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Abstract. These notes are an expanded version of lectures delivered at the AMS
Summer School on Algebraic Geometry, held at Santa Cruz in July 1995. The
main goal of the notes is to study complex varieties (mostly compact or projective
algebraic ones), through a few geometric questions related to hyperbolicity in the
sense of Kobayashi. A convenient framework for this is the category of “directed
manifolds”, that is, the category of pairs (X,V ) whereX is a complex manifold and
V a holomorphic subbundle of TX . If X is compact, the pair (X,V ) is hyperbolic
if and only if there are no nonconstant entire holomorphic curves f : C → X
tangent to V (Brody’s criterion). We describe a construction of projectivized k-
jet bundles PkV , which generalizes a construction made by Semple in 1954 and
allows to analyze hyperbolicity in terms of negativity properties of the curvature.
More precisely, πk : PkV → X is a tower of projective bundles over X and carries
a canonical line bundle OPkV (1) ; the hyperbolicity of X is then conjecturally
equivalent to the existence of suitable singular hermitian metrics of negative
curvature on OPkV (−1) for k large enough. The direct images (πk)?OPkV (m) can
be viewed as bundles of algebraic differential operators of order k and degree m,
acting on germs of curves and invariant under reparametrization. Following an
approach initiated by Green and Griffiths, we establish a basic Ahlfors-Schwarz
lemma in the situation when OPkV (−1) has a (possibly singular) metric of negative
curvature, and we infer that every nonconstant entire curve f : C → V tangent to
V must be contained in the base locus of the metric. This basic result is then used
to obtain a proof of the Bloch theorem, according to which the Zariski closure of an
entire curve in a complex torus is a translate of a subtorus. Our hope, supported
by explicit Riemann-Roch calculations and other geometric considerations, is that
the Semple bundle construction should be an efficient tool to calculate the base
locus. Necessary or sufficient algebraic criteria for hyperbolicity are then obtained
in terms of inequalities relating genera of algebraic curves drawn on the variety,
and singularities of such curves. We finally describe some techniques introduced
by Siu in value distribution theory, based on a use of meromorphic connections.
These techniques have been developped later by Nadel to produce elegant examples
of hyperbolic surfaces of low degree in projective 3-space; thanks to a suitable
concept of “partial projective projection” and the associated Wronskian operators,
substantial improvements on Nadel’s degree estimate will be achieved here.
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§0. Introduction

In these notes, we investigate some geometric questions related to the concept
of hyperbolic variety in the sense of Kobayashi [Kob70]. Hyperbolic algebraic
varieties have attracted considerable attention, in part because of their conjectured
diophantine properties. For instance, [Lang86] has conjectured (among other
things) that any hyperbolic complex projective variety over a number field K can
contain only finitely many rational points over K; this conjecture, which seems at
present far beyond reach, may be regarded as a higher dimensional analogue of the
Mordell conjecture. The reader can consult P. Vojta [Voj87] for aspects connected
to diophantine problems.

We will be concerned here only with the geometric aspects of the theory
which, although a priori more tractable than the diophantine aspects, are still
conjectural for a major part; in fact very few satisfactory general purpose theorems
are available. We hope that some of the ideas presented here will prove useful to
achieve substantial progress. The reader is referred to S. Lang’s survey [Lang86]
and book [Lang87] for an overview of the theory until the mid 80’s, and to
J. Noguchi-T. Ochiai [NoOc90], P.M. Wong [Wong93] and M. Zaidenberg [Zai93]
for a good exposition of more recent problems. Our goal here is not to provide
an exhaustive compilation of known results, but rather to emphasize two or three
important ideas around the concepts of jet bundles and jet metrics. Similar ideas
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have been applied successfully in a somewhat special situation in the recent work
[SiYe96a] by Siu and Yeung, where the authors prove the hyperbolicity of the
complement of an irreducible generic curve of high degree d > 1013 in P2. Let us
fix here our terminology: the word “generic” will refer to a property which holds
true in the complement of a global algebraic or analytic subset in the parameter
space, and the expression “very generic” will be used when the exceptional set of
parameters is a countable union of algebraic or analytic subsets. As we will see in
several instances, the geometry of jets conveys many natural interesting problems
concerning the relationship between hyperbolicity and jet curvature negativity.

We now give a short outline of the contents. Recall that a complex variety is
hyperbolic in the sense of Kobayashi if the family of holomorphic maps f : ∆→ X
from the unit disk into X is a normal family. If X is compact (e.g. projective
algebraic), it is well known that X is Kobayashi hyperbolic if and only if it is
Brody hyperbolic, that is, if there are no nonconstant entire holomorphic curve
f : C → X. In particular X has no rational or elliptic curves, and more generally
every holomorphic map f : Z → X from an abelian variety (or complex torus) to
X must be constant. Conversely, it has been suggested by Kobayashi [Kob70] and
[Lang86] that these algebraic properties could be equivalent to hyperbolicity. To
prove this, one would have to construct a torus Z and a nontrivial holomorphic map
f : Z → X whenever X is non hyperbolic. A hint that this should be true is given
by the following observation: if X is hyperbolic, there is an absolute constant ε > 0
such that the genus of any compact curve of X is bounded below by ε times the
degree; conversely, this property fails to be true in many examples of nonhyperbolic
projective varieties. Our belief, supported by some heuristic arguments, is that
any sequence of compact curves (C`) with genus(C`)/degree(C`)→ 0 should have
a cluster set swept out by the image of a map f : Z → X from a complex
torus Z, such that the limit of some subsequence of the sequence of universal
covering maps ∆ → C` → X (suitably reparametrized) coincides with the image
of a (non necessarily compact) straight line of Z into X. A related conjecture
of [Lang86] states that a projective variety is hyperbolic if and only if all its
irreducible algebraic varieties are of general type. The most elementary step would
be to exclude the case of manifolds with c1 ≡ 0 (say, Calabi-Yau manifolds and
symplectic manifolds), by showing for instance that they do admit a sequence of
compact curves (C`) with genus(C`)/degree(C`)→ 0.

We next introduce jet bundles and jet differentials, extending some ideas of
Green and Griffiths [GrGr80] (actually, the idea of using jet differentials can be
traced back to the work of A. Bloch [Blo26, 26′], H. Cartan [Car28], L. Ahlfors
[Ahl41] and T. Ochiai [Och77]). The basic idea is to introduce a bundle Ek,m of
algebraic differential operators Q(f ′, f ′′, . . . , f (k)) of weighted degree m, acting on
germs of holomorphic curves (“jet differentials of order k and degree m”). When
no other restrictions are made on Q, one obtains a “huge” bundle which will be
denoted EGG

k,m in reference to Green-Griffiths’ work. In our case, the main goal is to
determine the conformal type of entire curves drawn on the variety. Therefore, the
way curves are parametrized is irrelevant. For this reason, one is led to introduce
a subbundle Ek,m ⊂ EGG

k,m of “special jet differential operators” Q(f ′, f ′′, . . . , f (k)),
namely operators which have the property of being invariant by reparametrization,
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i.e.
Q((f ◦ ϕ)′, (f ◦ ϕ)′′, . . . , (f ◦ ϕ)(k)) = (ϕ′)mQ(f ′, f ′′, . . . , f (k))

for any local reparametrization ϕ : (C , 0) → (C , 0) of the curve. For instance,
all Wronskian determinants appearing in the wedge products f ′, f ′ ∧ f ′′, . . . ,
f ′ ∧ f ′′ ∧ · · · ∧ f (`) (computed in any coordinate system), and all polynomial
combinations of these give rise to local sections of Ek,m. The subbundle Ek,m
turns out to have better positivity properties than EGG

k,m (see section § 12). The
bundles EGG

k,m and Ek,m have natural filtrations for which the graded pieces split in
irreducible tensor product representations of T ?X (Schur fonctor representations).
However, in the case of Ek,m, it seems to be a highly non trivial question to decide
which representations are actually involved, except for the simpler cases of jet
differentials of order k 6 2.

A basic observation is that any entire curve f : C → X must automatically
satisfy all algebraic differential equations Q(f ′, f ′′, . . . , f (k)) = 0 arising from
global jet differential operators Q ∈ H0(X,Ek,m ⊗ O(−A)) which vanish on some
ample divisor A. Our proof is based on a strong pointwise version of the Ahlfors-
Schwarz lemma (Lemma 3.2 and Theorem 7.8), and actually completes the scheme
of proof suggested in [GrGr80] in the case of invariant jet differentials; the general
pointwise case of the Ahlfors-Schwarz lemma for non necessarily invariant jet
differentials, however, seems to be still unsettled. Let us mention, although we
will not need it here, that the above vanishing theorem is still true with sections
of EGG

k,m⊗O(−A) in place of Ek,m⊗O(−A) (see Remark 7.11 and [SiYe96c]). The
vanishing theorem provides a way of investigating the hyperbolicity of X by trying
to compute the base locus of sections inH0(X,Ek,m⊗O(−A)) for large k andm (we
will call this set the “Green-Griffiths locus” of X, although [GrGr80] deals rather
with sections of EGG

k,m⊗O(−A)). We believe that the use of Ek,m in place of EGG
k,m

should make easier to understand the structure of the base locus (especially in the
case of higher values of k and n = dimX), since the dimension of the projectivized
jet bundles under consideration is smaller and Ek,m is “more positive” than EGG

k,m.
At least in the case of surfaces of general type, the existence of sections in Ek,m
and EGG

k,m can be obtained by Riemann-Roch computations and suitable vanishing
theorems proved by Bogomolov [Bog79] (here again, the conditions involved for the
existence of sections in Ek,m are better than those for EGG

k,m). It is reasonable to
hope that suitable refinements of these ideas could lead in the future to a complete
proof of the conjecture that every surface of general type only has finitely many
rational and elliptic curves. Such a result is indeed obtained in [Bog77] for the class
of surfacesX satisfying c1(X)2 > c2(X), thanks to a finiteness theorem for integral
curves of foliations on surfaces (cf. Jouanolou [Jou78]). When c1(X)2 > 2 c2(X),
Lu-Yau [LuYa90] proved the additional result that the transcendental curves are
algebraically degenerate; the argument is based on a result of Miyaoka asserting
that the base locus of the first order jet differentials in H0(X,SkT ?X⊗O(−A)) is at
most 1-dimensional for c1(X)2 > 2 c2(X) and k � 0. Recently, S. Lu [Lu96] also
obtained a proof for the limit case c1(X)2 = 2 c2(X). By a different method, Lu-
Miyaoka [LuMi95] investigate the case of arbitrary surfaces of general type, and get
the desired finiteness results under suitable restrictions on the curve singularities.

In a similar manner, for varieties of general type of arbitrary dimension,
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it is conjectured that all entire curves f : C → X are contained in a proper
algebraic subset. One of the most celebrated result in this direction is the proof
of the “Bloch theorem”, i.e. the special case of the above conjecture when X
has irregularity q = h0(X,Ω1

X) > dimX ; the subject was revived by Ochiai
[0ch77], who considerably clarified the ideas introduced in [Blo26], and formulated
a technical result that would yield what he termed the “Bloch conjecture”.
The Bloch theorem was finally settled in the affirmative, by means of various
techniques, in fundamental papers by Noguchi [Nog77, 81, 84], Kawamata [Kaw80]
and Green-Griffiths [GrGr80] (to avoid the slight technical difficulty with the
proof of the Ahlfors-Schwarz lemma in [GrGr80], we will prove here Bloch’s
theorem by replacing the Green-Griffiths jet differentials EGG

k,m with the invariant
jet differentials Ek,m). A very interesting related result is the proof by Siu-Yeung
[SiYe96b] of the hyperbolicity of complements of ample divisors in abelian varieties
(see also Noguchi [Nog96a] for an extension to the semi-abelian case). In § 10, we
give a brief overview of these results, following an alternative approach suggested
by Dethloff and Lu [DLu96], which makes use of a “logarithmic version” of our
jet bundles. An earlier interesting result is the construction by Nadel [Nad89] of
explicit hyperbolic algebraic surfaces in P3. Nadel’s method is based on a use
of meromorphic connections with low pole order, according to ideas introduced
by Siu [Siu87]. In our setting, Nadel’s technique is just the very special case
when the jet differential operators under consideration are Wronskian operators
associated with a meromorphic connection. Unfortunately, the method seems to
work only for a restricted class of hypersurfaces or complete intersections defined
by polynomials with few monomials. Thanks to a new flexible concept of partial
projective connection, we have been able to improve Nadel’s bounds and show the
existence of hyperbolic algebraic surfaces in P3 of any degree > 11 (the conjectured
optimal bound should be 5); see §11 and [EG96, 97], [DeEG97]*.

Contrary to most prior methods, including J. Noguchi’s “jet projection
method” (see [NoOc90], [Nog96]), our method does not use any Nevanlinna the-
ory at all. Our approach is to construct suitable jet metrics of negative curva-
ture, following original ideas of Grauert-Reckziegel [GRec65], [Gra89], Kobayashi
[Kob75], Cowen-Griffiths [CoGr76] and Green-Griffiths [GrGr80]. In fact, the
sheaves O(Ek,m) of jet differentials defined above are the direct image sheaves of
some canonical invertibles sheaves OXk(m) defined over suitable “projectivized k-
jet bundles” Xk → X. The k-jet bundle Xk is a tower of projective bundles, and
can be obtained by iterating a natural fonctorial construction (X,V )  (X1, V1)
in the category of “directed manifolds”. By definition, objects of this category are
pairs (X,V ), where X is a complex manifold and V a holomorphic subbundle of
TX , and the arrows are holomorphic morphisms preserving the V subbundles. We
show in § 6 that the bundleXk is a canonical smooth compactification of the bundle
of “geometric” k-jets of regular curves (by “geometric jets”, we mean that one does
not pay attention to the way curves are parametrized). Such bundles Xk appear
to be a natural generalization of a construction introduced by Semple [Sem54] in
1954, which has been used recently as a tool for establishing enumerative formulas
dealing with the order of contact of plane curves (see [Coll88], [ASS92], [CoKe94]).

* After these notes were completed, similar results have been announced independently in
[SiYe96c].
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In fact, almost all concepts pertaining to hyperbolicity can be extended in
the general framework of directed manifolds (X,V ), which we may think of as a
“relative” situation (in fact, it is not necessary to assume that V is an integrable
subbundle of TX , but the case when V = TX/S is the relative tangent bundle of a
smooth map X → S is of special interest). For instance, (X,V ) is said to be Brody
hyperbolic if there are no global holomorphic curve f : C → X tangent to V . In the
inductive definition of the k-jet spaces (Xk, Vk), Xk is simply the projectivization
P (Vk−1) of Vk−1 → Xk−1, and OXk−1

(−1) is the tautological line subbundle of the
inverse image of Vk−1 over Xk. Now, we say that X has k-jet negative curvature
if OXk(−1) can be equipped with a hermitian metric (for which some type of
singularities have to be allowed), such that the (1, 1) curvature form of the metric is
negative along Vk. The negativity property of the k-jet curvature is closely related
to the existence of sections of large degree in H0(X,Ek,m), exactly in the same
way positivity and ampleness are related. A variant of the Ahlfors-Schwarz lemma
shows that the negativity of k-jet curvature implies hyperbolicity. Conversely,
Kobayashi [Kob70] and [Lang86] raised the question whether hyperbolicity is
equivalent to 1-jet negativity (in our terminology). We show that this optimistic
picture is unfortunately wrong. In fact the k-jet negativity property yields the
following necessary algebraic condition: there exists a constant ε > 0 such that
every algebraic curve C ⊂ X satisfies

2g(C)− 2 > εdeg(C) +
∑

x∈Ck−1

(mCk−1
(x)− 1),

where C is the normalization of C and mCk−1
(x) are the multiplicities of the

singular points in the (k− 1)-st jet lifting of C. Using this criterion, we construct
for every integer k0 an hyperbolic algebraic surface which cannot have any k-jet
metric of negative curvature when k 6 k0. It is nevertheless reasonable to expect
that hyperbolicity is equivalent to the existence of a sufficiently large integer k1

such that X has k-jet negative curvature for k > k1.
We want to stress that many important questions have been left out in these

notes, especially Nevanlinna theory and its applications to hyperbolicity theory
[CaGr72], [Nog83], [Siu87], [Wong89], [RuSt91], [Nog91]. Especially noticeable
in this respect is the work of Dethloff-Wong-Schumacher [DSW92, 94] on the
hyperbolicity of complements of 3 or more generic curves in the projective plane,
and the construction by Masuda-Noguchi [MaNo93] of hyperbolic hypersurfaces of
large degree in Pn. Also, in a more algebraic setting, there is an extensive literature
dealing with the question of computing genus of curves in algebraic surfaces,
bearing an intimate connection with hyperbolicity ([Bog77], [Cle86], [CKM88],
[LuYa90], [Lu91], [LuMi95], [Lu96] [Xu94]). Last but not least, there are several
important questions of Number Theory which either depend on Nevanlinna theory
or suggest new tools for the study of differential geometric problems. The reader
may profitably consult McQuillan’s paper [McQu96], in which the method of Vojta-
Faltings is adapted to give a completely new proof of the Bloch theorem.

I wish to express our gratitude to the organizers of the AMS Summer Institute
held at Santa Cruz in July 1995 for giving me the opportunity of making a series
of lectures on hyperbolicity theory. I warmly thank Gerd Dethloff, Siegmund
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Kosarew, Steven Lu, Bernard Shiffman, Yum-Tong Siu and Mikhail Zaidenberg
for formal or informal discussions which got me started in the subject and helped
me to improve these notes.

§1. Hyperbolicity concepts and directed manifolds

We first recall a few basic facts concerning the concept of hyperbolicity,
according to S. Kobayashi [Kob70, Kob76]. Let X be a complex n-dimensional
manifold. We denote by f : ∆→ X an arbitrary holomorphic map from the unit
disk ∆ ⊂ C to X. The Kobayashi-Royden infinitesimal pseudometric on X is the
Finsler pseudometric on the tangent bundle TX defined by

kX(ξ) = inf
{
λ > 0 ; ∃f : ∆→ X, f(0) = x, λf ′(0) = ξ

}
, x ∈ X, ξ ∈ TX,x

(see H. Royden [Roy71], [Roy74]). In the terminology of Kobayashi [Kob75], a
Finsler metric (resp. pseudometric) on a vector bundle E is a homogeneous positive
(resp. nonnegative) positive function N on the total space E, that is,

N(λξ) = |λ|N(ξ) for all λ ∈ C and ξ ∈ E.

A Finsler (pseudo-)metric on E is thus nothing but a hermitian (semi-)norm on
the tautological line bundle OP (E)(−1) of lines of E over the projectivized bundle
Y = P (E). The Kobayashi pseudodistance dK(x, y) is the geodesic pseudodistance
obtained by integrating the Kobayashi-Royden infinitesimal metric. The manifold
X is said to be hyperbolic (in the sense of Kobayashi) if dK is actually a distance,
namely if dK(x, y) > 0 for all pairs of distinct points (x, y) in X. In this context,
we have the following well-known results of Brody [Bro78].

1.1. Brody reparametrization lemma. Let ω be a hermitian metric on X and
let f : ∆ → X be a holomorphic map. For every ε > 0, there exists a radius
R > (1−ε)‖f ′(0)‖ω and a homographic transformation ψ of the disk D(0, R) onto
(1− ε)∆ such that

‖(f ◦ ψ)′(0)‖ω = 1, ‖(f ◦ ψ)′(t)‖ω 6
1

1− |t|2/R2
for every t ∈ D(0, R).

In particular, if X is compact, given any sequence of holomorphic mappings
fν : ∆→ X such that lim ‖f ′ν(0)‖ω = +∞, one can find a sequence of homographic
transformations ψν : D(0, Rν) → (1 − 1/ν)∆ with limRν = +∞, such that, after
passing possibly to a subsequence, (fν ◦ψν) converges uniformly on every compact
subset of C towards a non constant holomorphic map g : C → X with ‖g′(0)‖ω = 1
and supt∈C ‖g′(t)‖ω 6 1.

Proof. The first assertion of Brody’s lemma is obtained by selecting t0 ∈ ∆
such that (1 − |t|2)‖f ′((1 − ε)t)‖ω reaches its maximum for t = t0. The reason
for this choice is that (1 − |t|2)‖f ′((1 − ε)t)‖ω is the norm of the differential
f ′((1− ε)t) : T∆ → TX with respect to the Poincaré metric |dt|2/(1−|t|2)2 on T∆,
which is conformally invariant under Aut(∆). One then adjusts R and ψ so that
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ψ(0) = (1− ε)t0 and |ψ′(0)| ‖f ′(ψ(0))‖ω = 1. As |ψ′(0)| = 1−ε
R (1− |t0|2), the only

possible choice for R is

R = (1− ε)(1− |t0|2)‖f ′(ψ(0))‖ω > (1− ε)‖f ′(0)‖ω.

The inequality for (f◦ψ)′ follows from the fact that the Poincaré norm is maximum
at the origin, where it is equal to 1 by the choice of R.

1.2. Corollary (Brody’s theorem). A compact complex manifold X is hyperbolic
if and only if there are no non constant entire holomorphic maps g : C → X.

Proof. The arguments are rather standard and will be developped in more detail
in the proof of Prop. 1.5 below.

Now, more generally, let (X,V ) be a complex manifold equipped with a
holomorphic subbundle V ⊂ TX . We will refer to such a pair as being a complex
directed manifold. A morphism Φ : (X,V ) → (Y,W ) in the category of complex
directed manifolds is a holomorphic map such that Φ?(V ) ⊂ W . Our philosophy
is that directed manifolds are also useful to study the “absolute case”, i.e. the
case V = TX , because there are fonctorial constructions which work better in the
category of directed manifolds (see e.g. § 4, 5, 6). We think of directed manifolds as
a kind of “relative situation”, covering e.g. the case when V is the relative tangent
sheaf to a smooth map X → S. We want to stress here that no assumption need
be made on the Lie bracket tensor [ , ] : V ×V → TX/V , and the rank r = rankV
may be an arbitrary integer in the range 1 6 r 6 n := dimC X. For the sake of
generality, one might also wish to allow singularities in the subbundle V : for this,
one can take V to be given by an arbitrary coherent subsheaf V ⊂ O(TX) such
that O(TX)/V has no torsion; then V is a subbundle outside an analytic subset
of codimension at least 2 (it is however somewhat safer to view V? as given by a
quotient sheaf morphism Ω1

X → V? and let V ? be the associated linear space, see
Remark 3.10 below). For the sake of simplicity, we will assume most of the time
that V is actually a subbundle of TX . In this situation, we generalize the notion
of hyperbolicity as follows.

1.3. Definition. Let (X,V ) be a complex directed manifold.

i) The Kobayashi-Royden infinitesimal metric of (X,V ) is the Finsler metric on
V defined for any x ∈ X and ξ ∈ Vx by

k(X,V )(ξ) = inf
{
λ > 0 ; ∃f : ∆→ X, f(0) = x, λf ′(0) = ξ, f ′(∆) ⊂ V

}
.

Here ∆ ⊂ C is the unit disk and the map f is an arbitrary holomorphic map
which is tangent to V , i.e., such that f ′(t) ∈ Vf(t) for all t ∈ ∆. We say
that (X,V ) is infinitesimally hyperbolic if k(X,V ) is positive definite on every
fiber Vx and satisfies a uniform lower bound k(X,V )(ξ) > ε‖ξ‖ω in terms of any
smooth hermitian metric ω on X, when x describes a compact subset of X.

ii) More generally, the Kobayashi-Eisenman infinitesimal pseudometric of (X,V )
is the pseudometric defined on all decomposable p-vectors ξ = ξ1 ∧ · · · ∧ ξp ∈
ΛpVx, 1 6 p 6 r = rankV , by

ep(X,V )(ξ) = inf
{
λ > 0 ; ∃f : Bp → X, f(0) = x, λf?(τ0) = ξ, f?(TBp) ⊂ V

}
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where Bp is the unit ball in C p and τ0 = ∂/∂t1∧· · ·∧∂/∂tp is the unit p-vector
of C p at the origin. We say that (X,V ) is infinitesimally p-measure hyperbolic
if ep(X,V ) is positive definite on every fiber ΛpVx and satisfies a locally uniform
lower bound in terms of any smooth metric.

If Φ : (X,V ) → (Y,W ) is a morphism of directed manifolds, it is immediate
to check that we have the monotonicity property

k(Y,W )(Φ?ξ) 6 k(X,V )(ξ), ∀ξ ∈ V,(1.4)

ep(Y,W )(Φ?ξ) 6 ep(X,V )(ξ), ∀ξ = ξ1 ∧ · · · ∧ ξp ∈ ΛpV.(1.4p)

The following proposition shows that virtually all reasonable definitions of the
hyperbolicity property are equivalent if X is compact (in particular, the additional
assumption that there is locally uniform lower bound for k(X,V ) is not needed).
We merely say in that case that (X,V ) is hyperbolic.

1.5. Proposition. For an arbitrary directed manifold (X,V ), the Kobayashi-
Royden infinitesimal metric k(X,V ) is upper semicontinuous on the total space
of V . If X is compact, (X,V ) is infinitesimally hyperbolic if and only if there are
no non constant entire curves g : C → X tangent to V . In that case, k(X,V ) is a
continuous (and positive definite) Finsler metric on V .

Proof. The proof is almost identical to the standard proof for kX , so we only
give a brief outline of the ideas. In order to prove the upper semicontinuity, let
ξ0 ∈ Vx0 and ε > 0 be given. Then there is a curve f : ∆ → X tangent to V
such that f(0) = x0 and λ f ′(0) = ξ0 with 0 < λ < kX(ξ0) + ε. Take λ = 1 for
simplicity, and replace ξ0 by λ−1ξ0. We may assume that f is a proper embedding,
otherwise we replace (X,V ) by (X ′, V ′) = (X ×∆,pr?1 V ⊕ pr?2 T∆), f by f × Id∆,
ξ0 by ξ0 ⊕ 1, and use a monotonicity argument for the projection pr1 : X ′ → X.
If f is an embedding, then f(∆) is a Stein submanifold of X, and thus f(∆) has
a Stein neighborhood Ω. As Ω is Stein, there exists a section θ ∈ H0(Ω,O(V ))
extending f ′ ∈ H0(f(∆),O(V )). The map f can be viewed as the solution of
the differential equation f ′ = θ(f) with initial value f(0) = x0. Take a small
perturbation g′ = θη(g) with initial value g(0) = x, where θη = θ +

∑
ηjsj

and s1, . . . , sN are finitely many sections of H0(Ω,O(V )) which generate V in a
neighborhood of x0. We can achieve that g′(0) = θη(x) is equal to any prescribed
vector ξ ∈ Vx close to ξ0 = θ(x0), and the solution g exists on (1 − ε)∆ if the
perturbation is small enough. We conclude that k(X,V ) is upper semicontinuous
by considering t 7→ g((1− ε)t).

If there exists a non constant entire curve g : C → X tangent to V , it is
clear that k(X,V )(g

′(t)) ≡ 0, hence (X,V ) cannot be hyperbolic. Conversely, if
X is compact and if there are no non constant entire curves g : C → X tangent
to V , Brody’s lemma implies that there is an absolute bound ‖f ′(0)‖ω 6 C for
all holomorphic maps f : ∆ → X tangent to V ; hence k(X,V )(ξ) > C−1‖ξ‖ω
and (X,V ) is infinitesimally hyperbolic. By reparametrizing f with an arbitrary
automorphism of ∆, we find ‖f ′(t)‖ω 6 C/(1−|t|2). The space of maps f : ∆→ X
tangent to V is therefore compact for the topology of uniform convergence on
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compact subsets of ∆, thanks to Ascoli’s theorem. We easily infer from this that
k(X,V ) is lower semicontinuous on V .

We conclude this section by showing that hyperbolicity is an open property.

1.6. Proposition. Let (X,V) → S be a holomorphic family of compact directed
manifolds (by this, we mean a proper holomorphic map X → S together with
a holomorphic subbundle V ⊂ TX/S of the relative tangent bundle, defining a
deformation (Xt, Vt)t∈S of the fibers). Then the set of t ∈ S such that the fiber
(Xt, Vt) is hyperbolic is open in S with respect to the euclidean topology.

