|X ′
to be the closure of JkV|X ′ in JkTX . It is then easy to see that JkV is an analytic subset of
JkTX , hence we get an inclusion morphism JkV ↪→ JkTX over X , which also induces an
inclusion

XGG
k ↪→ X abs,GG

k , (3.12)

of XGG
k = (JkV � {0})/C∗ into the absolute Green–Griffiths bundle X abs,GG

k =
(JkTX � {0})/C∗. In analogy with our concept of canonical sheaf, it is natural to introduce
the following definitions.

Theorem and definition 3.13 Let pk : J kV � {0} → XGG
k be the natural projection. The

sheaf bOXGG
k

(m) (here, the bmeans “locally bounded” sections ) is defined as follows: for any

open set U ⊂ XGG
k , the space of sections bOXGG

k
(m)(U ) consists of holomorphic operators

F(x ; ξ1, . . . , ξk) on the conical open set

p−1
k (U ) ∩ J kV|X ′ ⊂ J kV|X ′ ⊂ J kTX ,

that are homogeneous of degree m with respect to the C∗-action, and are locally bounded
with respect to a smooth hermitian metric hX on TX . Namely, if ∇ is a local holomorphic
connection on TX |	 and (ξ1, . . . , ξk) are the components of a k-jet computed with respect to
∇, we require that

|F(x ; ξ1, . . . , ξk)| � C(Uc)

( ∑

1�s�k

‖ξs‖1/shX

)m

, (3.13∗)

on p−1
k (Uc), for every relatively compact open subset Uc � U ∩ π−1

k (	). Then bOXGG
k

(m)

is a rank 1 coherent analytic sheaf, and is independent of the choice of hX and ∇.
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Definition 3.14 With the above notation, the sheaf bO(EGG
k,mV

∗) is the analytic sheaf on X
whose spaces of sections are polynomial differential operators P(x ; ξ1, . . . , ξk) in

bO(EGG
k,mV

∗)(U ) ⊂ O(EGG
k,mV

∗)(U ∩ X ′),

i.e. polynomial functions P = F that satisfy inequality (3.13) on π−1
k (Uc ∩ X ′), for all open

sets Uc � U ⊂ X . In other words, we have

(πk)∗bOXGG
k

(m) = bO(EGG
k,mV

∗). (3.14∗)

Proof That homogeneous functions on J kV|U must be polynomials on the fibers is a trivial
fact (using e.g. power series expansions in terms of (ξ1, . . . , ξk)). The coherence of bOXGG

k
(m)

is a simple consequence of the fact that we have a restriction morphism

OXabs,GG
k

(m)|XGG
k

−→ bOXGG
k

(m), (3.15)

and that, almost by definition,
⊕

m
bOXGG

k
(m) consists of taking the normalization of the

image of the graded ring of sections; this shows again that our concepts are purely algebraic,
in spite of the analytic definition that was given in 3.13. The coherence of bO(EGG

k,mV
∗) then

follows by the direct image theorem. It is very important to observe that in condition (3.13)
one must refer to a metric hX and a connection ∇ on the ambient bundle TX , and not to a
holomorphic connection on V , since any such connectionwould be unbounded near Sing(V ),
leading to the failure of (3.15). ��

It is also clear form the definitions that our sheaf of jet differentials coincides with the
already defined vector bundle on X ′ = X � Sing(V ) :

(
bO(EGG

k,mV
∗)

)

|X�Sing(V )
= O

(
EGG
k,mV

∗
|X�Sing(V )

)
. (3.16)

When X itself has singularities, one can locally embed X in a smooth ambient variety Z and
refer to smooth hermitian metrics on Z , taking bounded sections on a Zariski open set where
both X and V are smooth. We will not consider this case much further and leave details to
the reader.

4 Morse inequalities, in the smooth and singular contexts

4.1 Smooth case

The main purpose of holomorphic Morse inequalities is to provide estimates of cohomology
groups with values in high tensor powers of a given line bundle L , once a hermitian metric
h on L is given. We denote by �L,h = − i

2π ∂∂ log h the (1, 1)-curvature form of h, and for
any (1, 1)-form u(z) = i

∑
1� j,k�n u jk(z) dz j ∧ dzk , we define its q-index set X(u, q) to

be the open set

X(u, q) = {
z ∈ X ; u(z) has signature (n − q, q)

}
, (4.1)

(so that q is the number of negative eigenvalues of u(z)). The following statement summarizes
the main results of [4].