Proof. Take a sequence of non hyperbolic fibers (Xtν , Vtν ) with tν → t and fix
a hermitian metric ω on X. By Brody’s lemma, there is a sequence of entire
holomorphic maps gν : C → Xtν tangent to Vtν , such that ‖g′ν(0)‖ω = 1 and
‖g′ν‖ 6 1. Ascoli’s theorem shows that there is a subsequence of (gν) converging
uniformly to a limit g : C → Xt, tangent to Vt, with ‖g′(0)‖ω = 1. Hence (Xt, Vt)
is not hyperbolic, and the collection of non hyperbolic fibers is closed in S.

§2. Hyperbolicity and bounds for the genus of curves

In the case of projective algebraic varieties, hyperbolicity is expected to be
related to other properties of a more algebraic nature. Theorem 2.1 below is a
first step in this direction.

2.1. Theorem. Let (X,V ) be a compact complex directed manifold and let∑
ωjkdzj ⊗ dzk be a hermitian metric on X, with associated positive (1, 1)-form

ω = i
2

∑
ωjkdzj ∧ dzk. Consider the following three properties, which may or not

be satisfied by (X,V ) :

i) (X,V ) is hyperbolic.

ii) There exists ε > 0 such that every compact irreducible curve C ⊂ X tangent
to V satisfies

−χ(C) = 2g(C)− 2 > ε degω(C)

where g(C) is the genus of the normalization C of C, χ(C) its Euler charac-
teristic and degω(C) =

∫
C
ω. (This property is of course independent of ω.)

iii) There does not exist any non constant holomorphic map Φ : Z → X from an
abelian variety Z to X such that Φ?(TZ) ⊂ V .

Then i)⇒ ii)⇒ iii).

Proof. i)⇒ ii). If (X,V ) is hyperbolic, there is a constant ε0 > 0 such that
k(X,V )(ξ) > ε0‖ξ‖ω for all ξ ∈ V . Now, let C ⊂ X be a compact irreducible curve
tangent to V and let ν : C → C be its normalization. As (X,V ) is hyperbolic,
C cannot be a rational or elliptic curve, hence C admits the disk as its universal
covering ρ : ∆→ C.

The Kobayashi-Royden metric k∆ is the Finsler metric |dz|/(1 − |z|2) as-
sociated with the Poincaré metric |dz|2/(1 − |z|2)2 on ∆, and kC is such that
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ρ?kC = k∆. In other words, the metric kC is induced by the unique hermitian
metric on C of constant Gaussian curvature −4. If σ∆ = i

2dz ∧ dz/(1− |z|
2)2 and

σC are the corresponding area measures, the Gauss-Bonnet formula (integral of
the curvature = 2π χ(C)) yields∫

C

dσC = −1

4

∫
C

curv(kC) = −π
2
χ(C)

On the other hand, if j : C → X is the inclusion, the monotonicity property (1.4)
applied to the holomorphic map j ◦ ν : C → X shows that

kC(t) > k(X,V )

(
(j ◦ ν)?t

)
> ε0

∥∥(j ◦ ν)?t
∥∥
ω
, ∀t ∈ TC .

From this, we infer dσC > ε
2
0(j ◦ ν)?ω, thus

−π
2
χ(C) =

∫
C

dσC > ε
2
0

∫
C

(j ◦ ν)?ω = ε2
0

∫
C

ω.

Property ii) follows with ε = 2ε2
0/π.

ii)⇒ iii). First observe that ii) excludes the existence of elliptic and rational
curves tangent to V . Assume that there is a non constant holomorphic map
Φ : Z → X from an abelian variety Z to X such that Φ?(TZ) ⊂ V . We must have
dim Φ(Z) > 2, otherwise Φ(Z) would be a curve covered by images of holomorphic
maps C → Φ(Z), and so Φ(Z) would be elliptic or rational, contradiction. Select
a sufficiently general curve Γ in Z (e.g., a curve obtained as an intersection of
very generic divisors in a given very ample linear system |L| in Z). Then all
isogenies um : Z → Z, s 7→ ms map Γ in a 1 : 1 way to curves um(Γ) ⊂ Z, except
maybe for finitely many double points of um(Γ) (if dimZ = 2). It follows that
the normalization of um(Γ) is isomorphic to Γ. If Γ is general enough, similar
arguments show that the images

Cm := Φ(um(Γ)) ⊂ X

are also generically 1 : 1 images of Γ, thus Cm ' Γ and g(Cm) = g(Γ). We would
like to show that Cm has degree > Constm2. This is indeed rather easy to check
if ω is Kähler, but the general case is slightly more involved. We write∫

Cm

ω =

∫
Γ

(Φ ◦ um)?ω =

∫
Z

[Γ] ∧ u?m(Φ?ω),

where Γ denotes the current of integration over Γ. Let us replace Γ by an arbitrary
translate Γ + s, s ∈ Z, and accordingly, replace Cm by Cm,s = Φ ◦ um(Γ + s). For
s ∈ Z in a Zariski open set, Cm,s is again a generically 1 : 1 image of Γ + s. Let
us take the average of the last integral identity with respect to the unitary Haar
measure dµ on Z. We find∫

s∈Z

(∫
Cm,s

ω

)
dµ(s) =

∫
Z

(∫
s∈Z

[Γ + s] dµ(s)

)
∧ u?m(Φ?ω).
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Now, γ :=
∫
s∈Z [Γ+s] dµ(s) is a translation invariant positive definite form of type

(p− 1, p− 1) on Z, where p = dimZ, and γ represents the same cohomology class
as [Γ], i.e. γ ≡ c1(L)p−1. Because of the invariance by translation, γ has constant
coefficients and so (um)?γ = m2γ. Therefore we get∫

s∈Z
dµ(s)

∫
Cm,s

ω = m2

∫
Z

γ ∧ Φ?ω.

In the integral, we can exclude the algebraic set of values z such that Cm,s is
not a generically 1 : 1 image of Γ + s, since this set has measure zero. For each
m, our integral identity implies that there exists an element sm ∈ Z such that
g(Cm,sm) = g(Γ) and

degω(Cm,sm) =

∫
Cm,sm

ω > m2

∫
Z

γ ∧ Φ?ω.

As
∫
Z
γ ∧ Φ?ω > 0, the curves Cm,sm have bounded genus and their degree is

growing quadratically with m, contradiction to property ii).

2.2. Definition.We say that a projective directed manifold (X,V ) is “algebraically
hyperbolic” if it satisfies property 2.1 ii), namely, if there exists ε > 0 such that
every algebraic curve C ⊂ X tangent to V satisfies

2g(C)− 2 > ε degω(C).

A nice feature of algebraic hyperbolicity is that it satisfies an algebraic
analogue of the openness property.

2.3. Proposition. Let (X,V) → S be an algebraic family of projective algebraic
directed manifolds (given by a projective morphism X→ S). Then the set of t ∈ S
such that the fiber (Xt, Vt) is algebraically hyperbolic is open with respect to the
“countable Zariski topology” of S (by definition, this is the topology for which closed
sets are countable unions of algebraic sets).

Proof. After replacing S by a Zariski open subset, we may assume that the total
space X itself is quasi-projective. Let ω be the Kähler metric on X obtained by
pulling back the Fubini-Study metric via an embedding in a projective space.
If integers d > 0, g > 0 are fixed, the set Ad,g of t ∈ S such that Xt

contains an algebraic 1-cycle C =
∑
mjCj tangent to Vt with degω(C) = d and

g(C) =
∑
mj g(Cj) 6 g is a closed algebraic subset of S (this follows from the

existence of a relative cycle space of curves of given degree, and from the fact
that the geometric genus is Zariski lower semicontinuous). Now, the set of non
algebraically hyperbolic fibers is by definition⋂

k>0

⋃
2g−2<d/k

Ad,g.

This concludes the proof (of course, one has to know that the countable Zariski
topology is actually a topology, namely that the class of countable unions of
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algebraic sets is stable under arbitrary intersections; this can be easily checked
by an induction on dimension).

2.4. Remark. More explicit versions of the openness property have been dealt
with in the literature. H. Clemens ([Cle86] and [CKL88]) has shown that on a
very generic surface of degree d > 5 in P3, the curves of type (d, k) are of genus
g > kd(d − 5)/2 (recall that a very generic surface X ⊂ P3 of degree > 4 has
Picard group generated by OX(1) thanks to the Noether-Lefschetz theorem, thus
any curve on the surface is a complete intersection with another hypersurface of
degree k ; such a curve is said to be of type (d, k) ; genericity is taken here in the
sense of the countable Zariski topology). Improving on this result of Clemens,
Geng Xu [Xu94] has shown that every curve contained in a very generic surface of
degree d > 5 satisfies the sharp bound g > d(d−3)/2−2. This actually shows that
a very generic surface of degree d > 6 is algebraically hyperbolic. Although a very
generic quintic surface has no rational or elliptic curves, it seems to be unknown
whether a (very) generic quintic surface is algebraically hyperbolic in the sense of
Definition 2.2.

2.5. Remark. It would be interesting to know whether algebraic hyperbolicity
is open with respect to the euclidean topology ; still more interesting would
be to know whether Kobayashi hyperbolicity is open for the countable Zariski
topology (of course, both properties would follow immediately if one knew that
Zariski and Kobayashi hyperbolicity coincide, but they seem otherwise highly
non trivial to establish). The latter openness property has raised an important
amount of work around the following more particular question: is a (very) generic
hypersurface X ⊂ Pn+1 of degree d large enough (say d > 2n + 1) Kobayashi
hyperbolic ? Again, “very generic” is to be taken here in the sense of the countable
Zariski topology. Brody-Green [BrGr77] and Nadel [Nad89] produced examples of
hyperbolic surfaces in P3 for all degrees d > 50, and Masuda-Noguchi [MaNo93]
recently gave examples of such hypersurfaces in Pn for arbitrary n > 2, of
degree d > d0(n) large enough. The question of studying the hyperbolicity of
complements Pn r D of generic divisors is in principle closely related to this; in
fact if D = {P (z0, . . . , zn) = 0} is a smooth generic divisor of degree d, one may
look at the hypersurface

X =
{
zdn+1 = P (z0, . . . , zn)

}
⊂ Pn+1

which is a cyclic d : 1 covering of Pn. Since any holomorphic map f : C → PnrD
can be lifted to X, it is clear that the hyperbolicity of X would imply the
hyperbolicity of Pn rD. The hyperbolicity of complements of divisors in Pn has
been investigated by many authors. M. Green [Green77] proved the hyperbolicity
of the complement of (2n+1) generic hyperplanes in Pn. Zaidenberg [Zai89] showed
the existence of curves with hyperbolic complement for every degree d > 5. In
response to a conjecture of [Zai89], [DSW92, 94] showed that the complement of
the union of at least 3 generic curves is hyperbolic, when the sum of degrees is at
least 5. More recently, Siu and Yeung [SiYe96a] proved the harder fact that the
complement of a generic irreducible curve of high degree in P2 is hyperbolic. Their
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approach uses jet bundle techniques, and it is one of our goals to explain some of
the underlying geometric ideas.

In the “absolute case” V = TX , it seems reasonable to expect that all three
properties 2.1 i), ii), iii) are equivalent, in particular that Kobayashi and algebraic
hyperbolicity coincide. In fact, S. Lang made the following conjecture.

2.6. Conjecture ([Lang 86, 87]). A compact complex manifold X is hyperbolic if
and only if there are no nontrivial holomorphic maps Z → X where Z = C p/Λ is
a compact complex torus.

The “only if” part of the conjecture is of course clearly true. On the other
hand, if X is projective algebraic, every holomorphic map Z → X of a compact
complex torus Z to X admits a factorization Z → Z ′ → X where Z ′ is an abelian
variety (see e.g. A. Weil [We57]). Thus, for X projective algebraic and V = TX ,
a positive solution to Conjecture 2.5 would imply the equivalence of properties i),
ii), iii) in Theorem 2.1.

2.7. Hint of heuristic proof of Lang’s conjecture. Although Lang’s conjecture
seems at present far beyond reach, we would like to present here a heuristic
argument showing how things could possibly work. These ideas arose through
discussions with S. Kosarew. Let BX be the space of all Brody curves, that is,
the set of all entire holomorphic curves f : C → X with ‖f ′‖ω 6 1 for some given
hermitian metric ω on X. For each ε > 0, we define a distance δε on BX by
putting

δε(f, g) = sup
t∈C

dω(f(t), g(t))e−ε|t|

where dω is the geodesic distance on X. For all ε > 0, dε defines the topology
of uniform convergence of compact sets, whilst d0 is the topology of uniform
convergence up to infinity. Hence (BX , dε) is a compact metric space for ε > 0.
Assume that this is still true for ε = 0 and assume moreover that X is not
hyperbolic, i.e. BX 6= ∅. We then consider the compact topological group GB

of isometries of (BX , d0) and look at the group homomorphism

Ψ : (C ,+)→ (GB, ◦), a 7→ fa where fa(t) = f(t− a).

We claim that GB should be a finite dimensional Lie group and Z = Ψ(C ) ⊂ GB a
compact commutative complex subgroup, thus a complex torus. In fact, a compact
Banach Lie group is finite dimensional, and the “Lie algebra” of GB seems to be
interpretable as a closed subspace of the Banach space of bounded holomorphic
sections in H0(BX × C , ev?TX) where ev : BX × C → X is the evaluation map
(f, t) 7→ f(t). The complex structure on Z should arise from the complex structure
on that Banach space. Now, we obtain a non trivial holomorphic map Φ : Z → X
by selecting an f ∈ BX which is not a fixed point of Z and putting Φ(γ) = γ(f)(0),
γ ∈ Z.

In the general context of directed manifolds, algebraic hyperbolicity can be
strictly weaker than Kobayashi hyperbolicity. The simplest example is provided
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by a 2-dimensional abelian variety X = C 2/Λ equipped with a constant subbundle
V ⊂ TX given by a complex line V0 ⊂ C 2 such that V0 ∩Λ = {0}. Then all leaves
of V are isomorphic to complex lines, in particular there are no compact curves
tangent to V , and thus 2.1 ii) and 2.1 iii) are satisfied (as void conditions). This
pathology can somehow be corrected by observing that the hyperbolicity of (X,V )
implies a statement analogue to 2.1 ii) but substantially stronger, namely a lower
bound of −χ(C) for curves C which are almost tangent to V , in the sense that
their “deviation with respect to V ” is small.

2.8. Definition. Let X be equipped with a hermitian (1, 1)-form ω, and let C ⊂ X
be a compact curve in X. We define the L2-deviation of C with respect to V by

dev2
ω(C/V ) =

∫
C

ωV ⊥

where ω = ωV ⊕ ωV ⊥ is the orthogonal decomposition of ω on V ⊕ V ⊥. Similarly,
if ν : C → X is the normalization map and C 6' P1, we define the L∞-deviation
(resp. the Lp-deviation) to be

dev∞ω (C/V ) = sup
t∈C

ν?ωV ⊥(t)

dσ̃(t)
= sup

t∈C
‖ν′(t)⊥‖2

σ̃,ω
V⊥
,

devpω(C/V ) =
[ ∫

t∈C

(ν?ωV ⊥(t)

dσ̃(t)

)p/2
dσ̃(t)

]2/p
=
[ ∫

t∈C
‖ν′(t)⊥‖p

σ̃,ω
V⊥
dσ̃(t)

]2/p
,

where dσ̃ is the normalized Poincaré metric on C (hermitian metric of constant
curvature with

∫
C
dσ̃ = 1), and ν′(t)⊥ is the projection of the tangent vector ν′(t)

on V ⊥. If C ' P1, we set instead

dev∞ω (C/V ) = inf
γ∈PGL2(C )

sup
t∈C

ν?ωV ⊥(t)

γ?dσ̃(t)

devpω(C/V ) = inf
γ∈PGL2(C )

[ ∫
t∈C
‖ν′(t)⊥‖p

γ?σ̃,ω
V⊥
dγ?σ̃(t)

]2/p
.

2.9. Proposition. Let (X,V ) be a compact directed manifold equipped with a
hermitian metric ω. If (X,V ) is hyperbolic, there exists a constant ε > 0 such that

max
(
− χ(C),dev∞ω (C/V )

)
> εdegω(C),

for every compact curve C ⊂ X.

Proof. Otherwise, there would exist a sequence of curves (C`) and a sequence of
positive numbers ε` converging to 0, such that

−χ(C`) 6 ε` degω(C`), dev∞ω (C`/V )
)
6 ε` degω(C`).

First assume that all curves C` have geometric genus g(C`) > 2. Let ν` : C` → X
be the normalization map of C`, and let dσ` be the area measure associated with
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the Poincaré metric on C` and dσ̃` = λ−1
` dσ` the normalized Poincaré metric with

λ` =
∫
C`
dσ` = π

2 (−χ(C`)). Select a point x` ∈ C` where the ratio ν?` ω/dσ` is
maximum. Since

∫
C`
ν?` ω = degω(C`), we have

R2
` :=

ν?` ω(x`)

dσ`(x`)
>

∫
C`
ν?` ω∫

C`
dσ`

=
degω(C`)

λ`
>

2

πε`
→ +∞.

Let ρ` : ∆→ C` be the universal covering map of C`, chosen such that ρ`(0) = x`.
We get a holomorphic map f` = ν` ◦ ρ` : ∆→ X such that ‖f ′`(0)‖ω = R` → +∞.
By Brody’s reparametrization lemma, we can reparametrize f` as g`(t) = f`(t/R`)
so that some subsequence of (g`) converges uniformly on every compact set to a
limit g : C → X with ‖g′(0)‖ω = 1. We claim that g must be tangent to V .
In fact, by definition of the L∞ deviation, we get ν?` ωV ⊥ 6 ε` degω(C`)dσ̃`, thus
f?` ωV ⊥ = ρ?` (ν

?
` ωV ⊥) and g?`ωV ⊥ satisfy

f?` ωV ⊥ 6
1

λ`
ε` degω(C`)

|dt|2

(1− |t|2)2
,

g?`ωV ⊥ 6
degω(C`)

λ`
ε`

R−2
` |dt|2

(1− |t|2/R2
` )

2
6 ε`

|dt|2

(1− |t|2/R2
` )

2
.

From this we conclude that g?ωV ⊥ = 0, hence g is tangent to V , contradiction. If
the curves C` are of genus 0 or 1, the arguments are similar and will be left to the
reader.

§3. The Ahlfors-Schwarz lemma for metrics of negative
curvature

One of the most basic ideas is that hyperbolicity should somehow be related
with suitable negativity properties of the curvature. For instance, it is a standard
fact already observed in Kobayashi [Kob70] that the negativity of TX (or the
ampleness of T ?X) implies the hyperbolicity of X. There are many ways of
improving or generalizing this result. We present here a few simple examples
of such generalizations. If (V, h) is a holomorphic vector bundle equipped with
a smooth hermitian metric, we denote by ∇h = ∇′h + ∇′′h the associated Chern
connection and by Θh(V ) = i

2π∇
2
h its Chern curvature tensor.

3.1. Proposition. Let (X,V ) be a compact directed manifold. Assume that V ? is
ample. Then (X,V ) is hyperbolic.

Proof (from an original idea of [Kob75]). Recall that a vector bundle E is said to
be ample if SmE has enough global sections σ1, . . . , σN so as to generate 1-jets of
sections at any point, when m is large. One obtains a Finsler metric N on E? by
putting

N(ξ) =
( ∑

16j6N

|σj(x) · ξm|2
)1/2m

, ξ ∈ E?x,

and N is then a strictly plurisubharmonic function on the total space of E? minus
the zero section (in other words, the line bundle OP (E?)(1) has a metric of positive
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curvature). By the ampleness assumption on V ?, we thus have a Finsler metric
N on V which is strictly plurisubharmonic outside the zero section. By Brody’s
lemma, if (X,V ) is not hyperbolic, there is a non constant entire curve g : C → X
tangent to V such that supC ‖g′‖ω 6 1 for some given hermitian metric ω on X.
Then N(g′) is a bounded subharmonic function on C which is strictly subharmonic
on {g′ 6= 0}. This is a contradiction, for any bounded subharmonic function on C
must be constant.

This result can be generalized a little bit further by means of the Ahlfors-
Schwarz lemma (see e.g. [Lang87]).

3.2. Ahlfors-Schwarz lemma. Let γ(t) = γ0(t) i dt ∧ dt be a hermitian metric
on ∆R where log γ0 is a subharmonic function such that i ∂∂ log γ0(t) > Aγ(t) in
the sense of currents, for some positive constant A. Then γ can be compared with
the Poincaré metric of ∆R as follows:

γ(t) 6
2

A

R−2|dt|2

(1− |t|2/R2)2
.

More generally, let γ = i
∑
γjkdtj∧dtk be an almost everywhere positive hermitian

form on the ball B(0, R) ⊂ C p, such that −Ricci(γ) := i ∂∂ log det γ > Aγ in
the sense of currents, for some constant A > 0 (this means in particular that
det γ = det(γjk) is such that log det γ is plurisubharmonic). Then

det(γ) 6
(p+ 1

AR2

)p 1

(1− |t|2/R2)p+1
.

Proof. It is of course sufficient to deal with the more general case of a ball in
C p. First assume that γ is smooth and positive definite on B(0, R). Take a point
t0 ∈ B(0, R) at which (1 − |t|2/R2)p+1 det(γ(t)) is maximum. The logarithmic
i ∂∂-derivative of this function at t0 must be 6 0, hence

i ∂∂ log det γ(t)t=t0 − (p+ 1) i ∂∂ log(1− |t|2/R2)−1
t=t0 6 0.

The hypothesis on the Ricci curvature implies

Ap γ(t0)p 6
(
i ∂∂ log det γ(t)t=t0

)p
6 (p+ 1)p

(
i ∂∂ log(1− |t|2/R2)−1

t=t0

)p
.

An easy computation shows that the determinant of i ∂∂ log(1−|t|2/R2)−1 is equal
to R−2p(1− |t|2/R2)−p−1. From this, we conclude that

(1− |t|2/R2)p+1 det γ(t) 6 (1− |t0|2/R2)p+1 det γ(t0) 6
(p+ 1

AR2

)p
.

If γ is not smooth, we use a regularization argument. Namely, we shrink R a little
bit and look at the maximum of the function

u(t) = (1− |t|2/R2)p+1 exp
(
ρε ? log det γ(t)

)
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where (ρε) is a family of regularizing kernels. The argument goes through because

i ∂∂(ρε ? log det γ) > Aρε ? γ

and log det(ρε ? γ) > ρε ? log det γ by concavity of the log det function.

3.3. Proposition. Let (X,V ) be a compact directed manifold. Assume that V ?
is “very big” in the following sense: there exists an ample line bundle L and a
sufficiently large integer m such that the global sections in H0(X,SmV ? ⊗ L−1)
generate all fibers over X r Y , for some analytic subset Y ( X. Then all entire
curves f : C → X tangent to V satisfy f(C ) ⊂ Y [under our assumptions, X is a
projective algebraic manifold and Y is an algebraic subvariety, thus it is legitimate
to say that the entire curves are “algebraically degenerate”].

Proof. Let σ1, . . . , σN ∈ H0(X,SmV ? ⊗ L−1) be a basis of sections generating
SmV ? ⊗ L−1 over X r Y . If f : C → X is tangent to V , we define a semipositive
hermitian form γ(t) = γ0(t) |dt|2 on C by putting

γ0(t) =
∑
‖σj(f(t)) · f ′(t)m‖2/mL−1

where ‖ ‖L denotes a hermitian metric with positive curvature on L. If f(C ) 6⊂ Y ,
the form γ is not identically 0 and we then find

i ∂∂ log γ0 >
2π

m
f?Θ(L)

where Θ(L) is the curvature form. The positivity assumption combined with an
obvious homogeneity argument yield

2π

m
f?Θ(L) > ε‖f ′(t)‖2ω |dt|2 > ε′ γ(t)

for any given hermitian metric ω on X. Now, for any t0 with γ0(t0) > 0, the
Ahlfors-Schwarz lemma shows that f can only exist on a disk D(t0, R) such that
γ0(t0) 6 2

ε′R
−2, contradiction.

There are similar results for p-measure hyperbolicity, e.g.

3.4. Proposition. Let (X,V ) be a compact directed manifold. Assume that ΛpV ?

is ample. Then (X,V ) is infinitesimally p-measure hyperbolic. More generally,
assume that ΛpV ? is very big with base locus contained in Y ( X (see 3.3). Then
ep is non degenerate over X r Y .

Proof. By the ampleness assumption, there is a smooth Finsler metric N on
ΛpV which is strictly plurisubharmonic outside the zero section. We select also
a hermitian metric ω on X. For any holomorphic map f : Bp → X we define a
semipositive hermitian metric γ̃ on Bp by putting γ̃ = f?ω. Since ω need not have
any good curvature estimate, we introduce the function δ(t) = Nf(t)(Λ

pf ′(t) · τ0),
where τ0 = ∂/∂t1 ∧ · · · ∧ ∂/∂tp, and select a metric γ = λγ̃ conformal to γ̃
such that det γ = δ. Then λp is equal to the ratio N/Λpω on the element
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Λpf ′(t) · τ0 ∈ ΛpVf(t). Since X is compact, it is clear that the conformal factor
λ is bounded by an absolute constant independent of f . From the curvature
assumption we then get

i ∂∂ log det γ = i ∂∂ log δ > (f,Λpf ′)?(i ∂∂ logN) > εf?ω > ε′ γ.

By the Ahlfors-Schwarz lemma we infer that det γ(0) 6 C for some constant C, i.e.,
Nf(0)(Λ

pf ′(0) · τ0) 6 C ′. This means that the Kobayashi-Eisenman pseudometric
ep(X,V ) is positive definite everywhere and uniformly bounded from below. In the
case ΛpV ? is very big with base locus Y , we use essentially the same arguments,
but we then only have N being positive definite on X r Y .

3.5. Corollary ([Gri71], KobO71]). If X is a projective variety of general type,
the Kobayashi-Eisenmann volume form en, n = dimX, can degenerate only along
a proper algebraic set Y ( X.

The converse of Corollary 3.5 is expected to be true, namely, the generic non
degeneracy of en should imply that X is of general type, but this is only known
for surfaces (see [GrGr80] and [MoMu82]):

3.6. Conjecture (Green-Griffiths [GrGr80]). A projective algebraic variety X
is almost measure hyperbolic (i.e. en degenerates only along a proper algebraic
subvariety) if and only if X is of general type.

In the same vein, Green-Griffiths and Lang proposed the following conjectures.

3.7. Conjecture (Green-Griffiths [GrGr80]). If X is a variety of general type,
there exists a proper algebraic set Y ( X such that every entire holomorphic curve
f : C → X is contained in Y .

The most outstanding result in the direction of Conjecture 3.7 is the proof
of the Bloch theorem, as proposed by Bloch [Blo26] and Ochiai [Och77]. The
Bloch theorem is the special case of 3.7 when the irregularity of X satisfies
q = h0(X,Ω1

X) > dimX. Various solutions have then been obtained in funda-
mental papers of Noguchi [Nog77, 81, 84], Kawamata [Kaw80] and Green-Griffiths
[GrGr80], by means of different techniques. See section § 9 for a proof based on
jet bundle techniques.

3.8. Conjecture ([Lang86, 87]). A projective algebraic variety X is hyperbolic if
and only if all its algebraic subvarieties (including X itself) are of general type.

An essential step in the proof of the necessity of having general type subva-
rieties would be to show that manifolds of Kodaira dimension 0 (say, Calabi-Yau
manifolds and symplectic manifolds, all of which have c1(X) = 0) are not hyper-
bolic, e.g. by exhibiting a sequence of curves C` such that (2g(C`)−2)/ deg(C`)→
0. In fact, it is even expected that there are covering families of such curves,
whereby proving that such manifolds are not measure hyperbolic. An analogous
conjecture in the relative situation might stand as follows.
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3.9. Conjecture. Let (X,V ) be a projective directed manifold. Assume that detV ?

is big and that V is semistable in some sense (e.g. with respect to detV ?, if detV ?

is ample). Then there is a proper algebraic subset Y ( X such that every entire
curve f : C → X tangent to V satisfies f(C ) ⊂ Y .

Recall that a line bundle L is said to be big if it has maximal Kodaira
dimension, in other words, if H0(X,L⊗m) > cmdimX for some constant c > 0,
when m > m0 is sufficiently large. Some sort of semistability condition is clearly
required, otherwise one might takeX to be an abelian variety of dimension > 3 and
V = L + L′ where L ⊂ TX is a constant line subbundle with dense trajectories,
and L′ ⊂ TX a “generic” sufficiently negative line bundle (also take a blow-up
X̃ → X to resolve the singularities of V , so as to obtain a subbundle Ṽ ⊂ TX̃).
In the absolute case V = TX , the semistability condition is probably not needed
since TX tends to be always semistable in some sense (if KX is ample, there is
always a Kähler-Einstein metric, hence TX is KX -semistable).

3.10. Remark. One should take care of the fact that Propositions 3.1, 3.3 and 3.4
cannot be extended without modifications to the case when V admits singularities.
For instance, take X = Pn and let ` = P1 ⊂ X be a line. Take a section of
T`⊗O`(d) ' O`(d+2) admitting only one zero z0 of multiplicity d+2, and extend
it as a section σ of TPn⊗O(d) admitting only isolated zeroes (this is always possible
for arbitrary d > 0). Then σ defines a sheaf injection σ : O(−d) ↪−→ O(TPn)
with V = σ(O(−d)) ' O(−d) negative, nevertheless V admits a complex line
` r {z0} ' C as one of its integral curves. The correct assumption guaranteeing
the hyperbolicity of (X,V ) is that W = Im(Ω1

X → V?) should be ample.

§4. Projectivization of a directed manifold

The basic idea is to introduce a fonctorial process which produces a new
complex directed manifold (X̃, Ṽ ) from a given one (X,V ). The new structure
(X̃, Ṽ ) plays the role of a space of 1-jets over X. We let

X̃ = P (V ), Ṽ ⊂ TX̃

be the projectivized bundle of lines of V , together with a subbundle Ṽ of TX̃ defined
as follows: for every point (x, [v]) ∈ X̃ associated with a vector v ∈ Vx r {0},

(4.1) Ṽ (x,[v]) =
{
ξ ∈ TX̃, (x,[v]) ; π?ξ ∈ C v

}
, C v ⊂ Vx ⊂ TX,x,

where π : X̃ = P (V ) → X is the natural projection and π? : TX̃ → π?TX is its
differential. On X̃ = P (V ) we have a tautological line bundle OX̃(−1) ⊂ π?V
such that OX̃(−1)(x,[v]) = C v. The bundle Ṽ is characterized by the two exact
sequences

0 −→ TX̃/X −→ Ṽ
π?−→ OX̃(−1) −→ 0,(4.2)

0 −→ OX̃ −→ π?V ⊗ OX̃(1) −→ TX̃/X −→ 0,(4.2′)

where TX̃/X denotes the relative tangent bundle of the fibration π : X̃ → X. The
first sequence is a direct consequence of the definition of Ṽ , whereas the second is
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a relative version of the Euler exact sequence describing the tangent bundle of the
fibers P (Vx). From these exact sequences we infer

(4.3) dim X̃ = n+ r − 1, rank Ṽ = rankV = r,

and by taking determinants we find det(TX̃/X) = π? detV ⊗ OX̃(r), thus

(4.4) det Ṽ = π? detV ⊗ OX̃(r − 1).

By definition, π : (X̃, Ṽ ) → (X,V ) is a morphism of complex directed mani-
folds. Clearly, our construction is fonctorial, i.e., for every morphism of directed
manifolds Φ : (X,V )→ (Y,W ), there is a commutative diagram

(4.5)

(X̃, Ṽ )
π−→ (X,V )

Φ̃y yΦ

(Ỹ , W̃ )
π−→ (Y,W )

where the left vertical arrow is the meromorphic map P (V ) K P (W ) induced by
the differential Φ? : V → Φ?W (Φ̃ is actually holomorphic if Φ? : V → Φ?W is
injective).

Now, suppose that we are given a holomorphic curve f : ∆R → X parametrized
by the disk ∆R of centre 0 and radius R in the complex plane, and that f is a
tangent trajectory of the directed manifold, i.e., f ′(t) ∈ Vf(t) for every t ∈ ∆R. If
f is non constant, there is a well defined and unique tangent line [f ′(t)] for every t,
even at stationary points, and the map

(4.6) f̃ : ∆R → X̃, t 7→ f̃(t) := (f(t), [f ′(t)])

is holomorphic (at a stationary point t0, we just write f ′(t) = (t − t0)su(t) with
s ∈ N? and u(t0) 6= 0, and we define the tangent line at t0 to be [u(t0)], hence
f̃(t) = (f(t), [u(t)]) near t0 ; even for t = t0, we still denote [f ′(t0)] = [u(t0)] for
simplicity of notation). By definition f ′(t) ∈ OX̃(−1)f̃(t) = C u(t), hence the
derivative f ′ defines a section

(4.7) f ′ : T∆R
→ f̃?OX̃(−1).

Moreover π ◦ f̃ = f , therefore

π?f̃
′(t) = f ′(t) ∈ Cu(t) =⇒ f̃ ′(t) ∈ Ṽ (f(t),u(t)) = Ṽ f̃(t)

and we see that f̃ is a tangent trajectory of (X̃, Ṽ ). We say that f̃ is the canonical
lifting of f to X̃. Conversely, if g : ∆R → X̃ is a tangent trajectory of (X̃, Ṽ ),
then by definition of Ṽ we see that f = π ◦ g is a tangent trajectory of (X,V )
and that g = f̃ (unless g is contained in a vertical fiber P (Vx), in which case f is
constant).
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For any point x0 ∈ X, there are local coordinates (z1, . . . , zn) on a neighbor-
hood Ω of x0 such that the fibers (Vz)z∈Ω can be defined by linear equations

(4.8) Vz =
{
ξ =

∑
16j6n

ξj
∂

∂zj
; ξj =

∑
16k6r

ajk(z)ξk for j = r + 1, . . . , n
}
,

where (ajk) is a holomorphic (n− r)× r matrix. It follows that a vector ξ ∈ Vz is
completely determined by its first r components (ξ1, . . . , ξr), and the affine chart
ξj 6= 0 of P (V )�Ω can be described by the coordinate system

(4.9)
(
z1, . . . , zn;

ξ1
ξj
, . . . ,

ξj−1

ξj
,
ξj+1

ξj
, . . . ,

ξr
ξj

)
.

Let f ' (f1, . . . , fn) be the components of f in the coordinates (z1, . . . , zn) (we
suppose here R so small that f(∆R) ⊂ Ω). It should be observed that f is uniquely
determined by its initial value x and by the first r components (f1, . . . , fr). Indeed,
as f ′(t) ∈ Vf(t) , we can recover the other components by integrating the system
of ordinary differential equations

(4.10) f ′j(t) =
∑

16k6r

ajk(f(t))f ′k(t), j > r,

on a neighborhood of 0, with initial data f(0) = x. We denote by m = m(f, t0)
the multiplicity of f at any point t0 ∈ ∆R, that is, m(f, t0) is the smallest integer
m ∈ N? such that f (m)

j (t0) 6= 0 for some j. By (4.10), we can always suppose
j ∈ {1, . . . , r}, for example f (m)

r (t0) 6= 0. Then f ′(t) = (t − t0)m−1u(t) with
ur(t0) 6= 0, and the lifting f̃ is described in the coordinates of the affine chart
ξr 6= 0 of P (V )�Ω by

(4.11) f̃ '
(
f1, . . . , fn;

f ′1
f ′r
, . . . ,

f ′r−1

f ′r

)
.

We end this section with a few curvature computations. Assume that V is equipped
with a smooth hermitian metric h. Denote by ∇h = ∇′h + ∇′′h the associated
Chern connection and by Θh(V ) = i

2π∇
2
h its Chern curvature tensor. For every

point x0 ∈ X, there exists a “normalized” holomorphic frame (eλ)16λ6r on a
neighborhood of x0, such that

(4.12) 〈eλ, eµ〉h = δλµ −
∑

16j,k6n

cjkλµzjzk +O(|z|3),

with respect to any holomorphic coordinate system (z1, . . . , zn) centered at x0.
A computation of d′〈eλ, eµ〉h = 〈∇′heλ, eµ〉h and ∇2

heλ = d′′∇′heλ then gives

∇′heλ = −
∑
j,k,µ

cjkλµzk dzj ⊗ eµ +O(|z|2),

Θh(V )x0 =
i

2π

∑
j,k,λ,µ

cjkλµdzj ∧ dzk ⊗ e?λ ⊗ eµ.(4.13)
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The above curvature tensor can also be viewed as a hermitian form on TX ⊗V . In
fact, one associates with Θh(V ) the hermitian form 〈Θh(V )〉 on TX ⊗ V defined
for all (ζ, v) ∈ TX ×X V by

(4.14) 〈Θh(V )〉(ζ ⊗ v) =
∑

16j,k6n, 16λ,µ6r

cjkλµζjζkvλvµ.

Let h1 be the hermitian metric on the tautological line bundle OP (V )(−1) ⊂
π?V induced by the metric h of V . We compute the curvature (1, 1)-form
Θh1(OP (V )(−1)) at an arbitrary point (x0, [v0]) ∈ P (V ), in terms of Θh(V ). For
simplicity, we suppose that the frame (eλ)16λ6r has been chosen in such a way
that [er(x0)] = [v0] ∈ P (V ) and |v0|h = 1. We get holomorphic local coordinates
(z1, . . . , zn ; ξ1, . . . , ξr−1) on a neighborhood of (x0, [v0]) in P (V ) by assigning

(z1, . . . , zn ; ξ1, . . . , ξr−1) 7−→ (z, [ξ1e1(z) + · · ·+ ξr−1er−1(z) + er(z)]) ∈ P (V ).

Then the function
η(z, ξ) = ξ1e1(z) + · · ·+ ξr−1er−1(z) + er(z)

defines a holomorphic section of OP (V )(−1) in a neighborhood of (x0, [v0]). By
using the expansion (4.12) for h, we find

|η|2h1
= |η|2h = 1 + |ξ|2 −

∑
16j,k6n

cjkrrzjzk +O((|z|+ |ξ|)3),

Θh1
(OP (V )(−1))(x0,[v0]) = − i

2π
d′d′′ log |η|2h1

=
i

2π

( ∑
16j,k6n

cjkrrdzj ∧ dzk −
∑

16λ6r−1

dξλ ∧ dξλ
)
.(4.15)

Now, the connection ∇h on V defines on X̃ = P (V ) a C∞ decomposition
TX̃ = HTX̃ ⊕ VTX̃ ,

HTX̃,(x,[v]) ' TX,x, VTX̃,(x,[v]) ' TP (Vx),[v],

in horizontal and vertical components. With respect to this decomposition, (4.15)
can be rewritten as
(4.16) 〈Θh1

(OP (V )(−1))〉(x0,[v0])(τ) = 〈Θh(V )〉x0
(Hτ ⊗ v0)− |Vτ |2FS

where | |FS is the Fubini-Study metric along the fibers TP (Vx). By definition of
Ṽ , we have Ṽ (x,[v]) ⊂ Vx ⊕ TP (Vx),[v] with respect to the decomposition. By this
observation, if we equip P (V ) with the Fubini-Study metric rescaled by ρ2 > 0,
the metric h on V induces a canonical hermitian metric h̃ρ on Ṽ such that

|w|2
h̃ρ

= |Hw|2h + ρ2|Vw|2h for w ∈ Ṽ (x0,[v0]),

where Hw ∈ C v0 ⊂ Vx0
and Vw ∈ TP (Vx0 ),[v0] is viewed as an element of v⊥0 ⊂ Vx0

.
A computation (left to the reader) gives the formula

〈Θh̃ρ(Ṽ )〉(x0,[v0])(τ ⊗ w) = 〈Θh(V )〉x0
(Hτ ⊗ v0) (|Hw|2h − ρ2|Vw|2h)

+ ρ2〈Θh(V )〉x0
(Hτ ⊗ Vw)

+ ρ2
(
|〈Vτ, Vw〉h|2 + |Vτ |2h|Vw|2h

)
− |Vτ |2h|Hw|2h(4.17)

+ O(ρ)|τ |2ω|w|2h̃ρ , τ ∈ TX̃ , w ∈ Ṽ ,

where |τ |2ω is computed from a fixed hermitian metric ω on TX .
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§5. Jets of curves and Semple jet bundles

LetX be a complex n-dimensional manifold. Following ideas of Green-Griffiths
[GrGr80], we let Jk → X be the bundle of k-jets of germs of parametrized
curves in X, that is, the set of equivalence classes of holomorphic maps f :
(C , 0) → (X,x), with the equivalence relation f ∼ g if and only if all derivatives
f (j)(0) = g(j)(0) coincide for 0 6 j 6 k, when computed in some local coordinate
system of X near x. The projection map Jk → X is simply f 7→ f(0). If
(z1, . . . , zn) are local holomorphic coordinates on an open set Ω ⊂ X, the elements
f of any fiber Jk,x, x ∈ Ω, can be seen as C n-valued maps

f = (f1, . . . , fn) : (C , 0)→ Ω ⊂ C n,

and they are completetely determined by their Taylor expansion of order k at t = 0

f(t) = x+ t f ′(0) +
t2

2!
f ′′(0) + · · ·+ tk

k!
f (k)(0) +O(tk+1).

In these coordinates, the fiber Jk,x can thus be identified with the set of k-tuples
of vectors (f ′(0), . . . , f (k)(0)) ∈ (C n)k. It follows that Jk is a holomorphic fiber
bundle with typical fiber (C n)k over X (however, Jk is not a vector bundle for
k > 2, because of the nonlinearity of coordinate changes; see formula (6.2) in § 6).

According to the philosophy developed throughout this paper, we describe the
concept of jet bundle in the general situation of complex directed manifolds. If
X is equipped with a holomorphic subbundle V ⊂ TX , we associate to V a k-jet
bundle JkV as follows.

5.1. Definition. Let (X,V ) be a complex directed manifold. We define JkV → X
to be the bundle of k-jets of curves f : (C , 0)→ X which are tangent to V , i.e.,
such that f ′(t) ∈ Vf(t) for all t in a neighborhood of 0, together with the projection
map f 7→ f(0) onto X.

It is easy to check that JkV is actually a subbundle of Jk. In fact, by using
(4.8) and (4.10), we see that the fibers JkVx are parametrized by(

(f ′1(0), . . . , f ′r(0)); (f ′′1 (0), . . . , f ′′r (0)); . . . ; (f
(k)
1 (0), . . . , f (k)

r (0))
)
∈ (C r)k

for all x ∈ Ω, hence JkV is a locally trivial (C r)k-subbundle of Jk.
We now describe a convenient process for constructing “projectivized jet

bundles”, which will later appear as natural quotients of our jet bundles JkV
(or rather, as suitable desingularized compactifications of the quotients). Such
spaces have already been considered since a long time, at least in the special case
X = P2, V = TP2 (see Gherardelli [Ghe41], Semple [Sem54]), and they have been
mostly used as a tool for establishing enumerative formulas dealing with the order
of contact of plane curves (see [Coll88], [CoKe94]); the article [ASS92] is also
concerned with such generalizations of jet bundles*.

* Very recently, a preprint [LaTh96] by Laksov and Thorup has also appeared, dealing in
depth with algebraic-theoretic properties of jet differentials. The formalism of “higher order”
differentials has been part of the mathematical folklore during the 18th and 19th centuries
(without too much concern, in those times, on the existence of precise definitions !). During
the 20th century, this formalism almost disappeared, before getting revived in several ways. See
e.g. the interesting article by P.A. Meyer [Mey89], which was originally motivated by applications
to probability theory.
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We define inductively the projectivized k-jet bundle PkV = Xk (or Semple k-jet
bundle) and the associated subbundle Vk ⊂ TXk by

(5.2) (X0, V0) = (X,V ), (Xk, Vk) = (X̃k−1, Ṽ k−1).

In other words, (PkV, Vk) = (Xk, Vk) is obtained from (X,V ) by iterating k-times
the lifting construction (X,V ) 7→ (X̃, Ṽ ) described in § 4. By (4.2–4.7), we find

(5.3) dimPkV = n+ k(r − 1), rankVk = r,

together with exact sequences

0 −→ TPkV/Pk−1V −→ Vk
(πk)?−−−−→ OPkV (−1) −→ 0,(5.4)

0 −→ OPkV −→ π?kVk−1 ⊗ OPkV (1) −→ TPkV/Pk−1V −→ 0.(5.4′)

where πk is the natural projection πk : PkV → Pk−1V and (πk)? its differential.
Formula (4.4) yields

(5.5) detVk = π?k detVk−1 ⊗ OPkV (r − 1).

Every non constant tangent trajectory f : ∆R → X of (X,V ) lifts to a well defined
and unique tangent trajectory f[k] : ∆R → PkV of (PkV, Vk). Moreover, the
derivative f ′[k−1] gives rise to a section

(5.6) f ′[k−1] : T∆R
→ f?[k]OPkV (−1).

In coordinates, one can compute f[k] in terms of its components in the various
affine charts (4.9) occurring at each step: we get inductively

(5.7) f[k] = (F1, . . . , FN ), f[k+1] =
(
F1, . . . , FN ,

F ′s1
F ′sr

, . . . ,
F ′sr−1

F ′sr

)
where N = n + k(r − 1) and {s1, . . . , sr} ⊂ {1, . . . , N}. If k > 1, {s1, . . . , sr}
contains the last r − 1 indices of {1, . . . , N} corresponding to the “vertical”
components of the projection PkV → Pk−1V , and in general, sr is an index such
that m(Fsr , 0) = m(f[k], 0), that is, Fsr has the smallest vanishing order among
all components Fs (sr may be vertical or not, and the choice of {s1, . . . , sr} need
not be unique).

By definition, there is a canonical injection OPkV (−1) ↪→ π?kVk−1, and a
composition with the projection (πk−1)? (analogue for order k−1 of the arrow (πk)?
in sequence (5.4)) yields for all k > 2 a canonical line bundle morphism

(5.8) OPkV (−1) ↪−→ π?kVk−1
(πk)?(πk−1)?−−−−−−−→ π?kOPk−1V (−1),

which admits precisely Dk = P (TPk−1V/Pk−2V ) ⊂ P (Vk−1) = PkV as its zero divi-
sor (clearly, Dk is a hyperplane subbundle of PkV ). Hence we find

(5.9) OPkV (1) = π?kOPk−1V (1)⊗ O(Dk).
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Now, we consider the composition of projections

(5.10) πk,j = πj+1 ◦ · · · ◦ πk−1 ◦ πk : PkV −→ PjV.

Then πk,0 : PkV → X = P0V is a locally trivial holomorphic fiber bundle over X,
and the fibers PkVx = π−1

k,0(x) are k-stage towers of Pr−1-bundles. Since we have
(in both directions) morphisms (C r, TC r ) ↔ (X,V ) of directed manifolds which
are bijective on the level of bundle morphisms, the fibers are all isomorphic to a
“universal” nonsingular projective algebraic variety of dimension k(r − 1) which
we will denote by Rr,k ; it is not hard to see that Rr,k is rational (as will indeed
follow from the proof of Theorem 6.8 below). The following Proposition will help
us to understand a little bit more about the geometric structure of PkV . As usual,
we define the multiplicity m(f, t0) of a curve f : ∆R → X at a point t ∈ ∆R to
be the smallest integer s ∈ N? such that f (s)(t0) 6= 0, i.e., the largest s such that
δ(f(t), f(t0)) = O(|t − t0|s) for any hermitian or riemannian geodesic distance δ
on X. As f[k−1] = πk ◦f[k], it is clear that the sequence m(f[k], t) is non increasing
with k.

5.11. Proposition. Let f : (C , 0)→ X be a non constant germ of curve tangent
to V . Then for all j > 2 we have m(f[j−2], 0) > m(f[j−1], 0) and the inequality is
strict if and only if f[j](0) ∈ Dj. Conversely, if w ∈ PkV is an arbitrary element
and m0 > m1 > · · · > mk−1 > 1 is a sequence of integers with the property that

∀j ∈ {2, . . . , k}, mj−2 > mj−1 if and only if πk,j(w) ∈ Dj,

there exists a germ of curve f : (C , 0) → X tangent to V such that f[k](0) = w
and m(f[j], 0) = mj for all j ∈ {0, . . . , k − 1}.

Proof. i) Suppose first that f is given and put mj = m(f[j], 0). By definition, we
have f[j] = (f[j−1], [uj−1]) where f ′[j−1](t) = tmj−1−1uj−1(t) ∈ Vj−1, uj−1(0) 6= 0.
By composing with the differential of the projection πj−1 : Pj−1V → Pj−2V , we
find f ′[j−2](t) = tmj−1−1(πj−1)?uj−1(t). Therefore

mj−2 = mj−1 + ordt=0(πj−1)?uj−1(t),

and so mj−2 > mj−1 if and only if (πj−1)?uj−1(0) = 0, that is, if and only if
uj−1(0) ∈ TPj−1V/Pj−2V , or equivalently f[j](0) = (f[j−1](0), [uj−1(0)]) ∈ Dj .

ii) Suppose now that w ∈ PkV and m0, . . . ,mk−1 are given. We denote by
wj+1 = (wj , [ηj ]), wj ∈ PjV , ηj ∈ Vj , the projection of w to Pj+1V . Fix
coordinates (z1, . . . , zn) on X centered at w0 such that the r-th component η0,r

of η0 is non zero. We prove the existence of the germ f by induction on k, in the
form of a Taylor expansion

f(t) = a0 + t a1 + · · ·+ tdkadk +O(tdk+1), dk = m0 +m1 + · · ·+mk−1.

If k = 1 and w = (w0, [η0]) ∈ P1Vx, we simply take f(t) = w0 + tm0η0 +O(tm0+1).
In general, the induction hypothesis applied to PkV = Pk−1(V1) over X1 = P1V
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yields a curve g : (C , 0) → X1 such that g[k−1] = w and m(g[j], 0) = mj+1 for
0 6 j 6 k − 2. If w2 /∈ D2, then [g′[1](0)] = [η1] is not vertical, thus f = π1 ◦ g
satisfies m(f, 0) = m(g, 0) = m1 = m0 and we are done.

If w2 ∈ D2, we express g = (G1, . . . , Gn;Gn+1, . . . , Gn+r−1) as a Taylor
expansion of orderm1+· · ·+mk−1 in the coordinates (4.9) of the affine chart ξr 6= 0.
As η1 = limt→0 g

′(t)/tm1−1 is vertical, we must have m(Gs, 0) > m1 for 1 6 j 6 n.
It follows from (5.7) that G1, . . . , Gn are never involved in the calculation of the
liftings g[j]. We can therefore replace g by f ' (f1, . . . , fn) where fr(t) = tm0 and
f1, . . . , fr−1 are obtained by integrating the equations f ′j(t)/f ′r(t) = Gn+j(t), i.e.,
f ′j(t) = m0t

m0−1Gn+j(t), while fr+1, . . . , fn are obtained by integrating (4.10).
We then get the desired Taylor expansion of order dk for f .

Since we can always take mk−1 = 1 without restriction, we get in particular:

5.12. Corollary. Let w ∈ PkV be an arbitrary element. Then there is a germ of
curve f : (C , 0) → X such that f[k](0) = w and f ′[k−1](0) 6= 0 (thus the liftings
f[k−1] and f[k] are regular germs of curve). Moreover, if w0 ∈ PkV and w is taken
in a sufficiently small neighborhood of w0, then the germ f = fw can be taken to
depend holomorphically on w.

Proof. Only the holomorphic dependence of fw with respect to w has to be
guaranteed. If fw0

is a solution for w = w0, we observe that (fw0
)′[k] is a non

vanishing section of Vk along the regular curve defined by (fw0
)[k] in PkV . We can

thus find a non vanishing section ξ of Vk on a neighborhood of w0 in PkV such
that ξ = (fw0

)′[k] along that curve. We define t 7→ Fw(t) to be the trajectory of ξ
with initial point w, and we put fw = πk,0 ◦ Fw. Then fw is the required family
of germs.

Now, we can take f : (C , 0) → X to be regular at the origin (by this, we
mean f ′(0) 6= 0) if and only if m0 = m1 = · · · = mk−1 = 1, which is possible
by Proposition 5.11 if and only if w ∈ PkV is such that πk,j(w) /∈ Dj for all
j ∈ {2, . . . , k}. For this reason, we define

(5.13)

PkV
reg =

⋂
26j6k

π−1
k,j(PjV rDj),

PkV
sing =

⋃
26j6k

π−1
k,j(Dj) = PkV r PkV

reg,

in other words, PkV reg is the set of values f[k](0) reached by all regular germs of
curves f . One should take care however that there are singular germs which reach
the same points f[k](0) ∈ PkV reg, e.g., any s-sheeted covering t 7→ f(ts). On the
other hand, if w ∈ PkV sing, we can reach w by a germ f with m0 = m(f, 0) as
large as we want.

5.14. Corollary. Let w ∈ PkV sing be given, and let m0 ∈ N be an arbitrary integer
larger than the number of components Dj such that πk,j(w) ∈ Dj. Then there is
a germ of curve f : (C , 0)→ X with multiplicity m(f, 0) = m0 at the origin, such
that f[k](0) = w and f ′[k−1](0) 6= 0.
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§6. Jet differentials

Following Green-Griffiths [GrGr80], we now introduce the concept of jet differ-
ential. This concept gives an intrinsic way of describing holomorphic differential
equations that a germ of curve f : (C , 0) → X may satisfy. In the sequel, we fix
a directed manifold (X,V ) and suppose implicitly that all germs f are tangent
to V .

Let Gk be the group of germs of k-jets of biholomorphisms of (C , 0), that is,
the group of germs of biholomorphic maps

t 7→ ϕ(t) = a1t+ a2t
2 + · · ·+ akt

k, a1 ∈ C ?, aj ∈ C , j > 2,

in which the composition law is taken modulo terms tj of degree j > k. Then Gk
is a k-dimensional nilpotent complex Lie group, which admits a natural fiberwise
right action on JkV . The action consists of reparametrizing k-jets of maps
f : (C , 0) → X by a biholomorphic change of parameter ϕ : (C , 0) → (C , 0),
that is, (f, ϕ) 7→ f ◦ ϕ. There is an exact sequence of groups

1→ G′k → Gk → C ? → 1

where Gk → C ? is the obvious morphism ϕ 7→ ϕ′(0), and G′k = [Gk,Gk] is the
group of k-jets of biholomorphisms tangent to the identity. Moreover, the subgroup
H ' C ? of homotheties ϕ(t) = λt is a (non normal) subgroup of Gk, and we have
a semidirect decomposition Gk = G′k n H. The corresponding action on k-jets is
described in coordinates by

λ · (f ′, f ′′, . . . , f (k)) = (λf ′, λ2f ′′, . . . , λkf (k)).

Following [GrGr80], we introduce the vector bundle EGG
k,mV

? → X whose
fibers are complex valued polynomials Q(f ′, f ′′, . . . , f (k)) on the fibers of JkV ,
of weighted degree m with respect to the C ? action defined by H, that is, such
that

(6.1) Q(λf ′, λ2f ′′, . . . , λkf (k)) = λmQ(f ′, f ′′, . . . , f (k))

for all λ ∈ C ? and (f ′, f ′′, . . . , f (k)) ∈ JkV . Here we view (f ′, f ′′, . . . , f (k)) as
indeterminates with components(

(f ′1, . . . , f
′
r); (f ′′1 , . . . , f

′′
r ); . . . ; (f

(k)
1 , . . . , f (k)

r )
)
∈ (C r)k.

Notice that the concept of polynomial on the fibers of JkV makes sense, for
all coordinate changes z 7→ w = Ψ(z) on X induce polynomial transition
automorphisms on the fibers of JkV , given by a formula

(6.2) (Ψ ◦ f)(j) = Ψ′(f) · f (j) +

s=j∑
s=2

∑
j1+j2+···+js=j

cj1...jsΨ
(s)(f) · (f (j1), . . . , f (js))
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with suitable integer constants cj1...js (this is easily checked by induction on s).
In the “absolute case” V = TX , we simply write EGG

k,mT
?
X = EGG

k,m. If V ⊂W ⊂ TX
are holomorphic subbundles, there are natural inclusions

JkV ⊂ JkW ⊂ Jk, PkV ⊂ PkW ⊂ Pk.

The restriction morphisms induce surjective arrows

EGG
k,m → EGG

k,mW
? → EGG

k,mV
?,

in particular EGG
k,mV

? can be seen as a quotient of EGG
k,m. (The notation V ? is used

here to make the contravariance property implicit from the notation).
If Q ∈ EGG

k,mV
? is decomposed into multihomogeneous components of multi-

degree (`1, `2, . . . , `k) in f ′, f ′′, . . . , f (k) (the decomposition is of course coordinate
dependent), these multidegrees must satisfy the relation

`1 + 2`2 + · · ·+ k`k = m.