Holomorphic Morse inequalities for smooth metrics 4.2 Let X be a compact complex n-
dimensional manifold, E → X a holomorphic vector bundle of rank r, and L a holomorphic
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line bundle equipped with a smooth hermitian metric h. The dimensions hq(X , E ⊗ Lm) of
cohomology groups of the tensor powers E ⊗ Lm satisfy the following asymptotic estimates
as m → +∞ :
Weak Morse inequalities:

hq(X , E ⊗ Lm) � r
mn

n!
∫

X(�L,h ,q)

(−1)q�n
L,h + o(mn). (4.2 WM)

Strong Morse inequalities:

∑

0� j�q

(−1)q− j h j (X , E ⊗ Lm) � r
mn

n!
∑

0� j�q

∫

X(�L,h , j)
(−1)q− j�n

L,h + o(mn).

(4.2 SM)

Asymptotic Riemann–Roch formula:

χ(X , E ⊗ Lm) :=
∑

0� j�n

(−1) j h j (X , E ⊗ Lm) = r
mn

n!
∫

X
�n

L,h + o(mn). (4.2 RR)

In fact, the strong Morse inequality implies the weak form (by adding the inequalities for
q and q − 1), and the asymptotic Riemann–Roch formula (by taking q = n and q = n + 1).
By adding the strong Morse inequalities for q + 1 and q − 2, one also gets the lower bound

hq(X , E ⊗ Lm) � hq(X , E ⊗ Lm) − hq−1(X , E ⊗ Lm) − hq+1(X , E ⊗ Lm)

� r
mn

n!
∑

q−1� j�q+1

∫

X(�L,h , j)
(−1)q− j�n

L,h − o(mn), (4.3q )

and especially, for the important case q = 0, the lower bound

h0(X , E ⊗ Lm) �
∫

X(�L,h ,0)
�n

L,h −
∫

X(�L,h ,1)
�n

L,h − o(mn). (4.30)

4.2 Case of metrics withQ-analytic singularities

The above estimates are volume estimates, and therefore are not sensitive to modifications.
In particular, we have the following easy lemma.

Lemma 4.4 Let E be a coherent analytic sheaf and (L, h) a hermitian line bundle on a
reduced irreducible compact complex space Z. Then

(i) If Y = Supp(E) has at most p-dimensional irreducible components, we have

hq(Z , E ⊗ O(Lm)) = O(mp).

(ii) If n = dim Z and r is the generic rank of E , the Morse inequalities are still valid with X
replaced by Z and the locally free sheaf O(E) replaced by E .

Proof We prove 4.4(i)p�N and 4.4(ii)n�N by induction on N , everything being obvious for
N = 0.
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If Y is not irreducible and Y = ⋃
Y j is the decomposition in irreducible components, let

E j be the sheaf of sections of E that vanish on all components Yk , k �= j . Then we have an
exact sequence

0 →
⊕

E j → E → F → 0,

where F is supported on Y ′ = ⋃
j �=k Y j ∩ Yk , dim Y � p − 1. If we use the corresponding

exact sequence and argue by induction on p, we see that it is sufficient to check 4.4(i)p when
Y is irreducible. If IY is the reduced ideal sheaf of Y , we have Ik

Y E = 0 for some k ∈ N∗,
and we thus get a decreasing filtration E� = I�

Y E of E such that E�/E�+1 can be viewed
as a coherent sheaf on the reduced space Yred, whose structure sheaf is OX/IY . Then, by
taking Z = Y and exploiting the exact sequences 0 → E�+1 → E� → E�/E�+1 → 0, we
see that 4.4(ii)n�N implies 4.4(i)p�N . The last part of the proof consists in showing that
Theorem 4.2 n�N and 4.4(i)p�N−1 imply 4.4(ii)n�N , and for this, it is enough to consider
the case where dim Z = n = N .

In that case, theHironakadesingularization theorem implies that there exists amodification
μ : X → Z such that X is nonsingular and F = μ∗E is locally free modulo torsion, so that
we have an exact sequence

0 → Ftors → F → F/Ftors → 0,

whereF/Ftors is locally free (i.e. a vector bundle on X ). Therefore, holomorphic inequalities
4.2 can be applied to the groups Hq(X ,F/Ftors ⊗ O(μ∗Lm)), and since Y = Supp(Ftors)

has dimension p � N − 1, part 4.4(i)p�N−1 of the Lemma shows that the groups
Hq(X ,F ⊗ O(μ∗Lm)) also satisfy holomorphic Morse inequalities. Finally, we use the
Leray spectral sequence. It yields a convergent spectral sequence

H p(Z , Rqμ∗(F) ⊗ O(Lm)) ⇒ H p+q(X ,F ⊗ O(μ∗Lm)),

and we know that Rqμ∗(F) is supported for q � 1 on an analytic subset Y ′ � Z , and that
the morphism E → μ∗μ∗E = R0μ∗(F) is an isomorphism outside of codimension 1. From
this we conclude that holomorphic Morse inequalities for the Hq(X ,F ⊗O(μ∗Lm)) (which
we already know), imply holomorphic Morse inequalities for Hq(Z , E ⊗O(Lm)), thanks to
4.4(i)n�N−1 applied on Z . ��

In his PhD thesis, Bonavero [3] extended Morse inequalities to the case of singular her-
mitian metrics. We state here a variant that allows more general singularities (but in fact,
everything can be reduced to the smooth case 4.2 by means of a desingularization, thus all
versions are in fact equivalent).

Definition 4.5 Let Z be an irreducible and reduced complex space andL a torsion free rank 1
sheaf on Z . A hermitian metric h on L with Q-analytic singularities is a hermitian metric h
defined on a dense open set Z ′ ⊂ Zreg where L is invertible, with the following property :
there exists a smooth modification μ : X → Z such that μ∗L is invertible and the pull-back
metricμ∗h has normal crossingQ-divisorial singularities, i.e. if g is a local generator ofμ∗L
on a small open set U ⊂ X , we have

log |g|2μ∗h = ψ −
∑

λ j log |z j |2,
for some holomorphic coordinates (z j ) on U , λ j ∈ Q � {0} and ψ ∈ C∞(U ). We will say
that h has Q+-analytic singularities if one can take all λ j ∈ Q+ � {0} (or an empty sum ).
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(Of course the normal crossing hypothesis is not necessary, since it can always be achieved
a posteriori by an application of the Hironaka desingularization theorem). We define the
singular set S = Sing(μ∗h) to be the common zero set {z j = 0} for the coordinates z j
involved above, and Sing(h) to be the union of μ(S) and of the closed analytic subset of Z
where L is not invertible.

Definition 4.6 Let Z be an irreducible and reduced complex space, andL a torsion free rank 1
sheaf on Z equipped with a hermitian metric h with Q-analytic singularities. We define the
sheaf of h-bounded sections bO(Lm)h to be the sheaf of germs of meromorphic sections
σ of Lm such that |σ |h is bounded (just consider the restriction to U ∩ Z ′ where U is a
neighborhood of a given point z0 ∈ Z and Z ′ = Z � Sing(h) ).

It follows from the definitions that bO(Lm)h is a coherent sheaf of rank 1 ; in fact, with
the notation of Definition 4.5, it is the direct image by μ of (μ∗L)m ⊗ OX (−
mD�) where
D = ∑

λ j D j is the Q-divisor of X given by Dj = {z j = 0}, and 
mD� = ∑
mλ j�Dj

is the round up. Especially, if Z is normal, L invertible and h has Q+-analytic singularities
(i.e. D � 0), then we have bO(Lm)h ⊂ O(Lm). Otherwise, we may get some meromorphic
sections in bO(Lm)h that are actually not holomorphic.

Holomorphic Morse inequalities for singular metrics 4.7 Let Z bean irreducible and reduced
complex space,L a torsion free rank 1 sheaf on Z equipped with a hermitian metric h withQ-
analytic singularities, and E be a coherent sheaf of generic rank r. Then, for Z ′ = Z�Sing(h)

and all q = 0, 1, . . . , n = dim Z, we have estimates

∑

j=q−1,q,q+1

r
mn

n!
∫

Z ′(�L,h , j)
(−1)q− j�n

L,h − o(mn)

� hq(Z , E ⊗ bO(Lm)h) � r
mn

n!∫

Z ′(�L,h ,q)

(−1)q�n
L,h + o(mn).

Proof We use a smooth modification μ : X → Z such that μ∗L satisfies the requirements
of Definition 4.5 and μ∗E is locally free modulo torsion. The proof of Lemma 4.4 then
shows that the torsion of F = μ∗E can be neglected. Again, the conclusion follows from the
Leray spectral sequence and the smooth case of Morse inequalities applied to the sequence
of invertible line bundles

p �→ G ⊗ L̃p on X ,

where

G = F/Ftors ⊗ μ∗Lr ⊗ OX (−
r D�), L̃ = μ�La ⊗ OX (−
aD�),
a ∈ N∗ is a denominator of the Q-divisor D and m = ap + r , 0 � r < a. It follows that
there is a morphism

E ⊗ bO(Lm)h) → μ∗(G ⊗ L̃p),

whose kernel and cokernel are supported on subvarieties Y , Y ′ � Z , and by definition μ∗ha
induces a smoothmetric on L̃. As a consequence�L̃,μ∗ha = a μ∗�L,h onμ−1(Z�Sing(h))

and
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∫

X(�L̃,μ∗ha ,q)

(−1)q�n
L̃,μ∗ha = an

∫

Z ′(�L,h ,q)

(−1)q�n
L,h .