The bundle EGG
k,mV

? will be called the bundle of jet differentials of order k and
weighted degree m. It is clear from (6.2) that a coordinate change f 7→ Ψ ◦ f
transforms every monomial (f (•))` = (f ′)`1(f ′′)`2 · · · (f (k))`k of partial weighted
degree |`|s := `1 + 2`2 + · · · + s`s, 1 6 s 6 k, into a polynomial ((Ψ ◦ f)(•))`

in (f ′, f ′′, . . . , f (k)) which has the same partial weighted degree of order s if
`s+1 = · · · = `k = 0, and a larger or equal partial degree of order s otherwise.
Hence, for each s = 1, . . . , k, we get a well defined (i.e., coordinate invariant)
decreasing filtration F •s on EGG

k,mV
? as follows:

(6.3) F ps (EGG
k,mV

?) =

{
Q(f ′, f ′′, . . . , f (k)) ∈ EGG

k,mV
? involving

only monomials (f (•))` with |`|s > p

}
, ∀p ∈ N.

The graded terms Grpk−1(EGG
k,mV

?) associated with the filtration F pk−1(EGG
k,mV

?) are
precisely the homogeneous polynomials Q(f ′, . . . , f (k)) whose monomials (f•)` all
have partial weighted degree |`|k−1 = p (hence their degree `k in f (k) is such
that m − p = k`k, and Grpk−1(EGG

k,mV
?) = 0 unless k|m − p). The transition

automorphisms of the graded bundle are induced by coordinate changes f 7→ Ψ◦f ,
and they are described by substituting the arguments of Q(f ′, . . . , f (k)) according
to formula (6.2), namely f (j) 7→ (Ψ ◦ f)(j) for j < k, and f (k) 7→ Ψ′(f) ◦ f (k) for
j = k (when j = k, the other terms fall in the next stage F p+1

k−1 of the filtration).
Therefore f (k) behaves as an element of V ⊂ TX under coordinate changes. We
thus find

(6.4) Gm−k`kk−1 (EGG
k,mV

?) = EGG
k−1,m−k`kV

? ⊗ S`kV ?.

Combining all filtrations F •s together, we find inductively a filtration F • on EGG
k,mV

?

such that the graded terms are

(6.5) Gr`(EGG
k,mV

?) = S`1V ? ⊗ S`2V ? ⊗ · · · ⊗ S`kV ?, ` ∈ Nk, |`|k = m.
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The bundles EGG
k,mV

? have other interesting properties. In fact,

EGG
k,• V

? :=
⊕
m>0

EGG
k,mV

?

is in a natural way a bundle of graded algebras (the product is obtained
simply by taking the product of polynomials). There are natural inclusions
EGG
k,• V

? ⊂ EGG
k+1,•V

? of algebras, hence EGG
∞,•V

? =
⋃
k>0E

GG
k,• V

? is also an alge-
bra. Moreover, the sheaf of holomorphic sections O(EGG

∞,•V
?) admits a canonical

derivation ∇ given by a collection of C -linear maps

(6.6) ∇ : O(EGG
k,mV

?)→ O(EGG
k+1,m+1V

?),

constructed in the following way. A holomorphic section of EGG
k,mV

? on a coordinate
open set Ω ⊂ X can be seen as a differential operator on the space of germs
f : (C , 0)→ Ω of the form

Q(f) =
∑

|α1|+2|α2|+···+k|αk|=m

aα1...αk(f) (f ′)α1(f ′′)α2 · · · (f (k))αk

in which the coefficients aα1...αk are holomorphic functions on Ω. Then ∇Q
is given by the formal derivative (∇Q)(f)(t) = d(Q(f))/dt with respect to
the 1-dimensional parameter t in f(t). For example, in dimension 2, if Q ∈
H0(Ω,O(EGG

2,4 )) is the section of weighted degree 4

Q(f) = a(f1, f2) f ′31 f
′
2 + b(f1, f2) f ′′21 ,

we find that ∇Q ∈ H0(Ω,O(EGG
3,5 )) is given by

(∇Q)(f) =
∂a

∂z1
(f1, f2) f ′41 f

′
2 +

∂a

∂z2
(f1, f2) f ′31 f

′2
2 +

∂b

∂z1
(f1, f2) f ′1f

′′2
1

+
∂b

∂z2
(f1, f2) f ′2f

′′2
1 + a(f1, f2)

(
3f ′21 f

′′
1 f
′
2 + f ′31 f

′′
2 ) + b(f1, f2) 2f ′′1 f

′′′
1 .

Associated with the graded algebra bundle EGG
k,• V

?, we have an analytic fiber
bundle Proj(EGG

k,• V
?) = JkV

nc/C ? over X, which has weighted projective spaces
P(r, . . . , r ; 1, 2, . . . , k) as fibers (these weighted projective spaces are singular for
k > 1, but they only have quotient singularities, see [Dol81] ; here JkV nc denotes
the set of non constant jets of order k ; we refer e.g. to Hartshorne’s book [Har77]
for a definition of the Proj fonctor). However, we are not really interested in the
bundles JkV nc/C ? themselves, but rather on their quotients JkV nc/Gk (would
such nice complex space quotients exist!). We will see that the Semple bundle
PkV constructed in § 5 plays the role of such a quotient. First we introduce a
canonical bundle subalgebra of EGG

k,• V
?.

6.7. Definition. We introduce a subbundle Ek,mV ? ⊂ EGG
k,mV

?, called the bundle
of invariant jet differentials of order k and degree m, defined as follows: Ek,mV ? is
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the set of polynomial differential operators Q(f ′, f ′′, . . . , f (k)) which are invariant
under arbitrary changes of parametrization, i.e., for every ϕ ∈ Gk

Q
(
(f ◦ ϕ)′, (f ◦ ϕ)′′, . . . , (f ◦ ϕ)(k)) = ϕ′(0)mQ(f ′, f ′′, . . . , f (k)).

Alternatively, Ek,mV ? = (EGG
k,mV

?)G
′
k is the set of invariants of EGG

k,mV
? un-

der the action of G′k. Clearly, E∞,•V ? =
⋃
k>0

⊕
m>0Ek,mV

? is a subalgebra
of EGG

∞,•V
? =

⋃
k>0

⊕
m>0E

GG
k,mV

? (observe however that the algebra E∞,•V
?

is not invariant under the derivation ∇, since e.g. f ′′j = ∇fj is not an in-
variant polynomial). In addition to this, there are natural induced filtrations
F ps (Ek,mV

?) = Ek,mV
? ∩ F ps (EGG

k,mV
?) (all locally trivial over X). These induced

filtrations will play an important role in Section 12.

6.8. Theorem. Suppose that V has rank r > 2. Let πk,0 : PkV −→ X be the
Semple jet bundles constructed in section 5, and let JkV reg be the bundle of regular
k-jets of maps f : (C , 0)→ X, that is, jets f such that f ′(0) 6= 0.

i) The quotient JkV reg/Gk has the structure of a locally trivial bundle over X,
and there is a holomorphic embedding JkV

reg/Gk ↪→ PkV over X, which
identifies JkV reg/Gk with PkV reg (thus PkV is a relative compactification of
JkV

reg/Gk over X).

ii) The direct image sheaf

(πk,0)?OPkV (m) ' O(Ek,mV
?)

can be identified with the sheaf of holomorphic sections of Ek,mV ?.

iii) For every m > 0, the relative base locus of the linear system |OPkV (m)| is
equal to the set PkV sing of singular k-jets. Moreover, OPkV (1) is relatively big
over X.

Proof. i) For f ∈ JkV reg, the lifting f̃ is obtained by taking the derivative (f, [f ′])
without any cancellation of zeroes in f ′, hence we get a uniquely defined (k−1)-jet
f̃ : (C , 0) → X̃. Inductively, we get a well defined (k − j)-jet f[j] in PjV , and
the value f[k](0) is independent of the choice of the representative f for the k-jet.
As the lifting process commutes with reparametrization, i.e., (f ◦ ϕ)∼ = f̃ ◦ ϕ
and more generally (f ◦ ϕ)[k] = f[k] ◦ ϕ, we conclude that there is a well defined
set-theoretic map

JkV
reg/Gk → PkV

reg, f mod Gk 7→ f[k](0).

This map is better understood in coordinates as follows. Fix coordinates
(z1, . . . , zn) near a point x0 ∈ X, such that Vx0

= Vect(∂/∂z1, . . . , ∂/∂zr). Let
f = (f1, . . . , fn) be a regular k-jet tangent to V . Then there exists i ∈ {1, 2, . . . , r}
such that f ′i(0) 6= 0, and there is a unique reparametrization t = ϕ(τ) such that
f◦ϕ = g = (g1, g2, . . . , gn) with gi(τ) = τ (we just express the curve as a graph over
the zi-axis, by means of a change of parameter τ = fi(t), i.e. t = ϕ(τ) = f−1

i (τ)).
Suppose i = r for the simplicity of notation. The space PkV is a k-stage tower of
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Pr−1-bundles. In the corresponding inhomogeneous coordinates on these Pr−1’s,
the point f[k](0) is given by the collection of derivatives(

(g′1(0), . . . , g′r−1(0)); (g′′1 (0), . . . , g′′r−1(0)); . . . ; (g
(k)
1 (0), . . . , g

(k)
r−1(0))

)
.

[Recall that the other components (gr+1, . . . , gn) can be recovered from (g1, . . . , gr)
by integrating the differential system (4.10)]. Thus the map JkV

reg/Gk → PkV
is a bijection onto PkV

reg, and the fibers of these isomorphic bundles can be
seen as unions of r affine charts ' (C r−1)k, associated with each choice of the
axis zi used to describe the curve as a graph. The change of parameter formula
d
dτ = 1

f ′r(t)
d
dt expresses all derivatives g

(j)
i (τ) = djgi/dτ

j in terms of the derivatives
f

(j)
i (t) = djfi/dt

j

(g′1, . . . , g
′
r−1) =

(f ′1
f ′r
, . . . ,

f ′r−1

f ′r

)
;

(g′′1 , . . . , g
′′
r−1) =

(f ′′1 f ′r − f ′′r f ′1
f ′3r

, . . . ,
f ′′r−1f

′
r − f ′′r f ′r−1

f ′3r

)
; . . . ;(6.9)

(g
(k)
1 , . . . , g

(k)
r−1) =

(f (k)
1 f ′r − f

(k)
r f ′1

f ′k+1
r

, . . . ,
f

(k)
r−1f

′
r − f

(k)
r f ′r−1

f ′k+1
r

)
+ (order < k).

Also, it is easy to check that f ′2k−1
r g

(k)
i is an invariant polynomial in f ′, f ′′, . . . , f (k)

of total degree 2k − 1, i.e., a section of Ek,2k−1V
∗.

ii) Since the bundles PkV and Ek,mV ? are both locally trivial overX, it is sufficient
to identify sections σ of OPkV (m) over a fiber PkVx = π−1

k,0(x) with the fiber
Ek,mV

?
x , at any point x ∈ X. Let f ∈ JkV reg

x be a regular k-jet at x. By (5.6), the
derivative f ′[k−1](0) defines an element of the fiber of OPkV (−1) at f[k](0) ∈ PkV .
Hence we get a well defined complex valued operator

(6.10) Q(f ′, f ′′, . . . , f (k)) = σ(f[k](0)) · (f ′[k−1](0))m.

Clearly, Q is holomorphic on JkV
reg
x (by the holomorphicity of σ), and the

Gk-invariance condition of Def. 6.7 is satisfied since f[k](0) does not depend
on reparametrization and (f ◦ ϕ)′[k−1](0) = f ′[k−1](0)ϕ′(0). Now, JkV reg

x is the
complement of a linear subspace of codimension n in JkVx, hence Q extends
holomorphically to all of JkVx ' (C r)k by Riemann’s extension theorem (here
we use the hypothesis r > 2 ; if r = 1, the situation is anyway not interesting since
PkV = X for all k). Thus Q admits an everywhere convergent power series

Q(f ′, f ′′, . . . , f (k)) =
∑

α1,α2,...,αk∈Nr
aα1...αk (f ′)α1(f ′′)α2 · · · (f (k))αk .

The Gk-invariance (6.7) implies in particular that Q must be multihomogeneous
in the sense of (6.1), and thus Q must be a polynomial. We conclude that
Q ∈ Ek,mV ?x , as desired.

Conversely, Corollary 5.12 implies that there is a holomorphic family of germs
fw : (C , 0) → X such that (fw)[k](0) = w and (fw)′[k−1](0) 6= 0, for all w in a
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neighborhood of any given point w0 ∈ PkVx. Then every Q ∈ Ek,mV
?
x yields a

holomorphic section σ of OPkV (m) over the fiber PkVx by putting

(6.11) σ(w) = Q(f ′w, f
′′
w, . . . , f

(k)
w )(0)

(
(fw)′[k−1](0)

)−m
.

iii) By what we saw in i-ii), every section σ of OPkV (m) over the fiber PkVx is
given by a polynomial Q ∈ Ek,mV ?x , and this polynomial can be expressed on the
Zariski open chart f ′r 6= 0 of PkV reg

x as

(6.12) Q(f ′, f ′′, . . . , f (k)) = f ′mr Q̂(g′, g′′, . . . , g(k)),

where Q̂ is a polynomial and g is the reparametrization of f such that gr(τ) = τ .
In fact Q̂ is obtained from Q by substituting f ′r = 1 and f (j)

r = 0 for j > 2, and
conversely Q can be recovered easily from Q̂ by using the substitutions (6.9).

In this context, the jet differentials f 7→ f ′1, . . . , f 7→ f ′r can be viewed as
sections of OPkV (1) on a neighborhood of the fiber PkVx. Since these sections
vanish exactly on PkV

sing, the relative base locus of OPkV (m) is contained in
PkV

sing for every m > 0. We see that OPkV (1) is big by considering the sections
of OPkV (2k − 1) associated with the polynomials Q(f ′, . . . , f (k)) = f ′2k−1

r g
(j)
i ,

1 6 i 6 r − 1, 1 6 j 6 k; indeed, these sections separate all points in the open
chart f ′r 6= 0 of PkV reg

x .
Now, we check that every section σ of OPkV (m) over PkVx must vanish

on PkV
sing
x . Pick an arbitrary element w ∈ PkV

sing and a germ of curve
f : (C , 0)→ X such that f[k](0) = w, f ′[k−1](0) 6= 0 and s = m(f, 0)� 0 (such an
f exists by Corollary 5.14). There are local coordinates (z1, . . . , zn) on X such that
f(t) = (f1(t), . . . , fn(t)) where fr(t) = ts. Let Q, Q̂ be the polynomials associated
with σ in these coordinates and let (f ′)α1(f ′′)α2 · · · (f (k))αk be a monomial occur-
ring in Q, with αj ∈ Nr, |αj | = `j , `1 + 2`2 + · · ·+ k`k = m. Putting τ = ts, the
curve t 7→ f(t) becomes a Puiseux expansion τ 7→ g(τ) = (g1(τ), . . . , gr−1(τ), τ)
in which gi is a power series in τ1/s, starting with exponents of τ at least equal
to 1. The derivative g(j)(τ) may involve negative powers of τ , but the exponent is
always > 1+ 1

s − j if j > 2. Hence the Puiseux expansion of Q̂(g′, g′′, . . . , g(k)) can
only involve powers of τ of exponent > −max`((1− 1

s )`2 + · · ·+ (k − 1− 1
s )`k).

Finally f ′r(t) = sts−1 = sτ1−1/s, thus the lowest exponent of τ in Q(f ′, . . . , f (k))
is at least equal to(

1− 1

s

)
m−max

`

((
1− 1

s

)
`2 + · · ·+

(
k − 1− 1

s

)
`k

)
> min

`

(
1− 1

s

)
`1 +

(
1− 1

s

)
`2 + · · ·+

(
1− k − 1

s

)
`k

where the minimum is taken over all monomials (f ′)α1(f ′′)α2 · · · (f (k))αk , |αj | = `j ,
occurring in Q. Choosing s > k, we already find that the minimal exponent is
positive, hence Q(f ′, . . . , f (k))(0) = 0 and σ(w) = 0 by (6.11).

Theorem (6.8 iii) shows that OPkV (1) is never relatively ample over X for
k > 2. In order to overcome this difficulty, we define for every a = (a1, . . . , ak) ∈ Zk
a line bundle OPkV (a) on PkV such that

(6.13) OPkV (a) = π?1,kOP1V (a1)⊗ π?2,kOP2V (a2)⊗ · · · ⊗ OPkV (ak).



34 J.-P. Demailly, Kobayashi hyperbolic projective varieties and jet differentials

By (5.9), we have π?k,jOPjV (1) = OPkV (1)⊗OPkV (−π?j+1,kDj+1 − · · · −Dk), thus
by putting D?

j = π?j+1,kDj+1 for 1 6 j 6 k − 1 and D?
k = 0, we find an identity

OPkV (a) = OPkV (bk)⊗ OPkV (−b ·D?), where(6.14)

b = (b1, . . . , bk) ∈ Zk, bj = a1 + · · ·+ aj ,

b ·D? =
∑

16j6k−1

bj π
?
j+1,kDj+1.

In particular, if b ∈ Nk, i.e., a1 + · · ·+ aj > 0, we get a morphism

(6.15) OPkV (a) = OPkV (bk)⊗ OPkV (−b ·D?)→ OPkV (bk).

6.16. Proposition. Let a = (a1, . . . , ak) ∈ Zk and m = a1 + · · ·+ ak.

i) We have the direct image formula

(πk,0)?OPkV (a) ' O(F
a
Ek,mV

?) ⊂ O(Ek,mV
?)

where Fa
Ek,mV

? is the subbundle of polynomials Q(f ′, f ′′, . . . , f (k)) ∈ Ek,mV ?
involving only monomials (f (•))` such that

`s+1 + 2`s+2 + · · ·+ (k − s)`k 6 as+1 + · · ·+ ak

for all s = 0, . . . , k − 1.

ii) If a1 > 3a2, . . . , ak−2 > 3ak−1 and ak−1 > 2ak > 0, the line bundle OPkV (a)
is relatively nef over X.

iii) If a1 > 3a2, . . . , ak−2 > 3ak−1 and ak−1 > 2ak > 0, the line bundle OPkV (a)
is relatively ample over X.

Proof. i) By (6.15), we find a sheaf injection

(πk,0)?OPkV (a) ↪→ (πk,0)?OPkV (m) = O(Ek,mV
?).

Given a section σ of OPkV (a) over a fiber PkVx, the associated polynomial
Q(f ′, f ′′, . . . , f (k)) ∈ Ek,mV ?x is given by the identity

Q(f ′, f ′′, . . . , f (k)) = σ(f[k](0)) · (f ′(0))a1 · (f ′[1](0))a2 · · · (f ′[k−1](0))ak .

Indeed, we see this from (6.10) and from the fact that f ′[k−1](0) is mapped to
f ′[j−1](0) by the projection morphism

(πk−1,j−1)? : OPkV (−1)→ π?k,jOPjV (−1)

(cf. (5.8)), which is dual to the corresponding morphism (6.15). Now, we prove
the inclusion (πk,0)?OPkV (a) ⊂ O(F

a
Ek,mV

?) by induction on k. For s = 0, the
desired inequality comes from the weighted homogeneity condition, hence we may
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assume s > 1. Let f run over all regular germs having their first derivative f ′(0)
fixed. This means that σ is viewed as a section of π?2,kOP2V (a2)⊗ · · · ⊗ OPkV (ak)
on the fibers of the projection PkV = Pk−1V1 → X1 = P1V . Then we get a
polynomial Q1 ∈ Ek−1,m−a1V

?
1 such that

Q1(f ′[1], f
′′
[1], . . . , f

(k−1)
[1] ) = Q(f ′, f ′′, . . . , f (k)).

In the affine chart f ′r 6= 0, the map f[1] is defined in coordinates by f[1] '
(f1, . . . , fn ; f ′1/f

′
r, . . . , f

′
r−1/f

′
r). Its derivative f ′[1] ∈ V1 can thus be described

by f ′[1] '
(
(f ′1/f

′
r)
′, . . . , (f ′r−1/f

′
r)
′, f ′r

)
, by taking r − 1 vertical components and

a horizontal one. All this becomes much simpler if we replace f by g = f ◦ f−1
r ,

since gr(t) = t and g′r(t) = 1. Then we get

(g′, g′′, . . . , g(k)) '
(
(g′1, . . . , g

′
r−1, 1), (g′′1 , . . . , g

′′
r−1, 0), . . . , (g

(k)
1 , . . . , g

(k)
r−1, 0)

)
,

(g′[1], g
′′
[1], . . . , g

(k)
[1] ) '

(
(g′′1 , . . . , g

′′
r−1, 1), (g′′′1 , . . . , g

′′′
r−1, 0), . . . , (g

(k)
1 , . . . , g

(k)
r−1, 0)

)
in the corresponding charts of JkV and Jk−1V1. The inequality (6.16 i) for the
monomials (g(•))` of Q(g′, g′′, . . . , g(k)) follows clearly from the corresponding
inequality on the monomials (g

(•)
[1] )` of Q1, when (k, s) is replaced by (k−1, s−1).

Now, thanks to (6.9), we get Q(f ′, f ′′, . . . , f (k)) = (f ′r)
mQ(g′, g′′, . . . , g(k)), and the

desired inequality (6.16 i) for the monomials (f (•))` follows easily. In the opposite
direction, if we are given a section Q(f ′, f ′′, . . . , f (k)) ∈ O(F

a
Ek,mV

?), we see by
induction on k that Q defines a section of

OP1V (a1)⊗ (π1,k)?
(
π?2,kOP2V (a2)⊗ · · · ⊗ OPkV (ak)

)
on P1V , and we conclude that we get a section of (πk,0)?OPkV (a) by taking the
direct image by (π1)?.

ii-iii) By induction on k, we construct a relatively ample line bundle Lk−1 on Pk−1V
such that OPkV (1) ⊗ π?kLk−1 is relatively nef; by definition, this is equivalent to
saying that the vector bundle V ?k−1⊗Lk−1 is relatively nef (for the notion of a nef
vector bundle, see e.g. [DPS94]). Since OP1V (1) is relatively ample, we can start
with L0 = OX . Suppose that Lk−1 has been constructed. The dual of (5.4) yields
an exact sequence

0 −→ OPkV (1) −→ V ?k −→ T ?PkV/Pk−1V
−→ 0.

As an extension of nef vector bundles is nef, it is enough to select Lk in such a
way that

(6.17) OPkV (1)⊗ Lk and T ?PkV/Pk−1V
⊗ Lk are relatively nef.

By taking the second wedge power of the central term in (5.4′), we get an injection

0 −→ TPkV/Pk−1V −→ Λ2
(
π?kVk−1 ⊗ OPkV (1)

)
.
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By dualizing and twisting with OPk−1V (2)⊗ π?kL
⊗2
k−1, we find a surjection

π?kΛ2(V ?k−1 ⊗ Lk−1) −→ T ?PkV/Pk−1V
⊗ OPkV (2)⊗ π?kL⊗2

k−1 −→ 0.

As V ?k−1 ⊗ Lk−1 is relatively nef by the induction hypothesis, we obtain that its
quotient T ?PkV/Pk−1V

⊗ OPkV (2) ⊗ π?kL
⊗2
k−1 is also relatively nef. Hence Condition

(6.17) is achieved if we take Lk > π?kLk−1 and Lk > OPkV (2) ⊗ π?kL
⊗2
k−1 (the

ordering relation > is the one given by the cone of relatively nef line bundles). We
need only define Lk inductively by

Lk = OPkV (2)⊗ π?kL⊗3
k−1.

The relative ampleness of Lk is then clear by induction, since OPkV (1) ⊗ π?kLk−1

is relatively nef over X and relatively ample over Pk−1V . The resulting formula
for Lk is

Lk = OPkV
(
(2 · 3k−1, 2 · 3k−2, . . . , 6, 2)

)
.

By definition, we then find

OPkV (1)⊗ π?kLk−1 = OPkV
(
(2 · 3k−2, 2 · 3k−3, . . . , 6, 2, 1)

)
relatively nef.

These properties imply ii) and iii) by taking suitable convex combinations.

6.18. Remark. As in Green-Griffiths [GrGr80], Riemann’s extension theorem
shows that for every meromorphic map Φ : X K Y there are well-defined pullback
morphisms

Φ? : H0(Y,EGG
k,m)→ H0(X,EGG

k,m), Φ? : H0(Y,Ek,m)→ H0(X,Ek,m).

In particular the dimensions h0(X,EGG
k,m) and h0(X,EGG

k,m) are bimeromorphic
invariants of X. The same is true for spaces of sections of any subbundle of
EGG
k,m or Ek,m constructed by means of the canonical filtrations F •s .

§7. k-jet metrics with negative curvature

The goal of this section is to show that hyperbolicity is closely related to
the existence of k-jet metrics with suitable negativity properties of the curvature.
The connection between these properties is in fact a simple consequence of the
Ahlfors-Schwarz lemma. Such ideas have been already developed long ago by
Grauert-Reckziegel [GRec65], Kobayashi [Kob75] for 1-jet metrics (i.e., Finsler
metrics on TX) and by Cowen-Griffiths [CoGr76], Green-Griffiths [GrGr80] and
Grauert [Gra89] for higher order jet metrics. However, even in the standard case
V = TX , the definition given below differs from that of [GrGr80], in which the
k-jet metrics are not supposed to be G′k-invariant. We prefer to deal here with
G′k-invariant objects, because they reflect better the intrinsic geometry. Grauert
[Gra89] actually deals with G′k-invariant metrics, but he apparently does not take
care of the way the quotient space J reg

k V/Gk can be compactified; also, his metrics
are always induced by the Poincaré metric, and it is not at all clear whether
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these metrics have the expected curvature properties (see 7.14 below). In the
present situation, it is important to allow also hermitian metrics possessing some
singularities (“singular hermitian metrics” in the sense of [Dem90]).

7.1. Definition. Let L → X be a holomorphic line bundle over a complex
manifold X. We say that h is a singular metric on L if for any trivialization
L�U ' U × C of L, the metric is given by |ξ|2h = |ξ|2e−ϕ for some real valued
weight function ϕ ∈ L1

loc(U). The curvature current of L is then defined to be the
closed (1, 1)-current Θh(L) = i

2π∂∂ϕ, computed in the sense of distributions. We
say that h admits a closed subset Σ ⊂ X as its degeneration set if ϕ is locally
bounded on X r Σ and is unbounded on a neighborhood of any point of Σ.

An especially useful situation is the case when the curvature of h is positive
definite. By this, we mean that there exists a smooth positive definite hermitian
metric ω and a continuous positive function ε on X such that Θh(L) > εω in the
sense of currents, and we write in this case Θh(L)� 0. We need the following basic
fact (quite standard when X is projective algebraic; however we want to avoid any
algebraicity assumption here, so as to be able the case of general complex tori in
§ 9).

7.2. Proposition. Let L be a holomorphic line bundle on a compact complex
manifold X.

i) L admits a singular hermitian metric h with positive definite curvature current
Θh(L)� 0 if and only if L is big.