��
Remark 4.8 In Bonavero’s thesis [3], Z is a manifold, E = OZ (E) and L = OZ (L) are
assumed to be locally free, h = e−ϕ is a singular hermitian metric with Q+-analytic singu-
larities and the cohomology groups involved are the groups

Hq(Z ,OZ (E ⊗ Lm) ⊗ I(hm)),

where I(hm) are the L2 multiplier ideal sheaves

I(hm) = I(kϕ) = {
f ∈ OZ ,x , ∃V � x,

∫

V
| f (z)|2e−mϕ(z)dλ(z) < +∞}

.

Here, we have in fact replaced the L2 condition by a L∞ condition. When pulling-back to X
via a modification μ : X → Z resolving the singularities of h into divisorial singularities,
the difference is just a twist by the relative canonical bundle KX/Z and the use of the round
down �mD� instead of 
mD�. These differences are “bounded” and thus do not make any
change in the estimates produced by the Morse inequalities. For the same reason, we could
even allow the singularity D of μ∗h to be a R-divisor, although periodicity would be lost in
the round up process; one then needs the fact that Morse inequalities are “uniform” when E
remains in a bounded family of vector bundles, which follows easily from the analytic proof.

5 Cohomology estimates for sheaves of jet differentials and their duals

On a directed variety (X , V ), is may be necessary to allow V to have singular hermitian
metrics, even when (X , V ) is smooth: indeed, this leads to more comprehensive curvature
conditions, since one can e.g. relax the ampleness conditions and consider instead big line
bundles. However, it is also useful to consider situations where V is singular. According to
the philosophy of § 4, we have to explain what are the sheaves involved in the presence of
such singularities.

Definition 5.1 Let (X , V ) be a directed variety, X being nonsingular.

(a) A singular hermitian metric on a linear subspace V ⊂ TX is a metric h on the fibers of V
such that the function log h : ξ �→ log |ξ |2h is locally integrable on the total space of V .

(b) A singular metric h on V will be said to have Q-analytic singularities if h can be written
as h = eϕ(hX )|V where hX is a smooth positive definite hermitian metric on TX and ϕ

is a weight with Q-analytic singularities, i.e. one can find a modification μ : X̃ → X
such that locally ϕ ◦ μ = ∑

λ j log |g j (z)| + ψ(z), where λ j ∈ Q � {0}, ψ ∈ C∞
and the g j are holomorphic functions; one can then further assume that D = ∑

λ j D j ,
Dj = {g j = 0}, is a simple normal crossing divisor on X̃ . We define Sing(h) to be the
union μ(Supp(D)) ∪ Sing(V ).

A singular metric h on V can also be viewed as a singular hermitian metric on the tauto-
logical line bundleOP(V )(−1)on the projectivized bundle P(V ) = V�{0}/C∗, and therefore
its dualmetric h−1 defines a curvature current�OP(V )(1),h−1 of type (1, 1) on P(V ) ⊂ P(TX ),
such that

p∗�OP(V )(1),h−1 = i

2π
∂∂ log h, where p : V � {0} → P(V ). (5.2)
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Remark 5.3 In [7–9], we introduced the concept of an admissible metric h on V , which is
closely related to the concept of a metric with Q+-analytic singularities (in the sense that
the divisor of singularities D is nonnegative); then log h is quasi-plurisubharmonic (i.e. psh
modulo addition of a smooth function) on the total space of V , hence

�OP(V )(1),h−1 � −Cω, (5.3a)

for some smooth positive (1, 1)-form ω on P(V ) and some constant C > 0 ; if h has Q-
analytic singularities, we can choose a smooth modification X̃ → X such that O(μ∗V ) is
locally free, the injection O(μ∗ det V ) ↪→ O(μ∗�r TX ) vanishes along an invertible ideal
O(−�) ⊂ OX̃ and μ∗ log(h/hX ) has divisorial singularities given by a Q-divisor D. Then

�OP(μ∗V )(1),μ∗h−1 = [D + �] + β, (5.3b)

for some smooth (1, 1)-form β on P(μ∗V ). Hence if D + � � 0 (and especially if D � 0),
we still have

�OP(μ∗V )(1),μ∗h−1 � −Cω̃, (5.3c)

for any smooth positive (1, 1)-form ω̃ on P(μ∗V ).

Bounded sections 5.4 If h is a singularmetricwithQ-analytic singularities on (X , V ) and h∗
the corresponding dual metric on V ∗, we consider the Zariski open set
X ′ = X � (Sing(V ) ∪ Sing(h)) and define :
(a) bO(V ∗)h∗ to be the sheaf of germs of holomorphic sections of V ∗

|X ′ which are h∗-bounded
near every point of X ;

(b) the h-bounded pluricanonical sequence to be

bK
[m]
V ,h = sheaf of germs of holomorphic sections of (det V ∗

|X ′)⊗m = (�r V ∗
|X ′)⊗m

which are det h∗-bounded,

so that bK
[m]
V := bK

[m]
V ,hX according to Def. 2.1.

(c) for U ⊂ X open, the space of sections bO(EGG
k,mV

∗
h )(U ) of bO(EGG

k,mV
∗
h ) consists of

functions P(x ; ξ1, . . . , ξk) that are holomorphic in x ∈ U ∩ X ′ and polynomial in the
ξ j ’s, satisfying upper bounds of the form

∣∣P(z ; ξ1, . . . , ξk)
∣∣ � C(Uc)

( ∑

1�s�k

‖ξs‖1/sh

)m

, x ∈ Uc � U .

We then have a direct image formula

bO(EGG
k,mV

∗
h ) = (πk)∗bOXGG

k
(m)h . (d)

where bOXGG
k

(m)h denotes the sheaf of h-bounded sections of bOXGG
k

(m).

If the divisor D of singularities of h is � 0, we have h = eϕhX � ChX locally, hence

bK
[m]
V ,h ⊂ bK

[m]
V and bO(EGG

k,mV
∗
h ) ⊂ bO(EGG

k,mV
∗). (5.5)
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On the other hand, if D � 0, reversed inequalities and inclusions hold, e.g. bK
[m]
V ,h ⊃ bK

[m]
V ,

therefore

(bK
[m]
V ,h)

∗ ⊂ (bK
[m]
V )∗ and O(bEGG

k,mV
∗
h )∗ ⊂ O(bEGG

k,mV
∗)∗, (5.5∗)

for the dual OX -modules.

Morse integral estimates 5.6 Let (X , V ) be a directed variety, where X is a nonsingular
compact complex manifold. Fix a singular hermitian metric hV on V and denote by

�V ,hV = i

2π

∑

1�i, j�n,1�α,β�r

ci jαβ(z) dzi ∧ dz j ⊗ e∗α ⊗ eβ,

the curvature tensor of V with respect to an hV -orthonormal frame (eα), in the sense of
currents. Let (F, hF ) be a singular Q hermitian line bundle on X, and let

η(z) = �det(V ∗),det h∗
V

+ �F,hF = −TrEnd(V )�V ,hV + �F,hF . (5.6a)

Assume that h = eϕ(hX )|V and hF are metrics with Q-analytic singularities and let � be
their joint singular set � = Sing(hV ) ∪ Sing(hF ). Finally, equip the tautological bundle
OXGG

k
(−1) with the induced metric hV ,k,ε such that

‖ξ‖2hV ,k,ε
= eϕ

( ∑

1�s�k

εs |ξs |2p/shX

)1/p

, p = lcm(1, 2, . . . , k), (5.6b)

where ξ = f[k](0) is the k-jet of an integral germ of curve f in (X , V ), ξs = (∇0)
s f (0) with

respect to a global smooth connection ∇0 on TX and 1 = ε1 � ε2 � . . . � εk > 0. We
consider on XGG

k the rank 1 sheaf

Lk = OXGG
k

(1) ⊗ π∗
k

(
O

(
1

kr

(
1 + 1

2
+ · · · + 1

k

)
F

))
, (5.6c)

(it is just a rank 1 “Q-sheaf”, and we actually have to take a power Lm
k with m suffi-

ciently divisible to get a genuine rank 1 sheaf ), equipped with the metric hV ,F,k,ε induced
by (hV ,k,ε)

−1 and hF . Then, for m � ε−1
k � k � 1, the q-index Morse integral of

(Lk, hV ,F,k,ε) on XGG
k is given by
∫

XGG
k (�Lk ,hV ,F,k,ε

,q)�π−1
k (�)

�n+kr−1
Lk ,hV ,F,k,ε

= (log k)n

n! (k!)r
( ∫

X(η,q)��

1lη,qη
n + O((log k)−1)

)
, (5.6d)

for all q = 0, 1, . . . , n, and the error term O((log k)−1) can be bounded explicitly in terms
of �V ,h and �F,hF . Moreover, the left hand side is identically zero for q > n.