Now, define Bm to be the base locus of the linear system |H0(X,L⊗m)| and let

Φm : X rBm → PN

be the corresponding meromorphic map. Let Σm be the closed analytic set equal
to the union of Bm and of the set of points x ∈ X r Bm such that the fiber
Φ−1
m (Φm(x)) is positive dimensional.

ii) If Σm 6= X and G is any line bundle, the base locus of L⊗k⊗G−1 is contained
in Σm for k large. As a consequence, L admits a singular hermitian metric h
with degeneration set Σm and with Θh(L) positive definite on X.

iii) Conversely, if L admits a hermitian metric h with degeneration set Σ and
positive definite curvature current Θh(L), there exists an integer m > 0 such
that the base locus Bm is contained in Σ and Φm : X r Σ → Pm is an
embedding.

iv) Assume that L admits a singular hermitian metric h with positive definite
curvature current, such that the degeneration set Σ is an analytic subset of X.
Assume moreover that for each irreducible component Σj of Σ, L|Σj admits
a singular hermitian metric hj with positive definite curvature current on Σj
and degeneration set Σj,k ⊂ Σj. Then L admits a singular hermitian metric
h̃ of positive curvature current on X, with degeneration set Σ̃ =

⋃
j,k Σj,k.
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Proof. i) is proved e.g. in [Dem90, 92], so we will only briefly sketch the details.
If L is big, then X is Moishezon and we can even assume that X is projective
algebraic after taking a suitable modification X̃ (apply Hironaka [Hir64]; observe
moreover that the direct image of a strictly positive current is strictly positive).
So, assume that X is projective algebraic. Then it is well-known that some large
multiple of L can be written as L⊗m = OX(D+A) with divisors D, A such that D
is effective and A ample. The invertible sheaf OX(D) can be viewed as a subsheaf
of the sheaf of meromorphic functions. We get a singular metric |s|2 on sections of
OX(D) by just taking the square of the modulus of s viewed as a complex valued
(meromorphic) function. By the Lelong-Poincaré equation, the curvature current
of that metric is equal to the current of integration [D] > 0 over the divisor D.
We thus get Θ(L) = 1

m ([D] + Θ(A)) > 1
mΘ(A) � 0 for a suitable choice of the

metric on OX(A). In the other direction, if Θh(L) is positive, one can construct
a “lot of” sections in H0(X,L⊗m), m � 0, by using Hörmander’s L2 estimates;
the Hörmander-Bombieri-Skoda technique implies that these sections can be taken
to have arbitrary jets at all points in a given finite subset of X r Σ, if Σ is the
degeneration set of h. This also proves property iii).

ii) The assumption Σm 6= X shows that there is a generically finite meromorphic
map from X to an algebraic variety, and this implies again that X is Moishezon.
By blowing-up the ideal

Im = Im
(
H0(X,L⊗m)⊗ OX(L⊗−m)→ OX

)
⊂ OX

and resolving the singularities, we obtain a smooth modification µ : X̃ → X
and a line bundle L̃ = µ?(L⊗m) ⊗ O

X̃
(−E) (where E is a µ-exceptional divisor

with support in µ−1(Σm), such that L̃ is base point free; after possibly blowing-
up again, we may assume furthermore that X̃ is projective algebraic. Clearly,
it is enough to prove the result for L̃, and we are thus reduced to the case
when L is base point free and X is projective algebraic. We may finally assume
that G is very ample (other we add a large ample divisor to G to make it very
ample). In this situation, we have a holomorphic map Φm : X → PN such that
L⊗m = Φ−1

m (O(1)), and Φm is finite-to-one outside Σm. Hence, if x ∈ X r Σm,
the set Φ−1

m (Φm(x)) is finite, and we can take a smooth divisor D ∈ |G| such that
D ∩ Φ−1

m (Φm(x)) = ∅. Thus Φm(D) 63 ϕm(x) in PN . It follows that there exists
a hypersurface H = σ−1(0) ∈ |OPN (k)| of sufficiently large degree k, such that H
contains Φm(D) but does not pass through Φm(x). Then Φ?mσ can be viewed as a
section of Φ?mOPN (k)⊗OX(−D) = L⊗km⊗G−1, and Φ?mσ does not vanish at x. By
the Noetherian property, there exists k0 such that the base locus of L⊗km ⊗G−1

is contained in Σm for k > k0 large. Claim ii) follows.

iv) is obtained by extending the metric hj to a metric h̃j on a neighborhood of Σj
(it is maybe necessary to modify h̃j slightly by adding some “transversally convex
terms” in the weight, so as to obtain positive curvature in all directions of TX , on
a suitable neighborhood of Σj), and then taking h̃ = min(h, εh̃j) with ε > 0 small
enough.

We now come to the main definitions. By (5.6), every regular k-jet f ∈ JkV
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gives rise to an element f ′[k−1](0) ∈ OPkV (−1). Thus, measuring the “norm of
k-jets” is the same as taking a hermitian metric on OPkV (−1).

7.3. Definition. A smooth, (resp. continuous, resp. singular) k-jet metric on
a complex directed manifold (X,V ) is a hermitian metric hk on the line bundle
OPkV (−1) over PkV (i.e. a Finsler metric on the vector bundle Vk−1 over Pk−1V ),
such that the weight functions ϕ representing the metric are smooth (resp. conti-
nuous, L1

loc). We let Σhk ⊂ PkV be the singularity set of the metric, i.e., the closed
subset of points in a neighborhood of which the weight ϕ is not locally bounded.

We will always assume here that the weight function ϕ is quasi psh. Recall that
a function ϕ is said to be quasi psh if ϕ is locally the sum of a plurisubharmonic
function and of a smooth function (so that in particular ϕ ∈ L1

loc). Then the
curvature current

Θh−1
k

(OPkV (1)) =
i

2π
∂∂ϕ.

is well defined as a current and is locally bounded from below by a negative (1, 1)-
form with constant coefficients.

7.4. Definition. Let hk be a k-jet metric on (X,V ). We say that hk has negative
jet curvature (resp. negative total jet curvature) if Θhk(OPkV (−1)) is negative
definite along the subbundle Vk ⊂ TPkV (resp. on all of TPkV ), i.e., if there is
ε > 0 and a smooth hermitian metric ωk on TPkV such that

〈Θh−1
k

(OPkV (1))〉(ξ) > ε|ξ|2ωk , ∀ξ ∈ Vk ⊂ TPkV (resp. ∀ξ ∈ TPkV ).

(If the metric hk is not smooth, we suppose that its weights ϕ are quasi psh, and
the curvature inequality is taken in the sense of distributions.)

It is important to observe that for k > 2 there cannot exist any smooth
hermitian metric hk on OPkV (1) with positive definite curvature along TXk/X ,
since OPkV (1) is not relatively ample over X. However, it is relatively big, and
Prop. 7.2 i) shows that OPkV (−1) admits a singular hermitian metric with negative
total jet curvature (whatever the singularities of the metric are) if and only if
OPkV (1) is big over PkV . It is therefore crucial to allow singularities in the metrics
in Def. 7.4.

7.5. Special case of 1-jet metrics. A 1-jet metric h1 on OP1V (−1) is the same as
a Finsler metric N =

√
h1 on V ⊂ TX . Assume until the end of this paragraph that

h1 is smooth. By the well known Kodaira embedding theorem, the existence of a
smooth metric h1 such that Θh−1

1
(OP1V (1)) is positive on all of TP1V is equivalent

to OP1V (1) being ample, that is, V ? ample. In the absolute case V = TX , there
are only few examples of varieties X such that T ?X is ample, mainly quotients of
the ball Bn ⊂ C n by a discrete cocompact group of automorphisms. The 1-jet
negativity condition considered in Definition 7.4 is much weaker. For example, if
the hermitian metric h1 comes from a (smooth) hermitian metric h on V , then
formula (4.16) implies that h1 has negative total jet curvature (i.e. Θh−1

1
(OP1V (1))

is positive) if and only if 〈Θh(V )〉(ζ ⊗ v) < 0 for all ζ ∈ TX r {0}, v ∈ V r {0},
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that is, if (V, h) is negative in the sense of Griffiths. On the other hand, V1 ⊂ TP1V

consists by definition of tangent vectors τ ∈ TP1V,(x,[v]) whose horizontal projection
Hτ is proportional to v, thus Θh1

(OP1V (−1)) is negative definite on V1 if and
only if Θh(V ) satisfies the much weaker condition that the holomorphic sectional
curvature 〈Θh(V )〉(v ⊗ v) is negative on every complex line.

We now come back to the general situation of jets of arbitrary order k. Our
first observation is the fact that the k-jet negativity property of the curvature
becomes actually weaker and weaker as k increases.

7.6. Lemma. Let (X,V ) be a compact complex directed manifold. If (X,V ) has
a (k − 1)-jet metric hk−1 with negative jet curvature, then there is a k-jet metric
hk with negative jet curvature such that Σhk ⊂ π

−1
k (Σhk−1

)∪Dk. (The same holds
true for negative total jet curvature).

Proof. Let ωk−1, ωk be given smooth hermitian metrics on TPk−1V and TPkV . The
hypothesis implies

〈Θh−1
k−1

(OPk−1V (1))〉(ξ) > ε|ξ|2ωk−1
, ∀ξ ∈ Vk−1

for some constant ε > 0. On the other hand, as OPkV (Dk) is relatively ample over
Pk−1V (Dk is a hyperplane section bundle), there exists a smooth metric h̃ on
OPkV (Dk) such that

〈Θ
h̃
(OPkV (Dk))〉(ξ) > δ|ξ|2ωk − C|(πk)?ξ|2ωk−1

, ∀ξ ∈ TPkV

for some constants δ, C > 0. Combining both inequalities (the second one being
applied to ξ ∈ Vk and the first one to (πk)?ξ ∈ Vk−1), we get

〈Θ
(π?
k
hk−1)−ph̃

(π?kOPk−1V (p)⊗ OPkV (Dk))〉(ξ) >

> δ|ξ|2ωk + (pε− C)|(πk)?ξ|2ωk−1
, ∀ξ ∈ Vk.

Hence, for p large enough, (π?khk−1)−ph̃ has positive definite curvature along Vk.
Now, by (5.9), there is a sheaf injection

OPkV (−p) = π?kOPk−1V (−p)⊗ OPkV (−pDk) ↪→
(
π?kOPk−1V (p)⊗ OPkV (Dk)

)−1

obtained by twisting with OPkV ((p−1)Dk). Therefore hk := ((π?khk−1)−ph̃)−1/p =

(π?khk−1)h̃−1/p induces a singular metric on OPkV (1) in which an additional
degeneration divisor p−1(p − 1)Dk appears. Hence we get Σhk = π−1

k Σhk−1
∪Dk

and
Θh−1

k
(OPkV (1)) =

1

p
Θ

(π?
k
hk−1)−ph̃

+
p− 1

p
[Dk]

is positive definite along Vk. The same proof works in the case of negative total
jet curvature.

One of the main motivations for the introduction of k-jets metrics is the
following list of algebraic sufficient conditions.
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7.7. Algebraic sufficient conditions. We suppose here that X is projective
algebraic, and we make one of the additional assumptions i), ii) or iii) below.

i) Assume that there exist integers k,m > 0 and b ∈ Nk such that the line bundle
OPkV (m)⊗OPkV (−b ·D?) is ample over PkV . Set A = OPkV (m)⊗OPkV (−b ·D?).
Then there is a smooth hermitian metric hA on A with positive definite curvature
on PkV . By means of the morphism µ : OPkV (−m) → A−1, we get an induced
metric hk = (µ?h−1

A )1/m on OPkV (−1) which is degenerate on the support of the
zero divisor div(µ) = b ·D?. Hence Σhk = Supp(b ·D?) ⊂ PkV sing and

Θh−1
k

(OPkV (1)) =
1

m
ΘhA(A) +

1

m
[b ·D?] >

1

m
ΘhA(A) > 0.

In particular hk has negative total jet curvature.

ii) Assume more generally that there exist integers k,m > 0 and an ample line
bundle L on X such that H0(PkV,OPkV (m) ⊗ π?k,0L

−1) has non zero sections
σ1, . . . , σN . Let Z ⊂ PkV be the base locus of these sections; necessarily
Z ⊃ PkV sing by 6.8 iii). By taking a smooth metric hL with positive curvature on
L, we get a singular metric h′k on OPkV (−1) such that

h′k(ξ) =
( ∑

16j6N

|σj(w) · ξm|2
h−1
L

)1/m

, w ∈ PkV, ξ ∈ OPkV (−1)w.

Then Σh′
k

= Z, and by computing i
2π∂∂ log h′k(ξ) we obtain

Θh′ −1
k

(OPkV (1)) >
1

m
π?k,0Θ(L).

By (6.15) and 6.16 iii), there exists b ∈ Qk+ such that OPkV (1)⊗OPkV (−b ·D?) is
relatively ample over X. Hence A = OPkV (1)⊗OPkV (−b ·D?)⊗π?k,0L⊗p is ample
on X for p� 0. The arguments used in i) show that there is a k-jet metric h′′k on
OPkV (−1) with Σh′′

k
= Supp(b ·D?) = PkV

sing and

Θh′′ −1
k

(OPkV (1)) = Θ(A) + [b ·D?]− p π?k,0Θ(L),

where Θ(A) is positive definite on PkV . The metric hk = (h′mpk h′′k)1/(mp+1) then
satisfies Σhk = Σh′

k
= Z and

Θh−1
k

(OPkV (1)) >
1

mp+ 1
Θ(A) > 0.

iii) If Ek,mV ? is ample, there is an ample line bundle L and a sufficiently high
symmetric power such that Sp(Ek,mV ?) ⊗ L−1 is generated by sections. These
sections can be viewed as sections of OPkV (mp) ⊗ π?k,0L−1 over PkV , and their
base locus is exactly Z = PkV

sing by 6.8 iii). Hence the k-jet metric hk constructed
in ii) has negative total jet curvature and satisfies Σhk = PkV

sing.
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An important fact, first observed by [GRe65] for 1-jet metrics and by [GrGr80]
in the higher order case, is that k-jet negativity implies hyperbolicity. In particular,
the existence of enough global jet differentials implies hyperbolicity.

7.8. Theorem. Let (X,V ) be a compact complex directed manifold. If (X,V ) has
a k-jet metric hk with negative jet curvature, then every entire curve f : C → X
tangent to V is such that f[k](C ) ⊂ Σhk . In particular, if Σhk ⊂ PkV

sing, then
(X,V ) is hyperbolic.

Proof. The main idea is to use the Ahlfors-Schwarz lemma, following the approach
of [GrGr80]. However we will give here all necessary details because our setting
is slightly different. Assume that there is a k-jet metric hk as in the hypotheses
of Theorem 7.8. Let ωk be a smooth hermitian metric on TPkV . By hypothesis,
there exists ε > 0 such that

〈Θh−1
k

(OPkV (1))〉(ξ) > ε|ξ|2ωk ∀ξ ∈ Vk.

Moreover, by (5.4), (πk)? maps Vk continuously to OPkV (−1) and the weight eϕ
of hk is locally bounded from above. Hence there is a constant C > 0 such that

|(πk)?ξ|2hk 6 C|ξ|
2
ωk
, ∀ξ ∈ Vk.

Combining these inequalities, we find

〈Θh−1
k

(OPkV (1))〉(ξ) > ε

C
|(πk)?ξ|2hk , ∀ξ ∈ Vk.

Now, let f : ∆R → X be a non constant holomorphic map tangent to V on the
disk ∆R. We use the line bundle morphism (5.6)

F = f ′[k−1] : T∆R
→ f?[k]OPkV (−1)

to obtain a pullback metric

γ = γ0(t) dt⊗ dt = F ?hk on T∆R
.

If f[k](∆R) ⊂ Σhk then γ ≡ 0. Otherwise, F (t) has isolated zeroes at all singular
points of f[k−1] and so γ(t) vanishes only at these points and at points of the
degeneration set (f[k])

−1(Σhk) which is a polar set in ∆R. At other points, the
Gaussian curvature of γ satisfies

i ∂∂ log γ0(t)

γ(t)
=
−2π (f[k])

?Θhk(OPkV (−1))

F ?hk
=
〈Θh−1

k
(OPkV (1))〉(f ′[k](t))

|f ′[k−1](t)|
2
hk

>
ε

C
,

since f ′[k−1](t) = (πk)?f
′
[k](t). The Ahlfors-Schwarz lemma 3.2 implies that γ can

be compared with the Poincaré metric as follows:

γ(t) 6
2C

ε

R−2|dt|2

(1− |t|2/R2)2
=⇒ |f ′[k−1](t)|

2
hk
6

2C

ε

R−2

(1− |t|2/R2)2
.
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If f : C → X is an entire curve tangent to V such that f[k](C ) 6⊂ Σhk , the above
estimate implies as R → +∞ that f[k−1] must be a constant, hence also f . Now,
if Σhk ⊂ PkV

sing, the inclusion f[k](C ) ⊂ Σhk implies f ′(t) = 0 at every point,
hence f is a constant and (X,V ) is hyperbolic.

Combining Theorem 7.8 with 7.7 ii) and iii), we get the following consequences.

7.9. Corollary. Assume that there exist integers k,m > 0 and an ample line
bundle L on X such that H0(PkV,OPkV (m)⊗π?k,0L−1) ' H0(X,Ek,m(V ?)⊗L−1)
has non zero sections σ1, . . . , σN . Let Z ⊂ PkV be the base locus of these sections.
Then every entire curve f : C → X tangent to V is such that f[k](C ) ⊂ Z. In
other words, for every global Gk-invariant polynomial differential operator P with
values in L−1, every entire curve f must satisfy the algebraic differential equation
P (f) = 0.

7.10. Corollary. Let (X,V ) be a compact complex directed manifold. If Ek,mV ?
is ample for some positive integers k,m, then (X,V ) is hyperbolic.

7.11. Remark. Green and Griffiths [GrGr80] stated that Corollary 7.9 is even
true with sections σj ∈ H0(X,EGG

k,m(V ?)⊗ L−1), in the special case V = TX they
consider. We refer to the recent preprint [SiYe96c] by Siu and Yeung for a detailed
proof of this fact, based on a use of the well-known logarithmic derivative lemma
in Nevanlinna theory (the original proof given in [GrGr80] does not seem to be
complete, as it relies on an unsettled pointwise version of the Ahlfors-Schwarz
lemma for general jet differentials); other proofs seem to have been circulating in
the literature in the last years. We give here a very short proof for the case when
f is supposed to have a bounded derivative (thanks to Brody’s theorem, this is
enough if one is merely interested in proving hyperbolicity, thus Corollary 7.10 will
be valid with EGG

k,mV
? in place of Ek,mV ?). In fact, if f ′ is bounded, one can apply

the Cauchy inequalities to all components fj of f with respect to a finite collection
of coordinate patches covering X. As f ′ is bounded, we can do this on sufficiently
small discs D(t, δ) ⊂ C of constant radius δ > 0. Therefore all derivatives f ′, f ′′,
. . . f (k) are bounded. From this we conclude that σj(f) is a bounded section of
f?L−1. Its norm |σj(f)|L−1 (with respect to any positively curved metric | |L on
L) is a bounded subharmonic function, which is moreover strictly subharmonic at
all points where f ′ 6= 0 and σj(f) 6= 0. This is a contradiction unless f is constant
or σj(f) ≡ 0.

The above results justify the following definition and problems.

7.12. Definition. We say that X, resp. (X,V ), has non degenerate negative k-jet
curvature if there exists a k-jet metric hk on OPkV (−1) with negative jet curvature
such that Σhk ⊂ PkV sing.

7.13. Conjecture. Let (X,V ) be a compact directed manifold. Then (X,V ) is
hyperbolic if and only if (X,V ) has nondegenerate negative k-jet curvature for k
large enough.
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This is probably a hard problem. In fact, we will see in the next section
that the smallest admissible integer k must depend on the geometry of X and
need not be uniformly bounded as soon as dimX > 2 (even in the absolute
case V = TX). On the other hand, if (X,V ) is hyperbolic, we get for each
integer k > 1 a generalized Kobayashi-Royden metric k(Pk−1V,Vk−1) on Vk−1 (see
Definition 1.3), which can be also viewed as a k-jet metric hk on OPkV (−1) ; we
will call it the Grauert k-jet metric of (X,V ), although it formally differs from the
jet metric considered in [Gra89] (see also [DGr91]). By looking at the projection
πk : (PkV, Vk)→ (Pk−1V, Vk−1), we see that the sequence hk is monotonic, namely
π?khk 6 hk+1 for every k. If (X,V ) is hyperbolic, then h1 is nondegenerate and
therefore by monotonicity Σhk ⊂ PkV

sing for k > 1. Conversely, if the Grauert
metric satisfies Σhk ⊂ PkV

sing, it is easy to see that (X,V ) is hyperbolic. The
following problem is thus especially meaningful.

7.14. Problem. Estimate the k-jet curvature Θh−1
k

(OPkV (1)) of the Grauert
metric hk on (PkV, Vk) as k tends to +∞.

§8. Algebraic criterion for the negativity of jet curvature

Our goal is to show that the negativity of k-jet curvature implies strong
restrictions of an algebraic nature, similar to property 2.1 ii). Using this we give
examples, for any prescribed integer k, of hyperbolic projective surfaces which do
not admit any k-jet metric of negative jet curvature.

8.1. Theorem. Let (X,V ) be a compact complex directed manifold and let ω be
a hermitian metric on X. If (X,V ) has negative k-jet curvature, there exists
a constant ε > 0 such that every closed irreducible curve C ⊂ X tangent to V
satisfies

−χ(C) = 2g(C)− 2 > ε degω(C) +
∑
t∈C

(mk−1(t)− 1) > 0

where g(C) is the genus of the normalization ν : C → C ⊂ X, and mk(t) is the
multiplicity at point t of the k-th lifting ν[k] : C → PkV of ν.

Proof. By (5.6), we get a lifting ν[k] : C → PkV of the normalization map ν, and
there is a canonical map

ν′[k−1] : TC → ν?[k]OPkV (−1).

Let tj ∈ C be the singular points of ν[k−1], and let mj = mk−1(tj) be the
corresponding multiplicity. Then ν′[k−1] vanishes at order mj − 1 at tj and thus
we find

TC ' ν
?
[k]OPkV (−1)⊗ OC

(
−
∑

(mj − 1)pj

)
.

Taking any k-jet metric hk with negative jet curvature on OPkV (−1), the Gauss-
Bonnet formula yields

2g(C)− 2 =

∫
C

Θ(T ?
C

) =
∑

(mj − 1) +

∫
C

ν?[k]Θh−1
k

(OPkV (1)).
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Now, the curvature hypothesis implies

〈Θh−1
k

(OPkV (1))〉(ξ) > ε′|ξ|2ωk > ε
′′|(πk,0)?ξ|2ω ∀ξ ∈ Vk,

for some ε′, ε′′ > 0 and some smooth hermitian metric ωk on PkV . As
πk,0 ◦ ν[k] = ν, we infer from this ν?[k]Θh−1

k
(OPkV (1)) > ν?ω, hence

∫
C

ν?[k]Θh−1
k

(OPkV (1)) >
ε′′

2π

∫
C

ν?ω = ε degω(C)

with ε = ε′′/2π. Theorem 8.1 follows.

8.2. Theorem. Let k > 1 be any positive integer. Then there is a nonsingular
algebraic surface X (depending on k) which is hyperbolic, but does not carry any
nondegenerate k-jet metric with negative jet curvature. In fact, given any two
curves Γ,Γ′ of genus at least 2, the surface X may be constructed as a fibration
X → Γ in which one of the fibers C0 is singular and has Γ′ as its normalization.

Proof. The idea is to construct X in such a way that the singular fiber C which
is normalized by Γ′ violates the inequality obtained in Theorem 8.1. For this we
need only having a singular point t0 such that mk−1(t0) − 1 > 2g(C) − 2, i.e.,
mk−1(t0) > 2g(Γ′). Moreover, as Γ is hyperbolic, X will be hyperbolic if and only
if all fibers of X → Γ have geometric genus at least 2.

We first construct from Γ′ a singular curve Γ′′ with normalization Γ
′′

= Γ′,
simply by modifying the structure sheaf OΓ′ at one given point w0 ∈ Γ′. Let t be
a holomorphic coordinate on Γ′ at w0. We replace OΓ′,w0

= C {t} by OΓ′′,w0
=

C {ta, tb}, where a < b are relatively prime integers. The corresponding singularity
is described by the germ of embedding t 7→ f(t) = (ta, tb) in (C 2, 0). Now,
f ′(t) = (ata−1, btb−1), thus [f ′(t)] ∈ P1 ' C ∪ {∞} is given by [f ′(t)] = b

a t
b−a.

By induction, we see that the singularity of the j-th lifting f[j] is described by the
embedding

t 7→ (ta, tb, c1t
b−a, . . . , cjt

b−ja) ∈ C j+2, cj = a−jb(b− a) · · · (b− (j − 1)a)

if b > ja. Then we have m(f[j], 0) = min(a, b − ja). If we take for instance
a = 2g(Γ′) and b = ka+1, then m(f[k−1], 0) = a. We embed Γ′′ in some projective
space Pn and let C = p(Γ′′) to be a generic projection to a plane P2 ⊂ Pn in
such a way that C has only x0 = p(w0) and some nodes (ordinary double points)
as its singular points. By construction, the Zariski tangent space to Γ′′ at w0 is
2-dimensional, so we may assume that p projects that plane injectively into TP2 .
Then we get a curve C ⊂ P2 with C = Γ′, such that m(ν[k−1], w0) = a = 2g(C), if
ν : C → P2 is the normalization.
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pr2

F

C0 Cλ

0Z

Z ′
Γ

x0 X

PN

Figure 1. Construction of the surface X

Let P0(z0, z1, z2) = 0 be an equation of C in P2. Since C has geometric genus
at least 2, we have d = degP0 > 4. We complete P0 into a basis (P0, . . . , PN )
of the space of homogeneous polynomials of degree d, and consider the universal
family

F =
{

([z0 : z1 : z2], [λ0, λ1, . . . , λN ]) ∈ P2 × PN ;
∑

λjPj(z) = 0
}
⊂ P2 × PN

of curves Cλ = {
∑
λjPj(z) = 0} of degree d in P2. As is well known, the set Z

of points λ ∈ PN such that Cλ is a singular curve is an algebraic hypersurface,
and the set Z ′ ⊂ Z of points λ such that Cλ has not just a node in its singularity
set satisfies codimZ ′ > 2. The curve C = C0 itself corresponds to the point
0 = [1 : 0 : · · · : 0] ∈ Z ′. Since codimZ ′ > 2, we can embed Γ in PN in such a
way that Γ ∩ Z ′ = {0}. We then take X → Γ to be the family of curves (Cλ)λ∈Γ.
If X is singular, we move Γ by a generic automorphism of PN leaving 0 fixed.
Then, since F is smooth (it is a smooth PN−1 subbundle of P2 × PN over P2),
Bertini’s theorem implies that X r C0 will become nonsingular. That X will be
also nonsingular near C0 depends only on the following first order condition: if
[1 : αλ0

1 : · · · : αλ0
N ], α ∈ C , is the tangent line to Γ at 0, then

∑
j>1 λ

0
jPj(z) does

not vanish at any of the singular points of C0. Now, all nonsingular fibers Cλ of
the fibration X → Γ have genus (d− 1)(d− 2)/2 > 3, and the singular ones other
than C0 only have one node, so their genus is (d− 1)(d− 2)/2− 1 > 2.

If we make an assumption on the total jet curvature (as is the case with the
algebraic sufficient conditions 7.7), Theorem 8.1 can be strengthened to curves
which are not necessarily tangent to V , again by introducing the concept of
deviation. We start with a general purpose statement.
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8.3. Proposition. Let (X,V ) be a compact complex directed manifold and let L
be a holomorphic line bundle over X. Assume that L is equipped with a singular
hermitian metric h of degeneration set Σh, such that the curvature (computed in
the sense of distributions) satisfies

Θh(L) > α, α�V > δω�V

where δ is a positive constant, ω a smooth hermitian metric and α is a continuous
real (1, 1)-form on X. Then for every compact irreducible curve C ⊂ X not
contained in Σh, there exists a constant ε > 0 such that the following a priori
inequality holds

max
(
L · C, dev2

ω(C/V )
)
> ε degω(C).

Proof. By the continuity of α and the compactness of X, our assumption α�V > δω
implies that there is a constant M > 0 such that

α+M ωV
⊥
>
δ

2
ω

(to get this, one merely needs to apply the Cauchy-Schwarz inequality to mixed
terms V ? ⊗ (V ⊥)? in a hermitian form on V ). In particular, we find

Θh(L) +M ωV
⊥
>
δ

2
ω

This inequality gives rise to a corresponding numerical inequality on every ir-
reducible curve C 6⊂ Σh, for the difference has a well defined and nonnegative
restriction to C (we use here the fact that the weight of h is quasi-psh and locally
bounded at some point of C, hence locally integrable along C). From this we infer

L · C +M dev2
ω(C/V ) >

δ

2
degω(C),

and the left hand side is at most equal to (M + 1) max
(
L · C,dev2

ω(C/V )
)
.

8.4. Proposition. Let (X,V ) be a compact complex directed manifold. Assume
that there are integers k,m > 0 and b ∈ Nk such that OPkV (m)⊗OPkV (−b ·D?) is
an ample line bundle over PkV . Then (X,V ) is hyperbolic and there exists ε > 0
such that every closed curve C ⊂ X satisfies

max
(
− χ(C)−

∑
t∈C

(mk−1(t)− 1),dev∞ω (C/V )
)
> ε degω(C).