Proof We refer to [7] which contains all details in the smooth case, i.e. when V ⊂ TX is
a subbundle, and when hV , hF are smooth. The main argument is that the (1, 1) curvature
form of OXGG

k
(1) can be expressed explicitly, modulo small error terms. It is convenient to

use polar coordinates

ξs = ε
−1/2p
s x1/ps us, (5.7)
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where us ∈ SV is in the unit sphere bundle of V (|us |h = 1) and xs � 0. Then at any point
(z, ξ) ∈ XGG

k , a straightforward calculation shows that the curvature ofOXGG
k

(1) is given by

�O
XGGk

(1),hV ,k,ε (z, ξ) = ωp,FS(ξ) − i

2π

∑

1�s�k

xs
s

×
∑

i, j,α,β

ci jαβ(z) usαusβ dzi ∧ dz j + O(ε), (5.8)

where

ωp,FS(ξ) = 1

p

i

2π
∂∂ log

∑

1�s�k

|ξs |2p/s,

is the weighted Fubini-Study metric on the fibers of XGG
k → X . As k → +∞, the double

summation of (5.8) can be seen as a Monte-Carlo evaluation of the curvature tensor u �→
〈�V ,hV u, u〉 on the sphere bundle SV . It thus exhibits a probabilistic convergence, and is on
average equivalent to a quantity essentially independent of ξ , namely

−1

r

∑

1�s�k

xs
s
TrEnd(V )�V ,hV ,

proportional to �det(V ∗),det(h∗) (the integral of a quadratic form on a sphere is just its trace!).
Then (5.6 d) follows by analyzing the error terms and computing fiber integrals (the latter
depend only on the weighted Fubini-Study metric and can be easily evaluated). One just
needs to add �F,hF to estimate the Morse integral of Lk . The corresponding integrals vanish
for q > n because Lk is semi-positive (and generically strictly positive) along the fibers of
πk : XGG

k → X , and the only negative eigenvalues are those coming from η(z) in the dzi ’s.
One important point is that the rescaling factor εs in (5.8) makes the metric (5.6 b) essentially
independent of the connection ∇0, up to errors O(ε) (cf. Lemma 2.12 in [7]). Therefore, one
can use a local holomorphic connection∇ of V (say, a trivial flat one) to perform calculations
– this is helpful to ensure that the ξs are actually holomorphic coordinates. In the singular
case, we use a smooth modification μ : X̃ → X that takes V to a locally free sheaf μ∗V and
converts hV , hF into metrics with Q-divisorial singularities on X̃ , in such a way that we are
reduced to the smooth case, after removing the corresponding divisors and computing the
Morse integrals in the complement of �. However, it must be observed that we still need in
(5.6 b) to use a smooth (or local holomorphic) connection ∇0 on TX , and not a holomorphic
connection ∇V on V , because such a connection would “explode” near the singularities. Far
away from the singularities, there is uniform convergence to what would be obtained from
a holomorphic connection ∇V on V . Near Sing(V ), the argument is that the curvature of
�V ,hX is controlled by the second fundamental form of V (the relevant term being negative),
but the total volume of any exterior power is convergent and therefore goes to 0 if we pick a
sufficiently small neighborhood of the singular set Sing(V ). This would not work if we had
chosen a holomorphic connection on V near the singularities! Also notice that the singular
factor eϕ of h = eϕ(hX )|V does not interfere as it is purely scalar and “diagonal”. ��

Our general Morse inequalities 4.7 then yield directly

Morse inequalities for tautological sheaves 5.9 Let (X , V ) be a directed variety, where X is
a nonsingular compact complex manifold, let F be a Q-line bundle and G a coherent sheaf
of rank ρ on X. Assume that V and F are equipped with metrics hV and hF with Q-analytic
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singularities and let η = �det(V ∗),det(h∗) + �F,hF , X
′ = X � (Sing(hV ) ∪ Sing(hF )). Then

for m � k � 1 we have estimates

ρ
mn+kr−1

(n + kr − 1)!
(log k)n

n! (k!)r
( ∑

j=q−1,q,q+1

∫

X ′(η, j)
(−1)q− jηn − O((log k)−1)

)
,

� hq
(
XGG
k , bOXGG

k
(m)h−m

k,ε
⊗ π∗

k

(
bO

( m

kr

(
1 + 1

2
+ . . . + 1

k

)
F

)

hF
⊗ G

))

� ρ
mn+kr−1

(n + kr − 1)!
(log k)n

n! (k!)r
( ∫

X ′(η,q)

(−1)qηn + O((log k)−1)

)
.

Proof Apply 4.7 on Z = XGG
k to the m-th power of the rank 1 sheaf

Lk = OXGG
k

(1) ⊗ π∗
k

(
OX

(
1

kr

(
1 + 1

2
+ . . . + 1

k

)
F

))
,

equipped with the metric induced by (hV ,k,ε)
−1 and hF , and evaluate the resulting cohomol-

ogy of the sheaf of bounded sections of Lm
k ⊗ π∗

k G. ��
Notice that there is in fact no loss of generality to take hV = (hX )|V where hX is a smooth

metric on TX , since any additional weight eϕ with Q-analytic singularities can in fact be
moved to the factor F . In this case, we simply denote by bOXGG

k
(m) the sheaf of bounded

sections anddonot specify themetric onV . By taking the direct image viaπk : XGG
k → X and

applying the Leray spectral sequencewe obtain the same bounds as above for the cohomology
groups

Hq
(
X , bO(EGG

k,mV
∗) ⊗ bO

( m

kr

(
1 + 1

2
+ · · · + 1

k

)
F

)

hF
⊗ G

)
,

putting now η = �det(V ∗),det(h∗
X ) + �F,hF . By Serre duality, we infer similar bounds for the

“dual” cohomology groups

Hn−q
(
X ,

(bO(EGG
k,mV

∗)
)∗ ⊗ bO

(
− m

kr

(
1 + 1

2
+ · · · + 1

k

)
F

)

hF
⊗ G′

)
,

with G′ = KX ⊗ G∗, but the duality holds only when G and bO(EGG
k,mV

∗) are locally free,
which is the case if V is nonsingular. In fact, there is no change for the dominant term of the
bounds if G is not locally free, because we can replace G by KX ⊗G∗ and then G′ equals G∗∗,
which coincides with G outside of codimension 1 (cf. the proof of Lemma 4.4), and anyway
the dominant term depends only on the generic rank ρ = rankG. When V is singular, we
have by definition an injection J kV ↪→ J kTX . It yields a restriction morphism

O(EGG
k,mT

∗
X ) = bO(EGG

k,mT
∗
X ) → bO(EGG

k,mV
∗),

and by duality an injection
(bO(EGG

k,mV
∗)

)∗
↪→ O(EGG

k,mT
∗
X )∗, (5.10)

where the right hand side is a vector bundle. In order to deal properly with the duality,
one way is use a modification μ : X̃ → X such that μ∗(bO(EGG

k,mT
∗
X )) is locally free

modulo torsion. This modification can be chosen independent of m because at any point x ,⊕
m

bOX ,x (EGG
k,mV

∗) is a finitely generated graded algebra over OX ,x (equal to the integral

closure of the image of the finitely generated algebra
⊕

m OX ,x (EGG
k,mT

∗
X ) in its field of
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quotients). Once this is done, one can instead pull-back to X̃ and apply Serre duality on X̃ .
Again, the dominant term is unchanged as the replacement of KX by KX̃ leaves it unaffected.
This is especially interesting for q = n since we then obtain an estimate of holomorphic
sections of

(
μ∗ bO(EGG

k,mV
∗)

)∗ on X̃ , and therefore of μ∗
((

μ∗ bO(EGG
k,mV

∗)
)∗) on X . If we

reinterpret these operations in terms of metrics and bounded sections, we obtain precisely the
sheaf of bounded sections bO(

(EGG
k,mV

∗)∗
)
, defined as the space of sections of (EGG

k,mV
∗)∗

on X �Sing(V ) that are bounded with respect to a smooth metric on (EGG
k,mT

∗
X )∗, and we see

that we have in fact

bO(
(EGG

k,mV
∗)∗

) = μ∗
((

μ∗ bO(EGG
k,mV

∗)
)∗) = (bO(EGG

k,mV
∗)

)∗
.

From these considerations we infer

Morse inequalities for holomorphic jet differentials and their duals 5.11 Let (X , V ) be a
directed variety, where X is a nonsingular compact complex manifold, let F be a Q-line
bundle and G a coherent sheaf of rank ρ on X. Assume that F is equipped with a metric hF

with Q-analytic singularities and let hX be a smooth metric on TX . For m � k � 1 we have
the following estimates.