Proposition 8.4 is likely to be true also if we assume more generally that
(X,V ) has non degenerate total k-jet curvature but, in this case, some technical
difficulties appear in the construction of the required singular hermitian metric hk
on OPkTX (1) (see the proof below).
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Proof. The hyperbolicity of (X,V ) follows from 7.7 i) and Theorem 7.8. Now,
the identity map defines a natural monomorphism (X,V ) → (X,TX) of directed
manifolds and therefore induces an embedding PkV ↪→ PkTX for each k. With
respect to this embedding, we have

OPkTX (1)�PkV = OPkV (1),

OPkTX (m)⊗ OPkTX (−b ·D?)�PkV = OPkV (m)⊗ OPkV (−b ·D?)

By our assumptions, OPkTX (m)⊗OPkTX (−b ·D?) is ample over PkV and over the
fibers of the projection PkTX → X. Hence, we can find a smooth hermitian metric
hk,m,b on OPkTX (m) ⊗ OPkTX (−b · D?) such that the curvature form is positive
definite on a neighborhood U of PkV and satisfies

Θ
(
OPkTX (m)⊗ OPkTX (−b ·D?)

)
> −Cπ?k,0ω

for some Kähler metric ω over X. This metric hk,m,b gives rise to a hermitian
metric hk on OPkTX (1) with singularity set Σhk ⊂ P sing

k TX and similar curvature
properties, that is

(8.5)

{
Θhk(OPkTX (1)) > −Cπ?k,0ω on PkTX ,
Θhk(OPkTX (1)) > δωk > δ′π?k,0ω on U ⊃ PkV ,

where ωk is a hermitian metric on PkTX and δ, δ′ > 0. Now, assume that the
conclusion of Prop. 8.4 is wrong. Then there would exist a sequence of curves (C`)
and a sequence of positive numbers ε` converging to 0, such that

OPkTX (1) · C`,[k] 6 ε` degω(C`), dev∞ω (C`/V )
)
6 ε` degω(C`)

where C`,[k] is the lifting of C` to PkTX [indeed, we have OPkTX (1) · C`,[k] =

−χ(C`) −
∑

(mk−1(t) − 1)]. Let ν` : C` → X be the normalization map. As
dev∞ω (C`/V )

)
= sup ν?` (ωV ⊥)/dσ̃ where dσ is the Poincaré metric and dσ̃ the

associated normalized metric, the second condition means

sup ‖ prV ⊥ ν
′
`‖2σ,ω = sup

ν?` (ωV ⊥)

dσ
6
ε` degω(C`)∫

C`
dσ

= ε`

∫
C`
ν?` ω∫

C`
dσ

.

In addition to this, we have∫
C`
ν?` ω∫

C`
dσ
6 R2

` := sup ‖ν′`‖2σ,ω

and R = supR` < +∞, otherwise the proof of Prop. 2.9 would produce a non
constant entire curve g : C → X tangent to V , contradicting the hyperbolicity of
(X,V ). An application of the Cauchy inequalities to the components of prV ⊥ on
sufficiently small disks in the universal covering of C` and in suitable trivializations
of TX/V shows that there is a constant Mk > 0 such that

sup
16j6k

‖prV ⊥ ν
(j)
` ‖

2
σ,ω 6Mk sup ‖ prV ⊥ ν

′
`‖2σ,ω 6Mkε`

∫
C`
ν?` ω∫

C`
dσ

.
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As
∫
C`
‖ν′`‖−2

σ,ων
?
` ω =

∫
C`
dσ, we infer

(8.6)

∫
C`

sup16j6k ‖prV ⊥ ν
(j)
` ‖2σ,ω

‖ν′`‖2σ,ω
ν?` ω 6Mkε`

∫
C`

ν?` ω.

Since U is a neighborhood of PkV , there exists a constant η > 0 such that

sup16j6k ‖ prV ⊥ ν
(j)
` (t)‖2σ,ω

‖ν′`(t)‖2σ,ω
< η =⇒ ν`,[k](t) ∈ U

for any t ∈ C`. By the integral estimate (8.6), the set Sη of “bad points” t ∈ C`
at which the left hand inequality does not hold has area < Mkε` degω(C`)/η with
respect to ν?` ω. By (8.5), we then get

OPkTX (1) · C`,[k] =

∫
C`rSη

ν?`,[k]Θ(OPkTX (1)) +

∫
Sη

ν?`,[k]Θ(OPkTX (1))

> δ′
∫
C`rSη

ν?` ω − C
∫
Sη

ν?` ω

=
(
δ′(1−Mkε`/η)− CMkε`/η

)
degω(C`).

This contradicts our initial hypothesis that OPkTX (1) · C`,[k] 6 ε` degω(C`) when
ε` is small enough.

The above results lead in a natural way to the following questions, dealing with
the “directed manifold case” of Kleiman’s criterion (Kleiman’s criterion states
that a line bundle L on X is ample if and only if there exists ε > 0 such that
L · C > εdegω C for every curve C ⊂ X).

8.7. Questions. Let (X,V ) be a compact directed manifold and let L be a line
bundle over X. Fix p ∈ [2,+∞].

i) Assume that
max

(
L · C,devpω(C/V )

)
> ε degω(C)

for every algebraic curve C ⊂ X (and some ε > 0). Does L admit a smooth
hermitian metric h with Θh(L)�V positive definite ?

ii) Assume more generally that there is an analytic subset Y ) X such that i)
holds for all curves C 6⊂ Y . Does L admit a singular hermitian metric h with
Θh(L)�V positive definite, and with degeneration set Σh ⊂ Y ?

iii) Assume that there exists ε > 0 such that every closed curve C ⊂ X satisfies

max
(
− χ(C)−

∑
t∈C

(mk−1(t)− 1),devpω(C/V )
)
> ε degω(C).

Does it follow that (X,V ) admits non degenerate negative k-jet (total)
curvature ?
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The answer to 8.7 i) is positive if V is the vertical tangent sheaf of a smooth
map X → S, and in that case one can even restrict oneself to curves that are
tangent to V (i.e. vertical curves): this is just the relative version of Kleiman’s
criterion. However, in general, it is not sufficient to deal only with curves tangent
to V (if X is an abelian variety and V is a constant line subbundle of TX with non
closed leaves, the condition required for algebraic curves C is void, hence L can
be taken negative on X ; then, of course, the curvature cannot be made positive
along V .)

§9. Proof of the Bloch theorem

The core of the result can be expressed as a characterization of the Zariski
closure of an entire curve drawn on a complex torus. The proof will be obtained as a
simple consequence of the Ahlfors-Schwarz lemma (more specifically Theorem 7.8),
combined with a jet bundle argument. Our argument works in fact without any
algebraicity assumption on the complex tori under consideration (only the case of
abelian or semi-abelian varieties seems to have been treated earlier).

9.1. Theorem. Let Z be a complex torus and let f : C → Z be a holomorphic
map. Then the (analytic) Zariski closure f(C )Zar is a translate of a subtorus, i.e.
of the form a+ Z ′, a ∈ Z, where Z ′ ⊂ Z is a subtorus.

The converse is of course also true: for any subtorus Z ′ ⊂ Z, we can choose
a dense line L ⊂ Z ′, and the corresponding map f : C ' a + L ↪→ Z has Zariski
closure f(C )Zar = a+ Z ′.
Proof (based on the ideas of [GrGr80]). Let f : C → Z be an entire curve and let
X be the Zariski closure of f(C ). We denote by Zk = Pk(TZ) the k-jet bundle
of Z and by Xk the closure of Xreg

k = Pk(TXreg) in Zk. As TZ is trivial, we
have Zk = Z × Rn,k where Rn,k is the rational variety introduced in § 5. By
Proposition 6.16 iii), there is a weight a ∈ Nk such that OZk(a) is relatively very
ample. This means that there is a very ample line bundle ORn,k(a) over Rn,k such
that OZk(a) = pr?2 ORn,k(a). Consider the map Φk : Xk → Rn,k which is the
restriction to Xk of the second projection Zk → Rn,k. By fonctoriality, we have
OXk(a) = Φ?kORn,k(a).

Define Bk ⊂ Xk to be the set of points x ∈ Xk such that the fiber of Φk
through x is positive dimensional. Assume that Bk 6= Xk. By Proposition 7.2 ii),
OXk(a) carries a hermitian metric with degeneration set Bk and with strictly
positive definite curvature on Xk (if necessary, blow-up Xk along the singularities
and push the metric forward). Theorem 7.8 shows that f[k](C ) ⊂ Bk, and this is
of course also true if Bk = Xk. The inclusion f[k](C ) ⊂ Bk means that through
every point f[k](t0) there is a germ of positive dimensional variety in the fiber
Φ−1
k (Φk(f[k](t0))), say a germ of curve t′ 7→ u(t′) = (z(t′), jk) ∈ Xk ⊂ Z × Rn,k

with u(0) = f[k](t0) = (z0, jk) and z0 = f(t0). Then (z(t′), jk) is the image of
f[k](t0) by the k-th lifting of the translation τs : z 7→ z+s defined by s = z(t′)−z0.
Now, we have f(C ) 6⊂ Xsing since X is the Zariski closure of f(C ), and we may
therefore choose t0 so that f(t0) ∈ Xreg and f(t0) is a regular point. Let us define

Ak(f) =
{
s ∈ Z : f[k](t0) ∈ Pk(X) ∩ Pk(τ−s(X))

}
.
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Clearly Ak(f) is an analytic subset of Z containing the curve t′ 7→ s(t′) = z(t′)−z0

through 0. Since
A1(f) ⊃ A2(f) ⊃ · · · ⊃ Ak(f) ⊃ · · · ,

the Noetherian property shows that the sequence stabilizes at some Ak(f).
Therefore, there is a curve D(0, r) → Z, t′ 7→ s(t′) such that the infinite jet j∞
defined by f at t0 is s(t′)-translation invariant for all t′. By uniqueness of analytic
continuation, we conclude that s(t′) + f(t) ∈ X for all t ∈ C and t′ ∈ D(0, r). As
X is the Zariski closure of f(C ), we must have s(t′) +X ⊂ X for all t′ ∈ D(0, r) ;
also, X is irreducible, thus we have in fact s(t′) +X = X. Define

W =
{
s ∈ Z ; s+X = X

}
.

Then W is a closed positive dimensional subgroup of Z. Let p : Z → Z/W be the
quotient map. As Z/W is a complex torus with dimZ/W < dimZ, we conclude by
induction on dimension that the curve f̂ = p◦f : C → Z/W has its Zariski closure
X̂ := f̂(C )Zar = p(X) equal to a translate ŝ+T̂ of some subtorus T̂ ⊂ Z/W . Since
X isW -invariant, we get X = s+p−1(T̂ ), where p−1(T̂ ) is a closed subgroup of Z.
This implies that X is a translate of a subtorus, as expected.

We now state two simple corollaries, and then the “Bloch theorem” itself (see
also [Och77], [Nog77, 81, 84], [Kaw80] for other approaches in the algebraic case).

9.2. Corollary. Let X be a complex analytic subvariety in a complex torus Z.
Then X is hyperbolic if and only if X does not contain any translate of a subtorus.

9.3. Corollary. Let X be a complex analytic subvariety of a complex torus Z.
Assume that X is not a translate of a subtorus. Then every entire curve drawn in
X is analytically degenerate.

9.4. Bloch theorem. Let X be a compact complex Kähler variety such that the
irregularity q = h0(X,Ω1

X) is larger than the dimension n = dimX. Then every
entire curve drawn in X is analytically degenerate.

Here X may be singular and Ω1
X can be defined in any reasonable way (direct

image of the Ω1

X̂
of a desingularization X̂ or direct image of Ω1

U where U is the
set of regular points in the normalization of X).
Proof. By blowing-up, we may assume that X is smooth. Then the Albanese
map α : X → Alb(X) sends X onto a proper subvariety Y ⊂ Alb(X) (as
dimY 6 dimX < dim Alb(X)), and Y is not a translate of a subtorus by the
universal property of the Albanese map. Hence, for every entire curve f : C → X
we infer that α ◦ f : C → Y is analytically degenerate; it follows that f itself is
analytically degenerate.

§10. Logarithmic jet bundles and a conjecture of Lang

We want to report here briefly about an important question raised by S. Lang,
namely whether the complement of an ample divisor in an Abelian variety is
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Kobayashi hyperbolic? This statement has been first settled in the affirmative by
Siu and Yeung [SiYe96b], using an extension of some of the methods used to prove
Bloch’s theorem. We will adopt here a slightly different approach of G. Dethloff
and S. Lu [DLu96], who followed a suggestion made during our Santa Cruz lectures
in July 1995. Namely, there should exist a theory of logarithmic jet bundles
extending Semple’s construction, which would allow to study the hyperbolicity
properties of open varieties of the form X rD (D being a divisor in a projective
variety X). We give here a short account of Dethloff and Lu’s technique, referring
to [DLu96] for details, and to [SiYe96b], [Nog96a] for alternative approaches.

Let (X,V ) be a compact directed manifold and D a reduced divisor in X.
Recall that the sheaf Ω1

X〈D〉 of holomorphic 1-forms with logarithmic poles along
D is defined to be the coherent sheaf generated by Ω1

X and dsj/sj , where sj = 0
are local equations for the irreducible components of D. It is locally free as soon as
D is a normal crossing divisor (we may always suppose that this is the case after
blowing up X along smooth centers contained in D). Similarly, one introduces the
sheaf O(V ?〈D〉) to be the sheaf of holomorphic 1-forms along V with logarithmic
poles along D (this is just the quotient of Ω1

X〈D〉 by the conormal sheaf V o ⊂ V ?
of V ). It is locally free as soon as D has normal crossings and its components D(j)

are everywhere tranversal to V (by this we mean that TD(j)
+V = TX along D(j)).

Under this assumption, we consider the dual (locally free) sheaves

(10.1) O(TX〈D〉) := (Ω1
X〈D〉)?, O(V 〈D〉) := (V ?〈D〉)?.

One easily checks that O(TX〈D〉) (resp. O(V 〈D〉)) is the sheaf of germs of vector
fields in O(TX) (resp. O(V )) which are tangent to each component of D. Now, one
defines a sequence

(10.2) (Xk, Dk, Vk)

of logarithmic k-jet bundles exactly in the same way as we proceeded in section § 4
and § 5: if X0 = X, D0 = D and V0 = V 〈D〉, one sets inductively Xk = P (Vk−1),
Dk = (πk,0)−1(D), and Vk is the set of tangent vectors in TXk〈Dk〉 which project
into the line defined by the tautological line bundle OXk(−1) ⊂ π?kVk−1. In this
case, the direct image formula given in Theorem 6.8 reads

(10.3) (πk,0)?OXk(m) = O(Ek,mV
?〈D〉),

where O(Ek,mV
?〈D〉) is the sheaf generated by all polynomial differential operators

in the derivatives of order 1, 2, . . . , k of the components f1, . . . , fn, together with
the extra function log sj(f) along the j-th component of D.

Just as before, a logarithmic k-jet metric is just a singular hermitian metric
on OXk(−1). Dethloff and Lu [DLu96] state the following results 10.4–10.9, which
extend our results of sections § 7 and § 9 (most of these results can already be
derived from [SiYe96b] as well).

10.4. Theorem. Let (X,D, V ) be as above. Let Σk,m be the union of the base
locus of OXk(m) and of the positive dimensional fibers of the canonical map defined
by the corresponding linear system. Then
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i) If Σk,m 6= Xk, there exists a logarithmic k-jet metric hk with strictly negative
jet curvature and Σhk = Σk,m.

ii) For every entire map f : C → X rD tangent to V , one has f[k](C ) ⊂ Σk,m.

iii) For every holomorphic map f : ∆? → X rD tangent to V (where ∆? is the
punctured disk), one has: either f extends to a holomorphic map f : ∆ → X
or f[k](∆

?) ⊂ Σk,m.

Consider now a semi-abelian variety Z (that is, a commutative algebraic group
C n/Γ), and let D ⊂ Z be a reduced algebraic divisor.

10.5. Theorem. Let (Z,D) be as above.

i) For every entire curve f : C → Z, the Zariski closure f(C )Zar is a translate
of an algebraic subgroup of Z.

ii) For every entire curve f : C → Z rD, we have f(C )Zar ∩D = ∅.

10.6. Corollary. If D has non empty intersection with any translate of an
algebraic subgroup of Z of positive dimension, then Z r D is Brody hyperbolic.
This is true e.g. if Z is abelian and D is ample.

10.7. Remark. Theorem 10.5 and its corollary have been obtained indepen-
dently by Noguchi [Nog96a], and also by Siu-Yeung [SiYe96b] in the case of
abelian varieties. Both of their proofs use value distribution theory, whilst the
present approach uses only negative curvature arguments. It is likely that The-
orem 10.5 can be extended to arbitrary commutative (non necessarily algebraic)
Lie groups C n/Γ.

10.8. Theorem. The following properties hold true.

A) Let f : ∆? → Z be a holomorphic map. Then either it extends to a holomorphic
map f : ∆→ Z or there exists a maximal algebraic subgroup Z ′ of Z of positive
dimension such that f(∆?)Zar is foliated by translates of Z ′.

B) Let f : ∆? → Z rD be a holomorphic map. Then one of the following holds:

i) f extends to a holomorphic map f : ∆→ Z.

ii) f(∆?)Zar ∩D = ∅.

iii) There exists an algebraic subgroup Z ′′ of Z ′ of positive dimension such
that f(∆?)Zar ∩D is foliated by translates of Z ′′.

C) Assume here that Z is an abelian variety and let f : ∆? → Z r D be a
holomorphic map. Then one of the following holds:

i) f extends to a holomorphic map f : ∆→ Z.

ii) There exists an algebraic subgroup Z ′′ of Z ′ of positive dimension such
that D is foliated by translates of Z ′′.
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Part A) of Theorem 10.8 is due to Noguchi [Nog96a] (again with a proof based
on Nevanlinna theory).

10.9. Corollary. If Z is abelian and D is ample, then every holomorphic map
f : ∆? → Z rD extends to a holomorphic map f : ∆→ Z.

§11. Projective meromorphic connections and Wronskians

We describe here an important method introduced by Siu [Siu87] and later
developped by Nadel [Nad89], which is powerful enough to provide explicit
examples of algebraic hyperbolic surfaces. It yields likewise interesting results
about the algebraic degeneration of entire curves in higher dimensions. The main
idea is to use meromorphic connections with low pole orders, and the associated
Wronskian operators. In this way, Nadel produced examples of hyperbolic surfaces
in P3 for any degree of the form p = 6k + 3 > 21. We present here a variation of
Nadel’s method, based on the more general concept of partial projective connection,
which allows us to extend his result to all degrees p > 11. This approach is inspired
from a recent work of J. El Goul [EG96], and is in some sense a formalization of
his strategy.

Let X be a complex n-dimensional manifold. A meromorphic connection ∇
on TX is a C -linear sheaf morphism

M(U, TX) −→M(U,Ω1
X ⊗ TX)

(where M(U, •) stands for meromorphic sections over U), satisfying the Leibnitz
rule

∇(fs) = df ⊗ s+ f∇s

whenever f ∈M(U) (resp. s ∈M(U, TX)) is a meromorphic function (resp. section
of TX). Let (z1, . . . , zn) be holomorphic local coordinates on an open set U ⊂ X.
The Christoffel symbols of ∇ with respect to these coordinates are the coefficients
Γλjµ such that

Γλµ =
∑

16j6n

Γλjµdzj = λ-th component of ∇
( ∂

∂zµ

)
.

The associated connection form on U is the tensor

Γ =
∑

16j,λ,µ6n

Γλjµ dzj ⊗ dzµ ⊗
∂

∂zλ
∈M(U, T ?X ⊗ T ?X ⊗ TX).

Then, for all local sections v =
∑

16λ6n vλ
∂
∂zλ

, w =
∑

16λ6n wλ
∂
∂zλ

of M(U, TX),
we get

∇v =
∑

16λ6n

(
dvλ +

∑
16µ6n

Γλµvµ

) ∂

∂zλ
= dv + Γ · v,

∇wv =
∑

16j,λ6n

(
wj
∂vλ
∂zj

+
∑

16µ6n

Γλjµwjvµ

) ∂

∂zλ
= dwv + Γ · (w, v).
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The connection ∇ is said to be symmetric if it satisfies ∇vw − ∇wv = [v, w], or
equivalently, if the Christoffel symbols Γλjµ = Γλµj are symmetric in j, µ.

We now turn ourselves to the important concept of Wronskian operator. Let B
be the divisor of poles of ∇, that is, the divisor of the least common multiple of all
denominators occuring in the meromorphic functions Γλjµ. If β ∈ H0(X,O(B))
is the canonical section of divisor B, then the operator β∇ has holomorphic
coefficients. Given a holomorphic curve f : D(0, r) → X whose image does not
lie in the support |B| of B, one can define inductively a sequence of covariant
derivatives

f ′, f ′′∇ = ∇f ′(f ′), . . . , f (k+1)
∇ := ∇f ′(f (k)

∇ ).

These derivatives are given in local coordinates by the explicit inductive formula

(11.1) f
(k+1)
∇ (t)λ =

d

dt

(
f

(k)
∇ (t)λ

)
+

∑
16µ6n

(Γλjµ ◦ f) f ′j f
(k)
∇ (t)µ.

Therefore, if Im f 6⊂ |B|, one can define the Wronskian of f relative to ∇ as

(11.2) W∇(f) = f ′ ∧ f ′′∇ ∧ · · · ∧ f
(n)
∇ .

Clearly, W∇(f) is a meromorphic section of f?(ΛnTX). By induction β(f)k−1f
(k)
∇

is holomorphic for all k > 1. We infer that β(f)n(n−1)/2W∇(f) is holomorphic and
can be seen as a holomorphic section of the line bundle f?(ΛnTX⊗OX( 1

2n(n−1)B).
From (11.1) and (11.2) we see that P = βn(n−1)/2W∇ is a global holomorphic
polynomial operator f 7→ P (f ′, f ′′, . . . , f (n)) of order n and total degree n(n+1)/2,
with values in ΛnTX ⊗ OX( 1

2n(n − 1)B). Moreover, if we take a biholomorphic
reparametrization ϕ, we get inductively

(f ◦ ϕ)
(k)
∇ = (ϕ′)kf

(k)
∇ ◦ ϕ+ linear combination of f (j)

∇ ◦ ϕ, j < k.

Therefore
W∇(f ◦ ϕ) = (ϕ′)n(n+1)W∇(f)

and βn(n−1)/2W∇ can be viewed as a section

(11.3) βn(n−1)/2W∇ ∈ H0(X,En,n(n+1)/2T
?
X ⊗ L−1),

where L is the line bundle

L = KX ⊗ OX

(
− 1

2
n(n− 1)B

)
.

From this, we get the following theorem, which is essentially due to [Siu87] (with a
more involved proof based on suitable generalizations of Nevanlinna’s second main
theorem).

11.4. Theorem (Y.T. Siu). Let X be a compact complex manifold equipped with a
meromorphic connection ∇ of pole divisor B. If KX⊗OX(− 1

2n(n−1)B) is ample,
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then for every non constant entire curve f : C → X, one has either f(C ) ⊂ |B|
or W∇(f) ≡ 0.

Proof. By Corollary 7.9 applied with P = βn(n−1)/2W∇, we conclude that
βn(n−1)/2(f)W∇(f) ≡ 0, whence the result.

11.5. Basic observation. It is not necessary to know all Christoffel coefficients of
the meromorphic connection ∇ in order to be able to compute its Wronskian W∇.
In fact, assume that ∇̃ is another connection such that there are meromorphic
1-forms α, β with

∇̃ = ∇+ α⊗ IdTX +(β ⊗ IdTX )τ12 , i.e.,

∇̃wv = ∇wv + α(w)v + β(v)w,

where τ12 means transposition of first and second arguments in the tensors of
T ?X ⊗T ?X ⊗TX . Then W∇ = W∇̃. Indeed, the defining formula f (k+1)

∇̃
= ∇̃f ′(f (k)

∇̃
)

implies that f (k+1)

∇̃
= ∇f ′(f (k)

∇̃
) + α(f ′)f

(k)

∇̃
+ β(f

(k)

∇̃
)f ′, and an easy induction

then shows that the ∇̃ derivatives can be expressed as linear combinations with
meromorphic coefficients

f
(k)

∇̃
(t) = f

(k)
∇ (t) +

∑
16j<k

γj(t) f
(j)
∇ (t).

The essential consequence of Remark 11.5 is that we need only have a “partial
projective connection” ∇ on X, in the following sense.

11.6. Definition. A (meromorphic) partial projective connection ∇ on X is
a section of the quotient sheaf of meromorphic connections modulo addition of
meromorphic tensors in (Ω1

X ⊗ IdTX )⊕ (Ω1
X ⊗ IdTX )τ12 . In other words, it can be

defined as a collection of meromorphic connections ∇j relative to an open covering
(Uj) of X, satisfying the compatibility conditions

∇k −∇j = αjk ⊗ IdTX +(βjk ⊗ IdTX )τ12

for suitable meromorphic 1-forms αjk, βjk on Uj ∩ Uk.

If we have similar more restrictive compatibility relations with βjk = 0, the
connection form Γ is just defined modulo Ω1

X ⊗ IdTX and can thus be seen as a
1-form with values in the Lie algebra pgl(n,C ) = sl(n,C ) rather than in gl(n,C ).
Such objects are sometimes referred to as “projective connections”, although this
terminology has been also employed in a completely different meaning. In any
event, Proposition 11.4 extends (with a completely identical proof) to the more
general case where ∇ is just a partial projective connection. Accordingly, the pole
divisor B can be taken to be the pole divisor of the trace free part

Γ0 = Γ mod (Ω1
X ⊗ IdTX )⊕ (Ω1

X ⊗ IdTX )τ12 .
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Such partial projective connections occur in a natural way when one considers
quotient varieties under the action of a Lie group. Indeed, let W be a complex
manifold in which a connected complex Lie group G acts freely and properly (on
the left, say), and let X = W/G be the quotient complex manifold. We denote
by π : W → X the projection. Given a connection ∇̃ on W and a local section
σ : U →W of π, one gets an induced connection on TX|U by putting

(11.7) ∇ = π? ◦ (σ?∇̃),

where σ?∇̃ is the induced connection on σ?TW and π? : TW → π?TX is the
projection. Of course, the connection ∇ may depend on the choice of σ, but we
nevertheless have the following simple criterion ensuring that it yields an intrinsic
partial projective connection.

11.8. Lemma. Let ∇̃ = d+ Γ̃ be a meromorphic connection on W . Assume that
∇̃ satisfies the following conditions :

i) ∇̃ is G-invariant ;

ii) there are meromorphic 1-forms α, β ∈M(W,TW/X) along the relative tangent
bundle of X → W , such that for all G-invariant holomorphic vector fields v,
τ on W (possibly only defined locally over X) such that τ is tangent to the
G-orbits, the vector fields

∇̃τv − α(τ)v, ∇̃vτ − β(τ)v

are again tangent to the G-orbits (α and β are thus necessarily G-invariant,
and α = β if ∇̃ is symmetric).

Then Formula (11.7) yields a partial projective connection ∇ which is globally
defined on X and independent of the choice of the local sections σ.

Proof. Since the expected conclusions are local with respect to X, it is enough
to treat the case when W = X × G and G acts on the left on the second factor.
Then W/G ' X and π : W → X is the first projection. If dG is the canonical
left-invariant connection on G, we can write ∇̃ as

∇̃ = dX + dG + Γ̃, Γ̃ = Γ̃(x, g), x ∈ X, g ∈ G,

where dX is some connection on X, e.g. the “coordinate derivative” taken with
respect to given local coordinates (z1, . . . , zn) on X. Then ∇̃ is left invariant on
W = X×G if and only if Γ̃(x, g) = Γ(x) is independent of g ∈ G (this is meaningful
since the tangent bundle to G is trivial), and condition ii) means that

Γ(x) · (τ, v)− α(τ)v and Γ(x) · (v, τ)− β(τ)v

are tangent to the G-orbits. A local section σ : U → W of π can be written
σ(x) = (x, h(x)) for some holomorphic function h : U → G. Formula (11.7) says
more explicitly that

∇wv = π?
(
(σ?∇̃)wv

)
= π?