(a) Let η = �det(V ∗),det(h∗
X ) + �F,hF and X ′ = X � (Sing(V ) ∪ Sing(hF )). Then

ρ
mn+kr−1

(n + kr − 1)!
(log k)n

n! (k!)r
( ∑

j=q−1,q,q+1

∫

X ′(η, j)
(−1)q− jηn − O((log k)−1)

)
,

� hq
(
X , bO(EGG

k,mV
∗) ⊗ bO

( m

kr

(
1 + 1

2
+ · · · + 1

k

)
F

)

hF
⊗ G

)

� ρ
mn+kr−1

(n + kr − 1)!
(log k)n

n! (k!)r
( ∫

X ′(η,q)

(−1)qηn + O((log k)−1)

)
.

(b) Let η∗ = �det(V ),det(hX ) + �F,hF and X ′ = X � (Sing(V ) ∪ Sing(hF )). Then

ρ
mn+kr−1

(n + kr − 1)!
(log k)n

n! (k!)r
( ∑

j=q−1,q,q+1

∫

X ′(η∗, j)
(−1)q− j (η∗)n − O((log k)−1)

)
,

� hq
(
X , bO(

(EGG
k,mV

∗)∗
) ⊗ bO

( m

kr

(
1 + 1

2
+ · · · + 1

k

)
F

)

hF
⊗ G

)

� ρ
mn+kr−1

(n + kr − 1)!
(log k)n

n! (k!)r
( ∫

X ′(η∗,q)

(−1)q(η∗)n + O((log k)−1)

)
.

Proof (a) is a consequence of our direct image argument. part (b) follows by duality if we
observe that X(η, n−q) = X(q,−η) and change F into−F ; this has the effect of replacing
−η by η∗ and (−1)n−qηn by (−1)q(η∗)n . ��
Definition 5.12 Let L be a rank one sheaf equipped with a hermitian metric hL with Q-
analytic singularities. We say for short that bL is big if there exists m ∈ N∗ and a log
resolution μ : X̃ → X of the sheaf bLm = bLm

hL of bounded sections such that μ∗(bLm) is
a big line bundle. When taking the product L ⊗ F with an invertible sheaf and speaking of
the bigness of L⊗F , we agree implicitly to take the tensor product hL ⊗ hF with a smooth
metric on F , so that b(L ⊗ F)m = (bLm) ⊗ Fm .

With this terminology in mind, we can now state an important application of our Morse
estimates, in relation with positivity properties of the canonical or anticanonical sheaf of a
directed variety.
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Corollary 5.13 Let X be a projective n-dimensional manifold, (X , V ) a directed structure,
and F an invertible sheaf on X. We consider here bounded sections with respect to a smooth
hermitian metric hX on TX .

(a) If bKV ⊗ F is big, there are many sections in

H0
(
X , bO(

EGG
k,mV

∗) ⊗ bO
( m

kr

(
1 + 1

2
+ · · · + 1

k

)
F

))
for m � k � 1.

(b) If bO(det(V )) ⊗ F is big, there are many sections in

H0
(
X , bO(

(EGG
k,mV

∗)∗
) ⊗ bO

( m

kr

(
1 + 1

2
+ · · · + 1

k

)
F

))
for m � k � 1.

The asymptotic growth is of the form c mn+kr−1(log k)n/((n + kr − 1)! (k!)r ) where
r = rankV and the constant c > 0 depends only on X, V and F.

Proof In case (a), by [5], we can find a singular metric hF on F such that

η = �KV ,det(hX )∗) + �F,hF ,

is aKähler current, i.e. η � cω for someKählermetricω on X and some small constant c > 0.
In fact, we can work with the invertible sheaf μ∗(bKV ⊗ F) on X̃ and observe that the push
forward of a Kähler current on X̃ is a Kähler current on X . Then all chambers X ′(η, q) are
empty except X ′(η, 0) which yields a strictly positive Morse integral, whence the result. Part
(b) is entirely similar, using η∗ instead of η. Notice that this does not necessarily imply that
the higher cohomology groups vanish, only that hqm,k = O((log k)−1)h0m,k as m � k � 1.
��
Remark 5.14 Since O(EGG

k,mV
∗) is the sheaf of homogeneous polynomials of degree m on

J kV , its dual O((EGG
k,mV

∗)∗) can be thought of as a sheaf of differential operators of degree
m on J kV . Hence, our result (5.13 b) can be seen as an extension of the results of Siu [15],
Păun [14], Merker [13] on the existence of slanted vector fields on jet bundles.
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