(
dσ?wσ?v + (Γ̃ ◦ σ) · (σ?w, σ?v)

)
.
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Let v =
∑
vj(z)∂/∂zj , w =

∑
wj(z)∂/∂zj be local vector fields on U ⊂ X. Since

σ?v = v + dh(v), we get

(σ?∇̃)wv = dw+dh(w)(v + dh(v)) + Γ̃(x, h(x)) ·
(
w + dh(w), v + dh(v)

)
= dwv + d2h(w, v) + Γ(x) · (w + dh(w), v + dh(v)).

As v, w, dh(v), dh(w) depend only on X, they can be seen as G-invariant vector
fields over W , and dh(v), dh(w) are tangent to the G-orbits. Hence

Γ(x)·(dh(w), v)−α(dh(w))v, Γ(x)·(w, dh(v))−β(dh(v))w, Γ(x)·(dh(w), dh(v))

are tangent to the G-orbits, i.e., in the kernel of π?. We thus obtain

∇wv = π?
(
(σ?∇̃)wv

)
= dwv + Γ(x) · (w, v) + α(dh(w))v + β(dh(v))w.

From this it follows by definition that the local connections∇�Uj defined by various
sections σj : Uj → W can be glued together to define a global partial projective
connection ∇ on X.

11.9. Remark. Lemma 11.8 is also valid when ∇̃ is a partial projective connection.
Hypothesis 11.8 ii) must then hold with local meromorphic 1-forms αj , βj ∈
M(Ũ j , TW/X) relatively to some open covering Ũ j of W .

In the special case Pn = (C n+1 r {0})/C ?, we get

11.10. Corollary. Let ∇̃ = d + Γ̃ be a meromorphic connection on C n+1. Let
ε =

∑
zj∂/∂zj be the Euler vector field on C n+1 and π : C n+1 r {0} → Pn be the

canonical projection. Then ∇̃ induces a meromorphic partial projective connection
on Pn provided that

i) the Christoffel symbols Γλjµ are homogeneous rational functions of degree −1
(homothety invariance of the connection ∇̃) ;

ii) there are meromorphic functions α, β and meromorphic 1-forms γ, η such that

Γ̃ · (ε, v) = αv + γ(v)ε, Γ̃ · (w, ε) = βw + η(w)ε

for all vector fields v, w.

Now, our goal is to study certain hypersurfaces Y of sufficiently high degree
in Pn. Assume for the moment that Y is an hypersurface in some n-dimensional
manifoldX, and that Y is defined locally by a holomorphic equation s = 0. We say
that Y is totally geodesic with respect to a meromorphic connection ∇ on X if Y is
not contained in the pole divisor |B| of ∇, and for all pairs (v, w) of (local) vector
fields tangent to Y the covariant derivative ∇wv is again tangent to Y . (Notice
that this concept also makes sense when ∇ is a partial projective connection.)
If Y is totally geodesic, the ambient connection ∇ on TX induces by restriction a
connection ∇�Y on TY .
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We now want to derive explicitly a condition for the hypersurface Y = {s = 0}
to be totally geodesic in (X,∇). A vector field v is tangent to Y if and only if
ds · v = 0 along s = 0. By taking the differential of this identity along another
vector field w tangent to Y , we find

(11.11) d2s · (w, v) + ds · (dwv) = 0

along s = 0 (this is meaningful only with respect to some local coordinates). On
the other hand, the condition that ∇wv = dwv + Γ · (w, v) is tangent to Y is

ds · ∇wv = ds · (dwv) + ds ◦ Γ · (w, v) = 0.

By subtracting the above from (11.11), we get the following equivalent condition:
(d2s− ds ◦ Γ) · (w, v) = 0 for all vector fields v, w in the kernel of ds along s = 0.
Therefore we obtain the

11.12. Characterization of totally geodesic hypersurfaces. The hypersur-
face Y = {s = 0} is totally geodesic with respect to ∇ if and only if there are
holomorphic 1-forms a =

∑
ajdzj, b =

∑
bjdzj and a 2-form c =

∑
cjµdzj ⊗ dzµ

such that
∇?(ds) = d2s− ds ◦ Γ = a⊗ ds+ ds⊗ b+ s c

in a neighborhood of every point of Y (here ∇? is the induced connection on T ?Y ).

From this, we derive the following useful lemma.

11.13. Lemma. Let Y ⊂ X be an analytic hypersurface which is totally geodesic
with respect to a meromorphic connection ∇, and let n = dimX = dimY + 1. Let
f : D(0, R)→ X be a holomorphic curve such that W∇(f) ≡ 0. Assume that there
is a point t0 ∈ D(0, R) such that

i) f(t0) is not contained in the poles of ∇ ;

ii) the system of vectors (f ′(t), f ′′∇(t), . . . , f
(n−1)
∇ (t)) achieves its generic rank (i.e.

its maximal rank) at t = t0 ;

iii) f(t0) ∈ Y and f ′(t0), f ′′∇(t0), . . . , f
(n−1)
∇ (t0) ∈ TY,f(t0).

Then f(D(0, R)) ⊂ Y .

Proof. Since W∇(f) ≡ 0, the vector fields f ′, f ′′∇, . . . , f
(n)
∇ are linearly dependent

and satisfy a non trivial relation

u1(t)f ′(t) + u2(t)f ′′∇(t) + · · ·+ un(t)f
(n)
∇ (t) = 0

with suitable meromorphic coefficients uj(t) on D(0, R). If un happens to be ≡ 0,
we take ∇-derivatives in the above relation so as to reach another relation with
un 6≡ 0. Hence we can always write

f
(n)
∇ = v1f

′ + v2f
′′
∇ + · · ·+ vn−1f

(n−1)
∇
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for some meromorphic functions v1, . . . , vn−1. We can even prescribe the vj
to be 0 eXcept for indices j = jk ∈ {1, . . . , n − 1} such that (f

(jk)
∇ (t)) is a

minimal set of generators at t = t0. Then the coefficients vj are uniquely defined
and are holomorphic near t0. By taking further derivatives, we conclude that
f

(k)
∇ (t0) ∈ TX,f(t0) for all k. We now use the assumption that X is totally geodesic
to prove the following claim: if s = 0 is a local equation of Y , the k-th derivative
dk

dtk
(s ◦ f(t)) can be expressed as a holomorphic linear combination

dk

dtk
(
s ◦ f(t)

)
= γ0k(t) s ◦ f(t) +

∑
16j6k

γjk(t) dsf(t) · f
(j)
∇ (t)

on a neighborhood of t0. This will imply dk

dtk
(s ◦ f)(t0) = 0 for all k > 0, hence

s◦f ≡ 0. Now, the above claim is clearly true for k = 0, 1. By taking the derivative
and arguing inductively, we need only show that

d

dt

(
dsf(t) · f

(j)
∇ (t)

)
is again a linear combination of the same type. However, Leibnitz’s rule for
covariant differentiations together with 11.12 yield

d

dt

(
dsf(t) · f

(j)
∇ (t)

)
= dsf(t) ·

(∇
dt
f

(j)
∇ (t)

)
+∇?(ds)f(t) ·

(
f ′(t), f

(j)
∇ (t)

)
= ds · f (j+1)

∇ (t) + (a · f ′(t))
(
ds · f (j)

∇ (t)
)

+ (ds · f ′(t))
(
b · f (j)

∇ (t)
)

+ (s ◦ f(t))
(
c · (f ′(t), f (j)

∇ (t))
)
,

as desired.
If Y = {s = 0} ⊂ X is given and a connection ∇ on X is to be found so that Y

is totally geodesic, condition 11.12 amounts to solving a highly underdetermined
linear system of equations

∂2s

∂zj∂zµ
−

∑
16λ6n

Γλjµ
∂s

∂zλ
= aj

∂s

∂zµ
+ bµ

∂s

∂zj
+ s cjµ, 1 6 j, µ 6 n,

in terms of the unknowns Γλjµ, aj , bµ and cjµ. Nadel’s idea is to take advantage
of this indeterminacy to achieve that all members in a large linear system (Yα) of
hypersurfaces are totally geodesic with respect to ∇. The following definition is
convenient.

11.14. Definition. For any (n + 2)-tuple of integers (p, k0, k1 . . . , kn) with
0 < kj < p/2, let Sp; k0,...,kn be the space of homogeneous polynomials s ∈
C [z0, z1, . . . , zn] of degree p such that every monomial of s is a product of a power
z
p−kj
j of one of the variables with a lower degree monomial of degree kj. Any
polynomial s ∈ Sp; k0,...,kn admits a unique decomposition

s = s0 + s1 + · · ·+ sn, sj ∈ Sp; k0,...,kn
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where sj is divisible by zp−kjj .

Given a homogeneous polynomial s = s0 + s1 + · · · + sn ∈ Sp; k0,...,kn , we
consider the linear system

(11.15) Yα =
{
α0s0 + α1s1 + · · ·+ αnsn = 0

}
, α = (α0, . . . , αn) ∈ C n.

Our goal is to study smooth varieties Z which arise as complete intersections
Z = Yα1 ∩ · · · ∩ Yαq of members in the linear system (the αj being linearly
independent elements in C n+1). For this, we want to construct a (partial
projective) meromorphic connection ∇ on Pn such that all Yα are totally geodesic.
Corollary 11.10 shows that it is enough to construct a meromorphic connection
∇̃ = d+ Γ̃ on C n+1 satisfying 11.10 i) and ii), such that the conic affine varieties
Ỹ α ⊂ C n+1 lying over the Yα are totally geodesic with respect to ∇̃. Now,
Characterization 11.12 yields a sufficient condition in terms of the linear system
of equations

(11.16)
∑

06λ6n

Γ̃λjµ
∂sκ
∂zλ

=
∂2sκ
∂zj∂zµ

, 0 6 j, κ, µ 6 n.

(We just fix the choice of aj , bµ and cjµ to be 0). This linear system can be
considered as a collection of decoupled linear systems in the unknowns (Γ̃λjµ)λ,
when j and µ are fixed. Each of these has format (n + 1) × (n + 1) and can be
solved by Cramer’s rule if the principal determinant

(11.17) δ := det
(∂sκ
∂zλ

)
06κ,λ6n

6≡ 0

is not identically zero. We always assume in the sequel that this non degene-
racy assumption is satisfied. As ∂sκ/∂zλ is homogeneous of degree p − 1 and
∂2sκ/∂zj∂zµ is homogeneous of degree p−2, the solutions Γ̃λjµ(z) are homogeneous
rational functions of degree −1 (condition 11.10 i)). Moreover, ∇̃ is symmetric,
for ∂2s/∂zj∂zµ is symmetric in j, µ. Finally, if we multiply (11.16) by zj and take
the sum, Euler’s identity yields∑

06j,λ6n

zjΓ̃
λ
jµ

∂sκ
∂zλ

=
∑

06j6n

zj
∂2sκ
∂zj∂zµ

= (p− 1)
∂sκ
∂zµ

, 0 6 κ, µ 6 n.

The non degeneracy assumption implies (
∑
j zjΓ̃

λ
jµ)λµ = (p− 1) Id, hence

Γ̃(ε, v) = Γ̃(v, ε) = (p− 1)v

and condition 11.10 ii) is satisfied. From this we infer

11.18. Proposition. Let s = s0 + · · · + sn ∈ Sp; k0,...,kn be satisfying the non
degeneracy condition δ := det(∂sκ/∂zλ)06κ,λ6n 6≡ 0. Then the solution Γ̃ of the
linear system (11.16) provides a partial projective meromorphic connection on Pn
such that all hypersurfaces

Yα = {α0s0 + · · ·+ αnsn = 0}
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are totally geodesic. Moreover, the divisor of poles B of ∇ has degree at most equal
to n+ 1 +

∑
kj.

Proof. Only the final degree estimate on poles has to be checked. By Cramer’s
rule, the solutions are expressed in terms of ratios

Γ̃λjµ =
δλjµ
δ
,

where δλjµ is the determinant obtained by replacing the column of index λ in
det(∂sκ/∂zλ)06κ,λ6n by the column (∂2sκ/∂zj∂zµ)06κ6n. Now, ∂sκ/∂zλ is a
homogeneous polynomial of degree p−1 which is divisible by zp−kκ−1

κ , hence δ is a
homogeneous polynomial of degree (n+ 2)(p− 1) which is divisible by

∏
z
p−kj−1
j .

Similarly, ∂2sκ/∂zj∂zµ has degree p− 2 and is divisible by zp−kκ−2
κ . This implies

that δλjµ is divisible by
∏
z
p−kj−2
j . After removing this common factor in the

numerator and denominator, we are left with a denominator of degree∑
06j6n

(
(p− 1)− (p− kj − 2)

)
=
∑

(kj + 1) = n+ 1 +
∑

kj ,

as stated.
An application of Theorem 11.4 then yields the following theorem on certain

complete intersections in projective spaces.

11.19. Theorem. Let s ∈ Sp; k0,...,kn+q
⊂ C [z0, z1, . . . , zn+q] be a homoge-

neous polynomial satisfying the non degeneracy assumption det(∂sκ/∂zλ) 6≡ 0 in
C n+q+1. Let

Yα =
{
α0s0 + α1s1 + · · ·+ αn+qsn+q = 0

}
⊂ Pn+q

be the corresponding linear system, and let

Z = Yα1 ∩ · · · ∩ Yαq ⊂ Pn+q

be a smooth n-dimensional complete intersection, for some linearly independent
elements αj ∈ C n+q+1 such that dsα1∧· · ·∧dsαq does not vanish along Z. Assume
that Z is not contained in the set of poles |B| of the meromorphic connection ∇
defined by (11.16), nor in any of the coordinate hyperplanes zj = 0, and that

pq > n+ q + 1 +
1

2
n(n− 1)

(
n+ q + 1 +

∑
kj

)
.

Then every nonconstant entire curve f : C → Z is algebraically degenerate and
satisfies either

i) f(C ) ⊂ Z ∩ |B| or

ii) f(C ) ⊂ Z ∩ Yα for some member Yα which does not contain Z.
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Proof. By Proposition 11.18, the pole divisor of ∇ has degree at most equal to
n + q + 1 +

∑
kj , hence, if we let B = O(n + q + 1 +

∑
kj), we can find a

section β ∈ H0(Pn+q, B) such that the operator f 7→ βn(n+1)/2(f)WZ,∇(f) is
holomorphic. Moreover, as Z is smooth, the adjunction formula yields

KZ =
(
KPn+q ⊗ O(pq)

)
�Z

= OZ(pq − n− q − 1).

By (11.3), the differential operator βn(n−1)/2(f)WZ,∇(f) defines a section in
H0(Z,En,n(n+1)/2T

?
Z ⊗ L−1) with

L = KZ ⊗ OZ

(
− 1

2
n(n− 1)B

)
= OZ

(
pq − n− q − 1− 1

2
n(n− 1)

(
n+ q + 1 +

∑
kj

))
.

Hence, if f(C ) 6⊂ |B|, we know by Theorem 11.4 that WZ,∇(f) ≡ 0. Fix a
point t0 ∈ C such that f(t0) /∈ |B| and (f ′(t0), f ′′∇(t0), . . . , f

(n)
∇ (t0)) is of maximal

rank r < n. There must exist an hypersurface Yα 6⊃ Z such that

f(t0) ∈ Yα, f ′(t0), f ′′∇(t0), . . . , f
(n)
∇ (t0) ∈ TYα,f(t0).

In fact, these conditions amount to solve a linear system of equations∑
06j6n+q

αjsj(f(t0)) = 0,
∑

06j6n+q

αjdsj(f
(j)
∇ (t0)) = 0

in the unknowns (α0, α1, . . . , αn+q) = α, which has rank 6 r + 1 6 n. Hence
the solutions form a vector space Sol of dimension at least q + 1, and we can
find a solution α which is linearly independent from α1, . . . , αq. We complete
(α, α1, . . . , αq) into a basis of C n+q+1 and use the fact that the determinant
δ = det(∂sκ/∂sλ) does not vanish identically on Z, since

Z ∩ {δ = 0} ⊂ Z ∩
(
|B| ∪ {

∏
zj = 0}

)
( Z.

From this we see that
∑
αjdsj does not vanish identically on Z, in particular

Z 6⊂ Yα. By taking a generic element α ∈ Sol, we get a smooth n-dimensional
hypersurface Zα = Yα∩Yα2∩· · ·∩Yαq inW = Yα2∩· · ·∩Yαq . Lemma 11.13 applied
to the pair (Zα,W ) shows that f(C ) ⊂ Zα, hence f(C ) ⊂ Z ∩ Zα = Z ∩ Yα, as
desired.

If we want to decide whether Z is hyperbolic, we are thus reduced to decide
whether the hypersurfaces Z ∩ |B| and Z ∩Yα are hyperbolic. This may be a very
hard problem, especially if Z∩|B| and Z∩Yα are singular. (In the case of a smooth
intersection Z ∩Yα, we can of course apply the theorem again to Z ′ = Z ∩Yα and
try to argue by induction). However, when Z is a surface, Z ∩ |B| and Z ∩ Yα are
curves and the problem can in principle be solved directly through explicit genus
calculations.
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11.20. Examples.

i) Consider the Fermat hypersurface of degree p

Z =
{
zp0 + zp1 + · · ·+ zpn+1 = 0

}
in Pn+1, which is defined by an element in Sp; 0,...,0. A simple calculation shows that
δ = pn+2

∏
zp−1
j 6≡ 0 and that the Christoffel symbols are given by Γ̃jjj = (p−1)/zj

(with all other coefficients being equal to 0). Theorem 11.19 shows that all
nonconstant entire curves f : C → Y are algebraically degenerate when

p > n+ 2 +
1

2
n(n− 1)(n+ 2).

In fact the term 1
2n(n − 1)(n + 2) coming from the pole order estimate of the

Wronskian is by far too pessimistic. A more precise calculation shows in that case
that (z0 · · · zn+1)n−1 can be taken as a denominator for the Wronskian. Hence
the algebraic degeneracy occurs for p > n+ 2 + (n+ 2)(n− 1), i.e., p > (n+ 1)2.
However, the Fermat hypersurfaces are not hyperbolic. For instance, when n = 2,
they contain rational lines z1 = ωz0, z3 = ω′z2 associated with any pair (ω, ω′) of
p-th roots of −1.

ii) Following J. El Goul ([EG96, 97]), let us consider surfaces Z ⊂ P3 of the form

Z =
{
zp0 + zp1 + zp2 + zp−2

3 (ε0z
2
0 + ε1z

2
1 + ε2z

2
2 + z2

3) = 0
}
,

defined by the element in Sp; 0,0,0,2 such that s3 = zp−2
3 (ε0z

2
0 + ε1z

2
1 + ε2z

2
2 + z2

3)
and sj = zpj for 0 6 j 6 2. One can check that Z is smooth provided that

(11.21)
∑
j∈J

ε

p
p−2
j 6= 2

p− 2

(
− p

2

) p
p−2

, ∀J ⊂ {0, 1, 2},

for any choice of complex roots of order p − 2. The connection ∇̃ = d + Γ̃ is
computed by solving linear systems with principal determinant δ = det(∂sκ/∂zλ)
equal to∣∣∣∣∣∣∣∣

pzp−1
0 0 0 0
0 pzp−1

1 0 0
0 0 pzp−1

2 0
2ε0z0z

p−2
3 2ε1z1z

p−2
3 2ε2z2z

p−2
3 (p− 2)zp−3

3

(
ε0z

2
0 + ε1z

2
1 + ε2z

2
2 + p

p−2z
2
3

)
∣∣∣∣∣∣∣∣

= p3(p− 2)zp−1
0 zp−1

1 zp−1
2 zp−3

3

(
ε0z

2
0 + ε1z

2
1 + ε2z

2
2 +

p

p− 2
z2

3

)
6≡ 0.

The numerator of Γ̃λjµ is obtained by replacing the column of index λ of δ by
(∂2sκ/∂zj∂zµ)06κ63, and zp−2

0 zp−2
1 zp−2

2 zp−4
3 cancels in all terms. Hence the pole

order of ∇̃ and of W∇̃ is 6 (as given by Proposition 11.18), with

z0z1z2z3

(
ε0z

2
0 + ε1z

2
1 + ε2z

2
2 +

p

p− 2
z2

3

)
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as the denominator, and its zero divisor as the divisor B. The condition on p we
get is p > n + 2 + 6 = 10. An explicit calculation shows that all curves Z ∩ |B|
and Z ∩ Yα have geometric genus > 2 under the additional hypothesis

(11.22)

{
none of the pairs (εi, εj) is equal to (0, 0),
εi/εj 6= −θ2 whenever θ is a root of θp = −1.

[(11.22) excludes the existence of lines in the intersections Z ∩ Yα.]

11.23. Corollary. Under conditions (11.21) and (11.22), the algebraic surface

Z =
{
zp0 + zp1 + zp2 + zp−2

3 (ε0z
2
0 + ε1z

2
1 + ε2z

2
2 + z2

3) = 0
}
⊂ P3

is smooth and hyperbolic for all p > 11.

Another question which has raised considerable interest is to decide when the
complement P2 rC of a plane curve C is hyperbolic. If C = {σ = 0} is defined by
a polynomial σ(z0, z1, z2) of degree p, we can consider the surface X in P3 defined
by zp3 = σ(z0, z1, z2). The projection

ρ : X → P2, (z0, z1, z2, z3) 7→ (z0, z1, z2)

is a finite p : 1 morphism, ramified along C. It follows that P2 r C is hyperbolic
if and only if its unramified covering X r ρ−1(C) is hyperbolic; hence a sufficient
condition is that X itself is hyperbolic. If we take ε2 = 0 in Cor. 11.23 and
exchange the roles of z2, z3, we get the following

11.24. Corollary. Consider the plane curve

C =
{
zp0 + zp1 + zp−2

2 (ε0z
2
0 + ε1z

2
1 + z2

2) = 0
}
⊂ P2, ε0, ε1 ∈ C ?.

Assume that neither of the numbers ε0, ε1, ε0 + ε1 is equal to 2
p−2

(
− p

2

) p
p−2 and

that ε1/ε0 6= −θ2 whenever θp = −1. Then P2 r C is hyperbolic.

§12. Decomposition of jets in irreducible representations

Let us first briefly recall the definition of the Schur fonctors Γ• (they are
frequently denoted S• in the literature, but we want to avoid any confusion with
ordinary symmetric powers). Let V be a complex vector space of dimension r. To
the set of nonincreasing r-tuples (a1, a2, . . . , ar) ∈ Zr, a1 > a2 > · · · > ar, one
associates in a fonctorial way a collection of vector spaces Γ(a1,a2,...,ar)V which
provide the list of all irreducible representations of the linear group GL(V ), up to
isomorphism (here, (a1, . . . , ar) is the highest weight of the action of a maximal
torus (C ?)r ⊂ GL(V )). The Schur fonctors can be defined in an elementary way

as follows. Let Ur =
{(

1 0
? 1

)}
be the group of lower triangular unipotent r× r

matrices. If all aj are nonnegative, one defines

Γ(a1,a2,...,ar)V ⊂ Sa1V ⊗ · · · ⊗ SarV
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to be the set of polynomials P (ξ1, . . . , ξr) on (V ?)r which are homogeneous of
degree aj with respect to ξj and which are invariant under the left action of Ur
on (V ?)r = Hom(V,C r), namely such that

P (ξ1, . . . , ξj−1, ξj + ξk, ξj+1, . . . , ξr) = P (ξ1, . . . , ξr) ∀k < j.

We agree that Γ(a1,a2,...,ar)V = 0 unless (a1, a2, . . . , ar) is nonincreasing. As a
special case, we recover symmetric and exterior powers

SkV = Γ(k,0,...,0)V,

ΛkV = Γ(1,...,1,0,...,0)V, (with k indices 1)(12.1)

detV = Γ(1,...,1)V.

The Schur fonctors satisfy the well-known formula

(12.2) Γ(a1+`,...,ar+`)V = Γ(a1,...,ar)V ⊗ (detV )`.

This formula can of course be used to define Γ(a1,...,ar)V if any of the aj ’s happens
to be negative.

Now, by what we saw in section §6, the group G′k of germs of reparametriza-
tions ϕ(t) = t + b2t

2 + · · · + bkt
k + O(tk+1) tangent to identity acts on k-tuples

(f ′, f ′′, . . . , f (k)) of derivatives of f at 0 by the formulas

(f ◦ ϕ)′ = f ′, (f ◦ ϕ)′′ = f ′′ + 2b2f
′, (f ◦ ϕ)′′′ = f ′′′ + 3b2f

′′ + 3b3f
′, . . . .

This is clearly a unipotent action, induced by the action of Uk through an
embedding

G′k ↪−→ Uk, ϕ 7−→



1 0 0 · · · 0 0
2b2 1 0 · · · 0 0
3b3 3b2 1 · · · 0 0
...

...
...

· · · 1 0
kbk · · · kb2 1

 .

By formula (6.5), we find that the graded bundle of Ek,mV ? is

Gr•Ek,mV
? =

 ⊕
`∈Nk, `1+2`2+···+k`k=m

S`1V ? ⊗ S`2V ? ⊗ · · · ⊗ S`kV ?
G′k

.

Since the action of G′k does not preserve each individual component in the
summation, the computation of the invariants is quite difficult in general. We
will see however that everything is easy if k 6 2. In fact, if k = 1, then

(12.3) E1,mV
? = EGG

1,mV
? = SmV ?.
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If k = 2, the effect of a parameter change (f ′, f ′′) 7→ (f ′, f ′′ + λf ′) on a
weighted homogeneous polynomial Q(f ′, f ′′) =

∑
|α1|+2|α2|=m aα1α2

(f ′)α1(f ′′)α2

is to replace each monomial (f ′)α1(f ′′)α2 by a sum∑
β

Cβλ
|β|(f ′)α1+β(f ′′)α2−β .

It follows that terms (f ′)α1(f ′′)α2 corresponding to different values of the pair
(|α1|, |α2|) =: (`1, `2) cannot produce monomials with the same multidegree and
the same exponent |β| of λ. Hence the various components S`1V ?⊗S`2V ? do not
mix up and we get

(12.4) Gr•E2,mV
? =

⊕
`1+2`2=m

(
S`1V ? ⊗ S`2V ?

)G′k =
⊕

`1+2`2=m

Γ(`1,`2,0,...,0)V ?.

In the special case when r = rankV = 2, (12.1) and (12.2) yield Γ(`1,`2)V ? =
S`1−`2V ? ⊗ (detV ?)`2 . Hence we get the simpler formula

(12.5) Gr•E2,mV
? =

⊕
06j6m/3

Sm−3jV ? ⊗ (detV ?)j (k = r = 2).

Similar calculations can be done for low values of k and m, but it is a major
unsolved problem to compute the decomposition formula of Gr•Ek,mV

? for
arbitrary k and m.

12.6. Special case. Assume that X is a surface and consider the absolute case
V = TX . We find

Gr•E2,mT
?
X =

⊕
06j6m/3

Sm−3jT ?X ⊗K
j
X ,

where E1,mT
?
X = SmT ?X is a subbundle of E2,mT

?
X . We thus get an exact sequence

0→ SmT ?X → E2,mT
?
X → Qm → 0,

and Qm admits a filtration with

Gr•Qm =
⊕

16j6m/3

Sm−3jT ?X ⊗K
j
X .

The simplest case is m = 3, which yields the interesting exact sequence

0→ S3T ?X → E2,3T
?
X → KX → 0.

12.7. Complement. Assume that X is a surface of degree d in P3. Then
KX = OX(d − 4). As T ?X is a quotient bundle of T ?P3|X and as T ?Pn|X ⊗ O(2) is
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generated by sections, we conclude that Sm−3jT ?X ⊗K
j
X is (very) ample whenever

j(d−4) > 2(m−3j). This condition is most restrictive when j = 1. In particular,
Qm is ample for d > 2m− 2, and we see that there is at most a “very small part”
of E2,mT

?
X , namely SmT ?X , which need not be ample when the degree d is large.

By contrast, the Green-Griffiths graded bundle

G•EGG
2,mT

?
X =

∑
`1+2`2=m

S`1T ?X ⊗ S`2T ?X

does not such exhibit such strong positivity properties. This is one of the main
reasons for which we believe that the invariant jet bundles Ek,mT ?X are more
appropriate to the study of hyperbolicity questions.

§13. Riemann-Roch calculations and study of the base locus

In view of the Green-Griffiths conjecture 3.7 concerning algebraic degeneration
of entire curves, the main point is to compute the base loci

(13.1) Bk =
⋂
m>0

Bs
(
H0(Xk,OXk(m)⊗ π?k,0O(−A))

)
⊂ Xk

where Xk = PkTX and A is an ample divisor over X. By corollary 7.9, every
nonconstant entire curve f : C → X must satisfy f(k](C ) ⊂ Bk. If the set
Y =

⋂
k>0 πk,0(Bk) is distinct from X, then f(C ) ⊂ Y ( X and every entire

curve is thus algebraically degenerate. We will call Y the Green-Griffiths locus
of X, although Green and Griffiths did use ordinary jet bundles in place of the
Semple jet bundles. Unfortunately, it turns out that Y is extremely hard to
compute, especially in the case when X is an hypersurface or complete intersection
in projective space. (However, an important breakthrough has been achieved in
[SiYe96a] for the case of complements of curves in P2 ; noticeably, the authors
obtain an explicit construction of global jet differentials of order 1 and 2, which
allows them to show that the base locus is small enough.) Here, we will derive a
few sufficient conditions for the existence of sections, mostly based on Riemann-
Roch computations and a use of (semi-)stability inequalities. From now on, we
restrict ourselves to the case when X is an algebraic surface of general type.

The easiest case is the case of order 1 jets E1,mT
?
X = SmT ?X , namely symmetric

differentials. The Riemann-Roch formula then gives

(13.2) χ(X,SmT ?X ⊗ O(−A)) =
m3

6
(c21 − c2) +O(m2),

where c1 and c2 are the Chern classes of X. This can be seen e.g. by computing
h3 for the hyperplane bundle first Chern class h = c1(OPTX (1))3 and using the
identity h2 + c1h + c2 = 0. By the Bogomolov vanishing theorem 14.1 of the
Appendix, we get h2(X,SmT ?X ⊗ O(−A)) = 0 for m large, thus

(13.3) h0(X,SmT ?X ⊗ O(−A)) >
m3

6
(c21 − c2)−O(m2).
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As a consequence, if c21 > c2, there are non trivial symmetric differentials σ with
values in O(−A), and every entire curve must satisfy the corresponding order 1
differential equation σ(f ′) = 0. This is especially interesting in connection with
the following result of Jouanolou [Jou78].

13.4. Theorem (Jouanolou). Let Z be a compact complex manifold such that the
Hodge spectral sequence degenerates in E2, and let L ⊂ Ω1

Z be a rank 1 coherent
subsheaf such that Ω1

Z/L has no torsion. Let V ⊂ O(TX) be the dual distribution
of hyperplanes in TZ . Then either V is the relative tangent sheaf of a meromorphic
fibration from Z to a curve, or there are only finitely many compact hypersurfaces
tangent to V.

(Jouanolou [Jou78] even obtains a precise upper bound for the number of hyper-
surfaces which may occur in terms of h0(X,Ω2

X ⊗L−1) and of the Picard number
of X). As a consequence, one recovers the following result due to Bogomolov
[Bog77].

13.5. Theorem (Bogomolov). On a surface X of general type such that c21 > c2,
there are only finitely many rational or elliptic curves.

Proof. By the results of § 7, these curves must be integral curves of some
multivalued distribution of lines in X, associated with the zero divisor Z ⊂ P (TX)
of any nonzero section in

H0(P (TX),OP (TX)(m)⊗ π?1,0O(−A)).

At a generic point of Z over a point x ∈ X, this distribution defines a unique line
in TX,x, and we thus get a rank 1 subsheaf of TZ̃ (or Ω1

Z̃
) on any desingularization

Z̃ of Z. By Jouanolou’s result applied to Z̃, either these integral curves form a
family or there are only a finite number of them. If they form a family, not all of
them can be rational or elliptic, otherwise X would be a ruled or elliptic surface;
hence the general fiber has genus at least 2. In both cases, there are only finitely
many rational or elliptic curves.

The above result of Bogomolov does not give information on transcendental
curves, essentially because very little is known on transcendental leaves of a
randomly chosen meromorphic foliation (e.g., one does not know how to decide
whether there are only finitely many integral curves of parabolic type). As
observed by Lu and Yau [LuYa90], one can say more if the topological index c21−2c2
is positive, using the following result of Schneider-Tancredi [ScTa85] (the special
case when E = T ?X is due to Miyaoka [Miy82]).

13.6. Theorem (Schneider-Tancredi). Let E be rank 2 vector bundle over a
projective algebraic surface X. Assume that detE is nef and big (i.e. c1(E) is
numerically nonnegative and c1(E)2 > 0 ), that E is (detE)-semistable and that
c1(E)2−2 c2(E) > 0. Then E is almost ample in the sense that SmE generates all
1-jets of sections outside a finite union of curves in X, when m is large enough.

Proof (sketch). Let P = P (E?) be the hyperplane bundle of E and H = OP (1).
Then P is a ruled 3-fold and the hypotheses imply c1(H)3 = c1(E)2 − c2(E) > 0.
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Hence by Riemann-Roch and Serre duality, either h0(X,SmE) or h0(X,SmE?)
grow fast. The latter case is impossible by the assumption on semistability and
the assumption detE nef. Therefore H is big. Fix an ample divisor A on P . We
have to show that the base locus of mH − A in P projects to a curve in X when
m is large. Otherwise, let D be an irreducible component of a divisor in the linear
system |mH − A|. In the Picard group Pic(P ) = Pic(X) ⊕ Z[H] we then have
D = kH − π?F for some integer k > 0 and some divisor F on X. Observing that
the multiplication by the canonical section of H0(P,O(D)) yields an injection of
sheaves

O(F ) ↪→ π?O(kH) = O(SkE),

we find by semistability

c1(F ) · c1(E) 6
1

k + 1
c1(SkE) · c1(E) =

k

2
c1(E)2.

From this, we infer

H2 ·D = H2 · (kH − π?F ) = k(c1(E)2 − c2(E))− c1(E) · c1(F )

>
k

2

(
c1(E)2 − 2 c2(E)

)
> 0,

therefore (mH −A)2 ·D > 0 for m large. By Riemann-Roch, either

h0(D, p(mH −A)|D) or h2(D, p(mH −A)|D)

grows fast as p goes to infinity. By stability again, the latter case cannot occur,
as we see by looking at the exact sequence

0→ O(−D)⊗O(p(mH−A))→ OP ⊗O(p(mH−A))→ OD⊗O(p(mH−A))→ 0,

and descending everything at the h2 and h3 level down to X by the Leray spectral
sequence. Hence H|D is big and the claim follows by 7.2 iv).

13.7. Theorem ([LuYa90]). Let X be a smooth algebraic surface of general type
such that c21−2c2 > 0. Then there are only finitely many rational or elliptic curves
in X, and every non constant entire curve f : C → X maps to one of these.

Proof. One may assume that X is minimal, i.e. that KX is nef (and big). By
the work of Bogomolov [Bog79], T ?X is semi-stable. The result of Schneider and
Tancredi now implies that T ?X is almost ample. Theorem 7.8 concludes the proof.

We now turn ourselves to the case of jet differentials of degree 2. A simple
Riemann-Roch computation based on Formula 12.6 shows that

(13.8) χ(X,E2,mT
?
X) = χ(X,Gr•E2,mT

?
X) =

m4

648
(13 c21 − 9 c2) +O(m3)

where c1, c2 are the Chern classes of X (only the terms of bidegree (2, 2) in
Ch(Gr•E2,mT

?
X) play a role). This formula should be put in perspective with
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the one obtained by Green and Griffiths [GrGr80] for the jet bundles EGG
k,mT

?
X . In

the case of surfaces, they obtain

χ(X,EGG
k,mT

?
X) =

m2k+1

(k!)2(2k + 1)!
(αk c

2
1 − βk c2) +O(m2k),

where αk ∼ 1
2 (log k)2 and βk = O(log k) (especially limβk/αk = 0). In the special

case n = k = 2, their formula yields

χ(X,EGG
2,mT

?
X) =

m5

384
(7 c21 − 5 c2) +O(m4).

This is weaker than formula (13.8) in the sense that the ratio 5/7 is larger than
9/13. In general, we expect analogous estimates of the form

χ(X,Ek,mT
?
X) ∼ mk+2(γk c

2
1 − δk c2) +O(mk+1)

with lim δk/γk = 0 (and even similar higher dimensional estimates with a leading
term of the form cn,km

(n−1)k+n(−c1)n whenm� k � 1). Unfortunately, our lack
of knowledge of the combinatorics of the Schur representations involved makes the
computation hard to achieve.

In the special case when X is a surface of degree d in P3, we have c1 = (4−d)h
and c2 = (d2 − 4d+ 6)h2 where h = c1(O(1)|X), h2 = d, thus

χ(X,E2,mT
?
X) =

m4

648
d(4 d2 − 68 d+ 154) +O(m3).

This estimate is especially useful in combination with vanishing theorems for
holomorphic tensor fields (see Theorem 14.1 in the Appendix).

13.9. Corollary. If X is an algebraic surface of general type and A an ample line
bundle over X, then

h0(X,E2,mT
?
X ⊗ O(−A)) >

m4

648
(13 c21 − 9 c2)−O(m3).

In particular, every smooth surface X ⊂ P3 of degree d > 15 admits non trivial
sections of E2,mT

?
X ⊗O(−A) for m large, and every entire curve f : C → X must

satisfy the corresponding algebraic differential equations.

Proof. First note that the leading term in the Riemann-Roch estimate does not
depend on taking a tensor product by a line bundle O(−A). The claim will follow
from the computation of the Euler characteristic made in (13.8) if we check that
h2(X,E2,mT

?
X ⊗ O(−A)) = 0 for m large. However

H2(X,E2,mT
?
X ⊗ O(−A)) = H0(X,KX ⊗ (E2,mT

?
X)? ⊗ O(A))

by Serre duality. Since KX ⊗ (E2,mT
?
X)? ⊗ O(A) admits a filtration with graded

pieces
Sm−3jTX ⊗K⊗1−j

X ⊗ O(A),
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we easily deduce the vanishing of global sections from Bogomolov’s result 14.1,
using the fact that K⊗νX ⊗ O(−A) is big for ν > ν0 large enough.

Other approach using weighted line bundles OXk(a). We show here how
a use of the weighted line bundles OXk(a) may yield further information on the
base locus. Consider a directed manifold (X,V ) with dimX = n and rankV = r.
We set uk = c1(OXk(1)) and let

c
[k]
• = 1 + c

[k]
1 + · · ·+ c[k]

r := c•(Vk)

be the total chern class of Vk. Then the cohomology ring of Xk = P (Vk−1)
is defined in terms of generators and relations as the polynomial algebra
H•(X)[u1, . . . , uk] with relations

(13.10) urj + c
[j−1]
1 ur−1

j + · · ·+ c
[j−1]
r−1 uj + c[j−1]

r = 0, 1 6 j 6 k

(we omit all pull-backs π?j for simplicity of notation). Moreover, the exact
sequences (5.4) and (5.4′) yield the inductive formula

c
[k]
• = c•(OXk(−1)) c•(TXk/Xk−1

) = (1− uk) c•(TXk/Xk−1
),

c•(TXk/Xk−1
) = c•(π

?
kVk−1 ⊗ OXk(1)) =

∑
06j6r

c
[k−1]
j (1 + uk)r−j ,

in other words

(13.11) c
[k]
• = (1− uk)

∑
06j6r

c
[k−1]
j (1 + uk)r−j .

In particular, if r = rankV = 2, we find

u2
k + c

[k−1]
1 u1 + c

[k−1]
2 = 0,(13.12)

c
[k]
1 = c

[k−1]
1 + uk, c

[k]
2 = c

[k−1]
2 − u2

k,

hence

(13.13) c
[k]
1 = c

[0]
1 + u1 + · · ·+ uk, c

[k]
2 = c

[0]
2 − u2

1 − · · · − u2
k.

From now on, we concentrate again on the surface case. The 2-jet bundle

X2 → X1 → X

is a 2-step tower of P1-bundles over X and therefore has dimension 4. The exact
sequence (5.4) shows that V1 has splitting type V1�F1

= O(2) ⊕ O(−1) along the
fibers F1 of X1 → X, since TX1/X�F1

= O(2). Hence the fibers F2 of X2 → X are
Hirzebruch surfaces P (O(2)⊕ O(−1)) ' P (O⊕ O(−3)) and

OX2(1)�F2 = OP (O(2)⊕O(−1))(1).
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The weighted line bundle OX2
(2, 1) is relatively nef over X, as follows from our

general result (6.16 ii) or from the equality

OX2
(2, 1)�F2

= OP (O(2)⊕O(−1))(1)⊗ π?OP1(2) = OP (O⊕O(−3))(1).

Its multiples have zero higher order direct images Rq(π2,0)?OX2(2m,m), q > 1,
and lower order direct images

(π2,0)?OX2(2m,m) = (π2,0)?OX2(3m) = E2,3mT
?
X

[either apply (6.16 i) or observe that

(π1,0)?
(
OP (O⊕O(−3))(m)

)
= Sm

(
O⊕ O(3)

)
,

(π1,0)?
(
OP (O(2)⊕O(−1))(3m)

)
= S3m

(
O(−2)⊕ O(1)

)
have the same sections over P1]. By the Leray spectral sequence, we conclude that

hq(X2,OX2(2m,m)) = hq(X,E2,3mT
?
X), 0 6 q 6 2,

in particular the Euler characteristics are equal and grow as 1
8m

4(13 c21−9c2) when
m→ +∞. This can also be checked directly by computing 1

4! (2u1 + u2)4. In fact,
(13.12) and (13.13) easily provide

u4
1 = 0, u3

1u2 = c21 − c2, u2
1u

2
2 = c2, u1u

3
2 = c21 − 3c2, u4

1 = 5c2 − c21.

The main difficulty when trying to check the hyperbolicity of X is to show that
the base locus of OX2(2, 1) is small enough. Proving that the base locus is one
dimensional would imply that X only admits a finite number of rational and
elliptic curves, and that every entire curve f : C → X maps into one of these.
A possibility for this would be to check that (2u1 + u2)3 · Y > 0 for every 3-fold
Y ⊂ X2 and (2u1 + u2)2 · S > 0 for every surface S ⊂ X2. Unfortunately, such
estimates are rather hard to check, since we would need to evaluate the numerical
cones of effective codimension 1 and codimension 2 cycles in the 4-fold X2. The
codimension 1 case, however, can be treated by using semi-stability arguments
(although possibly the conditions obtained in this way are far from being optimal).
The following computation is due to J. El Goul [EG97].

13.14. Proposition ([EG97]). Let X be a minimal algebraic surface of general
type. If c21 − 9

7c2 > 0, then OX2
(2, 1) is almost ample on X2 with a base locus of

dimension 2 at most.

Proof (sketch). We proceed as in the proof of the result by Miyaoka and Schneider-
Tancredi. Let Y be a 3-dimensional irreducible component of the base locus, if any.
In Pic(X2) = Pic(X)⊕Zu1⊕Zu2, we then find an equality Y = a1u1 +a2u2−π?F
for some integers a1, a2 ∈ Z and some divisor F on X. As Y is effective, we
must have a1 > 0, a2 > 0. Moreover, O(F ) can be viewed as a subsheaf of
π?(OX2(a1, a2)) ⊂ E2,mT

?
X where m = a1 + a2. Thus there is a non trivial
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morphism O(F ) ↪→ Sm−3jT ?X ⊗ K
j
X for some j, and the semistability inequality

yields
F ·KX 6

m− j
2

K2
X 6

m

2
c21.

A short computation now yields

(2u1 + u2)2 · Y = (a1 + a2)(13 c21 − 9 c2)− 12 c1 · F > m(7 c21 − 9 c2).

Logarithmic case. Similar computations can be made in this situation. In fact,
if X is a surface and D is a smooth effective divisor in X, the bundle E2,mT

?
X〈D〉

of logarithmic jet differentials of order 2 and degree m admits a filtration with

(13.15) Gr•E2,mT
?
X〈D〉 =

⊕
06j6m/3

Sm−3j(T ?X〈D〉)⊗ det(T ?X〈D〉)j .

We thus get

h0(X,E2,mT
?
X〈D〉) > χ(X,E2,mT

?
X〈D〉)

>
m4

648

(
13 c21(TX〈D〉)− 9 c2(TX〈D〉)

)
−O(m3).(13.16)

The exact sequence 0→ TX〈D〉 → TX → (iD)?NX/D → 0 yields

c•(TX〈D〉) = c•(TX)c•((iD)?NX/D)−1 = (1 + c1 + c2)(1 + δ)−1,

where δ = c1(OX(D)) and c•((iD)?NX/D) = c•(OX(D)) = 1 + δ, thus

c1(TX〈D〉) = c1 − δ, c2(TX〈D〉) = c2 − c1 · δ + δ2.

Moreover, the expected vanishing theorem for h2(X,E2,mT
?
X〈D〉) still holds since

TX〈D〉 is a subbundle of TX . In particular, if X = P2 and D is a smooth curve of
degree d, we find c1(TX〈D〉) = 3− d, c2(TX〈D〉) = 3− 3d+ d2 and

h0(X,E2,mT
?
P2〈D〉) >

m4

648
(4 d2 − 51 d+ 90)−O(m3).

From this, one infers that every entire curve f : C → P2 rD must satisfy a non
trivial algebraic differential equation of order 2 if d > 11.

§14. Appendix: a vanishing theorem for holomorphic tensor
fields

In this appendix, we prove a basic vanishing theorem for holomorphic tensor
fields on minimal varieties of general type. It has been observed since a long time
that the existence of holomorphic tensor fields on a compact Kähler manifold is
governed in a rather precise way by the sign of the Ricci curvature (in case the
Ricci curvature does admit some definite sign, semipositive or seminegative). See
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for instance the papers [Li67, 71] by Lichnerowicz for the case of sections of ΛkTX
or ΛkT ?X , and S. Kobayashi’s articles [Kob80, 81] for the more general case of
tensors in ΓaTX . However, we want here to consider the situation of varieties
of general type (i.e. with KX big), and it is unknown whether KX should be
semipositive even if KX is assumed to be big and nef. On the other hand, it is a
consequence of Bogomolov’s work [Bog79] (dealing with the so-called “Bogomolov
stability” concept), that such vanishing theorems hold when TX is semistable; this
is the case for instance if X is a minimal surface of general type. Tsuji [Tsu88] has
proved more generally that the tangent bundle TX is semistable for any minimal
nonsingular projective variety of general type (here, X “minimal” means that KX

is nef) . Thus, the following theorem 14.1 below can be obtained as a combination
of the above mentioned results of Bogomolov and Tsuji. For the convenience of
the reader, we give instead a direct proof based on a use of approximate Kähler-
Einstein metrics in combination with the Bochner formula. Our hope is that
similar a priori estimates could produce as well vanishing theorems for higher
degree cohomology groups Hq.

14.1. Theorem. Let X be a projective algebraic manifold, n = dimX, and let
L be a holomorphic line bundle over X. Assume that X is of general type and
minimal (i.e. KX is big and nef), and let a = (a1, . . . , an) ∈ Zn, a1 > · · · > an,
be a weight. If either L is pseudoeffective and |a| =

∑
aj > 0, or L is big and

|a| > 0, then
H0(X,ΓaTX ⊗ L?) = 0.

Recall that a line bundle L is said to be pseudoeffective if c1(L) belongs to
the closure of the cone of effective divisors, or equivalently, if L carries a singular
hermitian metric h with curvature current Θh(L) > 0. Also notice that the result
is invariant by modifications, hence it extends to the case when X is of general
type and possesses a smooth minimal model X̃ ; this is always the case when X
is a surface. On the other hand, it is likely that the result holds for all varieties
X of general type, in view of Mori’s minimal model conjecture (however, the
differential geometric proof given below might be difficult to extend to the case
when the minimal model is singular).
Proof of Theorem 14.1. We will use the following notation: if all aj are nonnegative
integers, ΓaTX is viewed as a subbundle of (TX)⊗p with p = |a|. In particular,
given coordinates (z1, . . . , zn) on X, any tensor of ΓaTX can be expressed as a
linear combination of the elements

(∂/∂z)I :=
∂

∂zi1
⊗ · · · ⊗ ∂

∂zip
, I = (i1, . . . , ip), 1 6 ik 6 n,

which form a basis of (TX)⊗p. If some aj is negative, we use instead the identity

Γ(a1,...,ar)TX = Γ(a1+`,...,ar+`)TX ⊗ (detTX)−`

with ` = max(−aj), and consider the basis elements (∂/∂z)J ⊗ (dz1 ∧ · · · ∧ dzn)`

with |J | = p+ n`. Same notation with the elements of ΓaT ?X in terms of the basis
(dz)I = dzi1 ⊗ · · · ⊗ dzip , resp. (dz)J ⊗ (dz1 ∧ · · · ∧ dzn)−`.
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14.2. Lemma. Let L be a holomorphic line bundle over X equipped with a smooth
hermitian metric h, and let ω be a Kähler metric over X. We denote by # the
conjugate linear C∞-isomorphism TX → T ?X , v 7→ iv ω, defined by contracting
(0, 1)-vectors with the Kähler metric ω. Denote also by # : ΓaTX⊗L→ ΓaT ?X⊗L?
the induced C∞ isomorphism on the Schur tensor powers of TX and T ?X , combined
with the conjugate linear (metric) isomorphism L → L?. Then for an arbitrary
smooth section v of ΓaTX ⊗ L we have∫

X

‖∂(# v)‖2dVω =

∫
X

‖∂v‖2dVω +

∫
X

〈Ra(v), v〉+ γ|v|2 dVω

where dVω is the Kähler element of volume, γ the trace ( = sum of eigenvalues) of
Θh(L) with respect to ω, and Ra is the hermitian operator

v =
∑
|I|=p

vI(∂/∂z)
I ⊗ s 7−→ Ra(v) =

∑
|I|=p

( ∑
16k6p

ρik

)
vI(∂/∂z)

I ⊗ s,

(resp. Rav = Ra+`(1,...,1)v − `(
∑
j ρj)v with ` = max(−aj), if a /∈ Nn)

associated with the Ricci curvature form: ρk denotes the eigenvalues of Ricci(ω)
and (∂/∂zk), s are supposed to be orthonormal frames of (TX , ω) and (L, h).

Proof. We first make a pointwise calculation of ∂?∂v and ∂
?
∂(# v) in a normal

coordinate system for the Kähler metric ω and in a normalized holomorphic frame
(s) for (L, h). In suitable such coordinates we can write

ω = i
∑

16m6n

dzm ∧ dzm − i
∑

16j,k,`,m6n

cjk`mzjzkdz` ∧ dzm +O(|z|3),

|s|2 = 1−
∑

16j6n

γjkzjzk +O(|z|3)

where (cjk`m) is the curvature tensor of TX with respect to ω, and the γjk’s are
the coefficients of Θh(L). The Kähler property shows that we have the symmetry
relations cjk`m = c`kjm = cjm`k, and the Ricci tensor R =

∑
R`mdz` ∧ dzm is

obtained as the trace: R`m =
∑
j cjj`m. Since ω is tangent of order 2 to a flat

metric at the center x0 of the chart, we easily see that the first order operator
∂
? has the same formal expression at x0 as in the case of the flat metric on

C n : if w if a smooth (0, q)-form with values in a holomorphic vector bundle E
trivialized locally by a holomorphic frame (eλ) such that (eλ(x0)) is orthonormal
and Deλ(x0) = 0, we have at x0 the formula

w =
∑

|J|=q, 16λ6r

wJ,λ dzJ ⊗ eλ, ∂
?
w = −

∑
|J|=q, λ, k

∂wJ,λ
∂zk

( ∂

∂zk
dzJ

)
⊗ eλ.

We apply this to smooth sections v =
∑
vI (∂/∂z)I ⊗ s of ΓaTX ⊗ L and

w =
∑
wI (dz)I ⊗ s? of ΓaT ?X ⊗ L? where s? denotes the holomorphic section

of L? such that s?(s) = 1. We get

∂
?
∂v = −

∑
I,k

∂2vI
∂zk∂zk

(∂/∂z)I ⊗ s, ∂
?
∂w = −

∑
I,k

∂2wI
∂zk∂zk

(dz)I ⊗ s?
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at x0. Now, we find

#
∂

∂zm
= i

∂

∂zm
ω = dzm −

∑
j,k,`

cjk`mzjzkdz` +O(|z|3),

# s =
(

1−
∑

16j,k6n

γjkzjzk +O(|z|3)
)
s?

# v =
∑
I

vI(dz)
I ⊗ s? −

∑
I,j,k,`,m

vIcjk`mzjzk

(
dz` ⊗

∂

∂zm

)
(dz)I ⊗ s?,

−
∑
I,j,k

vI γjkzjzk(dz)I ⊗ s? +O(|z|3)

where (by definition)(
dz` ⊗

∂

∂zm

)
(dz)I :=

∑
16k6p, ik=m

dzi1 ⊗ · · · ⊗ dzik−1
⊗ dz` ⊗ dzik+1

⊗ · · · ⊗ dzip .

Computing ∂?∂(# v) at x0 we obtain

∂
?
∂(# v) = −

∑
I,k

∂2vI
∂zk∂zk

(dz)I ⊗ s? +
∑

I,k,`,m

vIckk`m

(
dz` ⊗

∂

∂zm

)
(dz)I ⊗ s?

+
∑
j

γjj
∑
I

vI(dz)
I ⊗ s?

= # (∂
?
∂v) +

∑
I,`,m

vIR`m

(
dz` ⊗

∂

∂zm

)
(dz)I ⊗ s? + γ(# v)

= # (∂
?
∂v) + #Ra(v) + γ(# v)

where γ =
∑
j γjj . Lemma 14.2 then follows from this identity by writing∫

X

‖∂(# v)‖2dVω =

∫
X

〈∂?∂(# v),# v〉 dVω =

∫
X

〈∂?∂v + Ra(v) + γv, v〉 dVω.

Proof of Theorem 14.1 (end). Our goal is to apply the Bochner formula of
Lemma 14.2 to show that every section v of H0(X,ΓaTX ⊗ L?) must vanish. We
first make a reduction to the case when L is ample. In fact, by raising v to some
tensor power, we get a section vm ∈ H0(X,ΓmaTX ⊗ L⊗−m). If L is big, some
power L⊗m can be written as O(A + D) where A is an ample divisor and D an
effective divisor. It is then enough to prove the vanishing of H0(ΓmaTX⊗O(−A)).
If L is just pseudoeffective, then |a| > 0 by hypothesis and we write

ΓmaTX ⊗ L⊗−m = Γma−(1,...,1)TX ⊗ (L⊗m ⊗KX)−1

where |ma− (1, . . . , 1)| = m|a| − n > 0 for m > n and L⊗m ⊗KX is big. We can
now proceed as before to reduce the situation to the case of an ample L.
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If, in addition to this, KX is also ample, the statement is a straightforward
consequence of the Aubin-Calabi-Yau theorem ([Aub77], [Yau77]). In fact, we can
choose ω to be Kähler-Einstein, i.e., Ricci(ω) = −ω. Then, for any holomorphic
section v ∈ H0(X,ΓaTX ⊗ L?, Lemma 14.2 yields

0 =

∫
X

‖∂v‖2dVω =

∫
X

‖∂(# v)‖2dVω
∫
X

−〈Ra(v), v〉+ γ|v|2 dVω

>
∫
X

(|a|+ γ)|v|2 dVω

(γ becomes −γ since we changed L into L?, and all Ricci eigenvalues are equal to
−1 in that case). As |a| > 0 and γ > 0 by the ampleness of L, we get the desired
conclusion.

If KX is only big and nef, we take ω to be a Kähler form in the positive class
c1(KX) + εc1(L) = −c1(X) + εc1(L), such that

Ricci(ω) = −ω + εθ

where θ = Θh(L) > 0 (the existence of such ω is is a well-known consequence
of the theory of Monge-Ampère equations). Then the Ricci curvature eigenvalues
satisfy ρj = −1 + εγj 6 −1 + εγ and we get

〈−Ra(v), v〉+ γ|v|2 > (|a|+ γ −Nεγ)|v|2

where N is an integer depending only on the weight a = (a1, . . . , an) ; for
instance, N = |a| works if all aj are nonnegative, otherwise we can take
N = |a|+ nmax(−aj).
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